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Abstract This paper is concerned with the determination of thermoelastic displace-
ment, stress and temperature in a functionally graded spherically isotropic infinite elastic
medium having a spherical cavity, in the context of the linear theory of generalized ther-
moelasticity with two relaxation time parameters (Green and Lindsay theory). The sur-
face of cavity is stress-free and is subjected to a time-dependent thermal shock. The basic
equations have been written in the form of a vector-matrix differential equation in the
Laplace transform domain, which is then solved by an eigenvalue approach. Numerical
inversion of the transforms is carried out using the Bellman method. Displacement, stress
and temperature are computed and presented graphically. It is found that variation in
the thermo-physical properties of a material strongly influences the response to loading.
A comparative study with a corresponding homogeneous material is also made.
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Introduction

Physical observations and the results of conventional coupled dynamic thermoelasticity the-
ories involving infinite speed of thermal signals, which are based on the mixed parabolic-
hyperbolic governing equations of Biot[1] and Chadwick[2], are mismatched. To make them
relevant, generalized thermoelasticity theories have been developed to ensure the finite speed of
thermal signals(second sound) in elastic solids. The first generalization proposed by Lord and
Shulman[3] involves one relaxation time parameter in the heat flux-temperature gradient rela-
tion. In this theory, a flux-rate term has been introduced into Fourier’s heat conduction equation
in order to formulate it in a generalized form that involves a hyperbolic-type heat transport
equation admitting finite speed of thermal signals. Another model is the temperature-rate-
dependent theory of thermoelasticity proposed by Green and Lindsay[4], which involves two
relaxation time parameters. The theory obeys the Fourier law of heat conduction and asserts
that heat propagates with finite speed. Experimental studies by Tzou[5] and Mitra et al.[6]
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on this theory show that relaxation times play a significant role in cases involving shock wave
propagation, laser techniques, a rapidly propagating crack tip, etc. So when there are problems
involving very large heat fluxes at short intervals of time, the conventional theory of ther-
moelasticity fails to be a suitable model and generalized thermoelasticity is the right form of
mathematics to apply. The relevant literature has been reviewed by Chandrashekharaiah[7].

Applying the above theories of generalized thermoelasticity, several problems have been
solved. To solve a coupled thermoelastic problem, it is customary to choose a suitable thermoe-
lastic potential function, but this approach has certain limitations, as discussed by Bahar and
Hetnarski[8]. A fundamental solution in the generalized theory with two relaxation time pa-
rameters has been derived by Ezzat[9] for a cylindrical region. Hetnarski and Ignaczak[10] have
studied the response of semi-space to a short laser pulse in the context of the generalized theory
of thermoelasticity. A one-dimensional problem of generalized thermoelasticity of a disk based
on the Lord-Shulman theory has been considered by Bagri and Eslami[11]. Kar and Kanoria[12]

have investigated the distribution of generalized stresses due to step input of temperature at the
boundary of a spherical hole in a homogeneous isotropic unbounded body. Das and Lahiri[13]

have studied a problem of generalized thermoelasticity for the transversely isotropic medium
with one relaxation time parameter. The generalized stresses in a homogeneous transversely
isotropic annular disc has been investigated by Kanoria and Kar[14]. Ghosh and Kanoria[15]

have studied the thermoelastic problem in a spherically isotropic infinite elastic medium having
a spherical cavity in the context of the linear theory of generalized thermoelasticity with two
relaxation time parameters (Green and Lindsay theory).

