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endophytes, their therapeutic properties and host-
endophytes interaction in relation to production 
of bioactive secondry metaboloites and the role of 
endophytes in enhancing the production of bioactive 
secondry metabolites is discussed. How biological 
nitrogen fixation, phosphorus solubilization, micro-
nutrient uptake, phytohormone production, disease 
suppression, etc. can play a vital role in enhacing the 
plant growth and development.The role of endophytes 
in enhancing the plant growth and content of bioac-
tive secondary metabolites in medicinal and aromatic 
plants in a sustainable mode is highlighted.
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Introduction

Medicinal and aromatic plants have the capability 
to synthesize different types of bioactive secondary 
metabolites (Cushnie et  al. 2014) that are signifi-
cant to endure and prosper in the indigenous habitat, 
incorporating defensive capacities as for abiotic and 
biotic stresses (Vardhini and Anjum 2015). The ’’bio-
active’’ secondary metabolites are derived from inter-
mediates of primary metabolites and are not essential 
for growth and development of organisms (Tiwari and 
Rana 2014). There are five main classes of secondary 
metabolites produced by plants and microbes such as 
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terpenoids and steroids, fatty acid-derived substances 
and polyketides, alkaloids, nonribosomal polypep-
tides, and enzyme cofactors (Erb and Kliebenstein 
2020). These biologically active secondary metabo-
lites possess pharmaceutical properties and are used 
in the treatment of skin disorders, cancer, hyperten-
sion, cardiovascular diseases, diabetes, leprosy, thy-
roid, obesity etc. (Olasehinde et  al. 2017; Seca and 
Pinto 2018; Shayganni et al. 2016). The biologically 
active secondary metabolites are species and envi-
ronment specific, therefore, their production and 
composition depends on plant species, soil types and 
relationship with microorganisms (Morsy 2014). The 
communities of plants microbiota and their physi-
ological functions are also affected by bioactive sec-
ondary metabolites produced by several medicinal 
and aromatic plants (Chaparro et al. 2014).

Earlier research focused on bioactive secondary 
metabolites of medicinal plants only, however, now 
the focus is shifting towards its microbiome as a 
large number of bioactive secondary metabolites are 
actually produced by associated microbes or through 
their interaction with the host plant. The endophytic 
microorganisms have crucial role in the production 
of bioactive secondary metabolites such as- steroids, 
alkaloids, peptides, polyketones, terpenoids, flavo-
noids, and phenols (Matsumoto and Takahashi 2017; 
Pratiwi et al. 2018). Bioactive secondary metabolites 
also have certain agricultural, industrial and medical 
applications (Aswani et  al. 2020; Daud et  al. 2019). 
It is believed that the phytochemical constituents of 
plants are related either directly or indirectly to endo-
phytic microbes and their interactions with host plants 
(Qi et al. 2012). Egamberdieva et al. (2017a) reported 
that antimicrobial activity of medicinal and aromatic 
plants correlates with the proportion of antagonistic 
endophytes.

Apart from producing secondary metabolites on 
its own, these endophytes may also associate with 
plants to accelerate the biosynthesis of bioactive 
compounds secreted by them. The synergistic effect 
of endophytic microorganisms and medicinal plants 
have been investigated as a source of crude products 
with high medicinal potential as compared to plants 
alone (Hardoim et al. 2015; Heinig et al. 2013). Like-
wise, Strobel (2003) reported that endophytes asso-
ciated with medicinal plants produces a wide varie-
ties of secondary metabolites as compared to them 
alone. Ding et  al. (2018) reported that endophytic 

fungi- Aspergillus sp., Fusarium sp. and Ramularia 
sp. of Rumex gmelini Turcz increased the production 
of bioactive compounds in the host plant and showed 
similarity with them in relation to production pattern 
of secondary metabolites.

Rapid urbanization and industrialization due to 
a gradual increase in the world population have put 
immense pressure on the available cultivated land 
for accelerated crop production and productivity. To 
achieve this, excessive and irrational use of agro-
chemicals such as fertilizers, herbicides, fungicides, 
and other supplements has been adopted. However, 
continuous use of these agrochemicals for enhanced 
soil fertility, productivity and plant production has 
resulted in adverse impacts on the ecosystem, includ-
ing pollution of soil, groundwater, and aquifers 
(Bohlool et  al. 1992; Byrnes 1990; Mulongoy et  al. 
1991; Zhu and Chen 2002). Hence, eco-friendly 
methods are need of the hour to maintain the quality 
of soil, water and other habitats of living organisms to 
keep sustained crop production and ecological stabil-
ity. Plant growth-promoting substances are produced 
in huge amounts by these rhizospheric and endo-
phytic microbes that influences the overall growth 
and development of medicinal and aromatics plants 
directly or indirectly (Larkin and Tavantzis 2013; 
Sharma et  al. 2020). Endophytes enhances the plant 
growth and development through different mecha-
nisms like- nutrient acquisition, biological control of 
phytopathogens and tolerance to abiotic stress (Berg 
et  al. 2014; Egamberdieva et  al. 2011; Malfanova 
et  al. 2011). Reports suggest that microbes enhance 
the survivability of plants by modulating biosynthetic 
activities involved in accumulation of stress tolerant 
molecules (proline, glycine betaine, etc.) and anti-
oxidant enzymes (catalase, peroxidase, glutathione 
reductase, superoxide dismutase, etc.) in plants body 
under stress conditions (Hussain et  al. 2014; Tiwari 
et al. 2016; Vardharajula et al. 2011).

The objective of this review is (1) to reveal plant- 
and microbe-derived constituents of medicinal plants; 
(2) to discuss host endophytic interaction in relation 
to modulation of biosynthesis of bioactive second-
ary metabolites in medicinal plants, (3) to highlight 
possible mechanisms of plant growth promotion of 
medicinal plants by endophytes.
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Bioactive secondary metabolites and endophytes

Endophytic fungi, have the potential to produce simi-
lar class and even in some cases exactly the same sec-
ondary metabolites that are pharmacologically active 
as their hosts (Venieraki et  al. 2017). This relation-
ship of endophytic fungi with its host is certainly 
more complex than it appeared initially. It was pro-
posed that the horizontal transfer of genes responsi-
ble for the production of these bioactive compounds 
might have been introduced from the host. However, 
the genome sequencing showed otherwise, as the cor-
responding genes differ significantly among the host 
and endophytic fungi and might have evolved inde-
pendently (Lu et  al. 2019). Inspecting the mecha-
nisms underlying the synthesis of endophyte medi-
ated plant metabolites plays an important role in 
exploring these endophytes for the production of new 
bioactive metabolites commercially, especially the 
ones produced by the plants.

Host plant specific therapeutics bioactive secondary 
metabolites produced by endophytes

Belonging to the group of natural products with 
extreme diversity, secondary metabolites are organic 
compounds synthesized by microorganisms, plants 
and animals that are not associated with the organ-
ism’s normal growth and development. These 
metabolites are often synthesized to their maximum 
potential mostly during the stationary phase. The 
organisms producing secondary metabolites can sur-
vive in their absence, thus making them non-essen-
tial for immediate survival. However, the secondary 
metabolites are also essential for cellular metabolism 
of organism and dependent on primary metabolites 
for synthesis of important enzymes, substrates and 
other molecules necessary for long term host survival 
(Roze et  al. 2011). Secondary metabolites are often 
categorized into different classes and among them 
most are classified on the basis of their biosynthetic 
origin like alkaloids, steroids, terpenoids, peptides, 
polyketones, flavonoids, quinols and phenols (Matsu-
moto et al. 2017; Pratiwi et al. 2018).

Plants being an excellent source of numerous bio-
active compounds, especially the medicinal plants, 
have been used in traditional medicines for treat-
ment of several diseases and are basis for discovery 
and advancement of modern therapeutics (Pan et  al. 

2013). For primary healthcare, nearly 80% population 
is absolutely reliant on herbal drugs in developing 
countries and in the last four decades, more than 51% 
of the small molecule therapeutics approved were nat-
ural product based, with rest being produced syntheti-
cally. This ever-growing demand for herbal medicines 
and naturally produced healthcare products, empha-
sizes the rapidly growing use of medicinal plants 
(Chen et al. 2016).

Earlier studies on medicinal plants were mainly 
focused on their constituents, however, with advance-
ment in technology the paradigm has been shifted to 
structural and functional attributes of microbiomes 
associated with the host medicinal plants. Surpris-
ingly, it was observed that not only the host plants 
but also their associated microbial population, plant 
endophytes in particular, were able to produce the 
plant therapeutic compounds (Table  1). Ever since 
the report on Taxomyces andreanae, an endophyte 
of Taxus brevifolia, producing a bioactive second-
ary metabolite similar to its host (Stierle et al. 1993), 
several plant-derived bioactive secondary metabo-
lites have been reported to be synthesized by the host 
endophytes (Zhao et  al. 2011). Recent studies have 
also shown that microbes or their interaction with 
host produces several important natural products 
and in several cases involving medicinal plants it is 
assumed that microbiome associated with plant, espe-
cially endo-microbiome, is significantly involved in 
bioactive compound production from the plant either 
directly or indirectly (Miller et al. 2012). The metab-
olism of associated microbiome and its interaction 
with host highly influences and regulates the quality, 
growth and health of medicinal plants. Even the abil-
ity of phytotherapeutics to suppress human pathogens 
can be attributed to these medicinal plant associated 
microbiome and their metabolites (Miller et al. 2012; 
Mousa and Raizada 2013).

Endophytic bacteria are the potential source of 
numerous secondary metabolites that have applica-
tions in many plant growth and development aspects 
like antibiotics, antiparasitics, antioxidants, plant 
growth promoting compounds and enzymes, etc. 
There are various reports suggesting the role of host-
specific endophytic bacteria in producing the bioac-
tive compounds with antimicrobial activities. The 
antibacterial activity of endophytic Bacillus and 
Lysinibacillus species isolated from African Com-
bretum molle was recorded against Bacillus cereus, 
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Escherichia coli, Pseudomonas aeruginosa, and 
Staphylococcus aureus (Diale et  al. 2018). Leaf and 
root endophytes of Raphanus sativus and in another 
study root endophytes of Zingiber officinale were 
shown to exhibit antibacterial activity (Taechow-
isan et  al. 2013). There have been reports where 
cell-wall degrading enzymes from endophytic Mic-
rococcus sp., Bacillus sp., and P. polymyxa isolated 
from Panax ginseng and Plectranthus tenuiflorus 
have been shown to exhibit antimicrobial activity 

(El-Deeb et al. 2013). The other endophytic bacteria 
such as Paenibacillus denitriformis, Bacillus pseudo-
mycoides and B. licheniformis have been reported to 
produce L-asparaginase enzyme efficiently (Joshi and 
Kulkarni 2016). This enzyme has major role in chem-
otherapy as it catalyses the L-asparagine conversion 
(Jiang et al. 2018).

