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Abstract A numerical study is carried out for the axisymmetric steady laminar
incompressible flow of an electrically conducting micropolar fluid between two infinite
parallel porous disks with the constant uniform injection through the surface of the disks.
The fluid is subjected to an external transverse magnetic field. The governing nonlinear
equations of motion are transformed into a dimensionless form through von Karman’s
similarity transformation. An algorithm based on a finite difference scheme is used to solve
the reduced coupled ordinary differential equations under associated boundary conditions.
The effects of the Reynolds number, the magnetic parameter, the micropolar parameter,
and the Prandtl number on the flow velocity and temperature distributions are discussed.
The results agree well with those of the previously published work for special cases. The
investigation predicts that the heat transfer rate at the surfaces of the disks increases
with the increases in the Reynolds number, the magnetic parameter, and the Prandtl
number. The shear stresses decrease with the increase in the injection while increase with
the increase in the applied magnetic field. The shear stress factor is lower for micropolar
fluids than for Newtonian fluids, which may be beneficial in the flow and thermal control
in the polymeric processing.
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1 Introduction

The fluid flow between parallel disks has significant importance due to its applications in
a number of technological and engineering processes. Such type flows have applications in hy-
drodynamical machines and apparatus, semiconductor manufacturing processes with rotating
wafers, magnetic storage devices (disk drives), gas turbine engines, computer storage devices,
heat and mass exchanges, crystal growth processes, biomechanics, etc. Magnetohydrodynamics
(MHD) is important in the magnetic confinement of plasmas in experiments of controlled ther-
monuclear fusion. MHD principles are used for MHD power generator, light-ion-beam powered
inertial confinement, and ion thrusters for spacecraft propulsion. Elcrat[1] proved the theo-
rem of existence and uniqueness for the non-rotational fluid motion between fixed porous disks
with uniform arbitrary suction or injection. Rasmussen[2] numerically studied the problem of
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the steady viscous symmetric flow between two parallel porous coaxial disks. The governing
Navier-Stokes equation of motion was reduced to an ordinary differential equation in the di-
mensionless form by using a similarity transformation. Gaur and Chaudhary[3] discussed the
problem of heat and mass transfer for the laminar flow between two parallel porous disks of
different permeabilities. Rudraiah and Chandrasekhara[4] analyzed the MHD laminar flow be-
tween two parallel porous disks for large suction Reynolds numbers by using a perturbation
technique. Phan-Thien and Bush[5] investigated the problem of the steady flow between two
parallel disks by solving the reduced nonlinear algebraic system of equations by a standard
optimization method. Attia[6] solved the problem of the steady flow and heat transfer of a
conducting fluid due to the rotation of an infinite non-conducting porous disk in the presence of
an external magnetic field by considering the ion slip. The fluid motion was superimposed by
the uniform injection/suction through the surface of the porous disk. The self similar governing
equations were solved numerically by using the finite difference discretization. Fang[7] presented
an exact solution for the problem of the steady incompressible flow over a stretchable disk in
the absence of body force by using an extension of Von Karman’s similarity transformation to
discuss the effects of disk stretching and rotation. Ibrahim[8] investigated the unsteady flow of
a viscous incompressible fluid between two parallel rotating disks. The governing momentum
and energy equations were transformed to a set of ordinary differential equations through a
similarity transformation. It was concluded that the rotation of the two disks has a very small
effect on the fluid temperature and heat transfer process, while rapid normal motion of the
upper disk has a dominant effect on the temperature of the fluid and the heat transfer pro-
cess. Frusteri and Osalusi[9] investigated the MHD steady laminar flow of a viscous electrically
conducting fluid over a rotating porous disk with the slip boundary condition to discuss the
variable fluid properties (density and viscosity). The governing partial differential equations
were transformed to ordinary ones by using von Karman’s similarity transformation and were
solved numerically by using a shooting method. Ersoy[10] investigated an approximate solution
of the flow of a linearly viscous fluid between two disks rotating about two distinct vertical axes
to show the dependence of the velocity components on the position, the Reynolds number, the
eccentricity, and the ratio of angular speeds of the disks.

