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Abstract A microaerophilic, mesophilic, chemoor-
ganoheterotrophic bacterium, designated Y-P2T, was
isolated from oil sludge enrichment in China. Cells of
the strain were Gram-stain-negative, non-motile, non-
spore-forming, rod-shaped or slightly curved with
0.8-3.0 um in length and 0.4-0.6 pm in diameter.
The strain Y-P2" grew optimally at 25 °C (range from
15 to 30 °C) and pH 7.0 (range from pH 6.0 to 7.5)
without NaCl. The major cellular fatty acids were
Ci¢:0- summed feature 3 (C,¢.; @7c and/or C4.; @6c¢),
summed feature 8 (C,g.;, @7c and/or Cg.; wbc). The
main polar liquids of strain Y-P2T comprised phos-
phatidylethanolamine (PE) and phosphatidylglycerol
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(PG). The respiratory quinone was Q-10. Acetate
and H, were the fermentation products of glucose.
The DNA G+C content was 66.0%. Strain Y-P2T
shared the highest 16S rRNA gene sequence similar-
ity (90.3-90.6%) with species within Oceanibacu-
lum of family Thalassobaculaceae in Rhodospirilla-
les. Phylogenetic analyses based on 16S rRNA gene
sequences and genomes showed that strain Y-P2T
formed a distinct evolutionary lineage within the
order Rhodospirillales. On the basis of phenotypic,
phylogenetic and phylogenomic data, we propose
that strain Y-P2T represents a novel species in a novel
genus, for which Shumkonia mesophila gen. nov.,
sp. nov., within a new family Shumkoniaceae fam.
nov. The type strain is Y-P2T (=CCAM 826 T'=JCM
34766 7).

Keywords Microaerophilic -
Chemoorganoheterotrophic - Shumkonia mesophila
sp. nov. - Shumkoniaceae fam. nov

Abbreviations

AAI Average amino acid identity

ANI Average nucleotide identity

ANI Average nucleotide identity

AL Aminolipid

CHES N-cyclohexyl-2-aminoethanesulfonic acid
GL Glycolipids

L Lipids

MES  2-(N-morpholino) ethanesulfonic acid

PE Phosphatidylethanolamine
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PG Phosphatidylglycerol

PL Phospholipid

POCP Percentage of conserved proteins
R2A  Reasoner’s 2A

Introduction

The order Rhodospirillales, a member of the class
Alphaproteobacteria belonging to the phylum Pseu-
domonadota, was first proposed by Pfennig and
Triiper (Pfennig and Triiper 1971) to replace the name
Athiorhodaceae (Molisch 1907), with Rhodospirillum
as the type genus (Molisch 1907). It originally com-
prised three families, named Chlorobiaceae, Chro-
matiaceae, and Rhodospirillaceae, there are 12 fami-
lies with validly published names (https://lpsn.dsmz.
de/order/rhodospirillales): Acetobacteraceae (Gil-
lis and De Ley 1980), Azospirillaceae (Hordt et al.
2020), Geminicoccaceae (Proenga et al. 2018), Kilo-
niellaceae (Wiese et al. 2009), Reyranellaceae (Hordt
et al. 2020), Rhodospirillaceae (Pfennig and Triiper
1971), Rhodovibrionaceae, Stellaceae, Terasakiel-
laceae, Thalassobaculaceae, Thalassospiraceae and
Zavarziniaceae (Hordt et al. 2020). In 2023, Koziaeva
et al. (2023) suggested that the order Rhodospirillales
should be split into six more new family-level groups
according to phylogenomic analyses, including “Mag-
netospiraceae” and “Magnetovibrionaceae” separated
from the family Thalassospiraceae, “Dongiaceae”
and “Niveispirillaceae” separated from the family
Rhodospirillaceae, ‘“‘Fodinicurvataceae” from the
family Rhodovibrionaceae and “Oceanibaculaceae”
from the family Thalassobaculaceae. Rhodospiril-
lales members are widely distributed in freshwater,
soil, seawater, plant root and artificial ecosystems.
Most members of this order are Gram-stain-negative,
spiral or rod-shaped, non-spore-forming, and obli-
gately aerobic or facultatively anaerobic bacteria with
ubiquinone Q-10 as the common major respiratory
quinone. The order Rhodospirillales is metabolically
diverse group, containing chemoorganoheterotrophs,
and photoorganoheterotrophs under anoxic conditions
in the light (Hordt et al. 2020)