Actinomycetes has been well documented for 
their contribution in antibiotic development and also 
other bioactive metabolites production. This potential 

Table 1  List of host specific secondary metabolites produced by different microorganisms or by their interactions with the host

Endophyte Host plant Bioactive compounds Therapeutics properties Reference

Macrococcus caseolyti-
cus (ALS-1)

Aloe vera 1,1-diphenyl-2-picrylhy-
drazyl

Free radical scavenging Akinsanya et al. (2015)

Paenibacillus polymyxa Ginseng (Panax gin-
seng)

Ginsenosides Anticancer Gao et al. (2015)

Streptomyces sp. 
LJK109

Alpinia galangal 3-methylcarbazoles Anti-inflammatory 
component

Taechowisan et al. (2012)

Eurotium sp. Curcuma longa Asparaginase Anti-cancer enzyme Jalgaonwala and Mahajan 
et al. (2014)

Endophytic fungal 
strains

Salvia miltiorrhizae Tanshinones and Salvia-
nolic acids

Anti-carcinogenic, anti-
atherosclerosis, and 
anti-hypertensive

Chun-Yan et al. (2015)

Fusarium oxysporum, 
Talaromyces radicus

Catharanthus roseus Vinca alkaloids (vin-
cristine, vindesine, 
vinorelbine, vinblas-
tine)

Anticancer Palem et al. (2015)

Rhizoctonia bataticola Coleus forskohlii Forskolin Anti-HIV or antitumor, 
Anti-hypertension

Mir et al. (2015)

Endophytic fungi Macleaya cordata Sanguinarine Antibacterial, antihel-
mintic, antitumor

Wang et al. (2014)

Phomopsis, Diaporthe, 
Schizophyllum,

Cinchona Quinine alkaloids 
(cinchonidine and 
cinchonine),

Antimalarial compounds Maehara et al. (2013)

Altenaria alternata, 
Colletotrichum cap-
sici, Colletotrichum 
taiwanense

Passiflora incarnate C-glycosyl flavonoids 
(vitexin, orientin and 
chrysin) and b-carbo-
linic alkaloids (har-
man, harmalol etc.)

Antibacterial, anti-
inflammatory, anti-
diabetic, anxiolytic, 
hepatoprotective

Seetharaman et al. (2017)

Fusariumr edolens 
6WBY3

Fritillaria cirrhosa Peimisine, imperialine-
3β-D-glucoside, and 
peimine

Antitussive and expecto-
rant drugs

Pan et al. (2017) and 
Chithra et al. (2014)

Colletotrichum gloe-
osporioides

Piper nigrum Piperine Antibacterial, antifun-
gal, antipyretic,

Chithra et al. (2014)

Aspergillus flavus Solanum nigrum Solamargine Antioxidant, diuretic, 
antimicrobial, anti-
cancer

El-Hawary et al. (2016)

Fungal endophytes Digitalis lanata Digoxin-Glycosides Cardiotonic Kaul et al. (2013)
Alternaria alternata Capsicum annuum Capsaicin Cardio protective, 

anti-lithogenic effect, 
analgesia

Devari et al. (2014)
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of actinomycetes to synthesize bioactive secondary 
metabolites is also being studied for their endophytic 
forms. The endophytic actinomycetes of Chinese 
medicinal and mangrove plants reported to exhibit 
antibacterial activity against Enterococcus faecalis, 
S. aureus, Klebsiella pneumoniae, E.  coli, Acineto-
bacter baumannii and P. aeruginosa. Among these, 
some were even resistant to antibiotics like methicil-
lin, carbapenem and vancomycin (Jiang et al. 2018). 
The characterization of several metabolites isolated 
from endophytic Streptomyces species has been 
found to exhibit various activities like antibacterial, 
antimalarial and antifungal (Ek-Ramos et  al. 2019). 
Similarly, endophytic actinomycetes from Iranian 
medicinal plants, Kennedia nigriscans and Malaysian 
plants has been seen to exhibit antimicrobial activity 
against various bacterial pathogens (Fikri et al. 2018). 
Streptomyces sp. (strain SUK06), an endophyte iso-
lated from Thottea grandiflora (Malaysian medici-
nal plant), has been reported to inhibit the growth of 
methicillin-resistant S. aureus (MRSA) (Ghadin et al. 
2008).

The endophytic fungi also produces a wide range 
of these bioactive secondary metabolites with vital 
functions, exhibiting valuable medicinal and anti-
biotic properties. Numerous fungal endophytes has 
been reported to display host specificity in terms of 
metabolite synthesis. For example, out of the 27 fun-
gal strains obtained from Ginkgo biloba trees bark, 
only one strain i.e. Fusarium oxysporum SY0056 was 
able to synthesize Ginkgolide B (Cui et  al. 2012). 
Similarly, Pestalotiopsis uvicola GZUYX13 from 
Ginkgo biloba leaves, was the only isolate among the 
57 strains obtained from different plant parts includ-
ing root, stem and leaf that was able to produce 
bilobalide metabolite (Qian et  al. 2016). Both these 
metabolites have been very well documented to have 
therapeutic roles with the former being involved in 
cardiovascular or respiratory system disorder while 
the later having neuroprotective effects (Kiewert et al. 
2008; Usai et  al. 2011). In another study, out of 11 
fungal strains examined for Vincamine indole alka-
loids production, isolated from roots and stems of 
Nerium indicum, only one fungal strain (CH1) was 
able to produce vincamine alkaloids similar to its 
host. These alkaloids are reported to show therapeutic 
properties like cerebrovascular prevention, vascular 
dementia reduction, etc. (Vora et al. 2013). Moreover, 
the fungal endophytes of Rheum palmatum (You et al. 

2013) and Forsythia suspense (Qu et  al. 2008) were 
reported to produce bioactive compounds like rhein 
and emodin, and Phillyrin, respectively. These com-
pounds have major applications in alleviating pain 
and anti-inflammatory properties.

Host-endophytes interaction in relation to production 
of therapeutic secondary metabolites by medicinal 
plants

Recently, investigation on the endophytic microor-
ganisms has increased owing to their intimate asso-
ciation with the host. From the conventional point of 
view, the quantity and quality of the medicinal plant 
based crude drugs depends largely on the genotypic 
characters and ecological habitat of the plant and 
the nutrient status of soil (Dai et al. 2003; Sherameti 
et  al. 2005).  Furthermore, this has been recognized 
gradually in the recent years that endophytic micro-
organisms have been one of the major drivers in 
regulating the quantity and quality of crude drugs via 
host-specific interactions, thus making it indispensa-
ble to understand in-depth relationship of endophytic 
microorganisms with the medicinal plants in order to 
promote or enhance the production of crude drugs.

Studies revealed that, endophytes do produce sec-
ondary metabolites that are either identical or simi-
lar to their hosts. Some of these bioactive compounds 
which are produced by endophyte and host collabo-
ration includes anticancer drugs like podophyllotoxin 
and camptothecin (Puri et al. 2006) and azadirachtin 
as natural insecticides (Kusari et  al. 2012). There 
have been numerous mechanisms reported for simul-
taneous synthesis of biological compounds. However, 
in some instances, the biosynthetic mechanism com-
pletely differs in plants and their endophytes even for 
the same compound (Bomke et  al. 2009). The hori-
zontal gene transfer between the endophytes and their 
host has been hypothesized as one of the possible 
mechanisms, though it has been restricted to micro-
organisms (Taghavi et al. 2005). So, one thing is clear 
and can be strongly put forward that the interactions 
between the host and their endophytes significantly 
regulates the co-production of these bioactive com-
pounds (Heinig et al. 2013).

Recently, significant attention has been given to 
endophytes by the microbial chemistry community 
owing to their contribution for the discovery of novel 
bioactive metabolites. And, it has also been reported 
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that this intimate association of endophytes with their 
host was more promising in production of higher 
number and diversity of the bioactive compounds as 
compared to non-endophytes like epiphytes of rhizos-
pheric microorganisms (Strobel et al. 2003). The rela-
tionship being symbiotic in nature is likely to give 
compounds with reduced cell toxicity. This particular 
attribute is of prime importance for medical commu-
nity as these compounds may not adversely affect the 
eukaryotic systems.

Taxol, a multibillion-dollar anticancer drug, is 
one of the major success story of endophytic natu-
ral products. Initially, this compound was isolated 
from a traditional medicinal plant Taxus brevifo-
lia (Pacific yew tree) (Wani et al. 1971). After that 
numerous plants other than this have been reported 
to produce taxol. The endophytic fungi from Taxo-
myces andreanae has been investigated to produce 
this compound (Stierle et al. 1995). Considering the 
mechanism behind its biosynthesis in the host, it has 

been suggested that the genome of endophytes has 
no significant homology with Taxus sp. for the pro-
duction of taxol (Heinig et al. 2013), demonstrating 
the independent development of taxol biosynthesis 
in endophytes. Nevertheless, this example supports 
the rationale that traditional medicinal plants can 
be used as the starting point to investigate endo-
phytes for their production of biologically active 
compounds. As stated earlier, approximately 70% 
of anti-infectives or their derivatives are naturally 
produced. However, instead of synthesising these 
derivatives through combinatorial chemistry, their 
biosynthesis at genetic level has been elucidated. 
These synthesis of natural products are regulated 
mostly by single gene clusters, therefore efforts are 
carried out in the direction to utilize these clusters 
through genetic engineering for biosynthesis of 
these natural compounds and also their derivatives. 
Figure 1 shows host endophytes interaction in rela-
tion to modulation of biosynthesis of bioactive sec-
ondry metabolites.