In all the studies cited above, the authors are confined to the Newtonian fluids only. How-
ever, many of the fluids involved in technical processes and engineering applications exhibit
non-Newtonian behaviors. The classical Newtonian model is inadequate to describe some mod-
ern engineering structures, which are made up of materials processing an internal structure,
e.g., polycrystalline materials, fluids containing additives, and the materials with fibrous or
coarse grain structures. Eringen[11–12] introduced that the deformation of such materials can
be well explained by one of the best theories of micropolar fluids. This theory can describe
the mathematical model for non-Newtonian fluids, which can be used to study the behaviors of
exotic lubricants, polymeric suspensions, muddy and biological fluids, animal blood, colloidal
solutions, liquid crystals with rigid molecules, etc. Airman et al.[13] presented a comprehensive
review of the micropolar fluid theory and its application. Guram and Anwar[14] discussed nu-
merically the problem of the steady incompressible flow of a micropolar fluid between a rotating
and a stationary disk by using an algorithm based on the finite difference approximation. Gu-
ram and Anwar[15] numerically solved the problem of the steady laminar incompressible flow of
a micropolar fluid due to a rotating disk with injection/suction. Takhar et al.[16] presented the
finite element solution of the steady flow and heat transfer of an incompressible micropolar fluid
between two porous disks. Wang and Zhu[17] studied numerically the non-Newtonian behavior
of journal bearings lubricated with micropolar fluids considering both thermal and cavitating
effects. They concluded that micropolar fluids exhibited increases in the load capacity and
temperature while decreases in the coefficient of the friction and side leakage flow. Sacheti and
Bhatt[18] examined the problem of heat transfer of the steady laminar flow of a non-Newtonian
fluid between two infinite parallel circular porous disks with injection/suction through the disks.
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Anwar-Kamal et al.[19] presented the numerical investigations of the steady symmetric flow of
a micropolar fluid between two porous co-axial disks. Ashraf et al.[20] numerically investigated
the problem of the two-dimensional steady laminar and incompressible flow of a micropolar
fluid between a permeable and an impermeable disk to discuss the influence of the Reynolds
number and the micropolar structure on the flow characteristics. Ashraf et al.[21] considered
the numerical study of the asymmetric steady laminar incompressible flow of a micropolar fluid
in a porous channel having walls with different permeabilities.

The purpose of the present paper is to present a comprehensive parametric study of the flow
and heat transfer of a steady incompressible viscous electrically conducting micropolar fluid
between two stationary infinite parallel porous disks in the presence of a uniform magnetic field
which has not been considered by previous authors. A numerical solution is obtained for the
governing momentum, the angular momentum, and the energy equations by using an algorithm
based on finite difference approximations.

2 Problem formulation

Consider the axisymmetric steady laminar incompressible flow of an electrically conducting
micropolar fluid between two parallel stationary porous disks of infinite radii located at the
planes z = ±a shown in Fig. 1. A uniform transverse magnetic field of the strength B0 is
applied at the disks. We assume a uniform stationary magnetic field B in the transverse
direction, which is perpendicular to the velocity field V lying in the rz-plane. The induced
magnetic field b is negligible as compared with the imposed field. The magnetic Reynolds
number ReM = LU/η0 is small[22], where L is a characteristic length of the fluid, U is the fluid
velocity, and η0 is the magnetic diffusivity. It is used to compare the transport of the magnetic
lines of force in a conducting fluid with the leakage of such lines from the fluid. For small ReM,
the magnetic field will tend to relax towards a purely diffusive state. It is assumed that there
is no applied polarization voltage, i.e., the electric field E = 0. The electrical current flowing
in the fluid will give rise to an induced magnetic field, which exists if the fluid is an electrical
insulator. Here, the fluid is to be electrically conducting. In view of the above assumptions,
the electromagnetic body force has the linearized form, i.e., −σeB

2
0V

[23].

 

Fig. 1 Geometry of disks

Following Eringen[11–12], the governing equations of motion for the MHD steady laminar
viscous incompressible flow of a micropolar fluid are
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∇ · B = 0, (5)

∇×B = μmJ, (6)

∇× E = 0, (7)

J = σe(E + V ×B), (8)

where η is the similarity variable. V is the fluid velocity vector. (u, v, w) and (υ1, υ2, υ3) are
the components of the velocity and the microrotation, respectively. ρ is the density. p is the
pressure. j is the microinertia. J is the current density. μm is the magnetic permeability. E
is the electric field. B is the total magnetic field satisfying B = B0 + b, where b is the induced
magnetic field. σe is the electrical conductivity of the fluid. μ is the dynamic viscosity. κ is the
vortex viscosity of the fluid. Furthermore, ∇ · J = 0 is obtained from Eqs. (5) and (6). Here,
the velocity vector V and υ are unknown microrotation vectors.

