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Abstract A microaerophilic, mesophilic, chemoor-
ganoheterotrophic bacterium, designated Y-P2T, was 
isolated from oil sludge enrichment in China. Cells of 
the strain were Gram-stain-negative, non-motile, non-
spore-forming, rod-shaped or slightly curved with 
0.8–3.0  µm in length and 0.4–0.6  µm in diameter. 
The strain Y-P2T grew optimally at 25 °C (range from 
15 to 30 °C) and pH 7.0 (range from pH 6.0 to 7.5) 
without NaCl. The major cellular fatty acids were 
 C16:0, summed feature 3  (C16:1 ω7c and/or  C16:1 ω6c), 
summed feature 8  (C18:1 ω7c and/or  C18:1 ω6c). The 
main polar liquids of strain Y-P2T comprised phos-
phatidylethanolamine (PE) and phosphatidylglycerol 

(PG). The respiratory quinone was Q-10. Acetate 
and  H2 were the fermentation products of glucose. 
The DNA G + C content was 66.0%. Strain Y-P2T 
shared the highest 16S rRNA gene sequence similar-
ity (90.3–90.6%) with species within Oceanibacu-
lum of family Thalassobaculaceae in Rhodospirilla-
les. Phylogenetic analyses based on 16S rRNA gene 
sequences and genomes showed that strain Y-P2T 
formed a distinct evolutionary lineage within the 
order Rhodospirillales. On the basis of phenotypic, 
phylogenetic and phylogenomic data, we propose 
that strain Y-P2T represents a novel species in a novel 
genus, for which Shumkonia mesophila gen. nov., 
sp. nov., within a new family Shumkoniaceae fam. 
nov. The type strain is Y-P2T (= CCAM  826 T = JCM 
 34766 T).
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PG  Phosphatidylglycerol
PL  Phospholipid
POCP  Percentage of conserved proteins
R2A  Reasoner’s 2A

Introduction

The order Rhodospirillales, a member of the class 
Alphaproteobacteria belonging to the phylum Pseu-
domonadota, was first proposed by Pfennig and 
Trüper (Pfennig and Trüper 1971) to replace the name 
Athiorhodaceae (Molisch 1907), with Rhodospirillum 
as the type genus (Molisch 1907). It originally com-
prised three families, named Chlorobiaceae, Chro-
matiaceae, and Rhodospirillaceae, there are 12 fami-
lies with validly published names (https:// lpsn. dsmz. 
de/ order/ rhodo spiri llales): Acetobacteraceae (Gil-
lis and De Ley 1980), Azospirillaceae (Hördt et  al. 
2020), Geminicoccaceae (Proença et al. 2018), Kilo-
niellaceae (Wiese et al. 2009), Reyranellaceae (Hördt 
et  al. 2020), Rhodospirillaceae (Pfennig and Trüper 
1971), Rhodovibrionaceae, Stellaceae, Terasakiel-
laceae, Thalassobaculaceae, Thalassospiraceae and 
Zavarziniaceae (Hördt et al. 2020). In 2023, Koziaeva 
et al. (2023) suggested that the order Rhodospirillales 
should be split into six more new family-level groups 
according to phylogenomic analyses, including “Mag-
netospiraceae” and “Magnetovibrionaceae” separated 
from the family Thalassospiraceae, “Dongiaceae” 
and “Niveispirillaceae” separated from the family 
Rhodospirillaceae, “Fodinicurvataceae” from the 
family Rhodovibrionaceae and “Oceanibaculaceae” 
from the family Thalassobaculaceae. Rhodospiril-
lales members are widely distributed in freshwater, 
soil, seawater, plant root and artificial ecosystems. 
Most members of this order are Gram-stain-negative, 
spiral or rod-shaped, non-spore-forming, and obli-
gately aerobic or facultatively anaerobic bacteria with 
ubiquinone Q-10 as the common major respiratory 
quinone. The order Rhodospirillales is metabolically 
diverse group, containing chemoorganoheterotrophs, 
and photoorganoheterotrophs under anoxic conditions 
in the light (Hördt et al. 2020)

