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Abstract The inflation mechanism is examined for a composite cylindrical tube com-

posed of two incompressible rubber materials, and the inner surface of the tube is sub-

jected to a suddenly applied radial pressure. The mathematical model of the problem

is formulated, and the corresponding governing equation is reduced to a second-order

ordinary differential equation by means of the incompressible condition of the material,

the boundary conditions, and the continuity conditions of the radial displacement and

the radial stress of the cylindrical tube. Moreover, the first integral of the equation is

obtained. The qualitative analyses of static inflation and dynamic inflation of the tube

are presented. Particularly, the effects of material parameters, structure parameters, and

the radial pressure on radial inflation and nonlinearly periodic oscillation of the tube are

discussed by combining numerical examples.
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1 Introduction

The mechanical properties of rubber and rubber-like materials are extremely complex. Like
nature rubber, synthetic rubber, and synthetic fibre, they all have the typical characteristics
of nonlinearity, high elasticity, and large deformation. In real life, there exist many kinds of
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rubber products, such as rubber seal ring, rubber tube, and rubber support. These products are
well used in many fields, such as aerospace, precise instrument, national defense and military,
machinofacture, medical treatment, and public health. Since the instability of structures com-
posed of rubber materials is viewed as the key mechanism of damage and fracture of materials,
the study of the relative problems receives a lot of attention. Rubber and rubber-like materials
are also called the Green elastic materials, and their constitutive relations can be completely
represented by their strain energy functions. At present, the research findings on the static
problems of finite deformation for rubber materials are abundant, such as internal pressure of
a cylindrical tube, torsion and bend of a cylinder, inflation of a spherical shell, and cavitation
in materials[1–5]. Recently, the dynamic stability problems of radial inflation of incompressible
rubber tubes have been presented by some references, such as Refs. [6–8]. In particular, the
finite oscillation problem of a cylindrical tube composed of an incompressible Mooney-Rivlin
material model was examined by Knowles[6], and the conditions of periodic oscillation of the
tube and the formulas of oscillation period and oscillation amplitude were presented. The dy-
namic response of a hyperelastic cylindrical tube composed of an incompressible neo-Hookean
material under periodic loads was studied by Ren[7]. The radial oscillation problem of a cylin-
drical tube composed of a class of incompressible Ogden materials under periodic step loads
was investigated by Yuan et al.[8], and the effects of material parameters, structure parameters,
and loading forms on nonlinearly periodic oscillation of the tube were discussed in detail.

Based on the theory of finite deformation for hyperelastic materials, this work first formulates
the mathematical model that describes the radial deformation of an incompressible composite
cylindrical rubber tube and gets an equation that describes the radial inflation of the tube.
Then, we analyze the mechanism of static and dynamic inflation of the tube qualitatively, and
discuss the effects of structure and material parameters on finite deformation of the tube by
some numerical examples.

2 Mathematical model and solutions

For a composite cylindrical tube, we are concerned with its radial inflation under a prescribed
radial pressure p0 at the inner surface, and the interior and the exterior parts of the tube are
composed of different incompressible rubber materials. Assume that the interface of the tube
is bonded perfectly during the course of deformation and satisfies the continuity conditions of
the radial displacement and the radial stress. Let (R, Θ, Z) and (r, θ, z) be the material and the
spatial coordinates corresponding to the undeformed and the deformed configurations. Under
the assumption of radially symmetric deformation and of plane strain case, the deformation
configurations of the interior and the exterior parts of the tube are, respectively, given by

r[1] = r[1](R, t) > 0, R1 � R � R2; θ[1] = Θ[1]; z[1] = Z [1], (1)

r[2] = r[2](R, t) > 0, R2 � R � R3; θ[2] = Θ[2]; z[2] = Z [2], (2)

where R1, R2, and R3 are the radii of inner, middle, and outer surfaces; r[i] = r[i](R, t) (i = 1, 2)
are undetermined radial motion functions related to time.

The deformation gradient tensors F [i](i = 1, 2) corresponding to the radial symmetric de-
formation (1) and (2) are as follows:

F [i] = diag (λ[i]
1 , λ

[i]
2 , λ

[i]
3 ) = diag

(∂r[i](R, t)
∂R

,
r[i](R, t)

R
, 1

)
, (3)

where λ
[i]
1 , λ

[i]
2 , and λ

[i]
3 are known as the principal stretches of the deformation gradient tensors.