The components of the velocity (u, v, w) and the microrotation (υ1, υ2, υ3) along the radial,
transverse, and axial directions can be written as

{
u = u(r, z), v = 0, w = w(r, z),

υ1 = 0, υ2 = υ2(r, z), υ3 = 0.
(9)

The equation for the temperature field, neglecting the viscous dissipation, can be written as
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where η = z/a, T is the temperature, cp is the specific heat at the constant pressure, and κ0 is
the thermal conductivity of the fluid. The boundary conditions at the two porous disks for the
velocity field are

u(r,±1) = 0, w(r,±1) = ∓V0, (11)

where V0 is a constant injection velocity at the disks.
Following Ref. [16], the no-spin boundary conditions at the boundaries for the microrotation

are given by

(υ1, υ2, υ3) = (0, 0, 0) at η = ±1. (12)

The boundary conditions for the temperature field can be written as

T =

{
T1, η = −1,

T2, η = 1.
(13)
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To obtain the velocity, microrotation, and temperature fields for the present problem, we
have to solve Eqs. (1)–(4) and (10) subjected to the boundary conditions given in Eqs. (11)–(13).
For this purpose, we use the following similarity transformation similar to those of Takhar et
al.[16], Ashraf et al.[20], von Karman[24], and Elkouh[25]:

Ψ(r, η) =
V0r

2

2
f(η) (14)
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The velocity components given in Eqs. (15) and (16) satisfy the continuity Eq. (1), and hence
represent a possible fluid motion. Using Eqs. (15)–(18) in the governing equations (2)–(4), we
get the following equations in the dimensionless form:

(1 +R)f ′′′′ + Re(ff ′′′ −M2f ′′) −Rg′′ = 0, (19)
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are the Reynolds number, the magnetic parameter, the vortex viscosity parameter, the mi-
croinertia density parameter, the spin gradient viscosity parameter, and the Prandtl number,
respectively. Here, R, A, and C are micropolar parameters. For the present problem, we will
discuss the injection case, i.e., Re < 0. Integrating Eq. (19) w.r.t η, we get

(1 +R)f ′′′ +Re
(
ff ′′ − f ′2

2
−M2f ′

)
−Rg′ = B, (22)

where B is a constant of integration.
The boundary conditions (11)–(13) in the dimensionless form can be written as

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

f(±1) = ±1, f ′(±1) = 0,

g(±1) = 0,

θ(−1) = 0, θ(1) = 1.

(23)
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The shear and couple stresses on the disks are defined, respectively, as
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We have to solve the system of Eqs. (20)–(22) subjected to the boundary conditions (23). It
can be noted that Eqs. (20)–(22) reduce to the corresponding equations for the Newtonian fluid
flow between two porous disks in the absence of a magnetic field obtained by Rasmussen[2] and
Elkouh[25] for vanishing microrotation with R = 0 and M = 0. Furthermore, these equations
together with the associated boundary condition (23) are inline with those obtained by Takhar
et al.[16] in the absence of the external magnetic field, i.e., M = 0. These facts validate our
model for the micropolar fluid motion in the presence of the external magnetic field.

3 Numerical solution

The reduced ordinary differential equations (20)–(22) are highly nonlinear and difficult to be
solved analytically. We seek a numerical solution to these equations subjected to the associated
boundary condition (23) by using a finite difference scheme. The order of the momentum
equation (20) can be reduced by substituting q = f ′ within it. Now, we have to solve the
boundary value problem consisting of the following equations:

q = f ′ =
df
dη
, (26)
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2
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2
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+R(q′ − 2g) = 0, (28)

θ′′ +RePrfθ′ = 0 (29)

subjected to the boundary conditions
{
f(±1) = ±1, q(±1) = 0,

g(±1) = 0, θ(−1) = 0, θ(1) = 1.
(30)

For the numerical solution to the above boundary value problem, we discretize the domain
[−1, 1] uniformly with the step h. Simpson’s rule[26] with the formula given by Milne[27] is used
to integrate Eq. (27). The central difference approximations are used to discretize Eqs. (27)–
(29) at a typical grid point η = ηn in the interval [−1, 1]. A successive over relaxation (SOR)
parameter method is used to solve iteratively the system of the discrete equations subjected
to the associated boundary conditions (30). The solution procedure, which is mainly based on
the algorithm described by Syed et al.[28], is used to accelerate the iterative procedure and to
improve the accuracy of the solution.