Fig. 1  Host endophytes interaction in relation to modulation of biosynthesis of bioactive secondry metabolites
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Induction of metabolic activities of host plant

Induction of host secondary metabolism by the 
endophytes has been dealt less when compared to 
the endophyte metabolism induction, however, phe-
nolic compounds related to defense in roots infected 
with endophytes have been studied long ago and are 
very well reported (Schulz et  al. 1999). Induction 
of phenolic compound by infection of endophytes 
in Lolium perenne has been reported. Some of the 
major compounds that induced the antioxidant poten-
tial of plant extracts upon colonization of endophytes 
include chlorogenic acids, hydroxycinnamic acids 
and glycosylated flavonoids (Qawasmeh et al. 2012). 
Although these metabolic changes can be reduced or 
even remain unaltered upon infection, but scenario 
changes when the host interacts with endophytic toxic 
compounds. The toxicity to plants can be attributed 
to the herbicidal activity of endophytes. In a study, 
it was shown that leucinostatin A, a peptide derived 
from endophyte, was glycosylated in Taxus spe-
cies, whereas it was still toxic to the non-host plants 
(Strobel et  al. 1997). These toxic compounds may 
be used to regulate the selectivity of plant–microbe 
interrelationship.

Effect of host plant on metabolic pattern of 
endophytes

As discussed earlier, host plant metabolism is influ-
enced by their endophytes, and vice versa. It can also 
be speculated that alteration of secondary metabo-
lite patterns in endophytes is influenced by their host 
range. The regulation of pathogenic fungi metabo-
lite patterns by the host plant has also been reported. 
Heterobasidium species showed different metabolic 
pattern for infecting and non-infecting pine species 
(Hansson et al. 2014).

Modification of metabolisms of endophytes inside the 
host plant

Metabolism of bioactive metabolites from host and 
their biosynthesis by endophytes are the most fas-
cinating areas, however, meagre information is 
available. In recent times, the ability to synthesize 
bioactive metabolites by endophytes has gained 
momentum, corresponding to the constant discov-
ery of these endophytic fungi capable of producing 

plant compounds. As mentioned earlier also, so far 
synthesis of Taxol (paclitaxel) by endophytes is the 
most notable example for synthesis of plant metabo-
lite partially. Owing to its important medical use as 
anti-cancer drug, its production on large scale in cell 
cultures has been optimized, however, one has to look 
for alternative sources other than plants to meet the 
ever growing demands for this drug (Cusido et  al. 
2014; Heinig et al. 2013; Malik et al. 2011).

The discovery of Taxol production in T. 
andreanae, an endophytic fungus of Taxus brevifolia 
was succeeded by the isolation of other endophytic 
fungus from a variety of Taxus sp. (Yuan et al. 2006; 
Zhang et  al. 2009). After that, several other fungi, 
isolated from Taxus baccata and non-Taxus plants, 
were reported for the production of microbial taxane 
including Aspergillus, Alternaria, Fusarium, Cla-
dosporium, Monochaetia, Pestlotia, Pestalotiopsis, 
Pithomyces, Penicillium and Xylaria. However, upon 
re-examination of taxane biosynthesis by fungi and 
host plant revealed no independent biosynthesis of 
taxane in the endophytes (Heinig et al. 2013). On the 
other hand, different bioactive metabolites including 
torreyanic acid also having anticarcinogenic prop-
erties were found in an endophyte, Pestalotiopsis 
microspora, isolated from other species of Taxaceae 
(Lee et  al. 1996). In similar findings, endophytes 
were reported to produce different compounds in 
hosts from unrelated families like podophyllotoxin 
from Berberidaceae and rohitukine from Meliaceae, 
as precursor for another cancer drug (Müller et  al. 
2015). In some cases, like podphyllotoxin from Podo-
phyllum, the sustainable production of such valu-
able bioactive compounds has not yet been achieved, 
though Trametes hirsute, a novel fungal endophyte, 
has shown promising approach for synthesis of this 
compound (Puri et al. 2006). Synthesis of insecticidal 
compounds like azadirachtin A and B from Eupeni-
cillium parvum of Azadirachta indica has also been 
reported (Kusari et  al. 2012). These examples, of 
course doesn’t rule out the endophytes existence on 
respective host plants.

So, far the examples involved fungi as endophytes, 
however, the bacterial endophytes also share similar 
interactions with their host. Bioactive metabolites of 
oxylipin family with antimicrobial properties have 
been reported from stem extracts of Alternanthera 
brasiliana (Trapp et  al. 2015). Several among these 
metabolites were also found in the genus Bacillus 
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isolated from Alternathera plants and it was spec-
ulated that these compounds of oxylipin family 
obtained by the host from their bacterial endophytic 
counterparts shared some similarity (Trapp et  al. 
2015).

Biotransformation of host compounds by endophytes

Paraconiothyrium variabile, a leaf endophyte isolated 
from a medicinal plant Cephalotaxus harringtonia, 
has been reported to metabolize the metabolites of its 
host plant. In-depth analysis and monitoring of these 
compounds and structural characterization revealed 
beneficial effects of the fungal endophyte. The endo-
phyte could transform the glycosylated flavonoids, 
leading to aglycone compound production in the host 
which significantly induced the hyphal growth from 
spores (Tian et al. 2014). This study strongly depicts 
an underlying chemical co-operation between the 
host and the endophyte. In another study the sym-
biotic fungi Colletotrichum tropicale in cucumber 
plant changed the leaf chemistry by altering the host 
metabolism such that the leaf cutting by ants was 
reduced to almost half in the colonized plants as com-
pared to non-colonized plants. Thus, the endophytes 
could even alter the plant–insect interaction (Estrada 
et  al. 2013). Besides this, endophytes has also been 
reported to show the detoxification of host defense 
compounds. A toxic compound called benzoxazi-
noids is synthesized by maize plants for its protection 
from other pests. However, the enzymes synthesized 
by endophyte metabolizes this compound via degly-
cosylation resulting in a non-toxic product (Saunders 
and Kohn, 2008). Not only this, the detoxification of 
benzoxazinoids also leads to enhanced colonization 
by other non-tolerant fungal endophytes. The other 
mechanisms applied by endophytes to detoxify cer-
tain toxic plant compounds includes nitration, hydrol-
ysis, acylation, reduction and oxidation (Zikmundova 
et al. 2002).

Modulation of phytochemistry of medicinal plants by 
endophytes

Apart from the biosynthetic mechanisms and interac-
tions mentioned above regarding the bioactive metab-
olites, endophytes have also been observed to play 
a major role in improving the biosynthesis of host 
metabolites (Table 2). In a study, when Catharanthus 

roseus plants were inoculated with Choanephora 
infundibulifera and Curvularia sp., it was observed 
that the content of a terpenoids indole alkaloid (TIA) 
was increased by 229–403%. There was a signifi-
cant upregulation in regulatory and structural genes 
involving biosynthetic pathway of TIA in endophyte 
inoculated plants, as evident from real-time PCR 
results (Pandey et  al. 2016). In a similar study, bio-
synthesis of tanshionones was enhanced and related 
genes were upregulated by application of polysaccha-
ride fraction from an endophyte Trichoderma atro-
viride in host plant Salvia miltiorrhiza (Ming et  al. 
2013). From correlative transcriptome and metabo-
lome analysis, this can be further suggested that 
endophytes can even reprogram the host metabolism 
by favouring secondary metabolism over the primary 
one (Dupont et al. 2015).

Like the fungal partners, bacterial endophytes have 
also been reported to exhibit potential for producing 
several bioactive metabolites with profound effect on 
both primary and secondary metabolism of the host. 
Upon inoculation of poplar plants with Paenibacillus 
sp., levels of urea, threitol and asparagine increased 
significantly whereas several organic acids, sugar 
phosphates and amino acids were reduced (Scher-
ling et  al. 2009). Likewise, inoculation of grapevine 
with an endophyte Enterobacter ludwigii significantly 
increased the level of vanillic acid while reducing 
several others including ampellopsin, catechin, iso-
hopeaphenol, esculin, etc. (Lòpez-Fernàndez et  al. 
2016).

Several studies involving medicinal plants, Arabi-
dopsis thaliana, food crops, trees/shrubs and orna-
mentals were conducted to understand the effect of 
bacteria on its phytochemistry. Among them, medic-
inal and crop plants were investigated in detail, and 
comprehensive information has been reviewed to 
know the mechanism behind the bacteria-mediated 
alterations or regulations in host plants. Next comes 
the herbs in which the families Lamiaceae, Aster-
aceae and Fabaceae were the dominating ones stud-
ied in which Bacillales and Pseudomonadales were 
the most investigated bacterial orders followed by 
Actinomycetales.

The main purpose of study with the medicinal 
plants was to explore the potential of endophytic 
bacteria to regulate the level of bioactive or specific 
medicinal metabolite(s). Upregulation of cytochrome 
P450 oxidoreductase and monooxygenase genes was 
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observed in Artemisia annua induced by the endo-
phyte Pseudonocardia sp.. These genes were respon-
sible for biosynthesis of artemisinin, an antimalarial 
agent (Li et  al. 2012). In another study, two endo-
phytic bacteria, Micrococcus sp. and Staphylococcus 
sciuri have reported to boost the production of metab-
olites like serpentine, ajmalicine and vindoline, hav-
ing therapeutic applications, in Catharanthus roseus 
(Tiwari et  al. 2013). Similarly, many other major 
endophytic bacteria including Azospirillum brasi-
lense, Bacillus subtilis, Pseudomonas fluorescens, 
Paenibacillus polymyxa, etc. have been reported to 
enhance the production and accumulation of impor-
tant secondary metabolites in the host (Del Giudice 
et al. 2008; Gao et al. 2015).

Additionally, the root endophytes have also been 
suggested to play an important role in transforma-
tion of plant metabolites to various other derivatives 
depending on the interaction. For example, root-
associated bacteria was found in the essential oil pro-
ducing parenchymatous cells of Vetiver plant where 
they metabolized the oil sesquiterpenes to other new 
compounds that were either absent or present in least 
amounts in raw oil (Del Giudice et  al. 2008). Simi-
larly, the vetiver plantlets inoculated in-vitro with 
root-associated bacteria produced oils with marked 
differences in composition as compared to the plant-
lets in-vivo. It was further reported that these group 
of bacteria significantly induced the plant terpene 
synthase gene expression (Del Giudice et  al. 2008). 
Besides this the bacterial endophyte, Burkholde-
ria sp., from ginseng roots transforms ginsenoiside 
Rb1 to potent antitumor form Rg3 (Fu et  al. 2017). 
Accordingly, it can be further suggested from these 
studies that the endophytic bacteria besides enhanc-
ing the amount of particular bioactive metabolites in 
their host, also executed the biotransformation of less 
active compounds to active by-products. Interestingly, 
it was observed that an important metabolite maytan-
sine, an antitumor agent, is biologically synthesized 
by community of root endophytic bacteria in Putter-
lickia retrospinosa and P. verrucosa plants, which 
was initially presumed to be of plant origin (Kusari 
et al. 2014).