Thermal shocks and very high temperatures inevitably give rise to severe thermal stresses
causing catastrophic failure of structural components such as aircraft engines, turbines, space
vehicles, etc. In order to avoid such type of failures, functionally graded materials are used, as
discussed by Aboudi et al.[16] and Wetherhold and Wang[17]. These materials are characterized
by a microstructure that is spatially variable on a macroscale, and were developed initially
for high temperature applications. In these materials, the spatial variation of thermal and
mechanical properties strongly influences the response to loading. Sugano[18] has presented
an analytical solution for a one-dimensional transient thermal stress problem of a nonhomoge-
neous plate where the thermal conductivity and Young’s modulus vary exponentially, whereas
the Poisson’s ratio and the coefficient of linear thermal expansion vary arbitrarily in the di-
rection of thickness. Qian and Batra[19] have studied the problem of a transient thermoelastic
deformation of a thick functially graded plate with edges held at a uniform temperature. Lutz
and Zimmerman[20] have presented the exact solutions for one-dimensional thermal stresses
of a functionally graded sphere in which the elastic modulus and coefficient of linear thermal
expansion vary linearly with the radial distance. The exact solution for the axisymmetric ther-
moelastic problem of a uniformly heated functionally graded transversely isotropic cylindrical
shell has been presented by Ye et al.[21], in which the modulus of elasticity and the coefficient
of linear thermal expansion vary with the power product form of the radial coordinate variable.
Chen et al.[22] have solved the problem of free vibration of a fluid-filled hollow sphere of a FGM
with spherical isotropy. The thermo-elasto-dynamic response of a functionally graded spheri-
cally isotropic hollow sphere has been investigated analytically by Ding et al.[23], in which the
problem is formulated by the introduction of a dependent variable and separation of variables
technique. The problem of rotating a piezoceramic spherical shell with a functionally graded
property in the exact elasto-electric field has been solved by Chen et al.[24]. Wang and Mai[25]

have studied the problem of transient one-dimensional thermal stresses in nonhomogeneous
materials, such as plates, cylinders and spheres, using the finite element method. A thermo-
mechanical problem of functionally graded hollow circular cylinders has been solved by Shao et
al.[26], in which the material properties are assumed to be temperature independent and vary
continuously in the radial direction. Mallik and Kanoria[27] have considered a one-dimensional
thermoelastic disturbance in an infinitely isotropic FGM in the context of the generalized the-
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ory of thermoelasticity without energy dissipation in the presence of distributed periodically
varying heat sources. The material properties under consideration are assumed to vary expo-
nentially with the space variable. The generalized coupled thermoelasticity theories proposed
by Lord-Shulman, Green-Lindsay and Green-Naghdi have been combined into a unified formu-
lation introducing unified parameters by Bagri and Eslami[28]. Chen[29] has investigated the
distribution of stress in a rotating elastic FGM hollow sphere with spherical isotropy. The
problem of solving thermal stresses in a hollow circular cylinder and a hollow sphere of a FGM
has been considered by Obata and Noda[30]. Theoretical treatment of a transient thermoelastic
problem involving a functionally graded cylindrical panel due to nonuniform heat supply in the
circumferential direction has been presented by Ootao and Tanigawa[31].

The main objective of this paper is to study the distribution of thermoelastic displacement,
stresses and temperature produced in a functionally graded spherically isotropic infinite elastic
medium containing a spherical cavity, in the context of the linear theory of generalized ther-
moelasticity with two relaxation time parameters(Green and Lindsay model). The surface of
the cavity is stress-free and is subjected to a time-dependent thermal shock. The thermal and
mechanical properties of the FGM under consideration are assumed to vary with the power of
the radial coordinate variable. The eigenvalue approach due to Das et al.[32] is used for the so-
lution of the problem. Numerical solutions of the theoretical results are obtained and presented
graphically. A comparison with the corresponding homogeneous material is also made.

1 Basic equations

The equations of motion are[33]

ρüi = σij,j , (1)

where ui is the displacement component, the stress tensor σij is given by

σij = Cijklekl − βij

(
T − T0 + t1Ṫ

)
, (2)

and the generalized heat conduction equation in the absence of a heat source is
[{

δ1sKij + δ2s

(
K∗

ij + Kij
∂

∂t

)}
T,j

]

,i

= ρCE

[
δ1sṪ + (δ1st2 + δ2s)T̈

]
+ T0

(
ζδ1s + δ2s

∂

∂t

)
βij ˙eij , (3)

Cijkl (i, j, k, l = 1, 2, 3) being the elastic coefficients, ekl (k, l = 1, 2, 3) the strain components,
βij(i, j = 1, 2, 3) the elastic moduli, T the absolute temperature, T0 the reference temperature,
t1 and t2 the relaxation times, Kij the coefficient of thermal conductivity, K∗

ij the additional
material constant, ρ the mass density, CE the specific heat of the solid at constant strain and
δis the Kronecker delta.