In recent years, it has revealed that Rhodospiril-
lales members present in the oil reservoir related
environments, such as oil-contaminated soil and
polluted water (Liu et al. 2015; Abbasian et al.
2016; Elumalai et al. 2021). However, just a few
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of members belonging to Rhodospirillale have the
ability to use alkane as energy source (Wu et al.
2021b). The knowledge about ecological roles of
Rhodospirillales in oil reservoir is still limited. Elu-
malai et al. found Rhodospirillales appears in the
biofilm on corroded API 5LX carbon steel in pro-
duced water of oil reservoir (Elumalai et al. 2021),
implying Rhodospirillales probably related with
microbially induced corrosion (MIC). Rhodospiril-
lales members including Rhodospirillaceae and
Acetobacteraceae were abundant bacteria in the
biofilm on corroded steel coupons and Biodiesel
Storage Tanks (Procépio 2020; Stamps et al. 2020),
populations of these bacteria were accompanied by
a continuous corrosion process over the coupons
(Lopez et al. 2002; Moura et al. 2018). Corrosion
conducted by microorganisms usually influenced
through biofilm formation, sulfur metabolism, cor-
rosive metabolites production (such as inorganic
or organic acids, and hydrogen sulfide) (Lv and
Du 2018; Moura et al. 2018; Elumalai et al. 2021).
Several studies have speculated that Rhodospiril-
lales members participate in MIC by producing
acetic acid and biofilms, as well as reducing iron
(Chen et al. 2019; Chen and Zhang 2019; Procépio
2020; Stamps et al. 2020). Therefore, Rhodospiril-
lales probably link to the corrosion of oil pipelines
and storage tanks, suggesting the importance of
isolation Rhodospirillales for investigating their
ecological functions in oil reservoir environments.
Several species have been isolated from the oil pro-
duction mixture, oil-contaminated soil or oil reser-
voir water, such as Roseomonas oleicola (Wu et al.
2021a) and Siccirubricoccus phaeus (Li et al. 2021)
of the family Acetobacteraceae, Azospirillum olei-
clasticum (Wu et al. 2021b) and Azospirillum rugo-
sum (Young et al. 2008) of the family Azospiril-
laceae, Oleisolibacter albus (Ruan et al. 2019) and
Oleiliquidispirillum nitrogeniifigens (Li et al. 2020)
of the family Rhodospirillaceae. All these isolates
are mesophilic, aerobic or facultatively anaerobic
chemoorganoheterotrophs.

In the present study, one strain, designated
Y-P2T, was isolated from the oil sludge collected
from Shengli oilfield, China. The polyphasic taxo-
nomic analyses revealed strain Y-P2T represents
a novel genus in a new family within the order
Rhodospirillales.
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Materials and methods
Enrichment and isolation

Strain Y-P2T was obtained from the oil sludge of the
Shengli oilfield in PR China (37°54’N, 118°33’E).
Approximately 10 g of mixture of oil contaminated
soil and oily sludge was inoculated into 50 mL of
fresh medium for preparation of pre-enrichment cul-
ture, which performed as 25 °C. The pre-reduced
mineral medium used for enrichment and isolation
was prepared with the following components (L™1):
0.5 g NaCl, 0.5 g MgCl,-6H,0, 0.1 g CaCl,-2H,0,
0.3 g NH,CL, 0.2 g KH,PO,, 0.5 g KCI, 2 ml trace
element solution 284 (JCM medium No.284, https://
www.jcm.riken.jp/cgi-bin/jecm/jcm_grmd?GRMD=
284&MD_NAME-=), 1 mg resazurin, 0.5 g cysteine
hydrochloride and 1 L distilled water. The strain
Y-P2" was isolated with mixed substrate (short-
chain fatty acid, glucose, yeast extract and tryptone
mixture) by using the extinction dilution method as
described previously (Zhang et al. 2018). Unless oth-
erwise stated, R2A (Reasoner’s 2A) liquid medium
was used for subculturing and cultivating the strain
Y-P2". R2A medium contained (L™'): 0.25 g tryp-
tone, 0.5 g casein hydrolysate, 0.5 g yeast extract,
0.5 g soluble starch, 0.3 g K,HPO,, 0.1 g MgSO,,
0.3 g sodium pyruvate, 0.25 g peptone, 0.5 g glu-
cose, and 1L distilled water. All media used in this
study were prepared and dispensed under 100% N,,
and sterilized at 121 °C for 15 min. Strain Y-P2T
was deposited in the China Collection of Anaerobic
Microorganisms (CCAM 826 T) and Japan Collection
of Microorganisms (JCM 34766 7). Oceanibaculum
nanhaiense KCTC 52312 T obtained from Korean
Collection for Type Cultures (KCTC) was used as the
reference strain.