The iterative procedure is stopped if the following criterion is satisfied for four consecutive
iterations:

max(‖q(i+1) − q(i)‖2, ‖g(i+1) − g(i)‖2, ‖f (i+1) − f (i)‖2, ‖θ(i+1) − θ(i)‖2) < etol. (31)

Here, etol is the prescribed error tolerance. We have taken at least 10−12 for it during the
execution of a computer program in FORTRAN 90. The higher-order accuracy of the approxi-
mations to the exact solutions can be obtained by the use of Richardson’s extrapolation. This
process can be carried out by using Deuflhard’s extrapolation scheme[29].
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4 Results and discussion

The aim of the present study is to investigate numerically the flow and heat transfer char-
acteristics associated with the steady laminar incompressible viscous flow of a micropolar fluid
between two parallel porous disks in the presence of a uniform magnetic field. In this section,
we present a comprehensive numerical study of our findings in tabular and graphical forms
together with the discussion and their interpretations. To develop better understanding of the
influences of the micropolar structure of the electrically conducting fluids and the permeability
of the porous disks on the flow and thermal characteristics, we choose to present the shear and
couple stresses at the two disks and the velocity, temperature, and microrotation fields across
the disks for a range of the Reynolds number Re, the magnetic parameter M , the micropolar
parameter R, and the Prandtl number Pr. The results are computed for three grid sizes, i.e.,
h = 0.02, 0.01, 0.005 for the stability of our numerical scheme, and then extrapolated on finer
grids by using Richardson’s extrapolation.

A comparison of the numerical values of the dimensionless temperature θ(η) for three grid
sizes and their extrapolated values is given in Table 1. An excellent agreement is observed,
which validates our numerical computation. Other sources of validity of our numerical results
are listed in Tables 2 and 3, in which the present results for the shear and couple stresses at
the disks are compared with the published literature results given by Takhar et al.[16] in the
absence of the magnetic field. The results show a good agreement. The arbitrary values 0, 4, 8,
12, and 16 of the micropolar parameter R are taken to discuss its effect on the flow behavior as
done customararily in Refs. [15–16, 30–32]. It has been noticed that the other two micropolar
parameters A and C have no significant effect on the velocity and thermal fields. Therefore,
their values are fixed as A = 1 and C = 2 throughout the study as done by Takhar et al.[16],
Chang[30], and Lok et al.[31].

Table 1 Dimensionless temperature θ(η) on three grid sizes and extrapolated values for Re = −20,
M = 0.4, and Pr = 0.2

η
θ(η)

h = 0.02 h = 0.01 h = 0.005 Extrapolated value

−1.0 0.000 000 0.000 000 0.000 000 0.000 000

−0.8 0.022 782 0.022 797 0.022 800 0.022 802

−0.6 0.071 236 0.071 263 0.071 271 0.071 273

−0.4 0.163 486 0.163 516 0.163 524 0.163 526

−0.2 0.311 034 0.311 046 0.311 049 0.311 051

0.0 0.500 039 0.500 018 0.500 014 0.500 013

0.2 0.689 034 0.688 986 0.688 975 0.688 971

0.4 0.836 561 0.836 506 0.836 493 0.836 489

0.6 0.928 789 0.928 748 0.928 738 0.928 735

0.8 0.977 227 0.977 208 0.977 203 0.977 201

1.0 1.000 000 1.000 000 1.000 000 1.000 000

Table 2 Comparison of numerical values of shear stress −f ′′(1) for M = 0, Pr = 0.1, and various R
and Re

R

Re

−10 −5

Present Ref. [16] Present Ref. [16]

5 2.264 02 2.263 92 2.382 72 2.382 59

10 2.146 91 2.146 73 2.217 13 2.216 95
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Table 3 Comparison of numerical values of couple stress g′(1) for M = 0, Pr = 0.1, and various R
and Re

R
Re

−10 −5

Present Ref. [16] Present Ref. [16]

5 3.083 25 3.083 49 3.122 09 3.122 32

10 4.753 61 4.754 31 4.811 64 4.812 37

From Fig. 2, it is noted that micropolar fluids reduce the shear stresses and increase the
couple stresses as compared with Newtonian fluids, which may be beneficial in the flow control
of the polymeric processing. This is due to the reason that micropolar fluids offer a greater
resistance resulting from the dynamic viscosity and vortex viscosity to the fluid motion as
compared with Newtonian fluids.