The incompressibility condition requires that the determinants of the deformation gradient
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tensors are equal to 1, i.e., λ
[i]
1 λ

[i]
2 λ

[i]
3 = 1, with Eq. (3), we have

r[i] = r[i](R, t) = (R2 + c2(t) − R2
1)

1
2 , t � 0, (4)

where c(t) � 0 is an undetermined function. As i = 1, R1 � R � R2, while as i = 2,
R2 � R � R3.
2.1 Constitutive models of composite rubbers

Since the interior and the exterior parts of the tube are, respectively, composed of two
different materials, and the deformation field is assumed to be continuous at the interface, the
associated strain energy functions are expressed as follows:

W = W (λ1, λ2, λ3) =

{
W [1](λ1, λ2, λ3), R1 < R < R2,

W [2](λ1, λ2, λ3), R2 < R < R3.
(5)

The principal components of the Cauchy stress tensors of the composite cylindrical tube
are, respectively, given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ [i]
rr (r[i], t) = λ

[i]
1

∂W [i]

∂λ
[i]
1

− p[i](r[i], t),

τ
[i]
θθ(r[i], t) = λ

[i]
2

∂W [i]

∂λ
[i]
2

− p[i](r[i], t),

(6)

where p[i](r[i], t) (i = 1, 2) are the hydrostatic pressures associated with the incompressible
materials. Moreover, the continuity condition of the radial stress at the material interface
requires that

τ [1]
rr (r[1](R2, t), t) = τ [2]

rr (r[2](R2, t), t). (7)

2.2 Governing equation and initial-boundary conditions
In the absence of body force, the differential equation that governs the radial motion of the

composite cylindrical tube in each individual phase is given by

∂τ
[i]
rr (r[i], t)
∂r[i]

+
1

r[i]

(
τ [i]
rr (r[i], t) − τ

[i]
θθ (r[i], t)

)
= ρ[i] ∂

2r[i]

∂t2
, (8)

where ρ[i] (i = 1, 2) is the constant mass density of the materials.
Assume that the composite cylindrical tube is in an undeformed state, and at time t = 0,

we have

r[i](R, 0) = R, ṙ[i](R, 0) = 0. (9)

Using Eq. (4) yields

c(0) = R1, ċ(0) = 0. (10)

Since the inner surface of the tube is subjected to a suddenly applied constant pressure p0,
and the outer surface is traction free, the corresponding boundary conditions are given by

τ [1]
rr (r[1](R1, t), t) = −p0, τ [2]

rr (r[2](R3, t), t) = 0, t � 0. (11)
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2.3 Solutions
With Eq. (4), we have

∂2r[i](R, t)
∂t2

=
∂
(
cc̈ ln r[i] +

(
ln r[i] + (r[i])−2 c2

2

)
ċ2

)
∂r[i]

, i = 1, 2. (12)

Integrating Eq. (8) with respect to r[i] from r[i](Ri, t) to r[i](Ri+1, t) (i = 1, 2), and then
adding the two obtained expressions, finally, using the continuity Eq. (7) of radial stress and
the boundary condition Eq. (11) yields

p0 +
∫ r

[1]
2

r
[1]
1

(
λ

[1]
1

∂W [1]

∂λ
[1]
1

− λ
[1]
2

∂W [1]

∂λ
[1]
2

)dr[1]

r[1]
+

∫ r
[2]
3

r
[2]
2

(
λ

[2]
1

∂W [2]

∂λ
[2]
1

− λ
[2]
2

∂W [2]

∂λ
[2]
2

)dr[2]

r[2]

=ρ[1]
(
cc̈ ln

(r
[1]
2

c

)
+

(
ln

(r
[1]
2

c

)
+

1
2
((

r
[1]
2

)−2
c2 − 1

))
ċ2

)

+ ρ[2]
(
cc̈ ln

(r
[2]
3

r
[2]
2

)
+

(
ln

(r
[2]
3

r
[2]
2

)
+

1
2
((

r
[2]
3

)−2 − (
r
[2]
2

)−2))
c2ċ2

)
, (13)

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r
[1]
1 = r

[1]
1 (R1, t) = c(t),

r
[1]
2 = r

[1]
2 (R2, t) = r

[2]
2 = r

[2]
2 (R2, t) = (R2

2 − R2
1 + c2(t))

1
2 ,

r
[2]
3 = r

[2]
3 (R3, t) = (R2

3 − R2
1 + c2(t))

1
2 .

(14)

Obviously, Eq. (13) in fact is a second-order nonlinear ordinary differential equation for c(t),
which describes the exact relation between the radial pressure p0 acting on the inner surface
of the composite tube and the inner radius c(t). Using Eqs. (4) and (5) can yield the whole
information of the radial motion of the tube.

3 Qualitative analysis of inflation of tube

For studying convenience, we introduce the following dimensionless notions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t) =
c(t)
R1

,

δ1 =
R2

2

R2
1

− 1,

δ2 =
R2

3

R2
2

− 1.