Morphological, physiological, and biochemical tests

The strain Y-P2T incubated at 25 °C for 5 days was
used for morphology tests. Gram-staining, flagellum-
staining and spore-staining were determined using
commercial Gram Staining Kit, Flagellum Staining
Kit and Spore Staining Kit (Solarbio, China) accord-
ing to the manufacturers’ instructions, respectively.
The cell shape and size of strain Y-P2" were exam-
ined using a scanning electron microscope (JEM-
1400 Plus, JEOL, Japan). 0.1% melted agarose gel

spread flat on slide and solidified, then take a drop
of strain Y-P2T by microscope (Nikon 80i, Japan) for
observing motility.

Growth at different temperatures (15, 20, 25, 30
and 37 °C), pH (5.0-8.5, at 0.5-unit intervals), and
salinities (0 — 70 g L™!, at 10 g L™! intervals) were
determined in the R2A medium supplemented 10%
(v/v) oxygen in the headspace of Hungate tubes
(25 ml). The pH values were adjusted using the ster-
ile and HCI or NaOH solution and were buffered with
20 mM MES (pH 5.5, pH 6.0 and pH 6.5), 20 mM
PIPES (pH 7.0 and pH 7.5) and 20 mM Tris (pH
8.0 and pH 8.5).The final pH was determined with
a pH meter (HORIBA B-712, LAQUAtwin, Japan).
Growth was determined by measuring the optical
density (OD) at 600 nm using a spectrophotometer
(DU730, Beckman, Germany).

For biochemical tests, cells in R2A medium were
collected by centrifuging at 13,000 rpm for 5 min
at room temperature. Substrate utilization, nitrate
reduction, and H,S production were tested with
API 20NE, API ZYM and API 20E (bioMérieux,
France) and incubated aerobically at 28 °C and 37 °C,
respectively, the color change was checked every
18-24 h. Oxidase activity was determined using an
oxidase reagent kit (bioMérieux, France) according
to the manufacturer’s instructions. Oxygen require-
ment of strain Y-P2T was tested under 0%, 2%,10%
and 20% oxygen (O,:N,, v/v). The fermentation
products were analysed by liquid chromatography
(Aglient 1200, USA) using AminexHPX-87H column
(300 mmx 7.8 mm, 9 um), H,SO, (5 mM) was used

1um EHT= 2.00 kV
WD= 5.7 mm

Signal A= SE2
Mag= 11.74KX

Date: 16 Dec 2021
Time: 22:02:39

Fig. 1 Scanning electron micrograph of strain Y-P2T. The
scale bar is 1 pm
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Table 1 Phenotypic traits of strain Y-P2T and phylogenetically close genera belonging to the family Thalassobaculaceae, Stellaceae
and Geminicoccaceae

Characteristic 1 2 3 4 5 6 7
Habitat Oil sludge Surface sea-  Deep Coastal, surface Deep seawa-  Soil sludge
water seawater/ waters ter/ Coastal
Hydrother- seawater
mal field
sediment
Oxygen Microaero- ND ND ND Strictly aero-  Aerobic Aerobic
requirement  philic bic, Fac-
ultatively
anaerobic
Gram reaction — - - - - - -
Morphology  rods rods rods rods slightly flat, six— coccus/cocco-
curved rod/ pronged bacillus
straight rod stars
Motility - + + + —/+ - -
Spore—form- - - ND ND ND - -
ing
Cells (pm) 0.4-0.6x0.8— 0.8-1.0x1.5- 1.7-2.5%x0.5- 2.5+0.6x09+0.2 0.3-1.2x2.0- ND 1-54-0
3.0 2.5 1.5 8.0
Temperature  15-30 10-45 10-45 15-44 (30) 20-40 28-30 20-30 (25-30)
(optimum, (25-30) (25-37) (25-37) (30-35)
OC)
pH (opti- 7.1 6-10 (8-9) 6-11 (7-9) 5.0-9.0 (6.0) 5.0-10.0 near neutral ~ 5.0-8.5
mum) (6.5-8.0) (7-5-8-0)
NaCl (opti- 0-100 (0) 0-90 (20) 0-90 (5-70)  0-60 (20) 0-100 10 ND
mum, g/L) (20-40)
DNAG+C  66.0 65.1 64.8-67.7 60.5-60.6 65.0-69.0 69.8 66
content
(mol%)
Utilization of — - + + + - +
sugars
Citrate utili- - + +/ND ND ND + N
zation
Gelatinase - + +/- ND + ND ND
Reduction of — + +/ variable ND +/- ND + (weak)
nitrate
Denitrifica-  — + +/- ND ND ND ND
tion
Urease + - -+ ND + ND +
Gelatin - weak weak /— ND + ND + (weak)
hydrolysis
Oxidase + + +/- + + + -
Catalase - + +/+ + + + +
Fatty acid Ci6:00 summed Ci6.00 Cigq07c, Cipw7c  Cg.07c, ND ND
Cig.@07c feature 8 Cig.q@7c, and Cy4. Ciso
and/or (Cig07c Cigq 2—
Ci¢.106¢, and/or OH and
Cig@7c Cig,1060), Cig,0w8c
and/or Ci6.0and cyclo
Cg.06¢ Cis1 2-OH
Quinone Q-10 Q-10 Q-10 Q-10 Q-10 ND ND