In equations (2) and (3):
(i) if t1 = 0, t2 = 0, s = 1 and ζ = 0, then they reduce to the equations of the classical

theory of thermo-elasticity(CTE);
(ii) if t1 = 0, t2 = 0, s = 1 and ζ = 1, then they reduce to the equations of the classical

coupled theory of thermo-elasticity(CCTE);
(iii) if s = 1 and ζ = 1, then they reduce to the equations of the temperature-rate-dependent

thermo-elasticity theory (TRDTE (G-L model));
(iv) if s = 2 , then they reduce to the equations of thermo-elasticity with energy dissipation

(TEWED (G-N model)).
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The thermal relaxation times satisfy the inequalities[4]

t1 ≥ t2 > 0 in the case of G-L theory.

For functionally graded materials, the parameters ρ, Cijkl , βij , Kij and K∗
ij are space de-

pendent. Thus, we replace these quantities by ρ′f(r), C′
ijklf(r), β′

ijf(r), K ′
ijf(r) and K∗

ij
′f(r)

where ρ′, C′
ijkl etc. are assumed to be constants and f(r) is a given nondimensional function

of space variable r. Then the equations (1), (2) and (3) take the form (dropping primes for
convenience):

f(r)ρüi = [Cijklekl − βij

(
T − T0 + t1Ṫ

)
],j f(r)

+ [Cijklekl − βij

(
T − T0 + t1Ṫ

)
]f(r),j , (4)

σij = [Cijklekl − βij

(
T − T0 + t1Ṫ

)
]f(r), (5)

[
f(r)

{
δ1sKij + δ2s

(
K∗

ij + Kij
∂

∂t

)}
T,j

]

,i

= ρCEf(r)
{
δ1sṪ + (δ1st2 + δ2s)T̈

}
+ T0

(
ζδ1s + δ2s

∂

∂t

)
βij ˙eijf(r). (6)

2 Formulation of the problem

We consider a functionally graded spherically isotropic infinite solid having a spherical cavity
of radius a. The surface of the cavity is stress-free and is suddenly heated and kept at a
temperature that varies with time. We also assume that neither the body forces nor the heat
sources are acting inside the medium.

We use spherical polar coordinates (r, θ, φ) with the origin at the center of the cavity and
we consider those thermoelastic interactions which are spherically symmetric. It follows that
the displacement vector u and the temperature T have the forms

{
u = (u(r, t), 0, 0),
T = T (r, t).

(7)

Then ⎧⎪⎨
⎪⎩

er ≡ err =
∂u

∂r
,

eθ ≡ eθθ = eφφ =
u

r
.

(8)

The stresses in the radial, cross radial and transverse directions are σrr, σθθ and σφφ,
respectively, where

{
σrr(r, t) = σr(r, t),
σθθ(r, t) = σθ(r, t) = σφφ(r, t).

(9)

It is assumed that the material properties depend only on the radial coordinate r. So we can
take f(r) = f(r).

In the context of the linear theory of generalized thermoelasticity based on the Green-Lindsay
theory, the constitutive equations of the spherically isotropic body are taken as in Ref. [34],

σr = [C11er + 2C12eθ − βr(T − T0 + t1Ṫ )]f(r), (10)

σθ = σφ = [C12er + (C22 + C23)eθ − βθ(T − T0 + t1Ṫ )]f (r), (11)
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and βij = βiδij and Kij = Kiδij (i not summed).
The equation of motion (4) in the absence of any body forces becomes

∂

∂r
[C11er + 2C12eθ − βr(T − T0 + t1Ṫ )f(r)] +

2
r
[C11er + 2C12eθ − βr(T − T0 + t1Ṫ )

− C12er − (C22 + C23)eθ + βθ(T − T0 + t1Ṫ )]f(r) = ρf(r)
∂2u

∂t2
. (12)

In the absence of heat sources, the heat conduction equation (6) reduces to (taking s = 1 and
ζ = 1 for G-L model)

1
r2

∂

∂r

[
Krf (r)r2 ∂T

∂r

]
=

[
ρCE

(
∂T

∂t
+ t2

∂2T

∂t2

)
+ T0

∂

∂t

(
βr

∂u

∂r
+ βθ

2u

r

)]
f(r). (13)

The problem is to solve equations (12) and (13), subject to the boundary conditions:
i) stress-free boundary,

σr(r, t) = 0 on r = a; (14)

and ii) varying thermal load,

T (r, t) = T0{1 + F (t)} on r = a, (15)

where F (t) is a known function of time t.