The research conducted to explore, analyse and 
understand the underlying mechanism of bacteria-
mediated phytochemical alterations are expanding 
due to the development in next generation sequencing 
and advance mass spectroscopy technologies. Future 

investigations on reprogramming of plant metabo-
lome by beneficial microorganisms can henceforth 
be put beyond their roles as plant growth regulators 
or as plant protectants only. Keeping in view, their 
close association with the hosts than their free-living 
counterparts along with their promising applica-
tions, the endophytes are drawing notable attention 
in the present dynamics of research. It can now be 
established that the bioactive metabolites discovered 
in crude plant extracts can have various origin viz. 
plants, endophytes, or from synergistic effort of plant 
and endophytes, from endophyte mediated modifica-
tion of plant metabolites and vice-versa (Etalo et al. 
2018). Moreover, besides plant–microbe interaction, 
microbe-microbe interactions like bacterial endosym-
bionts in the fungal hyphae or endophyte-endophyte 
interactions adds to the complexity of plant metabo-
lome, suggesting how the interplay of chemistry and 
genetics regulates the interactional outcomes.

Talking about the application part of endophytic 
bacteria, they are applied using various approaches 
based on the host plant growth stage and need. 
Among the many available methods, foliar spray and 
seed coating were proven more economical. There 
are several other endophytes that have been applied 
for plant growth promotions as microbial inoculants 
to boost up the bioactive compound synthesis in host. 
For example, Azotobactor chroococcum CL13 when 
applied to the turmeric rhizomes, saw an increase in 
the production of several phenolic compounds and 
sesquiterpenoids and curcuminoids (Kumar et  al. 
2014). This induction of secondary metabolites by 
the endophytes could be more efficient in medicinal 
and aromatic plants. In a related study, inoculation of 
two endophytic bacteria P. aeruginosa and P. pseu-
doalcaligenes in a medicinal plant Hyptis suaveolens 
increased the content of essential oils (Jha 2019). 
Similarly, the content of morphine and total alka-
loid increased significantly in Pappaver sominiferum 
when Stenotrophomonas maltophilia (N5-18) was 
applied through foliar spray, which ultimately lead 
to increased productivity (Bonilla et  al. 2014). The 
endophyte, Gilmaniella sp. AL12, have been reported 
to increase the herb medicinal quality of Atractylodes 
lancea as they interfere with the characteristic metab-
olites by altering the accumulation of volatile content 
in host (Wang et al. 2012). Synthesis of these bioac-
tive compounds in medicinal plants, as mentioned 
earlier, are a reflection of genetic and biochemical 
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alterations taking place between the endophyte and 
the host plant.

To date, most of the investigations involved an 
effect of single microbial strain on the plant metabo-
lome. Future studies that debriefs the inter-relation-
ships of microbiome composition and functions with 
dynamics of plant metabolome will greatly assist in 
understanding the ecological importance of microbe-
derived alteration of the plant metabolome.

Plant growth promotion and endophytes

Endophytic bacteria colonise and multiply in the 
internal tissue of plants but do not cause disease 
symptoms in their hosts (Alori et  al. 2017). Endo-
phytes can promote the growth and development of 
medicinal plants through a variety of mechanisms 
(Fig.  2), including: (1) biological nitrogen fixation 
(BNF); (2) phosphate mobilization and solubilization; 
(3) siderophore production; (4) K and Zn solubiliza-
tion; (5) phytohormone production; (6) production 
of volatile organic compounds (VOCs); (7) induction 
of systemic acquired resistance (SAR) and induced 
systemic resistance (ISR); (8) stimulating benefi-
cial plant–microbe interaction; (9) interference with 
pathogen toxin production and (10) modulating the 
expression of stress-responsive genes in the plant bio-
logical system.

Endophytes play a significant role in plant growth 
promotion and biological control of plant patho-
gens in medicinal and aromatic plants, as shown in 
Tables  3 and 4. There is growing interest in using 
these beneficial endophytic microbes as biofertiliz-
ers and biopesticides under various abiotic and biotic 
stresses (Mohamad et al. 2018). The symbiotic asso-
ciation between endophytic microbes and plants helps 
each other in nutrient acquisition, water uptake and 
other nutrients supplements (Malfanova et al. 2011). 
Furthermore, many recent studies have begun to look 
into the importance of endophytic bacteria to medici-
nal plants, particularly those that grow in unusual or 
stressed environments (Egamberdieva et  al. 2017b; 
Sharma et  al. 2020; Vejan et  al. 2016; Yan et  al. 
2019).

Biological nitrogen fixation

Nearly 78 percent of nitrogen is found in the atmos-
phere, but it is inactive, and plants cannot use it. The 
plant can only absorb nitrogen in its reduced form, 
such as ammonia or nitrate. Nitrogen is an essential 
primary nutrient for plants in agricultural production 
systems and one of the most important yield-limiting 
factors worldwide (Dojima and Craker 2016). Bio-
logical nitrogen fixing diazotrophs are alternative 
source of nitrogenous chemical fertilizers and protect 

Fig. 2  Mechanisms employed by endophytes for plant growth and promotion
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the agricultural ecosystem from hazardous effects of 
chemiclas (Mulongoy et al. 1991).

The endophytic bacteria are ubiquitously asso-
ciated with medicinal plant species and they have 
unique functions. Only a few studies on medicinal 
plants have been conducted to explore the potential of 
endophytes. However, recently, some studies reported 
that the medicinal plant Ferula songorica has been 
associated with huge numbers of endophytic bacteria 
and among them about 88% of the strains related to 
the BNF (Liu et al. 2017). The medicinal plant Gly-
cyrrhiza uralensis F. has been shown to be capable of 
nitrogen fixation by the majority of endophytic bacte-
rial isolates (76%) (Li et al. 2018a, b, c). Some endo-
phytic diazotrophs, such as Azospirillum and Azoto-
bacter have the advantage of colonising the interior 
plant tissue rather than the plant’s surface, enabling 
them to better utilise the carbon source supplied by 
the plant (Aloo et  al. 2020). Besides, endophytic 
diazotrophs efficiently work in the absence or low 
amount of oxygen in the internal biological system 
(stem nodes and xylem vessels) of the plant because 
the BNF gene- nitrogenase is sensitive to oxygen 
(Yan et al. 2019).

Solubilization of phosphorus

Phosphorus (P) is an essential element for plant 
growth and development. Phosphorus is found in soil 
in a huge amount but mostly inaccessible to plants 
because soluble phosphorus easily precipitates with 
calcium in alkaline soils and with iron and aluminium 
in acidic soils. Plants uptake less than 1% of the total 
phosphorus in the form of orthophosphate anions 
(mainly as  HPO4

2− and  H2PO4
−) (Achal et al. 2007; 

Zhu et al. 2011). Therefore, it is necessary to provide 
an unavailable form of P to the plant by using dif-
ferent mechanisms. The most feasible approach is to 
use microbes to solubilize these insolubilized P com-
pounds.  The microbes can solubilize phosphorus by 
secreting phosphatases enzymes or releasing organic 
acids and protons (Sharma et al. 2020). Plant growth 
and development are enhanced by the increased avail-
ability of phosphorus(Gouda et al. 2016).

The Bacillus and Pseudomonas are the most effi-
cient phosphate-solubilizing microorganisms (El-
Deeb et  al. 2013). Li et  al (2018a, b, c) reported 
that endophytic bacterial genera such as Bacillus 
and Microbacterium isolated from medicinal plant Ta
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e 

3 
 (c

on
tin

ue
d)

S.
N

En
do

ph
yt

es
H

os
t p

la
nt

Pl
an

t g
ro

w
th

 p
ro

m
ot

in
g 

m
ec

ha
ni

sm
s

Re
fe

re
nc

es

20
M

ic
ro

co
cc

us
 a

lo
ev

er
ae

, A
ct

in
ob

ac
te

ri
a

Al
oe

 v
er

a
Pl

an
t g

ro
w

th
 p

ro
m

ot
in

g 
ac

tiv
iti

es
B

ei
ra

nv
an

d 
et

 a
l. 

(2
01

7)
, M

a 
et

 a
l. 

(2
01

3)
, P

ra
ka

sh
 e

t a
l. 

(2
01

4)
21

Sp
hi

ng
ob

iu
m

 e
nd

op
hy

tic
u

H
yl

om
ec

on
 ja

po
ni

ca
Pl

an
t g

ro
w

th
 p

ro
m

ot
in

g 
ac

tiv
iti

es
Zh

u 
et

 a
l. 

(2
01

5)
22

Pa
en

ib
ac

ill
us

 D
en

dr
iti

fo
rm

is
, B

ac
ill

us
 fi

rm
us

Pi
pe

r n
ig

ru
m

Pr
od

uc
e 

IA
A

, A
C

C
 d

ea
m

in
as

e 
an

d 
si

de
ro

ph
or

e
Ja

si
m

 e
t a

l. 
(2

01
4)

23
D

ie
tz

ia
 c

er
ci

di
ph

yl
li

Al
ce

a 
au

ch
er

i
A

nt
im

ic
ro

bi
al

 a
ct

iv
iti

es
B

ei
ra

nv
an

d 
et

 a
l. 

(2
01

7)
24

Ra
hn

el
la

 a
qu

at
ili

s, 
Rh

od
an

ob
ac

te
r t

er
ra

e
Ip

om
oe

a 
ba

ta
ta

s
IA

A
 p

ro
du

ce
r

K
ha

n 
an

d 
D

ot
y 

(2
00

9)
25

Pe
st

al
ot

io
ps

is
 sp

. F
T1

72
M

yr
si

ne
 sa

nd
w

ic
en

si
sA

Pr
od

uc
tio

n 
of

 a
nt

i-p
ro

lif
er

at
iv

e,
 P

ol
yk

et
id

e
Li

 e
t a

l. 
(2

01
8a

, b
, c

)



713Antonie van Leeuwenhoek (2022) 115:699–730 

1 3
Vol.: (0123456789)

Ta
bl

e 
4 

 R
ol

e 
of

 e
nd

op
hy

te
s i

n 
bi

ol
og

ic
al

 c
on

tro
l o

f p
la

nt
 p

at
ho

ge
ns

 in
 re

la
tio

n 
to

 m
ed

ic
in

al
 a

nd
 a

ro
m

at
ic

 p
la

nt
s

S.
N

En
do

ph
yt

es
H

os
t p

la
nt

Ta
rg

et
ed

 p
la

nt
 p

at
ho

ge
n

M
ec

ha
ni

sm
s t

o 
co

nt
ro

l p
la

nt
 

pa
th

og
en

s
Re

fe
re

nc
es

1
Ba

ci
llu

s a
m

yl
ol

iq
ue

fa
ci

en
s, 

Ps
eu

do
m

on
as

 fl
uo

re
sc

en
s

W
ith

an
ia

 so
m

ni
fe

ra
Al

te
rn

ar
ia

 a
lte

rn
at

a,
 S

cl
er

ot
iu

m
 

ro
lfs

ii
W

ith
an

ol
id

e 
m

od
ul

at
io

n
M

is
hr

a 
et

 a
l. 