Fig. 2 Shear and couple stresses at lower disk for various R with Re = −10, M = 1.5, and Pr = 0.2

Now, we investigate the influence of the Reynolds number Re on the shear stress f ′′(−1), the
couple stress g′(−1), and the heat transfer rate θ′(−1) at the lower disk. From Figs. 3 and 4, it
can be noted that the shear and couple stresses and the heat transfer rate at the disks decrease
as the injection increases. The heat transfer rate at the disks approaches zero as Re→ −∞.

Fig. 3 Shear and couple stresses at lower
disk for various Re with M = 0.4,
Pr = 0.2, and R = 10

Fig. 4 Heat transfer rate at lower disk for
various Re with M = 0.4, Pr = 0.2,
and R = 10

The influences of the imposition of the external magnetic field on the shear and couple stress
and the heat transfer rate at the disk are given in Figs. 5(a) and 5(b). The applied magnetic
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field enhances the values of the shear and couple stresses and the heat transfer rate for fixed
values of the Reynolds number Re, the micropolar parameter R, and the Prandtl number Pr.
It is shown in Fig. 6 that the heat transfer rate decreases with the increases in the Prandtl
number Pr. The shear and couple stresses are unaffected by the variation of Pr. Due to the
symmetry, the results in Figs. 2–6 are given at the lower disk only.

(a) Shear and couple stress (b) Heat transfer rate

Fig. 5 Shear and couple stresses and heat transfer rate at lower disk for various M with Re = −20,
Pr = 0.2, and R = 5

Fig. 6 Heat transfer rate at lower disk for various Pr with Re = −50, M = 0.4, and R = 3

Now, we give graphical interpretations for the velocity and thermal fields and the microro-
tation across the disks. The influence of the Reynolds number on the axial velocity is presented
in Fig. 7. As a general trend, the axial velocity takes its dimensionless value 1 at the upper
disk and −1 at the lower disk with a point of inflection on the central plane z = 0, where the
concavity is changed. The axial velocity profiles given in Fig. 7 help in finding the position of
the viscous layer, which is developed due to the injection at the disks. The position of the
viscous layer is a point, where f(η) = 0. In the present problem for the symmetric flow between
two porous disks, this layer coincides with the central plane z = 0. However, the position of
this viscous layer moves away from the plane z = 0 for the asymmetric flow. A slight increase
near the upper disk and a slight decrease near the lower disk in f are noted with an increase
in the magnitude of Re. This reflects the effect of the increase in the injection velocity on the
axial velocity component in view of the fact that injection will assist the axial velocity near the
lower disk and resist the axial velocity near the upper disk. The effect of the Reynolds number
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Re on the radial velocity is given in Fig. 8 for a set of values of the magnetic parameter M, the
micropolar parameter R, and the Prandtl number Pr. As the imposed injection through the
disks increases, the fluid is pushed towards the central region between the disks, and therefore
the radial velocity increases significantly with the increase in Re in the magnitude. Figure 9
reveals the microrotation for various values of Re. The microrotation has opposite signs near
the disks. The shear stresses at the two disks tend to rotate the fluid in opposite directions,
and the point of zero microrotation marks the position across the disks where the effects of the
opposite rotations balance each other. An increase in the magnitude of the microrotation is
observed with an increase in the values of the magnitude of Re. An increase in the temperature
in the upper region of the plane z = 0 and a decrease in the temperature in the lower region
are observed with the increased injection as shown in Fig. 10.