The initial and regularity conditions can be written as

⎧
⎪⎪⎨
⎪⎪⎩

u = 0 = T at t = 0, r ≥ a;
∂u

∂t
= 0 =

∂T

∂t
at t = 0;

u = 0 = T when r → ∞.

(16)

The following non-dimensional quantities are introduced as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r∗ = V ηr, a∗ = V ηa, u∗ = V ηu,

σ∗
ij =

σij

C11
, t∗ = V 2ηt, t∗1 = V 2ηt1,

t∗2 = V 2ηt2, T1 =
T − T0

T0
,

(17)

where V =
√

(C11
ρ ), η = ρCE

Kr
.

Using these non-dimensional variables and taking f(r) = f∗(r∗), the equations (10)–(13)
take the form (dropping the asterisks for convenience):

σr =
[
∂u

∂r
+

2C12

C11

u

r
− βrT0

C11

(
T1 + t1

∂T1

∂t

)]
f(r), (18)

σθ =
[
C12

C11

∂u

∂r
+

C22 + C23

C11

u

r
− βθT0

C11

(
T1 + t1

∂T1

∂t

)]
f(r), (19)
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∂

∂r

[{
∂u

∂r
+

2C12

C11

u

r
− βrT0

C11

(
T1 + t1

∂T1

∂t

)}
f(r)

]

+
2
r

[
∂u

∂r
+

2C12

C11

u

r
− βrT0

C11

(
T1 + t1

∂T1

∂t

)]
f(r)

− 2
r

[
C12

C11

∂u

∂r
+

C22 + C23

C11

u

r
− βθT0

C11

(
T1 + t1

∂T1

∂t

)]
f(r) = f(r)

∂2u

∂t2
, (20)

η

r2

∂

∂r

(
KrT0f (r)r2 ∂T1

∂r

)

= ρT0CE f (r)
(

∂T1

∂t
+ t2

∂2T1

∂t2

)
+ T0f(r)

∂

∂t

(
βr

∂u

∂r
+ βθ

2u

r

)
. (21)

3 Material inhomogeneity (power-law dependence)

We take f(r) = rn, where n is a dimensionless constant. Then, the equations (18)–(21)
become

σr =
[
∂u

∂r
+

2C12

C11

u

r
− βrT0

C11

(
T1 + t1

∂T1

∂t

)]
rn, (22)

σθ =
[
C12

C11

∂u

∂r
+

C22 + C23

C11

u

r
− βθT0

C11

(
T1 + t1

∂T1

∂t

)]
rn, (23)

∂2u

∂r2
+

n + 2
r

∂u

∂r
− 2

[
C22 + C23 − (n + 1)C12

C11

]
u

r2

− T0βr

C11

[
∂

∂r

(
T1 + t1

∂T1

∂t

)
− 2

(
N − n+2

2

)
r

(
T1 + t1

∂T1

∂t

)]
=

∂2u

∂t2
, (24)

∂2T1

∂r2
+

n + 2
r

∂T1

∂r
=

∂T1

∂t
+ t2

∂2T1

∂t2
+

βr

Krη

∂

∂t

(
∂u

∂r
+

2Nu

r

)
, (25)

where N = βθ

βr
.