In recent years, it has revealed that Rhodospiril-
lales members present in the oil reservoir related 
environments, such as oil-contaminated soil and 
polluted water (Liu et  al. 2015; Abbasian et  al. 
2016; Elumalai et  al. 2021). However, just a few 

of members belonging to Rhodospirillale have the 
ability to use alkane as energy source (Wu et  al. 
2021b). The knowledge about ecological roles of 
Rhodospirillales in oil reservoir is still limited. Elu-
malai et  al. found Rhodospirillales appears in the 
biofilm on corroded API 5LX carbon steel in pro-
duced water of oil reservoir (Elumalai et al. 2021), 
implying Rhodospirillales probably related with 
microbially induced corrosion (MIC). Rhodospiril-
lales members including Rhodospirillaceae and 
Acetobacteraceae were abundant bacteria in the 
biofilm on corroded steel coupons and Biodiesel 
Storage Tanks (Procópio 2020; Stamps et al. 2020), 
populations of these bacteria were accompanied by 
a continuous corrosion process over the coupons 
(López et  al. 2002; Moura et  al. 2018). Corrosion 
conducted by microorganisms usually influenced 
through biofilm formation, sulfur metabolism, cor-
rosive metabolites production (such as inorganic 
or organic acids, and hydrogen sulfide) (Lv and 
Du 2018; Moura et al. 2018; Elumalai et al. 2021). 
Several studies have speculated that Rhodospiril-
lales members participate in MIC by producing 
acetic acid and biofilms, as well as reducing iron 
(Chen et al. 2019; Chen and Zhang 2019; Procópio 
2020; Stamps et  al. 2020). Therefore, Rhodospiril-
lales probably link to the corrosion of oil pipelines 
and storage tanks, suggesting the importance of 
isolation Rhodospirillales for investigating their 
ecological functions in oil reservoir environments. 
Several species have been isolated from the oil pro-
duction mixture, oil-contaminated soil or oil reser-
voir water, such as Roseomonas oleicola (Wu et al. 
2021a) and Siccirubricoccus phaeus (Li et al. 2021) 
of the family Acetobacteraceae, Azospirillum olei-
clasticum (Wu et al. 2021b) and Azospirillum rugo-
sum (Young et  al. 2008) of the family Azospiril-
laceae, Oleisolibacter albus (Ruan et al. 2019) and 
Oleiliquidispirillum nitrogeniifigens (Li et al. 2020) 
of the family Rhodospirillaceae. All these isolates 
are mesophilic, aerobic or facultatively anaerobic 
chemoorganoheterotrophs.

In the present study, one strain, designated 
Y-P2T, was isolated from the oil sludge collected 
from Shengli oilfield, China. The polyphasic taxo-
nomic analyses revealed strain Y-P2T represents 
a novel genus in a new family within the order 
Rhodospirillales.

https://lpsn.dsmz.de/order/rhodospirillales
https://lpsn.dsmz.de/order/rhodospirillales
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Materials and methods

Enrichment and isolation

Strain Y-P2T was obtained from the oil sludge of the 
Shengli oilfield in PR China  (37o54’N,  118o33’E). 
Approximately 10  g of mixture of oil contaminated 
soil and oily sludge was inoculated into 50  mL of 
fresh medium for preparation of pre-enrichment cul-
ture, which performed as 25  °C. The pre-reduced 
mineral medium used for enrichment and isolation 
was prepared with the following components  (L−1): 
0.5  g NaCl, 0.5  g  MgCl2·6H2O, 0.1  g  CaCl2·2H2O, 
0.3  g  NH4Cl, 0.2  g  KH2PO4, 0.5  g KCl, 2  ml trace 
element solution 284 (JCM medium No.284, https:// 
www. jcm. riken. jp/ cgi- bin/ jcm/ jcm_ grmd? GRMD= 
284& MD_ NAME =), 1 mg resazurin, 0.5 g cysteine 
hydrochloride and 1 L distilled water. The strain 
Y-P2T was isolated with mixed substrate (short-
chain fatty acid, glucose, yeast extract and tryptone 
mixture) by using the extinction dilution method as 
described previously (Zhang et al. 2018). Unless oth-
erwise stated, R2A (Reasoner’s 2A) liquid medium 
was used for subculturing and cultivating the strain 
Y-P2T. R2A medium contained  (L−1): 0.25  g tryp-
tone, 0.5  g casein hydrolysate, 0.5  g yeast extract, 
0.5  g soluble starch, 0.3  g  K2HPO4, 0.1  g  MgSO4, 
0.3  g sodium pyruvate, 0.25  g peptone, 0.5  g glu-
cose, and 1L distilled water. All media used in this 
study were prepared and dispensed under 100%  N2, 
and sterilized at 121  °C for 15  min. Strain Y-P2T 
was deposited in the China Collection of Anaerobic 
Microorganisms (CCAM  826 T) and Japan Collection 
of Microorganisms (JCM  34766  T). Oceanibaculum 
nanhaiense KCTC  52312  T obtained from Korean 
Collection for Type Cultures (KCTC) was used as the 
reference strain.