(15)

It is easy to show that the following expressions are valid, i.e.,

r2
3

R2
3

=
x2 + δ1 + δ2 + δ1δ2

(1 + δ1)(1 + δ2)
,

(r[i]
2 )2

R2
2

=
x2 + δ1

1 + δ1
, i = 1, 2. (16)

Further, let

ω = ω(R, c) =

⎧⎪⎪⎨
⎪⎪⎩

r[1](R)
R

, R1 � R � R2,

r[2](R)
R

, R2 � R � R3.
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It leads to (
λ

[i]
1

∂W [i]

∂λ
[i]
1

− λ
[i]
2

∂W [i]

∂λ
[i]
2

)dr[i]

r[i]
=

W
[i]
1 dω

ω2 − 1
, (17)

where W
[i]
1 =

dW [i](ω)
dω

. Using the notions in Eqs. (15)–(17), we can rewrite Eq. (13) as

p0 + G(x, δ1, δ2) =A[1](x, δ1, δ2)ẍ + B[1](x, δ1, δ2)ẋ2

+ A[2](x, δ1, δ2)ẍ + B[2](x, δ1, δ2)ẋ2, (18)

where

G(x, δ1, δ2) =
∫ (

x2+δ1
1+δ1

) 1
2

x

W
[1]
1 dω

ω2 − 1
+

∫ (
x2+δ1+δ2+δ1δ2

(1+δ1)(1+δ2)

) 1
2

(
x2+δ1
1+δ1

) 1
2

W
[2]
1 dω

ω2 − 1
, (19)

A[1](x, δ1, δ2) =
1
2
ρ[1]R2

1x ln
(
1 +

δ1

x2

)
, (20)

B[1](x, δ1, δ2) =
1
2
ρ[1]R2

1

(
ln

(
1 +

δ1

x2

)
− δ1

x2 + δ1

)
, (21)

A[2](x, δ1, δ2) =
1
2
ρ[2]R2

1x ln
(
1 + δ2

1 + δ1

x2 + δ1

)
, (22)

B[2](x, δ1, δ2) =
1
2
ρ[2]R2

1

(
ln

(
1 + δ2

1 + δ1

x2 + δ1

)
− δ2 + δ1δ2

x2 + δ1 + δ2 + δ1δ2

x2

x2 + δ1

)
. (23)

The initial conditions in Eq. (10) become

x(0) = 1, ẋ(0) = 0. (24)

To better understand the conclusions obtained in this work, here we consider the interior
and the exterior parts of the tube are, respectively, composed of two classes of transversely
isotropic power-law material models, and the strain energy functions are as follows:

W (λ1, λ2, λ3) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ1

((λ[1]
1 )2n1 + (λ[1]

2 )2n1 − 2
2n1

+ β1((λ
[1]
1 )2 − 1)2

)
, R1 < R < R2,

μ2

((λ[2]
1 )2n2 + (λ[2]

2 )2n2 − 2
2n2

+ β2((λ
[2]
1 )2 − 1)2

)
, R2 < R < R3,

(25)

where μ1 and μ2 are shear modulus for infinitesimal deformations of the two materials, respec-
tively; n1 and n2 are given material constants, respectively; β1 and β2 are material parameters
describing the anisotropic degree about radial direction, respectively. In particular, Eq. (25) is
the power-law material model proposed by Chou-Wang and Horgan[9] if β1 = β2 = 0, and is
the classic neo-Hookean material model[5] if n1 = n2 = 1.
3.1 Static radial inflation

This subsection studies the quasi-static inflation of the composite tube under the radial
pressure p0. In this case, Eq. (18) reduces to

p0 + G(x, δ1, δ2) = 0. (26)

If x ∈ (1, +∞), it is easy to show that G(1, δ1, δ2) = 0, and the following inequalities(x2 + δ1

1 + δ1

) 1
2

< x,
(x2 + δ1 + δ2 + δ1δ2

(1 + δ1)(1 + δ2)

) 1
2

<
(x2 + δ1

1 + δ1

) 1
2
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are valid for any given values of δ1 and δ2. This means that G(x, δ1, δ2) < 0; in other words,
Eq. (26) has real roots.

On the other hand, it can be shown that the following conclusions are valid for any given
values of δ1 and δ2 by using the properties of improper integrals.

(I) If the highest powers of the strain energy functions associated with the two materials
do not exceed 2, which means that n1, n2 � 1, then Eq. (26) has a horizontal asymptote,
particularly,

(i) if the highest powers of the strain energy functions are all less than 2, namely, n1, n2 < 1,
then p0 → 0 as x → +∞;

(ii) if one of the highest powers of the strain energy functions is less than 2, and the other
one is greater than 2, then p0 → 0.5μ1 ln(1 + δ1) (n1 = 1, n2 < 1) or p0 → 0.5μ2 ln(1 + δ2)
(n1 < 1, n2 = 1) as x → +∞;

(iii) if the highest powers of the strain energy functions are all equal to 2, namely, n1 =
n2 = 1, then p0 → 0.5μ1 ln(1 + δ1) + 0.5μ2 ln(1 + δ2) as x → +∞.

