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Abstract The phylum Planctomycetes comprises

bacteria with uncommon features among prokaryotes,

such as cell division by budding, absence of the

bacterial tubulin-homolog cell division protein FtsZ

and complex cell plans with invaginations of the

cytoplasmic membrane. Although planctomycetes are

ubiquitous, the number of described species and

isolated strains available as axenic cultures is still

low compared to the diversity observed in metagen-

omes or environmental studies. An increasing interest

in planctomycetes is reflected by the recent description

of a large number of new species and their increasing

accessibility in terms of pure cultures. In this review,

data from all taxonomically described species belong-

ing to Planctomycetia, the class with the currently

highest number of characterized members within the

phylum Planctomycetes, is summarized. Phylogeny,

morphology, physiology, ecology and genomic traits

of its members are discussed. This comprehensive

overview will help to acknowledge several aspects of

the biology of these fascinating bacteria.

Keyword Bacteria � Taxonomy � Ecology �
Morphology � Physiology � Genomics � Budding

The phylum Planctomycetes

The phylum Planctomycetes is a group of bacteria

within the Planctomycetes-Verrucomicrobia-Chlamy-

diae (PVC) superphylum (Wagner and Horn 2006),

which is presently also formed by Lentisphaerae and

other sister phyla with Candidatus status (Lage et al.

2019). The first representative of this phylum was

identified nearly one century ago and mistakenly

classified as a floating fungus, which explains the

name of the phylum (Gimesi 1924).

Taxonomically, the phylum Planctomycetes is

presently divided into two classes, Planctomycetia

(Krieg et al. 2010) and Phycisphaerae (Fukunaga et al.

2009). In addition to members of these two classes,

Planctomycetes capable of anaerobic ammonium

oxidation (anammox) (Strous et al. 1999) form the

proposed Candidatus order Brocadiales (Jetten et al.

2010), a status that results from the current lack of an

axenic culture for any described member of the order.
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Planctomycetes and other PVC members such as

the Chlamydiae are unique in many aspects, such as

their cell biology (van Niftrik and Devos 2017). The

planctomycetal cell plan is distinctive from other

bacteria because of invaginations of the cytoplasmic

membrane which give rise to an enlarged periplasmic

space in several strains (Boedeker et al. 2017; Devos

2014; Lage et al. 2013; Santarella-Mellwig et al.

2013). Planctomycetes, as well as Chlamydiae, are

solely capable of dividing without the otherwise

universal division protein FtsZ, which is unique in

prokaryotes (Ouellette et al. 2020; Rivas-Marin et al.

2016a). Key proteins involved in cell division are still

unknown (Wiegand et al. 2020c). The phenomenon of

phagocytosis-like cell engulfment (exclusively known

until now in eukaryotes and therefore quite unique in

prokaryotes) was also spotted recently in the putative

planctomycete Candidatus ‘Uab amorphum’ (Shira-

tori et al. 2019).

Presently, Planctomycetes are still mysterious bac-

teria (Lage et al. 2019; Wiegand et al. 2018) and,

although ubiquitous, only a small percentage of the

known diversity is covered by axenic cultures (Wie-

gand et al. 2018). The description of novel taxa and the

expansion of our knowledge on the existing ones are

equally important to have a better understanding of the

biology of this fascinating group of bacteria. In fact,

recent efforts in the development of new isolation

techniques and sampling in different habitats resulted

in the isolation of numerous strains in the last years

(Boersma et al. 2020; Dedysh et al. 2020c; Devos et al.

2020; Kaushik et al. 2020; Kulichevskaya et al. 2017a;

Kulichevskaya et al. 2020a; Kulichevskaya et al.

2020b; Kumar et al. 2020a; Kumar et al. 2020b;

Kumar et al. 2020c; Lage et al. 2017; Pradel et al.

2020; Vitorino et al. 2020; Vitorino et al. 2021b;

Wiegand et al. 2020c). Wiegand and collaborators

made a remarkable contribution to the current planc-

tomycete collection by bringing into culture and

characterizing 79 planctomycetal strains, most of

which are new taxa (Wiegand et al. 2020c). Further-

more, recent re-arrangements in the planctomycetal

taxonomy have allowed the introduction of new

taxonomic groups (Dedysh et al. 2020c).

The main goal of this overview article is to gather

current knowledge on Planctomycetia, which is cur-

rently the class within the phylum Planctomycetes

with the highest number of characterized members.

This review, which puts the emphasis on taxonomy, is

based on data available on the currently and effec-

tively or validly described representatives. All com-

piled data from hitherto published species descriptions

is given in Supplementary Table 1a-d while an

overview of the major features and differences

between each family is presented in Table 1. Based

on the dataset, the phenotypic and genomic features of

the taxa are discussed. Additionally, information on

other isolates and environmental 16S rRNA gene

sequences, when available, was obtained by searching

for hits within the species threshold of 99% similarity

of the 16S rRNA gene in the National Center for

Biotechnology Information (NCBI) database using

BLAST search (data given in Supplementary

Table 1a).

The class Planctomycetia

Taxonomy

With a total of 108 formally described species,

Planctomycetia is currently the best studied class

within the phylum Planctomycetes (Supplementary

Table 1a-d). By comparison, the current class Phycis-

phaerae consists of only 9 published species. More

than half of the species described falling within the

class Planctomycetia (70) were either published in

2019, 2020 or 2021, which reflects the increasing

interest in an exploration of the diversity within this

class. The class is currently subdivided into four

orders, namely the type order Planctomycetales and

the orders Pirellulales, Isosphaerales andGemmatales

(Dedysh et al. 2020c). The order Planctomycetales has

only one family, Planctomycetaceae. The current

order Pirellulales in turn is divided into three families,

Pirellulaceae, Lacipirellulaceae and Thermogut-

taceae. The orders Isosphaerales and Gemmatales

harbour a single family, Isosphaeraceae and Gem-

mataceae, respectively. A partial 16S rRNA gene-

sequence-based tree was computed based on all type

strains to summarize the phylogeny of the families and

orders within the class Planctomycetia (Fig. 1).