Morphological, physiological, and biochemical tests

The strain Y-P2T incubated at 25  °C for 5 days was 
used for morphology tests. Gram-staining, flagellum-
staining and spore-staining were determined using 
commercial Gram Staining Kit, Flagellum Staining 
Kit and Spore Staining Kit (Solarbio, China) accord-
ing to the manufacturers’ instructions, respectively. 
The cell shape and size of strain Y-P2T were exam-
ined using a scanning electron microscope (JEM-
1400 Plus, JEOL, Japan). 0.1% melted agarose gel 

spread flat on slide and solidified, then take a drop 
of strain Y-P2T by microscope (Nikon 80i, Japan) for 
observing motility.

Growth at different temperatures (15, 20, 25, 30 
and 37  °C), pH (5.0–8.5, at 0.5-unit intervals), and 
salinities (0 – 70 g  L−1, at 10 g  L−1 intervals) were 
determined in the R2A medium supplemented 10% 
(v/v) oxygen in the headspace of Hungate tubes 
(25 ml). The pH values were adjusted using the ster-
ile and HCl or NaOH solution and were buffered with 
20  mM MES (pH 5.5, pH 6.0 and pH 6.5), 20  mM 
PIPES (pH 7.0 and pH 7.5) and 20  mM Tris (pH 
8.0 and pH 8.5).The final pH was determined with 
a pH meter (HORIBA B-712, LAQUAtwin, Japan). 
Growth was determined by measuring the optical 
density (OD) at 600  nm using a spectrophotometer 
(DU730, Beckman, Germany).

For biochemical tests, cells in R2A medium were 
collected by centrifuging at 13,000  rpm for 5  min 
at room temperature. Substrate utilization, nitrate 
reduction, and  H2S production were tested with 
API 20NE, API ZYM and API 20E (bioMérieux, 
France) and incubated aerobically at 28 °C and 37 °C, 
respectively, the color change was checked every 
18–24  h. Oxidase activity was determined using an 
oxidase reagent kit (bioMérieux, France) according 
to the manufacturer’s instructions. Oxygen require-
ment of strain Y-P2T was tested under 0%, 2%,10% 
and 20% oxygen  (O2:N2, v/v). The fermentation 
products were analysed by liquid chromatography 
(Aglient 1200, USA) using AminexHPX-87H column 
(300 mm × 7.8 mm, 9 µm),  H2SO4 (5 mM) was used 

Fig. 1  Scanning electron micrograph of strain Y-P2T. The 
scale bar is 1 μm

https://www.jcm.riken.jp/cgi-bin/jcm/jcm_grmd?GRMD=284&MD_NAME
https://www.jcm.riken.jp/cgi-bin/jcm/jcm_grmd?GRMD=284&MD_NAME
https://www.jcm.riken.jp/cgi-bin/jcm/jcm_grmd?GRMD=284&MD_NAME
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Table 1  Phenotypic traits of strain Y-P2T and phylogenetically close genera belonging to the family Thalassobaculaceae, Stellaceae 
and Geminicoccaceae 

Characteristic 1 2 3 4 5 6 7

Habitat Oil sludge Surface sea-
water

Deep 
seawater/
Hydrother-
mal field 
sediment

Coastal, surface 
waters

Deep seawa-
ter/ Coastal 
seawater

Soil sludge

Oxygen 
requirement

Microaero-
philic

ND ND ND Strictly aero-
bic, Fac-
ultatively 
anaerobic

Aerobic Aerobic

Gram reaction – – – – – – –
Morphology rods rods rods rods slightly 

curved rod/ 
straight rod

flat, six–
pronged 
stars

coccus/cocco-
bacillus

Motility –  +  +  + –/ + – –
Spore–form-

ing
– – ND ND ND – –

Cells (μm) 0.4–0.6 × 0.8–
3.0

0.8–1.0 × 1.5–
2.5

1.7–2.5 × 0.5–
1.5

2.5 ± 0.6 × 0.9 ± 0.2 0.3–1.2 × 2.0–
8.0

ND 1·5–4·0

Temperature 
(optimum, 
oC)

15–30 
(25–30)

10–45 
(25–37)

10–45 
(25–37)

15–44 (30) 20–40 
(30–35)

28–30 20–30 (25–30)

pH (opti-
mum)