(II) If at least one of the highest powers of the strain energy functions is greater than 2,
namely, n1 > 1 or n2 > 1, then Eq. (26) has an oblique asymptote, i.e., p0 → +∞ as x → +∞.

If the material parameters and one of the structure parameters are given, for example,
n2 = 1, β2 = 0, and δ1 = 1, Figs. 1 and 2, respectively, show the relation curves of P versus x
satisfying Eq. (26) for different values of μ = μ2

μ1
and n1, where P = p0

μ1
.

Fig. 1 Relation curves of P versus x for ma-
terial parameters satisfying n1, n2 �
1, where n1 = 0.75

Fig. 2 Relation curves of P versus x for
material parameters satisfying one of
conditions n1 > 1 or n2 > 1 or n1,
n2 > 1, where n1 = 1.5

3.2 Dynamical radial inflation
Let y = ẋ. Then, Eq. (18) is equivalent to the following system of the first-order differential

equations, i.e.,

( ẋ
ẏ

)
=

( y
C(x, y)

)
, (27)

where

C(x, y) =
−(B[1](x, δ1, δ2) + B[2](x, δ1, δ2))y2 + p0 + G(x, δ1, δ2)

A[1](x, δ1, δ2) + A[2](x, δ1, δ2)
. (28)
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Obviously, the equilibrium point of the system is given by (x, y) = (x, 0), where x is a root of
Eq. (26). Furthermore, the eigenvalues of the Jacobian matrix of Eq. (27) are as follows:

λ1,2 = ±
( Gx(x, δ1, δ2)

A[1](x, δ1, δ2) + A[2](x, δ1, δ2)

) 1
2
. (29)

From Fig. 1, we know that there exists a maximum value on each relation curve of P versus x,
written as Pm. As P < Pm, if the relation curve increases monotonically, then Gx(x, δ1, δ2) < 0.
In this case, λ1 and λ2 are two pure imaginary roots with opposite sign. Thus, the equilibrium
point (x, 0) is a center of the linearized system of Eq. (27). While if the relation curve decreases
monotonically, then Gx(x, δ1, δ2) > 0, this implies that λ1 and λ2 are two real eigenvalues with
opposite sign. Thus, the equilibrium point (x, 0) is a saddle of the linearized system of Eq. (27)
and so it is a saddle of Eq. (27). However, as P > Pm, the equilibrium point does not exist
anymore, which means that the solutions to Eq. (27) will increase infinitely with the increasing
time. In other words, the tube will be destroyed ultimately.

The analysis of Fig. 2 is similar to that of Fig. 1. Relative discussion can also be found in
Ref. [8].

From the qualitative theory of differential equations, we know that a center of the linearized
equation of a nonlinear differential equation may be a center of the nonlinear differential equa-
tion, but it may also be a focus of the nonlinear differential equation. Therefore, it requires to
further discuss the case of the equilibrium point being a center of the linearized equation.

Multiplying Eq. (18) by xẋ yields the first integral of Eq. (18) satisfying the initial conditions
in Eq. (24), i.e.,∫ x

1

zG(z, δ1, δ2)dz+
1
2
p0(x2 − 1) =

1
2
(A[1](x, δ1, δ2) + A[2](x, δ1, δ2))xẋ2. (30)

It is easy to see that Eq. (30) is symmetric with respect to ẋ. From the symmetric principle
of nonlinear differential equations, we know that if the equilibrium point is a center of the
linearized equation of Eq. (27), then it is also a center of the nonlinear Eq. (27). In this case,
the solution to Eq. (18) satisfying the initial conditions in Eq. (24) is periodic, that is to say,
the motion of the composite tube under the inner surface pressure is a nonlinearly periodic
oscillation.

4 Conclusions

The mechanism of static and dynamic inflation of the incompressible composite rubber
tube is examined through analyzing the equations describing the radial inflation of the tube
qualitatively and the numerical examples. This work proposes the following conclusions:

(i) If the highest powers of the strain energy functions associated with the two materials
do not exceed 2, then there exists a critical pressure. That is to say, the radial inflation mode
of the tube with time is a nonlinearly periodic oscillation as the radial pressure is less than
the critical pressure, while the tube will inflate infinitely with the increasing time and will be
destroyed ultimately as the radial pressure is larger than the critical pressure.

(ii) If at least one of the highest powers of the strain energy functions is greater than 2,
then for any given pressures, the radial inflation mode of the tube with time is a nonlinearly
periodic oscillation. Moreover, the amplitude of oscillation will increase discontinuously under
certain conditions.
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