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Abstract The present study addresses the three-dimensional flow of an Oldroyd-B fluid

over a stretching surface with convective boundary conditions. The problem formulation

is presented using the conservation laws of mass, momentum, and energy. The solutions

to the dimensionless problems are computed. The convergence of series solutions by the

homotopy analysis method (HAM) is discussed graphically and numerically. The graphs

are plotted for various parameters of the temperature profile. The series solutions are

verified by providing a comparison in a limiting case. The numerical values of the local

Nusselt number are analyzed.
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1 Introduction

Nowadays, the study of non-Newtonian fluids is a topic of great interest to the recent
researchers in view of their applications in industry and technology, e.g., biological, chemical,
food, and pharmaceutical industries. Several fluids such as drilling muds, shampoos, ketchup,
granular suspension, apple sauce, paper pulp, slurries, paints, certain oils, polymer solutions,
and clay coating are the non-Newtonian fluids. The characteristics of all non-Newtonian fluids
cannot be described by a single constitutive relationship. Various fluid models were proposed
in the literature to describe the properties of non-Newtonian fluids under three categories (i)
differential type, (ii) rate type, and (iii) integral type. The Maxwell fluid model is the simplest
class of rate type fluids. This subclass describes only the properties of relaxation time. This
fluid model cannot predict the characteristics of retardation time. The Oldroyd-B fluid model
was proposed to describe the properties of the relaxation time and the retardation time. Jamil
et al.[1] studied the helical flows of an Oldroyd-B fluid in an infinite circular cylinder by the
finite Hankel transform method. Jamil and Khan[2] investigated the flow of an Oldryd-B fluid
between two coaxial cylinders. The flow in this study is induced by the inner cylinder. Sajid
et al.[3] numerically investigated the boundary layer flow of an Oldroyd-B fluid in the region
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of stagnation point. An analysis for the two-dimensional flow of an Oldroyd-B fluid over a
linearly stretched surface was carried out by Hayat and Alsaedi[4]. They discussed the effects
of thermal radiation, Joule heating, and thermophoresis in this study. The magnetohydrody-
namics (MHD) flow through a porous channel filled with an Oldroyd-B fluid was analyzed by
Hayat et al.[5].

The stretched boundary layer flow with heat transfer has numerous applications in many
engineering and industrial processes such as extrusion of plastic sheets, cooling of an infinite
metallic plate in a cooling bath, spinning of fibers, drawing of plastic films, cooling of continuous
strips, and aerodynamic extrusion of plastic sheets. Sakiadis[6] firstly discussed the boundary
layer flow over a continuous moving surface. Crane[7] investigated the boundary layer flow
over a linearly stretching surface. Since then, such problems under different aspects have been
studied by various workers[8–15].

The basic aim of this paper is to investigate the three-dimensional flow of an Oldroyd-B
fluid over a stretching surface in the presence of convective boundary conditions. Recently, a
few researchers discussed the two-dimensional flow with convective boundary conditions. For
example, Yao et al.[16] studied the two-dimensional flow of a viscous fluid with convective
boundary conditions over a stretching/shrinking sheet. Blasius flow of a viscous fluid with
convective boundary conditions was investigated by Aziz[17]. Flows of second grade and Maxwell
fluids over a stretching surface were analyzed by Hayat et al.[18–19]. Makinde and Aziz[20]

carried out a study to investigate the boundary layer flow of nanofluid with convective boundary
conditions. Hence, for the three-dimensional flow, this paper is organized in the following
fashion. Next section develops the mathematical formulation for the three-dimensional flow of
an Oldroyd-B fluid. Section 3 has the series solutions constructed via the homotopy analysis
method (HAM)[21–26]. The convergence analysis and discussion of results are presented in
Section 4. Section 5 contains the main points of this study.