7.1 6–10 (8–9) 6–11 (7–9) 5.0–9.0 (6.0) 5.0–10.0 
(6.5–8.0)

near neutral 5.0–8.5 
(7·5–8·0)

NaCl (opti-
mum, g/L)

0–100 (0) 0–90 (20) 0–90 (5–70) 0–60 (20) 0–100 
(20–40)

10 ND

DNA G + C 
content 
(mol%)

66.0 65.1 64.8–67.7 60.5–60.6 65.0–69.0 69.8 66

Utilization of 
sugars

– –  +  +  + –  + 

Citrate utili-
zation

–  +  + / ND ND ND  + –

Gelatinase –  +  + /– ND  + ND ND
Reduction of 

nitrate
–  +  + / variable ND  + /– ND  + (weak)

Denitrifica-
tion

–  +  + /– ND ND ND ND

Urease  + – –/ + ND  + ND  + 
Gelatin 

hydrolysis
– weak weak /– ND  + ND  + (weak)

Oxidase  +  +  + /–  +  +  + –
Catalase –  +  + / +  +  +  +  + 
Fatty acid C16:0, 

 C16:1ω7c 
and/or 
 C16:1ω6c, 
 C18:1ω7c 
and/or 
 C18:1ω6c

summed 
feature 8 
 (C18:1ω7c 
and/or 
 C18:1ω6c), 
 C16:0 and 
 C18:1 2–OH

C16:0, 
 C18:1ω7c, 
 C18:1 2–
OH and 
 C19:0ω8c 
cyclo

C18:1ω7c,  C16:1ω7c 
and  C16:0

C18:1ω7c, 
 C16:0

ND ND

Quinone Q–10 Q–10 Q–10 Q–10 Q–10 ND ND



1363Antonie van Leeuwenhoek (2023) 116:1359–1374 

1 3
Vol.: (0123456789)

as the mobile phase at a flow rate of 0.6  ml   min−1. 
 H2 in the overhead of the tubes were analysed by gas 
chromatography (Shimadzu GC2010, Japan).

Chemotaxonomic analysis

For cellular fatty acids, polar lipids and respiratory 
quinones analyses, cells of strains Y-P2T and O. nan-
haiense KCTC  52312  T incubated in R2A medium 
at 25 °C for 5 days were collected by centrifugation. 
The fatty acids were separated using gas chromatog-
raphy (Aglient 8860, USA) and identified with Sher-
lock software (version 6.3) according to the instruc-
tions of Microbial Identification Inc. (MIDI) protocol 
(Sasser 1990). Respiratory quinones of strain Y-P2T 
were detected using the protocol described previously 
(Komagata and Suzuki 1988; Tindall 1990). Polar 
lipids were extracted using a chloroform / methanol 
system and were analysed using one- and two-dimen-
sional thin-layer chromatography (TLC) following 
the method described by Kates et al. (1986).

16S rRNA gene sequencing and phylogenetic analysis

Cells incubated at 25 °C for 5 d was used for extract-
ing genomic DNA using bacteria DNA extraction kit 
(DP302, TIANGEN, China) following the manufac-
ture’s instruction. 16S rRNA gene fragments were 
amplified by PCR using the universal primers 27F 
(5′AGA GTT TGATCMTGG CTC AG3′) and 1492R 
(5′TAC GGY TAC CTT GTT ACG ACTT3′) and were 
sequenced by ABI 3730XL DNA anazlyzer. The 
sequence obtained was compared with the avail-
able 16S rRNA sequences in EzBioCloud database 
(https:// www. ezbio cloud. net/ ident ify) and NCBI data-
base with nucleotide Basic Local Alignment Search 
Tool (blastn, https:// blast. ncbi. nlm. nih. gov/ Blast. cgi), 
respectively. 16S rRNA gene sequences of closely 
related species that validly published were derived 

from genomes from NCBI database or downloaded 
from EzBioCloud, and then were multiply aligned 
through MUSCLE v3 (https:// drive5. com/ muscle/ 
downl oads_ v3. htm). The phylogenetic analyses were 
performed by fasttree and MEGA X using the neigh-
bor-joining method and maximum-likelihood method 
(Felsenstein 1981), respectively. Bootstrap values 
were calculated based on 1000 replicates. Evolution-
ary distances were calculated using the Kimura two-
parameter method (Kimura 1980). The phylogenetic 
tree was modified by Itol (https:// itol. embl. de/).