@ Springer



Antonie van Leeuwenhoek (2023) 116:1359-1374

1363

Table 1 (continued)

Characteristic 1 2 3 5 6 7
Polar lipid AL, PE, PG, DPG,PE, DPG, PE, PG, APL, PL PG, APL, PL, ND ND
PL,L PME, PG, PME, PG, AL, L
PL,L PL,L

1. Shumkonia mesophila Y-P2", in this study; 2. Oceanibaculum nanhaiense KCTC 52312 T (Du et al. 2017); 3. Oceanibaculum (Du,
et al. 2017, Dong et al., 2010, Lai et al., 2009a, b); 4. Nisaea (Urios et al. 2008); 5. Thalassobaculum (Su et al., 2016, Zhang et al.
2008, Urios et al., 2008); 6. Stella (Vasilyeva 1985); 7 Defluviicoccus (Maszenan et al. 2005). +, positive; —, negative; ND, no data

available. A, Aerobic; MA, microaerobic; FA, facultatively anaerobic

as the mobile phase at a flow rate of 0.6 ml min~".

H, in the overhead of the tubes were analysed by gas
chromatography (Shimadzu GC2010, Japan).

Chemotaxonomic analysis

For cellular fatty acids, polar lipids and respiratory
quinones analyses, cells of strains Y-P2T and O. nan-
haiense KCTC 52312 T incubated in R2A medium
at 25 °C for 5 days were collected by centrifugation.
The fatty acids were separated using gas chromatog-
raphy (Aglient 8860, USA) and identified with Sher-
lock software (version 6.3) according to the instruc-
tions of Microbial Identification Inc. (MIDI) protocol
(Sasser 1990). Respiratory quinones of strain Y-P2"
were detected using the protocol described previously
(Komagata and Suzuki 1988; Tindall 1990). Polar
lipids were extracted using a chloroform / methanol
system and were analysed using one- and two-dimen-
sional thin-layer chromatography (TLC) following
the method described by Kates et al. (1986).

16S rRNA gene sequencing and phylogenetic analysis

Cells incubated at 25 °C for 5 d was used for extract-
ing genomic DNA using bacteria DNA extraction kit
(DP302, TIANGEN, China) following the manufac-
ture’s instruction. 16S rRNA gene fragments were
amplified by PCR using the universal primers 27F
(5’'AGAGTTTGATCMTGGCTCAG3') and 1492R
(5'TACGGYTACCTTGTTACGACTT3") and were
sequenced by ABI 3730XL DNA anazlyzer. The
sequence obtained was compared with the avail-
able 16S rRNA sequences in EzBioCloud database
(https://www.ezbiocloud.net/identify) and NCBI data-
base with nucleotide Basic Local Alignment Search
Tool (blastn, https://blast.ncbi.nlm.nih.gov/Blast.cgi),
respectively. 16S rRNA gene sequences of closely
related species that validly published were derived

from genomes from NCBI database or downloaded
from EzBioCloud, and then were multiply aligned
through MUSCLE v3 (https://drive5.com/muscle/
downloads_v3.htm). The phylogenetic analyses were
performed by fasttree and MEGA X using the neigh-
bor-joining method and maximum-likelihood method
(Felsenstein  1981), respectively. Bootstrap values
were calculated based on 1000 replicates. Evolution-
ary distances were calculated using the Kimura two-
parameter method (Kimura 1980). The phylogenetic
tree was modified by Itol (https://itol.embl.de/).