4 Formation of vector-matrix differential equation in the Laplace trans-
form domain

Let us define Laplace transform of a function g(r, t) by

g(r, p) =
∫ ∞

0

g(r, t)e−ptdt, (26)

with Re(p) > 0.
On taking the Laplace transform of both sides of equations (22)–(25), we get

σ̄r =
[
dū

dr
+

2C12

C11

ū

r
− βrT0

C11
(1 + t1p)T̄1

]
rn, (27)

σ̄θ =
[
C12

C11

dū

dr
+

C22 + C23

C11

ū

r
− NβrT0

C11
(1 + t1p)T̄1

]
rn, (28)
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d2ū

dr2
+

n + 2
r

dū

dr
− 2

[
C22 + C23 − (n + 1)C12

C11

]
ū

r2

− T0βr(1 + t1p)
C11

[
d

dr
− 2(N − n+2

2 )
r

]
T̄1 = p2ū, (29)

d2T̄1

dr2
+

n + 2
r

dT̄1

dr
= p(1 + t2p)T̄1 +

pβr

Krη

(
dū

dr
+ 2N

ū

r

)
. (30)

Let us assume N = n+2
2 . Then equation (29) becomes

d2ū

dr2
+

n + 2
r

dū

dr
− 2

r2

[
C22 + C23 − (n + 1)C12

C11

]
ū = p2ū +

T0βr(1 + t1p)
C11

dT̄1

dr
, (31)

and differentiating equation (30) with respect to r, we get

d2

dr2

(
dT̄1

dr

)
+

n + 2
r

d

dr

(
dT̄1

dr

)
− 2

r2

[
C22 + C23 − (n + 1)C12

C11

]
dT̄1

dr

=
[
p3βr

Krη
+

2
r2

{
C22 + C23 − (n + 1)C12 − n+2

2 C11

C11

}]
ū

+
[
pT0βr

2(1 + t1p)
KrηC11

+ p(1 + t2p) − 2
r2

{
C22 + C23 − (n + 1)C12 − n+2

2 C11

C11

}]
dT̄1

dr
. (32)

The coupled equations (31) and (32) can be put in a vector-matrix differential equation as
follows:

LṼ = ÃṼ , (33)

where

L ≡ d2

dr2
+

n + 2
r

d

dr
− 2m + n + 2

r2
, (34)

Ṽ ≡
[

ū
dT̄1
dr

]
, (35)

Ã ≡
[

b c
bd cd + f

]
, (36)

⎧⎪⎪⎨
⎪⎪⎩

m ≡ C22 + C23 − {n+2
2 C11 + (n + 1)C12}
C11

, b ≡ p2, c ≡ T0βr

C11
(1 + t1p),

d ≡ pβr

ρCE
=

pβr

Kη
, f ≡ p(1 + t2p), n = 2

C22 + C23 − (C11 + C12)
C11 + 2C12

.

(37)

The problem is to solve the equation (33) subject to the boundary conditions (14) and (15)
with

F (t) = θ0[H(t) − H(t − t0)] on r = a,

where H(t) is the Heaviside unit step function and t0 is the short time during which the shock
is applied.

Applying Laplace transform to these boundary conditions, we obtain

σ̄r(a, p) = 0 (38)

and

T̄1(a, p) =
θ0

p
(1 − e−pt0). (39)
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5 Method of solution

To solve equation (33), we substitute

Ṽ = X̃(λ)w(r, λ), (40)

where λ is a scalar, w(r, λ) is a non-trivial solution of the scalar differential equation:

d2w

dr2
+

n + 2
r

dw

dr
− 2m + n + 2

r2
w = λ2w, (41)

and the vector X̃(λ) is independent of r and satisfies

ÃX̃(λ) = λ2X̃(λ). (42)

As a solution of equation (33) that is consistent with the problem, we can have

Ṽ (r, p) = r−
n+1
2

2∑
i=1

AiX̃(λi)
[

1
λ2

i

Kh(λir)
]

, (43)

where

h2 = 2m + n + 2 +
(

n + 1
2

)2

, (44)

Kh(λir) being the modified Bessel function of the second kind of order h, and Ai(i = 1, 2) are
constants to be determined from the boundary conditions.