2 Governing problems

We consider the steady three-dimensional flow of an incompressible Oldroyd-B fluid over
a stretched surface at z = 0. The flow takes place in the domain z > 0. The ambient fluid
temperature is taken as T∞, while the surface temperature is maintained by convective heat
transfer at a certain value Tf . The equations for the flow of the steady incompressible fluid
with heat transfer are

div V = 0, (1)

ρ
dV

dt
= div T, (2)

in which the Cauchy stress tensor T and the extra stress tensor S are defined as

T = −pI + S, (3)

S + λ1
DS

Dt
= μ

(
A1 + λ2

DA1

Dt

)
, (4)

(V · ∇)T =σ∇2T, (5)

where D
Dt is the covariant differentiation, and λ1 and λ2 are the relaxation time and the retar-

dation time, respectively. The first Rivlin Ericksen tensor A1 is defined as

A1 = gradV + (grad V )∗,

where ∗ indicates the matrix transpose, and the velocity field V is taken as

V = (u(x, y, z), v(x, y, z), w(x, y, z)). (6)
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The definition of D
Dt is[27]

Dai

Dt
=

∂ai

∂t
+ urai,r − ui,rar. (7)

Following the procedure of Ref. [27] at pages 221–223, Eqs. (1)–(5) now give

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (8)

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+λ1

(
u2 ∂2u

∂x2
+v2 ∂2u

∂y2
+w2 ∂2u

∂z2
+2uv

∂2u

∂x∂y
+2vw

∂2u

∂y∂z
+2uw

∂2u

∂x∂z

)

= − ∂p

∂x
+ ν

(∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
+ λ2

(
u

∂3u

∂x3
+ u

∂3u

∂x∂y2
+ u

∂3u

∂x∂z2
+ v

∂3u

∂x2∂y

+ u
∂3u

∂y3
+ v

∂3u

∂y∂z2
+ w

∂3u

∂x2∂z
+ w

∂3u

∂y2∂z
+ w

∂3u

∂z3
− ∂u

∂x

∂2u

∂x2
− ∂u

∂x

∂2u

∂y2

− ∂u

∂x

∂2u

∂z2
− ∂u

∂y

∂2v

∂x2
− ∂u

∂y

∂2v

∂y2
− ∂u

∂y

∂2v

∂z2
− ∂u

∂z

∂2w

∂x2
− ∂u

∂z

∂2w

∂y2
− ∂u

∂z

∂2w

∂z2

))
, (9)

u
∂v

∂x
+v

∂v

∂y
+w

∂v

∂z
+ λ1

(
u2 ∂2v

∂x2
+v2 ∂2v

∂y2
+w2 ∂2v

∂z2
+2uv

∂2v

∂x∂y
+2vw

∂2v

∂y∂z
+2uw

∂2v

∂x∂z

)

= − ∂p

∂y
+ ν

(∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2
+ λ2

(
u

∂3v

∂x3
+ u

∂3v

∂x∂y2
+ u

∂3v

∂x∂z2
+ v

∂3v

∂x2∂y

+ v
∂3v

∂y3
+ v

∂3v

∂y∂z2
+ w

∂3v

∂x2∂z
+ w

∂3v

∂y2∂z
+ w

∂3v

∂z3
− ∂v

∂x

∂2u

∂x2
− ∂v

∂x

∂2u

∂y2

− ∂v

∂x

∂2u

∂z2
− ∂v

∂y

∂2v

∂x2
− ∂v

∂y

∂2v

∂y2
− ∂v

∂y

∂2v

∂z2
− ∂v

∂z

∂2w

∂x2
− ∂v

∂z

∂2w

∂y2
− ∂v

∂z

∂2w

∂z2

))
, (10)

u
∂w

∂x
+v

∂w

∂y
+w

∂w

∂z
+λ1

(
u2 ∂2w

∂x2
+v2 ∂2w

∂y2
+w2 ∂2w

∂z2
+2uv

∂2w

∂x∂y
+2vw

∂2w

∂y∂z
+2uw

∂2w

∂x∂z

)