Whole–genome sequencing and phylogenomic 
analysis

The whole genome of strain Y-P2T was sequenced 
by Novogene Corporation Inc. (Beijing, China) using 
NovaSeq 6000 System (Illumina, USA). Phylog-
enomic analysis based on the GTDB taxonomy data-
base (release r95) was performed by using the method 
described previously (Parks et  al. 2018). Genome 
assembly and annotation were performed using meth-
ods described previously (Fan et al. 2023).

Up-to-date bacterial core gene (UBCG) and GTDB 
phylogenomic trees were reconstructed by UBCG 
(https:// www. ezbio cloud. net/ tools) and GTDB-Tk 
(https:// gtdb. ecoge nomic. org/), respectively, and 
were optimized in Evolview website (https:// www. 
evolg enius. info/ evolv iew/#/ treev iew). The pairwise 
genomic average nucleotide identity (ANI) and aver-
age amino acid identity (AAI) were calculated using 
OrthoANIu (https:// www. ezbio cloud. net/ tools/ ortho 
aniu) and Compare M (https:// github. com/ dpark 
s1134/ Compa reM), respectively. Percentage of con-
served proteins (POCP) between two microbial 
genomes was calculated as the following formula: 
(conserved protein number of genome A + conserved 
protein number of genome B) / (total number of pro-
teins being compared in genome A + total number 

Table 1  (continued)

Characteristic 1 2 3 4 5 6 7

Polar lipid AL, PE, PG, 
PL, L

DPG, PE, 
PME, PG, 
PL, L

DPG, PE, 
PME, PG, 
PL, L

PG, APL, PL PG, APL, PL, 
AL, L

ND ND

1. Shumkonia mesophila Y-P2T, in this study; 2. Oceanibaculum nanhaiense KCTC  52312 T (Du et al. 2017); 3. Oceanibaculum (Du, 
et al. 2017, Dong et al., 2010, Lai et al., 2009a, b); 4. Nisaea (Urios et al. 2008); 5. Thalassobaculum (Su et al., 2016, Zhang et al. 
2008, Urios et al., 2008); 6. Stella (Vasilyeva 1985); 7 Defluviicoccus (Maszenan et al. 2005). + , positive; − , negative; ND, no data 
available. A, Aerobic; MA, microaerobic; FA, facultatively anaerobic

https://www.ezbiocloud.net/identify
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://drive5.com/muscle/downloads_v3.htm
https://drive5.com/muscle/downloads_v3.htm
https://itol.embl.de/
https://www.ezbiocloud.net/tools
https://gtdb.ecogenomic.org/
https://www.evolgenius.info/evolview/#/treeview
https://www.evolgenius.info/evolview/#/treeview
https://www.ezbiocloud.net/tools/orthoaniu
https://www.ezbiocloud.net/tools/orthoaniu
https://github.com/dparks1134/CompareM
https://github.com/dparks1134/CompareM
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of proteins being compared in genome B) (Qin et al. 
2014).

Results and discussion

Morphological, physiological, and biochemical 
characteristics

Cells of strain Y-P2T were Gram-stain-negative, 
non-spore-forming, straightly rod-shaped or slightly 
curved with 0.8 – 3.0 × 0.4 – 0.6 µm in length and in 
width (Fig.  1). Growth occurred at 15–30  °C (opti-
mum at 25  °C) and pH 6.0–7.5 (optimum pH 7.0) 
in absence of NaCl (Fig.  S1). Weak growth was 
observed under anaerobic conditions, but the opti-
mum growth occurred in the presence of oxygen up 
to approx. 10% (v/v), no growth was observed when 
oxygen increase to 20% (v/v) (Fig.  S2), indicating 
that strain Y-P2T was microaerophilic.

According to API 20NE and API 20E tests 
(Table  1), strain Y-P2T was positive for urease and 
gelatinase. The results of API 20NE tests revealed 
that strain Y-P2T was negative for reduction of nitrate 
or denitrification, was positive for oxidase activ-
ity, but negative for catalase activity, Strain Y-P2T 
was unable to reduce thiosulfate or ferment tested 
carbohydrates. In API ZYM test, activities of alka-
line phosphatase, esterase  (C 4), estase  lipase  (C 8), 
acid  phosphatase and Naphtol-AS-BI-phosphohy-
drolase were positive. Acetate and  H2 were produced 
from glucose.

The GenBank accession numbers of the 16S rRNA 
gene sequence for strain Y-P2T was MZ270534. The 
GenBank accession number of genome sequence for 
strain Y-P2T was JAOTID000000000.