Now the characteristic equation corresponding to the matrix Ã is written as

λ4 − (b + cd + f)λ2 + fb = 0. (45)

The eigen vectors X̃(λi) (i = 1, 2) corresponding to the eigen values λ2
i (i = 1, 2) can be

obtained as

X̃(λi) =
[
X1(λi)
X2(λi)

]
=

[ −c
b − λ2

i

]
, i = 1, 2. (46)

The components of the vector Ṽ can now be written as

ū(r, p) = −r−
n+1

2

2∑
i=1

cAi

[
1
λ2

i

Kh(λir)
]

, (47)

dT̄1(r, p)
dr

= r−
n+1

2

2∑
i=1

(b − λ2
i )Ai

[
1
λ2

i

Kh(λir)
]

. (48)

Hence

σ̄r(r, p) =
(

cA1

λ2
1

)
QR1 +

(
cA2

λ2
2

)
QR2, (49)

σ̄θ(r, p) =
(

cA1

λ2
1

)
QR11 +

(
cA2

λ2
2

)
QR12, (50)

T̄1(r, p) =
(

cA1

λ2
1

)
SR1

c
+

(
cA2

λ2
2

)
SR2

c
, (51)
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where

QRi =
[(

n + 1
2

− 2
C12

C11

)
Kh(λir)

]
r

n−3
2 −

[
λir

d

d(λir)
{Kh(λir)}

]
r

n−3
2

+
[
(b − λ2

i )r
n+3

2

∫ ∞

r

u−n+1
2 Kh(λiu)du

]
r

n−3
2 for i = 1, 2; (52)

QR1i =
[(

n + 1
2

C12

C11
− C22 + C23

C11

)
Kh(λir)

]
r

n−3
2 −

[
λi

C12

C11
r

d

d(λir)
{Kh(λir)}

]
r

n−3
2

+
[
(b − λ2

i )r
n+3

2

∫ ∞

r

u−n+1
2 Kh(λiu)du

]
r

n−3
2 , for i = 1, 2; (53)

SRi = −(b − λ2
i )

∫ ∞

r

u−n+1
2 Kh(λiu)du, for i = 1, 2; (54)

cA1

λ2
1

= −cθ0 (1 − e−pt0)QA2

D
; (55)

cA2

λ2
2

=
cθ0 (1 − e−pt0)QA1

D
; (56)

D = p(QA1SA2 − SA1QA2); (57){
QAi = [QRi]r=a , i = 1, 2;
SAi = [SRi]r=a , i = 1, 2.

(58)

The results for a homogeneous material[15] can be deduced from this solution by putting n = 0
as a case in particular.

6 Numerical results and discussion

To obtain the solution of the problem in the physical domain, we must invert the transforms
in equations (47), (49)–(51). Here, we adopt the method of Bellman et al.[35] for inversion and
choose a time span given by seven values of time ti, i = 1 to 7 (Appendix A), at which σr,
σθ and T1 are evaluated from the negative of logarithms of the roots of the shifted Legendre
polynomial of degree seven.

The materials chosen for numerical calculation are steel, magnesium and zinc, for which the
values of the nonhomogeneous parameter n are 0.0, 0.05 and 1.0, respectively. The associated
constants are taken as

t0 = 0.1 s, T0 = 296 K, θ0 = 1.0;

and for steel (n = 0.0)[34] :

C11 = 0.27865× 1012 Pa, C12 = 0.11942× 1012 Pa,

C22 = 0.27865× 1012 Pa, C23 = 0.11942× 1012 Pa,

ρ = 0.78 × 104 kg/m3, CE = 117 J/(kg · K),

βr = 5.5889× 106 Pa/K, Kr = 59.0 W/(m · K),

t1 = 0.75 × 10−13 s, t2 = 0.5 × 10−13 s;
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for magnesium (n = 0.05)[36] :

C11 = 0.617 × 1011 Pa, C12 = 0.217× 1011 Pa

C22 = 0.5974× 1011 Pa, C23 = 0.2624× 1011 Pa,

ρ = 0.174 × 104 kg/m3, CE = 1040 J/(kg · K)

βr = 2.68 × 106 Pa/K, Kr = 170.0 W/(m · K),

t1 = 0.75 × 10−13 s, t2 = 0.5 × 10−13 s;

and for zinc (n = 1.0)[36]:

C11 = 0.627× 1011 Pa, C12 = 0.508× 1011 Pa,

C22 = 1.628× 1011 Pa, C23 = 0.362× 1011 Pa,

ρ = 0.714× 104 kg/m3, CE = 390 J/(kg · K),

βr = 5.75 × 106 Pa/K, Kr = 124.0 W/(m · K),

t1 = 0.75 × 10−13 s, t2 = 0.5 × 10−13 s.