= − ∂p

∂z
+ ν

(∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2
+ λ2

(
u

∂3w

∂x3
+ u

∂3w

∂x∂y2
+ u

∂3w

∂x∂z2
+ v

∂3w

∂x2∂y

+ v
∂3w

∂y3
+ v

∂3w

∂y∂z2
+ w

∂3w

∂x2∂z
+ w

∂3w

∂y2∂z
+ w

∂3w

∂z3
− ∂w

∂x

∂2u

∂x2
− ∂w

∂x

∂2u

∂y2

− ∂w

∂x

∂2u

∂z2
− ∂w

∂y

∂2v

∂x2
− ∂w

∂y

∂2v

∂y2
− ∂w

∂y

∂2v

∂z2
− ∂w

∂z

∂2w

∂x2
− ∂w

∂z

∂2w

∂y2
− ∂w

∂z

∂2w

∂z2

))
, (11)

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= σ

(∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)
. (12)

After neglecting the pressure gradient and using the standard boundary layer assumptions[28],
the resulting aligns for the three-dimensional flow of an Oldroyd-B fluid are

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+ λ1

(
u2 ∂2u

∂x2
+ v2 ∂2u

∂y2
+ w2 ∂2u

∂z2
+ 2uv

∂2u

∂x∂y
+ 2vw

∂2u

∂y∂z
+ 2uw

∂2u

∂x∂z

)

= ν
(∂2u

∂z2
+ λ2

(
u

∂3u

∂x∂z2
+ v

∂3u

∂y∂z2
+ w

∂3u

∂z3
− ∂u

∂x

∂2u

∂z2
− ∂u

∂y

∂2v

∂z2
− ∂u

∂z

∂2w

∂z2

))
, (13)
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u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ λ1

(
u2 ∂2v

∂x2
+ v2 ∂2v

∂y2
+ w2 ∂2v

∂z2
+ 2uv

∂2v

∂x∂y
+ 2vw

∂2v

∂y∂z
+ 2uw

∂2v

∂x∂z

)

= ν
(∂2v

∂z2
+ λ2

(
u

∂3v

∂x∂z2
+ v

∂3v

∂y∂z2
+ w

∂3v

∂z3
− ∂v

∂x

∂2v

∂z2
− ∂v

∂y

∂2v

∂z2
− ∂v

∂z

∂2w

∂z2

))
, (14)

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= σ

∂2T

∂z2
, (15)

where the respective velocity components in the x-, y-, and z-directions are denoted by u,
v, and w, λ1 and λ2 show the relaxation and retardation times, respectively, T is the fluid
temperature, σ is the thermal diffusivity of the fluid, ν = μ

ρ is the kinematic viscosity, μ is
the dynamic viscosity of fluid, and ρ is the density of fluid. Note that Eq. (11) is identically
satisfied through the boundary layer approximation and in absence of the pressure gradient.

The convective boundary conditions are

u = ax, v = by, w = 0, −k
∂T

∂z
= h(Tf − T ) at z = 0, (16)

u → 0, v → 0, T → T∞ as z → ∞, (17)

where k indicates the thermal conductivity of fluid, and a and b have the dimension inverses of
time.

Using the following new variables:
⎧
⎪⎪⎨
⎪⎪⎩

u = axf ′(η), v = ayg′(η), w = −√
aν(f(η) + g(η)),

θ(η) =
T − T∞
Tf − T∞

, η = z

√
a

ν
,

(18)

Eq. (8) is satisfied automatically, and Eqs. (13)–(15) give

f ′′′+(f + g)f ′′−f ′2+β1(2(f +g)f ′f ′′−(f + g)2f ′′′)+β2((f ′′+g′′)f ′′−(f + g)f ′′′′) = 0, (19)

g′′′+(f +g)g′′− g′2+β1(2(f + g)g′g′′−(f + g)2g′′′)+β2((f ′′+g′′)g′′− (f + g)g′′′′) = 0, (20)

θ′′ + Pr(f + g)θ′ = 0, (21)

f = 0, g = 0, f ′ = 1, g′ = β, θ′ = −γ(1 − θ(0)) at η = 0, (22)

f ′ → 0, g′ → 0, θ → 0 as η → ∞, (23)

where β1 = λ1a and β2 = λ2a are the Deborah numbers, β = b
a is a parameter, Pr = ν

σ is the
Prandtl number, γ = h

k

√
ν
a is the Biot number, and the prime shows the differentiation with

respect to η.
The expression for the local Nusselt number with heat transfer qw is

⎧⎪⎪⎨
⎪⎪⎩

Nux =
xqw

k(Tf − T∞)
,

qw = −k
(∂T

∂z

)
z=0

.