Chemotaxonomic characteristics

The predominant fatty acids (> 10%) of strain Y-P2T 
were  C16:0 (34.6%), summed feature 3  (C16:1 ω7c and/
or  C16:1 ω6c, 23.1%), and summed feature 8  (C18:1 

ω7c and/or  C18:1 ω6c,17.3%), which accounted for 
75.0% of the total fatty acids (Table S1). Differently, 
O. nanhaiense KCTC  52312 T contained sum in fea-
ture 8  (C18:1ω7c and/or  C18:1ω6c, 50.0%) and  C16:0 
(12.6%). The polar liquids of strain Y-P2T comprised 
one unidentified aminolipid (AL), one phosphatidy-
lethanolamine (PE), one phosphatidylglycerol (PG), 
three unidentified phospholipids (PLs) and four uni-
dentified polar lipids (Ls) (Fig. S3). The respiratory 
quinone was Q-10.

Phylogenetic analyses

The complete 16S rRNA gene sequence analysis 
performed using blastn at NCBI showed that strain 
Y-P2T shares the highest 16S rRNA gene sequence 
similarity with species in the genus Oceanibaculum 
(90.3–90.6%) which was affiliated to “Oceanibacu-
laceae” (formerly Thalassobaculaceae) within the 
order Rhodospirillales, followed by Stella humosa 
DSM  5900  T (90.0%) in family Stellaceae, Thal-
assobaculum and Nisaea (≤ 89.9%) in Thalas-
sobaculaceae, Varunaivibrio and Magnetovibrio 
(≤ 89.8%) in “Magnetovibrionaceae” (formerly 
Thalassospiraceae), Zavarzinia compransoris 
LMG-5821 T (89.1%) in Zavarziniaceae (Table S2). 
These 16S rRNA gene sequence similarities were 
lower than the 94.5% threshold for the delineation 
of genera and the median sequence identity for the 
delineation of families (Yarza et al. 2014), suggest-
ing that strain Y-P2T belongs to a new genus or may 
represent a higher rank taxon.

To confirm the phylogenetic relationship between 
strain Y-P2T and Rhodospirillales members, maxi-
mum-likelihood phylogenetic trees based on 16S 
rRNA gene sequences of strain Y-P2T and the repre-
sentative genera within order Rhodospirillales were 
constructed. On the phylogenetic tree, strain Y-P2T 
was placed in the clade with genera Zavarzinia of 
the family Zavarziniaceae, but formed an inde-
pendent evolutionary lineage that is distinguish-
able among Rhodospirillales families (Fig. S4). The 
phylogenomic trees reconstructed based on bacte-
rial core gene set (Fig. 2) and 120 single copy genes 
(Fig. 3) both indicated that strain  YP2T clusters with 
members of “Magnetospiraceae” (Magnetospira), 
“Magnetovibrionaceae” (Magnetovibrio, Varuna-
ivibrio), and Geminicoccaceae (Defluviicoccus), 

Fig. 2  Phylogenomic tree reconstructed based on up-to-date 
bacterial core gene set (UBCG, concatenated alignment of 92 
core genes) of representative species of genera in the order 
Rhodospirillales. Bar, 0.1 substitutions per position. Gene sup-
port indices (GSIs) are given at branching points. Latin names 
with quotes have not been validly published

◂
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and formed a clade with Defluviicoccus vanus Ben 
 114 T.

To further figure out the taxonomic rank of 
strain Y-P2T, reanalysis of pairwise 16S rRNA gene 
sequence similarity and indices of pairwise genomic 
relatedness including ANI, AAI and POCP were per-
formed. Strain Y-P2T had 89.2 ± 0.8% of 16S rRNA 
sequence similarities to representative species of 
the family “Oceanibaculaceae” and Thalassobacu-
laceae (Fig.  4), which were close to the minimum 
sequence similarity for defining a novel family (Yarza 
et  al. 2014). Meanwhile, the ANI and POCP values 
between strain Y-P2T and these members were ≤ 69.8 
and 43.0% (Table S2), respectively, far lower than the 
cutoff values for distinguishing genera (83 and 50%, 
respectively) (Luo et  al. 2014; Qin et  al. 2014; Jain 
et al. 2018), and were in the range of relevant inter-
family values (ANI 63.7–70.7 and POCP 25.3–49.9%) 
(Fig. 4); the AAI values were all ≤ 57.8% (Table S2), 
which were lower the boundary (approximately 60%) 
for Rhodospirillales families proposed by Koziaeva 
et al. (2023). In addition, strain Y-P2T was separated 
from other Rhodospirillales families with the aver-
age values of 16S rRNA gene sequence similarity 
and AAI (86.0 ± 2.0 and 55.3 ± 1.5%, respectively) 
below the thresholds for family delineation (Fig.  4) 
(Yarza et al. 2014). All these results suggested strain 
Y-P2T could be distinguished from families in Rho-
dospirillales and represents a novel family within 
Rhodospirillales.