Whole—genome sequencing and phylogenomic
analysis

The whole genome of strain Y-P2T was sequenced
by Novogene Corporation Inc. (Beijing, China) using
NovaSeq 6000 System (Illumina, USA). Phylog-
enomic analysis based on the GTDB taxonomy data-
base (release r95) was performed by using the method
described previously (Parks et al. 2018). Genome
assembly and annotation were performed using meth-
ods described previously (Fan et al. 2023).
Up-to-date bacterial core gene (UBCG) and GTDB
phylogenomic trees were reconstructed by UBCG
(https://www.ezbiocloud.net/tools) and GTDB-Tk
(https://gtdb.ecogenomic.org/),  respectively, and
were optimized in Evolview website (https://www.
evolgenius.info/evolview/#/treeview). The pairwise
genomic average nucleotide identity (ANI) and aver-
age amino acid identity (AAI) were calculated using
OrthoANIu (https://www.ezbiocloud.net/tools/ortho
aniu) and Compare M (https://github.com/dpark
s1134/CompareM), respectively. Percentage of con-
served proteins (POCP) between two microbial
genomes was calculated as the following formula:
(conserved protein number of genome A + conserved
protein number of genome B) / (total number of pro-
teins being compared in genome A +total number
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«Fig. 2 Phylogenomic tree reconstructed based on up-to-date
bacterial core gene set (UBCG, concatenated alignment of 92
core genes) of representative species of genera in the order
Rhodospirillales. Bar, 0.1 substitutions per position. Gene sup-
port indices (GSIs) are given at branching points. Latin names
with quotes have not been validly published

of proteins being compared in genome B) (Qin et al.
2014).

Results and discussion

Morphological, physiological, and biochemical
characteristics

Cells of strain Y-P2T were Gram-stain-negative,
non-spore-forming, straightly rod-shaped or slightly
curved with 0.8 — 3.0x0.4 — 0.6 um in length and in
width (Fig. 1). Growth occurred at 15-30 °C (opti-
mum at 25 °C) and pH 6.0-7.5 (optimum pH 7.0)
in absence of NaCl (Fig. S1). Weak growth was
observed under anaerobic conditions, but the opti-
mum growth occurred in the presence of oxygen up
to approx. 10% (v/v), no growth was observed when
oxygen increase to 20% (v/v) (Fig. S2), indicating
that strain Y-P2T was microaerophilic.

According to API 20NE and API 20E tests
(Table 1), strain Y-P2T was positive for urease and
gelatinase. The results of API 20NE tests revealed
that strain Y-P2T was negative for reduction of nitrate
or denitrification, was positive for oxidase activ-
ity, but negative for catalase activity, Strain Y-P2T
was unable to reduce thiosulfate or ferment tested
carbohydrates. In API ZYM test, activities of alka-
line phosphatase, esterase (C 4), estase lipase (C 8),
acid phosphatase and Naphtol-AS-BI-phosphohy-
drolase were positive. Acetate and H, were produced
from glucose.

The GenBank accession numbers of the 16S rRNA
gene sequence for strain Y-P2T was MZ270534. The
GenBank accession number of genome sequence for
strain Y-P2" was JAOTID000000000.

Chemotaxonomic characteristics
The predominant fatty acids (>10%) of strain Y-P27

were C ¢, (34.6%), summed feature 3 (C¢.; @7¢ and/
or Cs., wbc, 23.1%), and summed feature 8 (Cis.,

@7c and/or C5.; wbc,17.3%), which accounted for
75.0% of the total fatty acids (Table S1). Differently,
O. nanhaiense KCTC 52312 contained sum in fea-
ture 8 (Cy4.,@7c and/or C 5. ,w6c, 50.0%) and Cq4.
(12.6%). The polar liquids of strain Y-P2T comprised
one unidentified aminolipid (AL), one phosphatidy-
lethanolamine (PE), one phosphatidylglycerol (PG),
three unidentified phospholipids (PLs) and four uni-
dentified polar lipids (Ls) (Fig. S3). The respiratory
quinone was Q-10.