Fig. 7 Dimensionless axial velocity f(η) for
various Re with R = 10, M = 0.4,
and Pr = 0.2

Fig. 8 Dimensionless radial velocity f ′(η)
for various Re with R = 10, M = 0.4,
and Pr = 0.2

Fig. 9 Dimensionless microrotation g(η) for
various Re with R = 10, M = 0.4,
and Pr = 0.2

Fig. 10 Dimensionless temperature θ(η) for
various Re with R = 10, M = 0.4,
and Pr = 0.2

Figures 11–14 depict the influence of the external applied magnetic field on the flow veloc-
ities, the microrotation, and the temperature, respectively. From Fig. 11, it is clear that the
axial velocity profiles rise near the lower disk and fall near the upper disk by increasing the
values of the magnetic parameter M. Opposite to the effect of the Reynolds number Re, the
radial velocity decreases near the central plane and the fluid is pushed towards the boundaries
by increasing M , as shown in Fig. 12. Furthermore, the radial velocity is parabolic for small
values of the magnetic parameter M . As M increases, the radial velocity exhibits the charac-



MHD flow and heat transfer of micropolar fluid between two porous disks 61

Fig. 11 Dimensionless axial velocity f(η)
for various M with R = 5, Re =
−20, and Pr = 0.2

Fig. 12 Dimensionless radial velocity f ′(η)
for various M with R = 5, Re =
−20, and Pr = 0.2

Fig. 13 Dimensionless microrotation g(η)
for various M with R = 5, Re =
−20, and Pr = 0.2

Fig. 14 Dimensionless temperature θ(η) for
various M with R = 5, Re = −20,
and Pr = 0.2

teristic flattering. From Fig. 13, we see that the values of the microrotation are positive in the
first half region and negative in the second half region, which shows a reverse rotation near the
boundaries of the two disks. Due to the damping effects, the magnitude of the microrotation
decreases with the increase in M , which shows that the intensity of the applied magnetic field
can be used to decrease the angular rotation arising in lubrication problems, especially in sus-
pension flows. Figure 14 plots the variation of the dimensionless temperature as a function of
η for different M and fixed Re, R, and Pr. It can be seen that the temperature of the fluid
increases throughout with the increase in η for a given M. The temperature profiles increase
near the lower disk while decrease near the upper disk with the increase in M .

Figures 15–17 illustrate the influence of the micropolar parameter R on the velocity and
microrotation fields. The axial velocity f(η) increases throughout from −1 to 1 for a given
value of R as shown in Fig. 15. Figure 16 depicts the behavior of the radial velocity for different
R. The radial velocity profiles are parabolic in nature for all the values of the micropolar
parameter R. The radial velocity increases near the central plane, while its profiles fall near
the boundaries of the disks with an increase in the values of R. Figure 17 presents the effect of
the micropolar parameter R on the microrotation for Re = −10, M = 1.5, and Pr = 0.2. The
case for R = 0 corresponds to the Newtonian fluids. It is seen that there is no microrotation
in this case while there are significant influences on the microrotation for the other cases. The
magnitude of the microrotation increases by the increase in the values of R. The variation of
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Fig. 15 Dimensionless axial velocity f(η)
for various R with Re = −10, M =
1.5, and Pr = 0.2

Fig. 16 Dimensionless radial velocity f ′(η)
for various R with Re = −10, M =
1.5, and Pr = 0.2

Fig. 17 Dimensionless microrotation g(η) for various R with Re = −10, M = 1.5, and Pr = 0.2

R has no significant effect on the temperature.
Figure 18 illustrates the variation of the dimensionless temperature θ(η) for selected values

of the Prandtl number Pr. An increase in the values of Pr results in the increase in the
temperature profiles in a region towards the right of the central plane z = 0, whereas results in
the decrease in temperature profiles in a region towards the left of z = 0.

Fig. 18 Dimensionless temperature θ(η) for various Pr with Re = −50, M = 0.2, and R = 3
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5 Conclusions

The present study has investigated the effects of some governing parameters on the flow
of an electrically conducting micropolar fluid in the presence of an applied magnetic field.
Numerical solutions of the transformed self similar governing equations and the associated
boundary conditions have been obtained by using the finite difference discretization method.
The following conclusions can be made:

(i) Micropolar fluids reduce the shear stresses as compared with Newtonian fluids.
(ii) The magnetic field enhances the shear stresses, the couple stresses, and the heat transfer

rate.
(iii) The shear stresses and the heat transfer rate decrease by imposed injection.
(iv) The heat transfer rate decreases by the increase in the Prandtl number.
(v) The radial velocity increases near the central plane by increasing the Reynolds number

and the micropolar parameter, whereas decreases near the central plane in the case of an
increased magnetic field.

(vi) The magnitude of the microrotation increases with an increase in the values of the
Reynolds number and the micropolar parameter, whereas it decreases in the case of increasing
the values of the magnetic parameter.
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