Genomic characteristics

The genome of strain Y-P2T had a total length of 
5,388,487  bp, and contained 5053 ORFs, 49 tRNA 
genes, one 5  s rRNA, one 16  s rRNA and one 23  s 
rRNA (Table  S3). The G + C content was 66.0%. 
2314, 3540 and 3592 genes were annotated in KEGG, 
Swiss and GO database, respectively (Table S3).

Glycan biosynthesis pathways

Extracellular polymeric substance (EPS) is a key 
component of biofilm causing processes of MIC. 
Strain Y-P2T was able to form EPS when grown 
under microaerobic condition (Fig. S5). Results 
based on KEGG annotation showed that 66 genes 
associated with glycan biosynthesis and metabo-
lism are identified in the genome of strain Y-P2T 
(Table S4), 20 of which (more than 30%) involved 
in the biosynthesis of lipopolysaccharide (LPS) 
which may effect on the Co-Cr and Ti alloys corro-
sion (Yu et al. 2016). Genes lpxA, lpxCD, lpxI, lpxB 
and lpxK encoding homologs that consist of path-
way synthesizing lipid IVA from UDP-N-acetyl-α-
d-glucosamin or a (3R)-3-hydroxytetradecanoyl-
[acp] (Table  S5). Meanwhile, homologs encoded 
by genes kdsD, kdsA, kdsC and kdsB formed a path-
way for synthesizing CMP-3-deoxy-β-d-manno-
octulosonate from d-ribulose 5-phosphate, provid-
ing an essential substrate for generating Kdo2-lipid 
A via the pathway comprised of integral membrane 
proteins encoded by kdtA, lpxL, IpxK and lpxM 
(Wang et  al. 2015). However, lpxM was not found 
in genome of strain Y-P2T. In addition, an ADP-l-
glycero-β-d-manno-heptose biosynthesis pathway 
containing enzymes encoded by gmhAC, gmhB and 
gmhD was employed by Y-P2T to produce the pre-
cursor for the inner core region of LPS, but only one 
gene (gtrB) related to O-antigen repeat unit synthe-
sis was identified. We also found strain Y-P2T had a 
complete pathway (rmlADBC) to synthesize dTDP-
l-rhamnose which is the precursor of l-rhamnose. 
l-rhamnose and GDP-d-glycero-d-manno-heptose 
that generated via enzymes encoded by gmhA, hhdA 
(absent), gmhB, and hhdC are sugar components of 
bacterial S-layer glycoproteins (Kneidinger et  al. 
2001; Graninger et  al. 2002). It has been demon-
strated that S-layer proteins are associated with 
cells aggregation, bacterial adherence to substrates 
and surfaces, as well as biofilm formation (Gerbino 
et al. 2015).

Sulfur metabolism

Sulfur-cycling microorganisms are commonly con-
sidered the key players of MIC, and can participate 
in the process of MIC through sulfate reduction and 

Fig. 3  Phylogenomic tree reconstructed based on 120 single 
copy conservative marker genes of all species with sequenced 
genomes in the order Rhodospirillales with GTDB pipelines. 
Bar, 0.1 substitutions per position. Percentage bootstrap values 
are given at branching points. Latin names with quotes have 
not been validly published

◂
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sulfur disproportionation (Rajala et  al. 2022). The 
genome of strain Y-P2T contained 24 genes for sul-
fur metabolism (Table S6). Gene sta, and the operons 
aprAB and dsrAB comprised a complete dissimilatory 
sulfate reduction and oxidation pathway for the con-
version between sulfate and sulfide, which has been 
described in Dsr-dependent sulphate-reducing bacteria 
and sulphur-oxidizing bacteria (Neukirchen and Sousa 
2021). SOX system oxidizing thiosulfate to sulfate via 
enzymes encoded by soxDCBAZYX operon was iden-
tified in strain Y-P2T. In addition, a flavocytochrome 
c sulfide dehydrogenase was presented in genome of 
Y-P2T by fccA and fccB, it has been reported that this 
enzyme can oxidize self-produced sulfide or exogenous 
sulfide to sulfite and thiosulfate under aerobic condi-
tion in Pseudomonas aeruginosa (Lü et al. 2017).