Phylogenetic analyses

The complete 16S rRNA gene sequence analysis
performed using blastn at NCBI showed that strain
Y-P2T shares the highest 16S rRNA gene sequence
similarity with species in the genus Oceanibaculum
(90.3-90.6%) which was affiliated to “Oceanibacu-
laceae” (formerly Thalassobaculaceae) within the
order Rhodospirillales, followed by Stella humosa
DSM 5900 T (90.0%) in family Stellaceae, Thal-
assobaculum and Nisaea (<89.9%) in Thalas-
sobaculaceae, Varunaivibrio and Magnetovibrio
(£89.8%) in “Magnetovibrionaceae” (formerly
Thalassospiraceae),  Zavarzinia  compransoris
LMG-5821T (89.1%) in Zavarziniaceae (Table S2).
These 16S rRNA gene sequence similarities were
lower than the 94.5% threshold for the delineation
of genera and the median sequence identity for the
delineation of families (Yarza et al. 2014), suggest-
ing that strain Y-P2" belongs to a new genus or may
represent a higher rank taxon.

To confirm the phylogenetic relationship between
strain Y-P2T and Rhodospirillales members, maxi-
mum-likelihood phylogenetic trees based on 16S
rRNA gene sequences of strain Y-P2" and the repre-
sentative genera within order Rhodospirillales were
constructed. On the phylogenetic tree, strain Y-P2T
was placed in the clade with genera Zavarzinia of
the family Zavarziniaceae, but formed an inde-
pendent evolutionary lineage that is distinguish-
able among Rhodospirillales families (Fig. S4). The
phylogenomic trees reconstructed based on bacte-
rial core gene set (Fig. 2) and 120 single copy genes
(Fig. 3) both indicated that strain YP2T clusters with
members of “Magnetospiraceae” (Magnetospira),
“Magnetovibrionaceae” (Magnetovibrio, Varuna-
ivibrio), and Geminicoccaceae (Defluviicoccus),
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«Fig. 3 Phylogenomic tree reconstructed based on 120 single
copy conservative marker genes of all species with sequenced
genomes in the order Rhodospirillales with GTDB pipelines.
Bar, 0.1 substitutions per position. Percentage bootstrap values
are given at branching points. Latin names with quotes have
not been validly published

and formed a clade with Defluviicoccus vanus Ben
1147,

To further figure out the taxonomic rank of
strain Y-P2T, reanalysis of pairwise 16S rRNA gene
sequence similarity and indices of pairwise genomic
relatedness including ANI, AAI and POCP were per-
formed. Strain Y-P2T had 89.2+0.8% of 16S rRNA
sequence similarities to representative species of
the family “Oceanibaculaceae” and Thalassobacu-
laceae (Fig. 4), which were close to the minimum
sequence similarity for defining a novel family (Yarza
et al. 2014). Meanwhile, the ANI and POCP values
between strain Y-P2T and these members were <69.8
and 43.0% (Table S2), respectively, far lower than the
cutoff values for distinguishing genera (83 and 50%,
respectively) (Luo et al. 2014; Qin et al. 2014; Jain
et al. 2018), and were in the range of relevant inter-
family values (ANI 63.7-70.7 and POCP 25.3-49.9%)
(Fig. 4); the AAI values were all <57.8% (Table S2),
which were lower the boundary (approximately 60%)
for Rhodospirillales families proposed by Koziaeva
et al. (2023). In addition, strain Y-P2T was separated
from other Rhodospirillales families with the aver-
age values of 16S rRNA gene sequence similarity
and AAI (86.0£2.0 and 55.3+1.5%, respectively)
below the thresholds for family delineation (Fig. 4)
(Yarza et al. 2014). All these results suggested strain
Y-P2T could be distinguished from families in Rho-
dospirillales and represents a novel family within
Rhodospirillales.

Genomic characteristics

The genome of strain Y-P2T had a total length of
5,388,487 bp, and contained 5053 ORFs, 49 tRNA
genes, one 5 s TRNA, one 16 s rRNA and one 23 s
rRNA (Table S3). The G+C content was 66.0%.
2314, 3540 and 3592 genes were annotated in KEGG,
Swiss and GO database, respectively (Table S3).