(24)

In the dimensionless form, the above equation can be written as

Nux

Re
1
2
x

= −θ′(0), (25)

in which Rex = ux
ν is the local Reynolds number.
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3 Series solutions

The initial approximations and the auxiliary linear operators for the homotopy analysis
solutions are chosen as

f0(η) = 1 − exp(−η), g0(η) = β(1 − exp(−η)), θ0(η) =
γ exp(−η)

1 + γ
, (26)

Lf = f ′′′ − f ′, Lg = g′′′ − g′, Lθ = θ′′ − θ. (27)

We note that the auxiliary linear operators in the above equation satisfy the following
properties:

⎧
⎪⎪⎨
⎪⎪⎩

Lf (C1 + C2eη + C3e−η) = 0,

Lg(C4 + C5eη + C6e−η) = 0,

Lθ(C7eη + C8e−η) = 0,

(28)

where Ci (i = 1, 2, · · · , 8) are the arbitrary constants.
The associated zeroth-order deformation problems are

(1 − p)Lf (f̂(η; p) − f0(η)) = p�fNf (f̂(η; p), ĝ(η; p)), (29)

(1 − p)Lg(ĝ(η; p) − g0(η)) = p�gNg(f̂(η; p), ĝ(η; p)), (30)

(1 − p)Lθ(θ̂(η; p) − θ0(η)) = p�θNθ(f̂(η; p), ĝ(η; p), θ̂(η, p)), (31)
{

f̂(0; p) = 0, f̂ ′(0; p) = 1, f̂ ′(∞; p) = 0, ĝ(0; p) = 0, ĝ′(0; p) = β,

ĝ′(∞; p) = 0, θ̂′(0, p) = −γ(1 − θ(0, p)), θ̂(∞, p) = 0,
(32)

Nf (f̂(η, p), ĝ(η, p)) =
∂3f̂(η, p)

∂η3
−

(∂f̂(η, p)
∂η

)2

+ (f̂(η, p) + ĝ(η, p))
∂2f̂(η, p)

∂η2

+ β1

(
2(f̂(η, p) + ĝ(η, p))

∂f̂(η, p)
∂η

∂2f̂(η, p)
∂η2

− (f̂(η, p) + ĝ(η, p))2
∂3f̂(η, p)

∂η2

)

+ β2

((∂2f̂(η, p)
∂η2

+
∂2ĝ(η, p)

∂η2

)∂2f̂(η, p)
∂η2

− (f̂(η, p) + ĝ(η, p))
∂4f̂(η, p)

∂η4

)
, (33)

Ng(ĝ(η, p), f̂(η, p)) =
∂3ĝ(η, p)

∂η3
−

(∂ĝ(η, p)
∂η

)2

+ (f̂(η, p) + ĝ(η, p))
∂2ĝ(η, p)

∂η2

+ β1

(
2(f̂(η, p) + ĝ(η, p))

∂ĝ(η, p)
∂η

∂2ĝ(η, p)
∂η2

− (f̂(η, p) + ĝ(η, p))2
∂3ĝ(η, p)

∂η2

)
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+ β2

((∂2f̂(η, p)
∂η2

+
∂2ĝ(η, p)

∂η2

)∂2ĝ(η, p)
∂η2

− (f̂(η, p) + ĝ(η, p))
∂4ĝ(η, p)

∂η4

)
, (34)