Conclusion

Physiological comparison revealed that strain Y-P2T 
shares several common phenotypic features with 
Rhodospirillales members, such as mesophilic, 
Gram-stain-negative and major respiratory qui-
none, but is different to its phylogenetically close 
relatives in morphological and physiological traits 
(Table 2). Thalassobaculaceae members are motile, 
grow with salinity, positive for oxidase activity; 
“Magnetospiraceae” and “Magnetovibrionaceae” 
are magnetotactic; while Geminicoccaceae and 
Stellaceae are aerobic, having different cell shapes, 

Geminicoccaceae also has abilities to reduce nitrate 
and hydrolyze gelatin. Meanwhile, values of the 
16S rRNA gene sequence similarity, AAI ANI and 
POCP between strain Y-P2T and published members 
of Rhodospirillales families were all lower than 
boundaries for separating Rhodospirillales families. 
On the basis of the distinct phenotypic and chemot-
axonomic characteristics, phylogenetic and genomic 
evidence mentioned above, strain Y-P2T is proposed 
as the type strain of a novel species of a new genus, 
for which the name Shumkonia mesophila gen. nov., 
sp. nov. is proposed, within a new family Shumkoni-
aceae fam. nov.

Description of Shumkoniaceae fam. nov.

Shumkoniaceae  (Shum.
ko.ni.a.ce’ae.  N.L.  fem.  n.  Shumkonia a bacte-
rial genus; aceae suffix to denote a family; N.L. fem. 
pl. n. Shumkoniaceae the Shumkonia family).

The description of Shumkoniaceae is the same 
as for the genus Shumkonia. The type genus is 
Shumkonia.

Description of Shumkonia gen.nov.

Shumkonia  (Shum.ko’ni.a.  N.L.  fem. n. 
Shumkonia  named  in  honour of ShumKo 

16S rRNA gene similarity AAI ANI POCP

81 84 87 90 53 55 57 59 65 67 69 25 30 35 40 45 50

Inter−families

Y-P2T:other family

Y-P2T:Thalassobaculaceae

Y-P2T:Oceanibaculaceae

Fig. 4  Comparison of 16S rRNA gene identity, AAI, ANI and 
POCP between strain Y-P2T and representatives of published 
families within the order Rhodospirillales. The violin plot lines 
indicate a kernel density of the identity distribution. The black 

dot indicates the mean and the solid horizontal line indicates 
the median. *Thalassobaculaceae, members within “Oceanib-
aculaceae” and Thalassobaculaceae included
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(1031–1095)  who  found and used  oil in the  eleventh 
century in China).

Microaerophilic, mesophilic, chemoorganohetero-
trophic bacterium. Gram-stain-negative, non-motile, 
non-spore-forming, rod-shaped or slightly curved 
rod. Acetate and  H2 are the fermentation products 
of glucose. The predominant cellular fatty acid is 
 C16:0, and the quinone is Q-10. The type species is 
Shumkonia mesophila.

Description of Shumkonia mesophila sp. nov.

Shumkonia  mesophila  (me.sophi.
la. N.L.  fem. adj. mesophila, middle  temperature  lov-
ing).

Microaerophilic, mesophilic, chemoorganohet-
erotrophic bacterium. Cells are Gram-stain-nega-
tive, non-motile, non-spore-forming, rod-shaped or 
slightly curved, 0.8–3.0 µm in width and 0.4–0.6 µm 
in length. Growth occurs optimally under the con-
ditions of 25  °C, pH 7.0 without NaCl. Urease and 
oxidase positive. Acetate and  H2 are the fermentation 
products of glucose. Catalase, nitrate reduction and 
denitrification negative. Major cellular fatty acids are 
 C16:0, sum in feature 3  (C16:1 ω7c and/or  C16:1 ω6c), 
sum in feature 8  (C18:1 ω7c and/or  C18:1 ω6c). The 
polar lipids comprise phosphatidylethanolamine (PE), 
phosphatidylglycerol (PG), one unidentified ami-
nolipid (AL), three unidentified phospholipid (PL) 
and four unidentified polar lipids (L). Respiratory 
quinone is Q-10. The genomic DNA G + C content 
was 66.0%.

The type strain is Y-P2T (= CCAM  826  T = JCM 
 34766 T) isolated from oil sludge, Shengli, China.
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