(2
01

8)

As
pe

rg
ill

us
te

rr
eu

s, 
Pe

ni
ci

lli
um

 
ox

al
ic

um
, S

ar
oc

la
di

um
 k

ili
en

se
K

us
hw

ah
a 

et
 a

l. 
(2

01
9)

2
Ps

eu
do

m
on

as
 sp

. a
nd

 B
ur

kh
ol

de
-

ri
a 

sp
.

Ec
hi

na
ce

a 
pu

rp
ur

ea
 a

nd
 L

on
i-

ce
ra

ja
po

ni
ca

Fu
sa

ri
um

 sp
., 

Rh
iz

oc
to

ni
a 

sp
., 

Py
th

iu
m

 sp
. a

nd
 A

lte
rn

ar
ia

 sp
.

N
on

 ri
bo

so
m

al
 p

ep
tid

es
, p

ol
-

yk
et

id
es

G
up

ta
 e

t a
l. 

(2
01

6)

3
Ba

ci
llu

s s
ub

til
is

O
ci

m
um

 sa
nc

tu
m

Al
te

rn
ar

ia
 so

la
ni

Im
pr

ov
in

g 
pl

an
t g

ro
w

th
 a

nd
 

re
si

st
an

ce
 a

bi
lit

y
Ti

w
ar

i e
t a

l. 
(2

01
0)

4
Ba

ci
llu

s s
p.

O
ci

m
um

 te
nu

ifl
or

um
Rh

iz
oc

to
ni

a 
so

la
ni

, S
cl

er
ot

iu
m

 
ro

lfs
ii,

 A
lte

rn
ar

ia
 a

lte
rn

at
a,

 
M

ic
ro

ph
om

in
a 

ph
as

eo
-

lin
a,

 a
nd

 B
ip

ol
ar

is
 so

ro
ki

ni
an

a

A
nt

im
ic

ro
bi

al
s a

nd
 V

O
C

s
So

ng
 e

t a
l. 

(2
01

4)

5
C

ha
et

om
iu

m
 g

lo
bo

su
m

, T
ri

ch
o-

de
rm

a 
ha

rz
an

iu
m

Al
oe

 v
er

a
Sc

le
ro

tin
ia

 sc
le

ro
tio

ru
m

A
nt

ifu
ng

al
 fa

tty
 a

ci
ds

C
ho

w
dh

ar
ya

an
d 

Sh
ar

m
a 

(2
02

0)

Br
ev

ib
ac

ill
us

Et
hy

l p
ar

ab
en

, c
hi

tin
as

es
Si

lv
a 

et
 a

l. 
(2

02
0)

6
Bu

rk
ho

ld
er

ia
 st

ab
ili

s
Pa

na
x 

gi
ns

en
g

C
yl

in
dr

oc
ar

po
n 

de
st

ru
ct

an
s, 

Py
th

iu
m

 sp
.

Py
rr

ol
ni

tri
n

K
im

 e
t a

l. 
(2

02
0)

7
Al

te
rn

ar
ia

 a
lte

rn
at

a 
an

d 
Ne

oc
os

-
m

os
po

ra
 sp

.
Eu

ph
or

bi
a 

la
ri

ca
Fu

sa
ri

um
 sp

.
Fa

tty
 a

ci
ds

, f
at

ty
 a

ci
d 

m
et

hy
l 

es
te

rs
, h

yd
ro

ca
rb

on
s a

nd
 

al
ka

ne
s

A
l-R

as
hd

i e
t a

l. 
(2

02
0)

8
Ba

ci
llu

s s
ub

til
is

 a
nd

 B
ac

ill
us

 
am

yl
ol

iq
ue

fa
ci

en
s

D
ur

an
ta

 p
lu

m
er

i, 
O

ci
m

um
 

gr
at

is
si

m
um

, T
er

m
in

al
i a

bo
-

he
ra

, M
an

ih
ot

 e
sc

ul
en

ta

Sc
le

ro
tin

ia
 sc

le
ro

tio
ru

m
M

or
ph

ol
og

ic
al

 a
lte

ra
tio

ns
 in

 
hy

ph
ae

 a
nd

 re
du

ct
io

n 
of

 m
yc

e-
lia

l d
ry

 w
ei

gh
t

R
ah

m
an

 e
t a

l. 
(2

01
8)

9
St

re
pt

om
yc

es
, B

re
vi

ba
ct

er
iu

m
, 

M
ic

ro
ba

ct
er

iu
m

, a
nd

 L
ei

fso
ni

a
M

ira
bi

lis
 ja

la
pa

 a
nd

 C
le

ro
de

n-
dr

um
 C

ol
eb

ro
ok

ia
nu

m
St

ap
hy

lo
co

cc
us

 a
ur

eu
s, 

Ps
eu

do
m

on
as

 a
er

ug
in

os
a,

 
Es

ch
er

ic
hi

a 
co

li,
 a

nd
 C

an
di

da
 

al
bi

ca
ns

A
nt

ib
io

tic
 p

ro
du

ct
io

n
Pa

ss
ar

i e
t a

l. 
(2

01
5)

10
Ba

ci
llu

s a
tro

ph
ae

us
 a

nd
 B

ac
ill

us
 

m
oj

av
en

si
s

G
ly

cy
rr

hi
za

 u
ra

le
ns

is
Al

te
rn

ar
ia

 so
la

ni
, C

ol
le

to
tr

ic
hu

m
 

gl
oe

os
po

ri
oi

de
s, 

Ve
rt

ic
ill

iu
m

 
da

hl
ia

e,
 F

us
ar

iu
m

 o
xy

sp
or

um
 

f. 
sp

., 
Fu

lv
ia

fu
lv

a,
 P

es
ta

lo
ti-

op
si

s m
ic

ro
sp

or
a,

 F
us

ar
iu

m
 

ox
ys

po
ru

m
 f.

 sp
. v

as
in

fe
ct

um
, 

Fu
sa

ri
um

 g
ra

m
in

ea
ru

m
 a

nd
 

C
er

at
oc

ys
tis

 fi
m

br
ia

ta

N
on

 ri
bo

so
m

al
 p

ep
tid

es
, p

ol
yk

e-
tid

es
, l

yt
ic

 e
nz

ym
es

M
oh

am
ad

 e
t a

l. 
(2

01
8)



714 Antonie van Leeuwenhoek (2022) 115:699–730

1 3
Vol:. (1234567890)

Ta
bl

e 
4 

 (c
on

tin
ue

d)

S.
N

En
do

ph
yt

es
H

os
t p

la
nt

Ta
rg

et
ed

 p
la

nt
 p

at
ho

ge
n

M
ec

ha
ni

sm
s t

o 
co

nt
ro

l p
la

nt
 

pa
th

og
en

s
Re

fe
re

nc
es

11
Ar

th
ro

ba
ct

er
, A

ch
ro

m
ob

ac
-

te
r, 

Ba
ci

llu
s, 

En
te

ro
ba

ct
er

, 
Er

w
in

ia
, P

se
ud

om
on

as
, 

Pa
nt

oe
a,

 S
er

ra
tia

, a
nd

 S
te

no
-

tro
ph

om
on

as

H
yp

er
ic

um
 p

er
fo

ra
tu

m
 a

nd
 

Zi
zi

ph
or

a 
ca

pi
ta

ta
Fu

sa
ri

um
 o

xy
sp

or
um

H
C

N
 a

nd
 C

el
l w

al
l d

eg
ra

di
ng

 
en

zy
m

es
Eg

am
be

rd
ie

va
 e

t a
l. 

(2
01

7a
)

12
Ba

ci
llu

s, 
Se

rr
at

ia
 a

nd
 E

nt
er

o-
ba

ct
er

24
 d

iff
er

en
t M

ed
ic

in
al

 p
la

nt
 sp

e-
ci

es
 fr

om
 W

es
te

rn
 G

ha
ts

, I
nd

ia
Pe

ct
ob

ac
te

ri
um

 c
ar

ot
ov

or
um

B
io

ac
tiv

e 
se

co
nd

ar
y 

m
et

ab
ol

ite
s 

(N
R

PS
, l

an
tip

ep
tid

e,
 b

ac
te

ri-
oc

in
s)

W
eb

ste
r e

t a
l. 

(2
02

0)

13
Ba

ci
llu

s a
nd

 E
nt

er
ob

ac
te

r s
pe

-
ci

es
Th

ym
us

 v
ul

ga
ris

F.
 o

xy
sp

or
um

B
io

ac
tiv

e 
m

et
ab

ol
ite

s (
be

nz
en

e,
 

1,
3-

di
m

et
hy

l-,
 p

-x
yl

en
e,

 d
ib

u-
ty

l p
ht

ha
la

te
, b

is
 (2

-e
th

yl
he

xy
l) 

ph
th

al
at

e,
 a

nd
 te

tra
co

sa
ne

)

M
oh

am
ad

 e
t a

l. 
(2

02
0)

14
St

re
pt

om
yc

es
Th

ym
us

 ro
se

us
Al

te
rn

ar
ia

 so
la

ni
, V

al
sa

m
al

ic
ol

a,
 

an
d 

Va
ls

am
al

i
N

on
 ri

bo
so

m
al

 p
ep

tid
es

, p
ol

-
yk

et
id

es
M

us
a 

et
 a

l. 
(2

00
9)

15
Tr

ic
ho

de
rm

a 
ci

tr
in

ov
ir

id
e

Pa
na

x 
gi

ns
en

g
Bo

tr
yt

is
 c

in
er

ea
 a

nd
 C

yl
in

dr
o-

ca
rp

on
 d

es
tr

uc
ta

ns
hi

gh
 e

nd
o-

1,
4-

b-
D

-g
lu

ca
na

se
 

ac
tiv

ity
, g

in
se

no
si

de
Pa

rk
 e

t a
l. 

(2
01

9)

16
Al

te
rn

ar
ia

 sp
.