Nθ(θ̂(η, p), f̂(η, p), ĝ(η, p)) =
∂2θ̂(η, p)

∂η2
+ Pr(f̂(η, p) + ĝ(η, p))

∂θ̂(η, p)
∂η

. (35)

Here, p is an embedding parameter, �f , �g, and �θ are the non-zero auxiliary parameters, and
Nf , Ng, and Nθ indicate the nonlinear operators. For p = 0 and p = 1, we have

f̂(η; 0) = f0(η), θ̂(η, 0) = θ0(η), f̂(η; 1) = f(η), θ̂(η, 1) = θ(η). (36)

Further, when p increases from 0 to 1, f(η, p), g(η, p), and θ(η, p) vary from f0(η), g0(η), and
θ0(η) to f(η), g(η), and θ(η). Using Taylor’s series expansion, one can write

f(η, p) = f0(η) +
∞∑

m=1

fm(η)pm, fm(η) =
1
m!

∂mf(η; p)
∂ηm

∣∣∣
p=0

, (37)

g(η, p) = g0(η) +
∞∑

m=1

gm(η)pm, gm(η) =
1
m!

∂mg(η; p)
∂ηm

∣∣∣
p=0

, (38)

θ(η, p) = θ0(η)
∞∑

m=1

θm(η)pm, θm(η) =
1
m!

∂mθ(η; p)
∂ηm

∣∣∣
p=0

, (39)

where the convergence of above series strongly depends upon �f , �g, and �θ. Consider that �f ,
�g, and �θ are selected properly so that Eqs. (29)–(31) converge at p = 1. Therefore,

f(η) = f0(η) +
∞∑

m=1

fm(η), (40)

g(η) = g0(η) +
∞∑

m=1

gm(η), (41)

θ(η) = θ0(η) +
∞∑

m=1

θm(η). (42)

The general solutions can be expressed as

fm(η) = f∗
m(η) + C1 + C2eη + C3e−η, (43)

gm(η) = g∗m(η) + C4 + C5eη + C6e−η, (44)

θm(η) = θ∗m(η) + C7eη + C8e−η, (45)

in which f∗
m, g∗m, and θ∗m indicate the special solutions.

4 Convergence analysis and discussion of results

We note that the series (40)–(42) have the auxiliary parameters �f , �g, and �θ. These
parameters have a key role to adjust and control the convergence of series solutions. The �-
curves have been sketched at the 18th-order of approximations to determine the suitable ranges
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for �f , �g, and �θ. Figure 1 shows that the ranges of admissible values of �f , �g, and �θ are
−1.30 � �f � −0.30, −1.30 � �g � −0.25, and −1.40 � �θ � −0.45. We observe that our
series solutions converge in the whole region of η when �f = �g = �θ = −0.6 (see Table 1).

Fig. 1 �-curves for functions f , g, and θ when β1 = 0.3, β2 = 0.4, P r = 1.0, γ = 0.8, and β = 0.5

Table 1 Convergence of series solutions for different orders of approximation when β1 = 0.3, β2 = 0.4,
P r = 1.0, γ = 0.8, β = 0.5, and �f = �g = �θ = −0.6

Order of approximation −f ′′(0) −g′′(0) −θ′(0)

1 0.948 75 0.413 13 0.414 81
10 0.964 60 0.406 14 0.387 71
15 0.964 49 0.406 19 0.387 91
20 0.964 50 0.406 22 0.387 90
25 0.964 50 0.406 22 0.387 90
30 0.964 50 0.406 22 0.387 90
35 0.964 50 0.406 22 0.387 90