Glycan biosynthesis pathways

Extracellular polymeric substance (EPS) is a key
component of biofilm causing processes of MIC.
Strain Y-P2T was able to form EPS when grown
under microaerobic condition (Fig. S5). Results
based on KEGG annotation showed that 66 genes
associated with glycan biosynthesis and metabo-
lism are identified in the genome of strain Y-P2T
(Table S4), 20 of which (more than 30%) involved
in the biosynthesis of lipopolysaccharide (LPS)
which may effect on the Co-Cr and Ti alloys corro-
sion (Yu et al. 2016). Genes IpxA, IpxCD, IpxI, IpxB
and IpxK encoding homologs that consist of path-
way synthesizing lipid IVA from UDP-N-acetyl-a-
D-glucosamin or a (3R)-3-hydroxytetradecanoyl-
[acp] (Table S5). Meanwhile, homologs encoded
by genes kdsD, kdsA, kdsC and kdsB formed a path-
way for synthesizing CMP-3-deoxy-f-p-manno-
octulosonate from p-ribulose 5-phosphate, provid-
ing an essential substrate for generating Kdo2-lipid
A via the pathway comprised of integral membrane
proteins encoded by kdtA, IpxL, IpxK and IpxM
(Wang et al. 2015). However, IpxM was not found
in genome of strain Y-P2T. In addition, an ADP-L-
glycero-f-p-manno-heptose biosynthesis pathway
containing enzymes encoded by gmhAC, gmhB and
gmhD was employed by Y-P2T to produce the pre-
cursor for the inner core region of LPS, but only one
gene (gtrB) related to O-antigen repeat unit synthe-
sis was identified. We also found strain Y-P2T had a
complete pathway (rmIADBC) to synthesize dTDP-
L-thamnose which is the precursor of L-rhamnose.
L-thamnose and GDP-p-glycero-p-manno-heptose
that generated via enzymes encoded by gmhA, hhdA
(absent), gmhB, and hhdC are sugar components of
bacterial S-layer glycoproteins (Kneidinger et al.
2001; Graninger et al. 2002). It has been demon-
strated that S-layer proteins are associated with
cells aggregation, bacterial adherence to substrates
and surfaces, as well as biofilm formation (Gerbino
et al. 2015).

Sulfur metabolism
Sulfur-cycling microorganisms are commonly con-

sidered the key players of MIC, and can participate
in the process of MIC through sulfate reduction and
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16S rRNA gene similarity

ANI POCP

Y-P2T:Oceanibaculaceae

Y-P2T: Thalassobaculaceae

Y-P2T:other family 4

==
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Fig. 4 Comparison of 16S rRNA gene identity, AAI, ANI and
POCP between strain Y-P2T and representatives of published
families within the order Rhodospirillales. The violin plot lines
indicate a kernel density of the identity distribution. The black

sulfur disproportionation (Rajala et al. 2022). The
genome of strain Y-P2" contained 24 genes for sul-
fur metabolism (Table S6). Gene sta, and the operons
aprAB and dsrAB comprised a complete dissimilatory
sulfate reduction and oxidation pathway for the con-
version between sulfate and sulfide, which has been
described in Dsr-dependent sulphate-reducing bacteria
and sulphur-oxidizing bacteria (Neukirchen and Sousa
2021). SOX system oxidizing thiosulfate to sulfate via
enzymes encoded by soxDCBAZYX operon was iden-
tified in strain Y-P2T. In addition, a flavocytochrome
c sulfide dehydrogenase was presented in genome of
Y-P2T by fccA and feeB, it has been reported that this
enzyme can oxidize self-produced sulfide or exogenous
sulfide to sulfite and thiosulfate under aerobic condi-
tion in Pseudomonas aeruginosa (Lii et al. 2017).

Conclusion

Physiological comparison revealed that strain Y-P2T
shares several common phenotypic features with
Rhodospirillales members, such as mesophilic,
Gram-stain-negative and major respiratory qui-
none, but is different to its phylogenetically close
relatives in morphological and physiological traits
(Table 2). Thalassobaculaceae members are motile,
grow with salinity, positive for oxidase activity;
“Magnetospiraceae” and “Magnetovibrionaceae”
are magnetotactic; while Geminicoccaceae and
Stellaceae are aerobic, having different cell shapes,

@ Springer
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dot indicates the mean and the solid horizontal line indicates
the median. *Thalassobaculaceae, members within “Oceanib-
aculaceae” and Thalassobaculaceae included

Geminicoccaceae also has abilities to reduce nitrate
and hydrolyze gelatin. Meanwhile, values of the
16S rRNA gene sequence similarity, AAI ANI and
POCP between strain Y-P2T and published members
of Rhodospirillales families were all lower than
boundaries for separating Rhodospirillales families.
On the basis of the distinct phenotypic and chemot-
axonomic characteristics, phylogenetic and genomic
evidence mentioned above, strain Y-P2T is proposed
as the type strain of a novel species of a new genus,
for which the name Shumkonia mesophila gen. nov.,
sp. nov. is proposed, within a new family Shumkoni-
aceae fam. nov.