N
ot

ha
po

dy
te

s n
im

m
on

ia
na

Sc
le

ro
tiu

m
 ro

lfs
ii

m
yc

ot
ox

in
 (t

en
ua

zo
ni

c 
ac

id
)

R
aj

an
i e

t a
l. 

20
19

17
St

re
pt

om
yc

es
, B

ac
ill

us
, P

se
u-

do
m

on
as

, M
ic

ro
ba

ct
er

iu
m

, 
St

en
ot

ro
ph

om
on

as
, L

ys
in

ib
ac

il-
lu

s, 
O

ch
ro

ba
ct

ru
m

, R
hi

zo
bi

um
, 

Br
ev

ib
ac

te
ri

um
, A

ch
ro

m
o-

ba
ct

er

13
 m

ed
ic

in
al

 p
la

nt
s, 

B
ei

jin
g 

B
ot

an
ic

al
 g

ar
de

n 
C

hi
na

D
ot

hi
or

el
la

 g
re

ga
ri

a,
 S

cl
er

ot
in

ia
 

sc
le

ro
tio

ru
m

 a
nd

 B
ot

ry
os

ph
a-

er
ia

 d
ot

hi
de

a

Po
ly

ke
tid

es
, p

ol
ye

ne
, c

hi
tin

as
es

, 
si

de
ro

ph
or

es
Li

u 
et

 a
l. 

(2
01

0a
, b

)

18
Ps

eu
do

m
on

as
 sp

.
Le

pt
os

pe
rm

um
 sc

op
ar

iu
m

Ps
eu

do
m

on
as

 sy
ri

ng
ae

 p
v.

 
Ac

tin
id

ia
e

ph
en

az
in

e,
 2

,4
-D

A
PG

, a
nd

 
hy

dr
og

en
 c

ya
ni

de
W

ic
ak

so
no

 e
t a

l. 
(2

01
8)



715Antonie van Leeuwenhoek (2022) 115:699–730 

1 3
Vol.: (0123456789)

Glycyrrhiza uralensis were able to phosphate solubili-
zation. Additionally, the medicinal plant Ferula sinki-
angensis had almost 19% of the endophytic bacteria 
related to phosphate solubilization (Liu et  al. 2017). 
Moreover, many researchers reported that medicinal 
plants like Vitis vinifera, Capsicum annuum, Trigo-
nella foenum, Trigonella foenum-graecum and Lac-
tuca sativa were associated with endophytic microbes 
which can solubilize phosphate for the growth and 
development of medicinal plants (Li et al. 2018a, b, c; 
Radhakrishnan et al. 2017).

Enhancement of uptake and translocation of 
micronutrients

Micronutrients play a crucial role in plant metabo-
lism, photosynthesis, respiration and biosynthetic 
reactions. These are also important constituents of 
cytochromes, ribosomes and co-factors of different 
enzymes such as catalase, peroxidase, DNA poly-
merase and RNApolymerase (Kerkeb and Connoly 
2006; Mahender et al. 2019; Rout and Sahoo 2015). 
Micronutrient use efficiency is only 2–5% (Tian et al. 
2008). Rhizospheric or endophytic microorganisms 
have a significant contribution to the enhancement of 
uptake and translocation of micronutrients through 
different mechanisms (Singh et al. 2018; Singh et al. 
2017a; Singh et al. 2017b; Singh and Prasanna, 2020) 
such as: (1) siderophore production; (2) organic acid 
secretion in root exudates; (3) secretion of phytase 
enzyme; (4) secretion of metal chelating substances; 
(5) upregulation of micronutrient transporter or 
genes; (6) modification of root morphology and 
anatomy.

Siderophores are iron-binding chelating com-
pounds that are produced by endophytic or rhizos-
pheric microbes to improve plant growth and devel-
opment by providing iron to plants and by inhibiting 
the growth of plant pathogenic microorganisms in 
the root zone or plant biological system (Mohamad 
et al. 2020; Niessen and Soppa, 2020). Siderophores 
convert insoluble ferric ions or Fe(OH)3 into the 
soluble ferric complex compound that can be uptake 
by plants (Solanki et  al. 2014). Li et  al. (2018a, b, 
c) found that around 23 and 57% of the endophytes 
related to the medicinal plant’s Glycyrrhiza uralen-
sis Fisch. and Ferula sinkiangensis secreted sidero-
phores, respectively, and these microbes belongs to 
different group of microbe genera such as Bacillus, 

Achromobacter, and Janibacter. The endophytic bac-
teria associated with medicinal plants such as Capsi-
cum annuum, Launaea nudicaulis, Jatropha curcas, 
Arachis Hypogaea, Brassica oxyrrhina, and Bras-
sica napus were showed siderophore production abil-
ity (Egamberdievaand Tiezzi 2019; Ma et  al. 2010; 
Mohamad et al. 2019; Radhakrishnanand Lee 2016).
Besides iron, endophytes also enhance Zn availabil-
ity to plants through organic acids secretion in root 
exudates (Singh et  al. 2017b).The most effective Zn 
solubilizing Gram-positive microscopic organisms 
have to belong to the genus Bacillus. Furthermore, it 
has been reported that Bacillus amyloliquefasciens, 
Bacillus megaterium, and Bacillus sp., show phos-
phorus, potassium, and zinc solubilization (Verma 
et al. 2015).

Production of phytohormones

Phytohormones are signal molecules that coordi-
nate cellular activities and management of medici-
nal plant growth, development and vigor. The best-
known example of phytohormones that are produced 
by endophytic microbiota is indole-3-acetic acid 
(IAA), which is synthesised via the indole-3-pyruvate 
pathway. Like rhizospheric microbes, endophytic 
microbes have been shown to have plant growth pro-
moting activities that can be due to the production 
of phytohormones and enzymes involved in growth 
regulation, such as ethylene, 1-aminocyclo- propane-
1-carboxylic acid (ACC) deaminase, 2,3-butanediol, 
cytokinins, auxins, indole-3-acetic acid (IAA), ace-
toin, or combinations of these plant growth hormones 
(Asaf et al. 2017; Egamberdieva et al. 2017c; Li et al. 
2018a, b, c). Indole-3-acetic acid (IAA) is the phy-
tohormone responsible for stimulating cell division, 
cell elongation, differentiation, and gene regulation to 
promote plant growth and development (Sharma et al. 
2020). Recently, many IAA producing endophytic 
bacteria (Arthrobacter sp., Enterobacter sp., Pantoea 
sp., Bacillus sp., Brevibacterium sp., Achromobacter 
sp., and Stenotrophomonas sp.) have been reported to 
be associated with the medicinal plants Hypericum 
perforatum, Ferula sinkiangensis, Ziziphora capitate 
Ajuga bracteosa (Egamberdieva et al. 2017b; Li et al. 
2018a, b, c; Liu et  al. 2017; Naragani et  al. 2016). 
The endophytic fungus Fusarium sp. impacts on the 
growth and development of Euphorbia pekinensis (E5 
and E4) by producing IAA and GA (Dai et al. 2003). 
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The fungi Fusarium sp. DL26 and Pyrenochaeta sp. 
DL351 could improve the growth and development of 
the orchid Dendrobium loddigesii Rolfe by root elon-
gation by secreting IAA and  NH3. (Chen et al. 2010).

El-Deeb et  al. (2013) reported that Plectranthus 
tenuiflorus medicinal plant was inhabitated by Bacil-
lus sp., Bacillus megaterium, Bacillus pumilus, Bacil-
lus licheniformis, Micrococcus luteus, Paenibacillus 
sp., Pseudomonas sp., and Acinetobacter calcoace-
ticus endophytes. These endophytic isolates effec-
tively produce gibberellic acid (GA) and cytokinin. 
GA has biologically important functions such as plant 
growth-promoting factors, i.e., stem and root elonga-
tion, flowering, and/or helping to overcome dormancy 
in seeds. Cytokinins are a category of plant hormones 
that play an important role during the cell cycle, i.e., 
induce the plant cellular division process and, conse-
quently, influence the formation and relative growth 
of roots and shoots (Arkhipova et al. 2007). Abscisic 
acid (ABA), which is considered a plant stress hor-
mone, is responsible for many types of stress, includ-
ing water, salt, and low temperatures (Fahad et  al. 
2015). Salicylic acid (SA) is also known as a critical 
phytohormone that is involved in various processes, 
like seed germination, root initiation, floral induction, 
and thermogenesis, besides plant tolerance to biotic 
and abiotic stresses (Yan et  al. 2019; Fahad et  al. 
2015).

Resistance toward abiotic stresses

Plants are exposed to a number of factors which are 
detrimental to their growth, productivity, and survival 
in the environment, known as stress. It can be both 
biotic and abiotic in nature. Abiotic stresses include 
salinity, pH, temperature fluctuations, excess or low 
water, irradiance, nutrient deficiency or excess, and 
even mechanical injury and wounding. Whereas, 
biotic stress can include various pathogens (bacte-
ria, fungi, and viruses) and herbivores. Endophytic 
bacteria often produce various compounds that can 
alleviate these stresses and confer protection to the 
plant. According to various reports, plants on inocu-
lation with these endophytes often accumulate com-
pounds mainly, carbohydrates, proline, various lytic 
enzymes, and antibiotics that can inhibit various 
pathogens (Brader et  al. 2014). Moreover, it causes 
the plant to develop resistance against pathogens 

by complementing the induced systemic resistance 
mechanisms (Pieterse et al. 2014).

Endophytes are known to provide various plant-
growth promoting nutrients as well as assist in cop-
ing with various environmental stresses, which ulti-
mately improves plants yield and productivity. It is 
therefore of great concern in having knowledge about 
endophytes, their role in promoting plant growth 
and their biocontrol, defence and resistance to dis-
ease and environment. Acremonium strictum AL16 
an endophytic fungus in association with a Chinese 
medicinal herb, Atractylodes lancea improved the 
plant growth traits and also alleviated drought condi-
tions by increasing soluble sugars, proteins, proline 
and antioxidant enzyme activity. It also increased the 
abscissic acid levels in the host as well as decreased 
the degree of plasmalemma oxidation, thereby con-
ferring protection to the host plant (Yang et al. 2014).