Figures 2–13 are plotted to see the variations of the Deborah numbers β1 and β2, the Prandtl
number Pr, and the Biot number γ on the fluid temperature θ(η) when β= 0.0, β= 0.5, and
β = 1.0. Figure 2 illustrates the effect of the Deborah number β1 on the temperature field
for β= 0.0. Here, both the fluid temperature and thermal boundary layer thickness increase
by increasing β1. Physically, this is due to the fact that the Deborah number β1 contains the
relaxation time λ1. The increase in the relaxation time leads to the increases in the temperature
and the thermal boundary layer thickness. Figure 3 shows the influence of the Deborah number
β2 on the temperature field when β =0.0. The effects of β2 on the temperature and the thermal
boundary layer thickness are opposite to those of β1. This is due to the reason that the
retardation time provides resistance which causes reduction in the temperature and the thermal
boundary layer thickness. Figure 4 clearly depicts that the larger Prandtl number corresponds
to the lower temperature and thermal boundary layer thickness. In fact, the larger Prandtl
number means that the thermal diffusivity is lower. A decrease in the thermal diffusivity leads
to a decrease in the temperature and its associated boundary layer thickness. Figure 5 presents
the variations of the Biot number on the temperature profile for β = 0.0. An increase in the
Biot number gives rise to the temperature and the thermal boundary layer thickness. We also
observe that the temperature and the thermal boundary layer thickness are increasing functions
of the Biot number. Further, it is noticed that the peak temperature occurs in the thermal
boundary layer in the region near the surface. Figures 6–9 are plotted to see the influences of
different parameters on the temperature θ(η) for β =0.5. From Fig. 6, one can see that β1 has
the same effects on the temperature as in the case of β =0.0. The only difference we noticed is
that the increase in the temperature is more dominant for β=0.5 in comparison to β =0.0. By
making a comparison of Figs. 3 and 7, we conclude that β2 has a similar effect for β =0.0 and
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Fig. 2 Influence of β1 on θ(η) when β = 0.0, Pr = 1.0, β2 = 0.4, and γ = 0.6

Fig. 3 Influence of β2 on θ(η) when β = 0.0,
Pr = 1.0, β1 = 0.4, and γ = 0.6

Fig. 4 Influence of Pr on θ(η) when β = 0.0,
β1 = β2 = 0.4, and γ = 0.6

Fig. 5 Influence of γ on θ(η) when β = 0.0,
Pr = 1.0, and β1 = β2 = 0.4

Fig. 6 Influence of β1 on θ(η) when β = 0.5,
Pr = 1.0, β2 = 0.4, and γ = 0.6

Fig. 7 Influence of β2 on θ(η) when β = 0.5,
Pr = 1.0, β1 = 0.4, and γ = 0.6

Fig. 8 Influence of Pr on θ(η) when β = 0.5,
β1 = β2 = 0.4, and γ = 0.6



Three-dimensional flow of Oldroyd-B fluid over surface with convective boundary conditions 497

β =0.5. Figure 8 clearly shows that the variations in the temperature due to an increase in the
Prandtl number for β =0.5 are large when compared with β =0.0. The effects of the Biot number
on the temperature are similar in a qualitative sense (see Figs. 5 and 9). Figure 10 is plotted to
see the effects of β1 on the temperature for β =1.0. It shows that the fluid temperature and the
thermal boundary layer thickness are increasing functions of β1 for β =1.0. There is a decrease
in the temperature and the thermal boundary layer thickness with an increase in β2 for β =1.0.
The effects of the Prandtl and Biot numbers on the fluid temperature are similar to those of
β =0.0 and β =0.5. Figure 14 is prepared to analyze the variations of the stretching parameter
on the fluid temperature. We can see that the fluid temperature and thermal boundary layer
thickness reduce with an increase in β.