Figure 1 depicts the change in radial displacement u versus radial distance r for time t = 0.14
and for different values of the non-homogeneous parameter n(= 0.0, 0.05, 1.0). It is seen that
in each of the three cases, u attains its maximum value near the surface of the cavity and it
vanishes at large r. Also, it increases with the increase in n. The effect of thermal shock in u
with t near the surface of the cavity is shown in Figure 2, for n = 0.0, 0.05 and 1.0. As may be
seen from the figure, each u is of oscillatory nature and its sign is changed when it gets reflected
by the elastic wave from the other direction.
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Fig. 1 Radial displacement vs. radial
distance (for different values of
n and for t = 0.14)
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Fig. 2 Radial displacement vs. time
(for different values of n and
for r = 1.5)

Figure 3 represents the graph of u versus r for n = 0.0, 1.0 and t = 0.14, 3.67. It is seen that
the magnitude of u increases as t increases for a fixed n, and also when n increases for a fixed
t. Figure 4 shows the variation of u with t for n = 0.0, 1.0 and r = 1.5, 3.0. It is noted that
propagation of u occurs when r = 3.0, whereas r = 1.5 corresponds to reflection.

Figure 5 shows the variation of radial stress σr versus radial distance r for time t = 0.14
when the nonhomogeneous parameter n = 0.0, 0.05 and 1.0. It is observed that σr vanishes at
r = 1, satisfying the theoretical condition, and it increases with an increase in n for a fixed r. It
is also seen that in each case, σr decreases with the increase in r, which is physically plausible.
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Figure 6 is plotted to show the variation of σr versus t for r = 1.5 when n = 0.0, 0.05 and 1.0.
It is seen that for each n, σr is negative when t is least showing its compressive nature at the
primary stage of load application. In this case, the magnitude of σr is found to be maximum
for n = 1.0, for any r (1.0 ≤ r ≤ 3.0). Figure 7 represents the graph of σr versus r for
n = 0.0, 1.0 and t = 0.14, 3.67. It is noted that the magnitude of σr increases when t increases
for a fixed n and also when n increases for a fixed t. Thus, the presence of the nonhomogeneous
parameter leads to stress amplification. Figure 8 is plotted to show the variation of σr against
t for n = 0.0, 1.0 and r = 1.5, 3.0. It is evident that σr is compressive in each case for the
least value of t. The oscillatory nature of σr is found as r increases about the line σr = 0 with
decreasing amplitude for each n.
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The hoop stress σθ is plotted against r in Figure 9 for the same parameters as in Fig. 5.
It is seen that σθ increases as n increases, keeping r fixed. In each case σθ vanishes at large
r. Figure 10 represents the graph of σθ versus t for r = 1.5 and n = 0.0, 0.05 and 1.0. It is
seen that σθ is compressive when t is least, which is true under temperature pulse and which
agrees with the assumed temperature condition. The oscillatory nature of σθ is observed for
each n; also, the magnitude of σθ decreases as t increases for each n. As in Figure 9, here also,
for specific t, |σθ| increases as n increases. Figure 11 represents the graph of σθ versus r for
n = 0.0, 1.0 and t = 0.14, 3.67. It is observed that for a fixed t, the magnitude of σθ can be
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increased by changing n from 0.0 to n = 1.0. Also, when r is fixed, stress amplification occurs
in both cases when n = 1.0 and t = 3.67. However, in all cases, its magnitude decreases as r
increases. Figure 12 is plotted for σθ against t for n = 0.0, 1.0 and r = 1.5, 3.0. In all cases, the
stresses are compressive for the least value of t. For any value of n and r, the oscillatory nature
of the stress is observed about the line σθ = 0 and its magnitude decreases with an increase in t.
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Figure 13 gives a comparison between the temperatures generated in the bodies correspond-
ing to n = 0.0 and n = 1.0 for two different values of time t = 0.69 and t = 2.05. It is observed
that for a fixed r and t, the homogeneous property of the material induces T1 to be maximum.
Also in each case, T1 is found to attain its maximum value near the source. Figure 14 represents
the graph of T1 against t for n = 0.0, 1.0 and r = 1.5, 3.0. It is seen that for a fixed n and
r, the magnitude of T1 is greatest when t is least. When t increases T1 oscillates with smaller
amplitudes about the line T1 = 0 and it vanishes at large t. Also, when r is fixed, n = 0.0
corresponds to temperature amplification.
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7 Conclusions