Unfavourable environmental conditions, viz. 
temperature extremes, heavy metal toxicity, salin-
ity, drought, and floods can negatively impact plant 
growth, development and yield (Farooq et  al. 2009; 
Wang et  al. 2003; Zhu 2002). Endophytes can help 
medicinal plants in alleviating these stresses and pro-
moting their growth (Nadeem et  al. 2014; Shahzad 
et  al. 2015) For instance, Pseudomonas fluores-
cence when inoculated in Madagascar periwinkle 
(Catharanthus roseus) improved its growth attributes 
as compared to control uninoculated plants under 
water deficit stress conditions (Jaleel et  al. 2007). 
Furthermore, Pseudomonas fluorescens along with 
Piriformospora indicain a dual inoculation improved 
the transplanting shock in musli (Chlorophytum sp.) 
(Gosal et al. 2010). Also, when an autochthonous iso-
late was tested along with native mycorrhizal fungi 
(alone and in consortium), plant growth was stimu-
lated along with improved nutrient and drought toler-
ance responses (Armada et al. 2016).

Gagné-Bourque et al. (2016) reported the increase 
of total soluble carbohydrates along with glucose, 
fructose and starch in drought induced Brachypo-
dium distachyon grass associated with Bacillus sub-
tilis strain B26. However, well-known stress related 
metabolites (raffinose-related carbohydrate) were not 
proliferated. Pepper plants (Capsicum annuum L.) 
in association with Bacillus and Arthrobacter endo-
phytes showed significant proline accumulation in 
relation to osmotic stress responses (Sziderics et  al. 
2007). Moreover, endophytes associated with plants 
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can also modulate enzymatic activity causing mitiga-
tion of abiotic stress. Damodaran et  al. (Damodaran 
et al. 2014) reported an increase in defence enzymes 
like Phenylalanine lyase, peroxidase, catalase and 
superoxide dismutase on inoculation with endo-
phytes like Bacillus subtilus, Bacillus cereus, Bacil-
lus thuringiensis, Bacillus saffensis, Bacillus pumilus, 
and Bacillus marisflavi in response to high sodium 
concentrations in gladiolus plants. Association with 
endophytes have also resulted in plant growth promo-
tion as well as tolerance to low temperature. Bacillus 
and other derived genus have been associated with 
Triticum aestivum cultivated in northern hills zone 
of India, showing its temperature flexibility (Verma 
et al. 2015).

Resistance toward biotic stresses (biological control 
of plant pathogens)

Interest in worldwide food production is expanding 
so as to take care of the teeming millions. However, 
plant diseases are turning into an obstacle as to how 
to accomplish these objectives. Symptoms of dif-
ferent plant diseases can range from rusts, blights, 
scabs, cankers, spots, mildews, wilts and many more 
as they affect the quality and quantity of the produce. 
A number of approaches can be followed to control 
the disease progression, mainly cultural, chemical 
and biological. Cultural practices are time consuming 
and does not guarantee complete protection whereas 
chemical control strategies are not environmentally 
friendly and cause resistance in pathogens. Biological 
control, which involves the use of microorganisms to 
inhibit or reduce disease incidences, provides a prac-
tical solution to the problem (Maloy, 1993) (Table 4).

Endophytes show biocontrol activities in two 
ways- direct or indirect. Direct biocontrol is shown by 
the endophyte either through production of antagonist 
metabolites like lytic enzymes (Strobel 2003), antibi-
otics (Berg and Hallmann 2006), siderophores, and 
insecticidal compounds (Azevedo et  al. 2000; Hall-
mann et al. 1998) or by competing with pathogen for 
space and nutrients. Indirect biocontrol is shown by 
priming the plant defence mechanism through cal-
lose deposition, hydrolysing enzymes production or 
activating the plant defense proteins (PRPs) in a pro-
cess known as induced systemic resistance (Kloepper 
and Ryu 2006). Furthermore, endophytes can trigger 
plant growth through plant growth promotion (PGP) 

activities and can outcompete cell death caused by 
pathogen (Berg and Hallmann 2006). Moreover, 
endophytes associated with medicinal plants have 
received special interest as they are the producers of 
important bioactive secondary metabolites. As such 
plant microbe interaction involving endophytes and 
medicinal plants have been extensively reviewed 
(Sekar and Kandavel 2010; Singh 2013). Figure  3 
show the mechanisms employed by endophytes for 
biological control of plant pathogens.

The use of microbial endophytes as biocontrol 
agents against several phytopathogenic fungi have 
been advocated by a number of researchers (Egam-
berdieva et  al. 2017b; Erdogan and Benlioglu 2010; 
Lacava et al. 2007). They have been used on a num-
ber of crops like Nicotiana attenuata (Santhanam 
et  al. 2014), Solanum torvum and Solanum melon-
gena (Achari and Ramesh 2014), Solanum trilobatum 
(Bhuvaneswari et al. 2013) and have shown biologi-
cal control due to a number of bioactive metabolites. 
Egamberdieva et  al. (2017a) reported antagonistic 
activity against the phytopathogens Alternaria alter-
nate, Pythium ultimum, Fusarium oxysporum, Fusar-
ium culmorum, Fusarium solani, Botrytis cinerea, 
Gaeumannomyces graminis because of the endo-
phytes Bacillus, Pseudomonas, Arthrobacter, Steno-
trophomonas and Serratia, isolated from medicinal 
plants Ziziphora capitata and Hypericum perforatum.

Endophytic microorganisms from medicinal plants 
also demonstrated antimicrobial activity against 
human pathogens in addition to phytopathogens. In 
an investigation by Passari et al. (2015) almost half of 
the endophytes isolated showed antagonistic activity 
against at least two out of the four pathogens tested, 
namely: Candida albicans, Escherichia coli, Staphy-
lococcus aureus and Pseudomonas aeruginosa. 
Further, El-Deeb et  al. (2013) isolated endophytic 
microbes from different parts of the medicinal plant 
Plectranthus tenuiflorus which demonstrated anti-
microbial activity against at least one out of the six 
human pathogens like Klebsiella pneumonia, Proteus 
mirabilis, Escherichia coli, Streptococcus agalactiae, 
Staphylococcus aureus and Candida albicans.

Mohamad et  al. (2018) isolated 114 endophytes 
from Glycyrrhiza uralensis, wild ethnomedicinal 
plant in Xinjiang desert, and estimated their antifun-
gal activity against different phytopathogens namely 
Alternaria solani, Colletotrichum gloeosporioides, 
Verticillium dahliae, Fusarium oxysporum f. sp., 
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Fulvia fulva, Pestalotiopsis microspora, Fusarium 
oxysporum f. sp. vasinfectum, Fusarium gramine-
arum and Ceratocystis fimbriata. The results indi-
cated that endophytes belonged to various genera 
including Bacillus atrophaeus, Bacillus mojavensis, 
Bacillus halotolerans, Brevibacterium frigoritolerans, 
and Nocardioides alkalitolerans. They also inhibited 
various human pathogens like Bacillus cereus, Salmo-
nella enteritidis, Staphylococcus aureus, and Escheri-
chia coli.Endophytic isolates exhibiting antagonism 
against a variety of fungal phytopathogens in  vitro 
also had the ability to suppress Fusarium oxysporum 
f. sp. radicis-lycopersici in vivo (Egamberdieva et al. 
2017b). Moreover endophytic fungi were also influ-
enced by insect’s attack, so they also produced bioac-
tive insecticidal compounds.

Production of antimicrobial metabolites

Pathogens in nature have acquired resistance to com-
monly used synthetic chemicals; therefore, the search 
for alternate antimicrobial compounds is the need 
of the hour. Endophytes offer these eco-friendly 
metabolites, mainly amides and amines, which are 
not only natural but also nontoxic to mammals. These 

antimicrobial agents are perhaps secondary metabo-
lites produced by the endophytes. It includes polyke-
tides, which are amino acid derived compounds or 
terpenes and low molecular weight compounds with 
varied structures (Keller et  al. 2005). Synthesis of 
these polyketides is carried out by large multimodu-
lar complexes known as polyketide synthases (PKS) 
and they are basically carboxylic acids derived via 
condensation of acetyl coenzyme A (acetyl CoA) 
and malonyl CoA forming carbon chains of β-ketone 
groups (Keller et al. 2005).

Pseudomonas fluorescens Q2-87 an endophytic 
bacteria whose PKSs synthesise 2,4-diacetylphlo-
roglucinol and has been antagonistic to a number of 
phytopathogens (Alvin et  al. 2014), whereas PKS 
from Aspergillus nidulans produces the cholesterol 
lowering compound, lovastatin (Keller et  al. 2005). 
Moreover, along with PKSs, endophytes also synthe-
size non-ribosomal peptides produced in non-riboso-
mal peptide synthetases (NRPS), which aids in the 
condensation of non-proteinogenic and proteinogenic 
amino acids. Penicillin and cephalosporin, β-lactam 
antibiotics, are produced by the first identified fungal 
NRPS (Keller et al. 2005).

Fig. 3  Mechanisms 
employed by endophytes for 
biological control of plant 
pathogens
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Many investigators reported various NRPs namely 
spoxazomicins, siderophores, and serobactin pro-
duced from endophytic microbes of orchids and 
grasses namely, Streptosporangium oxazolinicum, 
Pseudomonas aeruginosa, and Herbaspirillum sero-
pedicae respectively (Inahashi et  al. 2011; Miller 
et al. 2012; Rosconi et al. 2013). Moreover, the pres-
ence of genes related to NRPS or PKS should be a 
primary step in characterization of endophytes pro-
ducing bioactive metabolites as they contain con-
served regions critical for their functioning (Miller 
et al. 2012). The β-ketoacyl synthase (KS) domain of 
PKS and adenylation (A) domain of NRPS are con-
served, which promotes condensation of acetyl CoA 
and malonyl CoA and which identifies growing pep-
tide chain respectively (Keller et al. 2005).

Chowdhary and Sharma (2020) reported that 
endophytic fungi (Chaetomium globosum and Tricho-
derma harzanium) of Aloe vera showed antagonistic 
activity against Sclerotinia sclerotiorum by the pro-
duction of various antifungal compounds like hexa-
decanoic acid, 2, 3-bis[(trimethylsilyl) oxy] propyl 
ester and other unsaturated fatty acids (palmitic and 
linoleic acid). A variety of other metabolites like fatty 
acids, fatty acid methyl ester, alkanes and hydrocar-
bons have also been reported to suppress fungal path-
ogens like Fusarium (Al-Rashdi et al. 2020). Morpho-
logical changes have been elicited because of these 
metabolites like loss of turgidity, disintegration and 
shrinkage of hyphae in the fungal pathogen. Bacillus 
and Streptomyces species constitutes the most diverse 
and cosmopolitan gram positive bacterial endophytes 
present, producing secondary metabolites having 
antimicrobial property against phytopathogens (Rein-
hold-Hurek and Hurek, 2011; Frank et al. 2017).