Fig. 9 Influence of γ on θ(η) when β = 0.5,
Pr = 1.0, and β1 = β2 = 0.4

Fig. 10 Influence of β1 on θ(η) when β = 1.0,
Pr = 1.0, β2 = 0.4, and γ = 0.6

Fig. 11 Influence of β2 on θ(η) when β =
1.0, Pr = 1.0, β1 = 0.4, and γ = 0.6

Fig. 12 Influence of Pr on θ(η) when β = 1.0,
β1 = β2 = 0.4, and γ = 0.6

Fig. 13 Influence of γ on θ(η) when β = 1.0,
Pr = 1.0, and β1 = β2 = 0.4

Fig. 14 Influence of β on θ(η) when Pr =
1.0, β1 = β2 = 0.4, and γ = 0.6

To see the convergent values of velocity and temperature, Table 1 is provided. From this
Table, we make an argument that 20th-order deformations are enough for the convergent series
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solutions. Table 2 presents excellent agreement of series solutions with the existing exact and
homotopy perturbation method (HPM) solutions for different values of β. Table 3 provides the
numerical values of local Nusselt number for different values of β1, β2, P r, and γ for β =0.0 and
β =0.5. We notice that the values of the Nusselt number are small for β =0.0 in comparison to
the values for β =0.5. This means that the values of the local Nusselt number increase with an
increase in β.

Table 2 Comparison for different values of β by HAM, HPM, and exact solutions

β
HPM[29] Exact[29] HAM

−f ′′(0) −g′′(0) −f ′′(0) −g′′(0) −f ′′(0) −g′′(0)

0.0 1.000 00 0.000 00 1.000 000 0.000 000 1.000 00 0.000 00
0.1 1.020 25 0.066 84 1.020 259 0.066 847 1.020 26 0.066 85
0.2 1.039 49 0.148 73 1.039 495 0.148 736 1.039 49 0.148 74
0.3 1.057 95 0.243 35 1.057 954 0.243 359 1.057 95 0.243 36
0.4 1.075 78 0.349 20 1.075 788 0.349 208 1.075 78 0.349 21
0.5 1.093 09 0.465 20 1.093 095 0.465 204 1.093 09 0.465 21
0.6 1.109 94 0.590 52 1.109 946 0.590 528 1.109 94 0.590 53
0.7 1.126 39 0.724 53 1.126 397 0.724 531 1.126 39 0.724 53
0.8 1.142 48 0.866 68 1.142 488 0.866 682 1.142 49 0.866 68
0.9 1.158 25 1.016 53 1.158 253 1.016 538 1.158 26 1.016 54
1.0 1.173 72 1.173 72 1.173 720 1.173 720 1.173 72 1.173 72

Table 3 Values of local Nusselt number −θ′(0) for different values of parameters β1, β2, P r, and γ

β1 β2 Pr γ
−θ′(0)

β = 0.0 β = 0.5

0.0 0.4 1.0 0.8 0.347 59 0.396 58

0.5 0.4 1.0 0.8 0.336 51 0.382 28

1.0 0.4 1.0 0.8 0.326 36 0.369 97

0.4 0.0 1.0 0.8 0.326 13 0.367 61

0.4 0.5 1.0 0.8 0.340 94 0.387 93

0.4 1.0 1.0 0.8 0.349 63 0.395 52

0.4 0.4 0.5 0.8 0.248 39 0.292 21

0.4 0.4 0.8 0.8 0.309 16 0.355 06

0.4 0.4 1.3 0.8 0.373 00 0.419 32

0.4 0.4 1.0 0.3 0.198 56 0.213 65

0.4 0.4 1.0 0.6 0.296 77 0.331 87

0.4 0.4 1.0 1.0 0.369 93 0.426 14

5 Conclusions

An analysis is presented for the three-dimensional flow of an Oldroyd-B fluid subject to con-
vective type surface conditions. Series solutions are obtained for the velocity and temperature
profiles. The main observations of this analysis are given below:

(i) The variations of the temperature by increasing β1 are dominant for β = 1.0 in comparison
to β = 0.0 and β = 0.5.

(ii) The fluid temperature and the thermal boundary layer thickness decrease rapidly for
β = 1.0 when compared with β = 0.0 and β = 0.5.

(iii) The effects of the Biot number on the temperature and the thermal boundary layer
thickness are quite similar for β = 0.0, β = 0.5, and β = 1.0.

(iv) The numerical values of the local Nusselt number increase as β increases.
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(v) The values of the local Nusselt number are small for β = 0.0 in comparison with β = 0.5
(see Table 3).
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