Description of Shumkoniaceae fam. nov.

Shumkoniaceae (Shum.
ko.ni.a.ce’ae. N.L. fem. n. Shumkonia a bacte-
rial genus; aceae suffix to denote a family; N.L. fem.
pl. n. Shumkoniaceae the Shumkonia family).

The description of Shumkoniaceae is the same
as for the genus Shumkonia. The type genus is
Shumkonia.

Description of Shumkonia gen.nov.

(Shum.ko’ni.a. N.L. fem. n

Shumkonia .
named in honour of ShumKo

Shumkonia
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Table 2 (continued)

I

10
68.1

5
47.2 52.9-59.9 64.8 56.4-70.0 69.3-72.9 60.1-68 54.7

60.2-67.5

66.0

Characteristics 1

DNA G+C

Springer

content
(mol%)

1. Shumkoniaceae fam.nov., in this study; 2. Geminicoccaceae (Foesel et al. 2007, Maszenan et al. 2005, Proenca et al., 2018, Shi et al. 2002); 3. “Magnetospiraceae” (Williams
et al. 2012); 4. “Magnetovibrionaceae” (Bazylinski et al. 2013, Patwardhan and Vetriani, 2016); 5. “Oceanibaculaceae” (Lai et al., 2009a, b); 6. Rhodospirillaceae (Anil Kumar

et al. 2008, Chen et al. 2018, Dar Jean et al. 2016, Humrighouse et al. 2016, HYLEMON et al. 1973, Imhoff et al. 1998, Kim et al. 2019, Lai et al., 2009a, b, Lakshmi et al. 2014,

Lakshmi et al. 2011, Lin et al. 2021, Pfennig et al. 1997, Ruan et al. 2019, Tang et al. 2019, Wang et al. 2020, Wang et al., 2019a, b, Yoon et al. 2007); 7. Stellaceae (Vasily-

eva 1985, Yamada et al. 2011); 8. Thalassobaculaceae (Urios et al. 2008, Zhang et al. 2008); 9. Thalassospiraceae (Lopez-Lopez et al., 2002); 10. Zavarziniaceae (Lee et al.
2019).+, positive; —, negative; ND, no data available; (+), positive in most strains; (—), negative in most strains; 4+/—, variable. A, Aerobic; MA, microaerobic; FA, facultatively

anaerobic; AN, anaerobic

(1031-1095) who found and used oil in the eleventh
century in China).

Microaerophilic, mesophilic, chemoorganohetero-
trophic bacterium. Gram-stain-negative, non-motile,
non-spore-forming, rod-shaped or slightly curved
rod. Acetate and H, are the fermentation products
of glucose. The predominant cellular fatty acid is
Ci¢.0» and the quinone is Q-10. The type species is
Shumkonia mesophila.

Description of Shumkonia mesophila sp. nov.

Shumkonia mesophila (me.sophi.
la. N.L. fem. adj. mesophila, middle temperature lov-
ing).

Microaerophilic, mesophilic, chemoorganohet-
erotrophic bacterium. Cells are Gram-stain-nega-
tive, non-motile, non-spore-forming, rod-shaped or
slightly curved, 0.8-3.0 um in width and 0.4-0.6 pm
in length. Growth occurs optimally under the con-
ditions of 25 °C, pH 7.0 without NaCl. Urease and
oxidase positive. Acetate and H, are the fermentation
products of glucose. Catalase, nitrate reduction and
denitrification negative. Major cellular fatty acids are
Ci6:0- sum in feature 3 (C,4.; @7c¢ and/or Cy4.; wbc),
sum in feature 8 (Cg.; w7c and/or C,g.; wbc). The
polar lipids comprise phosphatidylethanolamine (PE),
phosphatidylglycerol (PG), one unidentified ami-
nolipid (AL), three unidentified phospholipid (PL)
and four unidentified polar lipids (L). Respiratory
quinone is Q-10. The genomic DNA G+ C content
was 66.0%.

The type strain is Y-P2T (=CCAM 826 T=JCM
34766 T) isolated from oil sludge, Shengli, China.
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