The problem of investigating the thermoelastic displacement, stresses and temperature pro-
duced in a functionally graded spherically isotropic infinite medium containing a spherical cavity
under time-dependent thermal shock is studied in the light of the generalized theory of ther-
moelasticity with two relaxation time parameters(Green and Lindsay theory). The method of
Laplace transform is used to write down the basic equations in the form of a vector-matrix
differential equation, which is solved by the eigen value approach. The Bellman method is used
to get the numerical inversion of the transforms. The thermo-physical parameters are assumed
to vary as the power-law exponent of the radial coordinate. The analysis of the results permits
some concluding remarks:

1) The thermoelastic displacement, stresses and temperature have a strong dependency on
the nonhomogeneous parameter n. So to design an FGM, the importance of the parameter
must be taken into consideration.

2) From the figures it is clear that stress amplification occurs when n increases.

3) Both the stresses σr and σθ are compressive for the least value of time t (figures 6 and
10) and are of oscillatory nature with decreasing amplitude as time progresses.

4) The temperature T1 produced in a homogeneous body is greater than that produced in
a nonhomogeneous body.
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Appendix A

Let the Laplace transform of σj(R, η) be given by

σj(R,p) =

Z ∞

0

e−pησj(R,η)dη. (A.1)

We assume that σj(R, η) is sufficiently smooth to permit the use of the approximate method we apply.
Putting x = e−η in equation (A.1), we obtain

σj(R, p) =

Z 1

0

xp−1gj(R, x)dx, (A.2)

where

gj(R,x) = σj(R,− log x). (A.3)

Applying the Gaussian quadrature rule to the equation (A.2) we obtain the approximate relation:

nX
i=1

Wix
p−1
i gj(R, xi) = σj(R, p), (A.4)

where xi (i = 1, 2, · · · , n) are the roots of the shifted Legendre polynomial and Wi (i = 1, 2, · · · , n) are
the corresponding weights[35] and p = 1(1)n.

For p = 1(1)n, equations (A.4) can be written as

W1gj(R, x1) + W2gj(R, x2) + · · · + Wngj(R, xn) = σj(R, 1),

W1x1gj(R,x1) + W2x2gj(R, x2) + · · · + Wnxngj(R,xn) = σj(R, 2),

· · ·
W1x

n−1
1 gj(R, x1) + W2x

n−1
2 gj(R, x2) + · · · + Wnxn−1

n gj(R,xn) = σj(R,n).
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Therefore,

0
BBB@

gj(R,x1)
gj(R,x2)

...
gj(R, xn)

1
CCCA =

0
BBB@

W1 W2 · · · Wn

W1x1 W2x2 · · · Wnxn

...
...

...
...

W1x
n−1
1 W2x

n−1
2 · · · Wnxn−1

n

1
CCCA

−1 0
BBB@

σj(R, 1)
σj(R, 2)

...
σj(R, n)

1
CCCA . (A.5)

Hence gj(R, x1), gj(R, x2), · · · , gj(R, xn) can be computed.
For n = 7 we have xi and Wi given in Table 1.

Table 1 Roots of the shifted Legendre polynomial and corresponding weights for n = 7

i Roots of the shifted Legendre polynomial Corresponding weights

1 2.5446043828620886E−2 6.4742483084434816E−2

2 1.2923440720030282E−1 1.3985269574463828E−1

3 2.9707742431130145E−1 1.9091502525255938E−1

4 5.0000000000000000E−1 2.0897959183673466E−1

5 7.0292257568869853E−1 1.9091502525255938E−1

6 8.7076559279969706E−1 1.3985269574463828E−1

7 9.7455395617137909E−1 6.4742483084434816E−2

From equations in (A.5) we can calculate the discrete values of gj(R,xi), i.e., σj(R, ηi) (i =
1, 2, · · · , 7); and finally using interpolation we obtain the stress components σi(R,η) (i = r, θ).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