Streptomyces sp. is source of a number of anti-
biotics, hence is known for its antagonistic activ-
ity against different phytopathogens. Streptomyces 
sp. strain NRRL 30,562 associated with Kennedia 
nigriscans was reported to be antagonistic against 
various plant pathogenic bacteria and fungi due to 
the presence of antibiotics, namely munumbicins 
A, B, C, and D (Castillo et  al. 2006). Also Strepto-
myces caeruleatus endophyte in leguminous plants 
was effective against Xanthomonas campestris pv 
glycine (Mingma et al. 2014). Moreover, endophytic 
actinobacteria from Azadirachta indica and Nothofa-
gus sp. have been evaluated for their antimicrobial 
activities against various phytopathogenic fungi 

such as- Sclerotinia sclerotiorum, Mycosphaerella 
fijiensis, Pythium, Phytophthora sp. and Rhizoctonia 
solani (Castillo et al. 2007; Verma et al. 2009). Strep-
tomyces seoulensis characterized from two different 
plant species in southern Patagonia by Castillo et al. 
(2007) suggested the plants survival strategy against 
phytopathogens in that particular area due to produc-
tion of metabolites. Matsumoto and Takahashi (2017) 
reported the antagonistic activity of endophytic act-
inobacteria against Xanthomonas campestris pv. Ory-
zae strain KB-88, Kocuria rhizophila strain KB-212, 
and Mucor racemosus strain KF-223.

The genus Bacillus has been reported in sev-
eral instances to have antimicrobial activity. More 
often, they have been proposed for crop manage-
ment (Aloo et al. 2018). Gond et al. (2015) described 
lipopeptides producing Bacillus subtilis and Bacillus 
amyloliquefaciens as endophytes in maize seeds and 
inhibiting Fusarium moniliforme. Similarly, Bacillus 
amyloliquefaciens endophytic in Bruguiera gymn-
orrhiza (L.) showed antagonism against a variety of 
fungal and bacterial pathogens particularly Capsicum 
wilt in pots as well as field trials (Hu et  al. 2010). 
Moreover, Bacillus cereus and Bacillus mojavensis 
endophytes in rice exhibited antagonism against a 
variety of fungal pathogens in rice, namely, Magna-
porthe grisea, Magnaporthe salvinii, Fusarium ver-
ticillioides, Fusarium fujikuroi, and Fusarium prolif-
erum (Etesami and Alikhani, 2017).

Endophytes isolated from radish mainly Brachy-
bacterium, Paenibacillus and Bacillus subtilis pos-
sessed antifungal activity against Rhizoctonia solani, 
Pythium ultimum, Fusarium oxysporium and Phy-
tophthora capsici(Seo et  al. 2010). Furthermore, B. 
subtilis strain EDR4 endophyte in wheat reported an 
antifungal protein which inhibited growth of Fusari-
umgraminearum, Gaeumannomyces  graminis var 
triticiBacilluscinerea, Fusarium oxysporum f.sp. 
vasinfectum, Rhizoctonia cerealis, and Macrophoma 
kuwatsukai (Liu et al. 2010a, b).

Egamberdieva et  al. (2017a) reported endophytic 
bacteria of various genera, namely, Bacillus, Arthro-
bacter, Stenotrophomonas, Erwinia, Serratia, Achro-
mobacter, Pseudomonas, Enterobacter, and Pantoea 
from Ziziphora capitata and Hypericum perforatum. 
Latter supported the growth of various bacteria hav-
ing antagonistic activity against F. oxysporum than 
the former. On the contrary, Fusarium oxysporum as 
an endophyte can produce antagonistic compounds 
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against nematode such as gibepyrone D, 4-hydroxy-
benzoic acid and indole-3-acetic acid (IAA) (Bogner 
et al. 2017).

Another significant class of antimicrobial second-
ary metabolites are the lipopeptides, which are known 
for their antimicrobial activity as well as activator 
of plant defence machinery (Stein, 2005; Raaijmak-
ers et  al. 2010). There are several isoforms of poly-
peptides which can be produced by the same bacte-
rial species. The most investigated ones are related 
to Bacillus and Paenibacillus lipopeptides (Villar-
real-Delgado et  al. 2018). Moreover, many Bacil-
lus amyloliquefaciens strains are known to produce 
higher lipopeptides (Ongena and Jacques, 2008).

Production of hydrolytic enzymes

The antagonistic activity of endophytes against vari-
ous pathogens can also be due to their ability to pro-
duce a number of lytic enzymes. These enzymes 
can degrade the cell wall polymer complexes of dif-
ferent pathogens and make it susceptible to lysis. 
Lipases and chitinases are enzymes which degrade 
the chitinous cell wall of fungus making it a potent 
biocontrol agent against phytopathogens (Suresh 
et  al. 2010; Wahyudi et  al. 2011). Pseudomonas sp. 
endophytically associated with a number of medici-
nal plants like Coleus forskohlii, Launaea nudicaulis, 
and Cupressus sempervirens produced chitinolytic 
enzymes and exhibited control against phytopatho-
gens, namely, Fusarium chlamydosporum, Fusarium 
solani, Fusarium oxysporum, Seiridium cardinal, 
Ralstonia solanacearum, and Macrophomina pha-
seolina (Mansoor et al. 2007; Raio et al. 2011; Singh 
et  al. 2013). Furthermore, Bacillus sp. as endophyte 
in association with some medicinal plants like Gly-
cyrrhiza uralensi, Panax quinquefolius, and Arachis 
hypogaea controlled plant diseases because of their 
ability to produce chitinolytic enzymes (Mohamad 
et  al. 2018; Nautiyal et  al. 2013; Song et  al. 2014). 
Sahu et al. (2020) reported different strains of Bacilli 
isolated from Ocimum tenuiflorum showing antago-
nism against sheath blight of rice by inducing defense 
enzymes mainly phenyl ammonia lyase, peroxidase, 
and polyphenol oxidase. In similar study endophytes 
in association with Ziziphora capitata, a medicinal 
plant, also produced chitinolytic enzymes (Egamber-
dieva et al. 2017a). Moreover, different lytic enzymes 
like cellulases, lipases and proteases were produced 

by endophytes associated with plants like Ferula 
sinkiangensis, Ferula songorica, Glycyrrhiza uralen-
sis, and Hypericum perforatum (Egamberdieva et al. 
2017a; Li et al. 2018a, b, c; Liu et al. 2017; Liu et al. 
2016a, b).

Disrupting quorum sensing signals in pathogens

Pathogens communicate with each other via signal-
ling molecules such as N-acyl homoserine lactones 
(AHLs), often called as quorum sensing (Waters and 
Bassler 2005). This cell to cell communication is 
responsible for regulating the expression of various 
virulence factors contributing in the pathogenicity 
(Fuqua et  al. 2001). Endophytes can degrade these 
QS signals, called as Quorum quenching, which can 
ultimately reduce the virulence of the pathogen (Hel-
man and Chemin, 2015). For example, many Bacil-
lus species can produce AHL lactonases which can 
degrade these signalling molecules, thereby dimin-
ishing the virulence (Zhou et  al. 2008). Rajesh and 
Rai (2014) investigated the potential of endophytic 
Bacillus firmus and Enterobacter asburiae associated 
with Pterocarpus santalinus in degrading the AHLs 
and preventing Pseudomonas aeruginosa biofilm 
formation. Moreover, these enzymes have also been 
reported in various other endophytic microbes like 
Pseudomonas, thus, contributing in better disease 
control and improved plant health.

Inducing overproduction of antimicrobial or 
immunological compounds by plants

Notwithstanding the previously mentioned 
approaches, endophytic microbes can also stimu-
late the immunological or antimicrobial responses in 
plants through the production of varied compounds. 
In a study done by Siddaiah et  al. (2017),Tricho-
derma hamatum UoM 13, an endophytic fungus 
can lead to the overproduction of various defence 
enzymes, salicyclic acid and pathogenesis related 
proteins (PRP) which complements systemic immu-
nity against downy mildew in pearl millet. Moreo-
ver, there has been an upregulation of host defence 
genes (Tc00g04254) in Theobroma cacao leaves 
because of endophtic fungus Colletotrichum tropicale 
on pathogen damage (Mejía et  al. 2014). Kushwaha 
et al. (2019) studied the compatibility of fungal endo-
phytes (Aspergillus, Sarocladium and Penicillium) of 
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Withania somnifera with biological control (Tricho-
derma viridae) and reported that the co-inoculation 
significantly increased the withanolide A content by 
expressing its biosynthetic genes.

Space competition with pathogens

Endophytes can often compete with the pathogen for 
space, thereby limiting its ability to grow and cause 
disease. Fungal endophytes, in particular, prolifer-
ate rapidly, thereby exhausting the nutrients for the 
pathogen to grow. It has been suggested that colo-
nization by Beauveria bassiana endophytically can 
control the damping off and root rot of tomato and 
cotton, competition for space being the likely mecha-
nism for biological control against Rhizoctonia solani 
and other pathogens (Ownley et al. 2008). Moreover, 
in response to endophyte, the plant produces lignin 
and other cell wall components, thereby limiting the 
growth of the endophyte and maintaining its aviru-
lence (Harman et al. 2004).

Conclusions and future prospects

For medicinal and aromatic plants, endophytes have 
more valuable functions, such as controlling phy-
topathogens, promoting plant growth and modulat-
ing the phyto-chemistry. Endophytes of medicinal 
and aromatic plants are more efficient in producing 
bioactive secondary metabolites that can be used as 
antimicrobial agents against human, animal, and plant 
pathogens. Application of endophytes as a substitute 
for pesticides or chemical fertilisers is more fascinat-
ing because it prompts use of medicinal plants by the 
consumer and the pharmacology industry without any 
residue of synthetic chemicals. Thus, endophytes may 
be more prominent agents in scavenging synthetic 
chemical compounds and enhancing the produc-
tion of bioactive secondary metabolites in medicinal 
plants. Therefore, there is a further need to isolate 
endophytes from medicinal plants to explore as a 
plant growth promoting agent and detect the bioactive 
compounds to utilise instead of synthetic chemicals to 
save the environment. Endophytes of medicinal and 
aromatic plants could produce some important bio-
active secondary metabolites freely, which enables 
the pharmacological industry to conduct large-scale 

fermentation of bioactive secondary metabolites, 
independent of the cultivation of medicinal plants.
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