To achieve a better insight on the phylogenetic

diversity within the class, we additionally searched for

the respective full-length 16S rRNA gene sequences in

the SILVA SSU Ref NR database (release 138.1 from

27 August 2020) (Quast et al. 2013) that putatively

belong to class Planctomycetia. We found 4871 non-
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redundant sequences in total, defined by a 99%

identity threshold. However, a large part of the list

of Operational taxonomic units (OTUs) corresponds to

organisms that have not yet been cultivated, which

underlines that only a small fraction of the known

diversity of the class is presently covered by axenic

cultures (approximately 2%) (Wiegand et al. 2018). In

that regard, the class Planctomycetia is largely unex-

plored. Nevertheless, the current number of axenic

cultures reflects the predicted abundance of this class

within the phylum: in comparison, the number of

OTUs for the phylum is 8657, of which more than half

belong to the class Planctomycetia while only 2484

correspond tomembers of the classPhycisphaerae and

the rest to other lineages. Based on the available

information, Planctomycetia seems to be the most

diverse class of the phylum Planctomycetes. However,

this assumption is purely based on the present

knowledge regarding the data available. As already

discussed previously (Wiegand et al. 2018), the entire

phylum Planctomycetes is still heavily underexplored

and novel taxa and even lineages are most likely

present in the environment but have not yet been

discovered.

Genomic characteristics

Of all hitherto described species falling in the class

Planctomycetia, the majority of the type strains have

currently a genome sequence available in the NCBI

database (as of October 2021), which has allowed in

the recent years for a more extensive analysis of this

group (Kallscheuer and Jogler 2021; Wiegand et al.

2020c) (Supplementary Table 1d). In total, in the

NCBI database, 145 non-redundant genome assem-

blies belonging to cultured organisms taxonomically

assigned to class Planctomycetacia are currently

available (excluding Metagenome-assembled gen-

omes (MAGs)). These genomes were used to compute

a genomic multilocus-sequence analysis-based tree

(MLST) (Alanjary et al. 2019) to visualize the

phylogenetic organization of the current class Planc-

tomycetia (Fig. 2). Furthermore, core information

clustered in this study for all Planctomycetia species

was additionally displayed in association to the tree

(Fig. 2).

The genome size is highly variable among species

within this class, with the smallest size of 4.3 Mb for

‘‘Botrimarina hoheduenensis’’ Pla111TT
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(Lacipirellulaceae) (Wiegand et al. 2020a) and the

biggest size of 12.4 Mb belonging to Fimbriiglobus

ruber SP5T (Gemmataceae) (Kulichevskaya et al.

2017a). Genome sizes are overall higher in plancto-

mycetes from families such as Isosphaeraceae and

Gemmataceae, which are almost exclusively present

in terrestrial and freshwater habitats (Table 1). The

DNA G ? C content is also highly diverse, ranging

from 45.1 mol% in Gimesia aquarii V144T (Plancto-

mycetaceae) (Wiegand et al. 2020b) to 71.3 mol% in

Urbifossiella limnaea ETA_A1T (Gemmataceae)

(Kallscheuer et al. 2020d). The higher values are also

correlated with planctomycetes that are inhabitants of

terrestrial environments (Table 1). In general, more

than 40% of the protein-coding genes are associated

with unknown functions (Wiegand et al. 2020c).

Data on genome-encoded features in the central

carbon metabolism was also gathered when available.

All examined strains harbour genes coding for

enzymes involved in glycolysis (Embden-Meyerhof-

Parnas pathway or the alternative Entner-Doudoroff

pathway), although, in some cases, not all genes could

be identified. The same was noticed for the tricar-

boxylic acid cycle and gluconeogenesis. Most species

had a fully functional pentose phosphate pathway but

no planctomycetal genome analysed so far showed a

complete glyoxylate shunt pathway. This pathway is

normally required for anaplerosis during growth with

fatty acids or acetate as sole carbon and energy source

(Chew et al. 2019). The lack of genes for this pathway

might support the hypothesis that members of class

Planctomycetia prefer sugars over carboxylic acids as

carbon and energy sources.

The bioactive potential of this class was also

evidenced by the presence of related biosynthetic gene

clusters in most available genomes (Wiegand et al.

2020c; Wiegand et al. 2018). These showed to be rich

in different genes encoding large multimodular pro-

teins such as Non-ribosomal peptide synthetases

(NRPSs) and Polyketide synthases (PKSs), as well

as in genes for production of terpenes, ectoines and

antibiotics such as bacteriocins and lanthipeptides,

among others (Kallscheuer and Jogler 2021; Wiegand

et al. 2020c; Wiegand et al. 2018). The production of

antimicrobial compounds empowers members of this

class with the ability to compete against other fast-

growing bacteria for space and food resources,

rendering them competitive in challenging

environments.

Morphology

Morphologically, members of the class Planctomyce-

tia are mostly spherical to ovoid, elongated or pear-

shaped and 0.5 to 2.5 lm in diameter or length and can

form aggregates, rosettes and even chains (Supple-

mentary Table 1b). Most species also have the

capacity to produce extracellular materials (e.g. hold-

fast or mucus substances or fibrous materials) that

allows them to live in an attached life style in biofilms.

Most species also display crateriform pits, either

Fig. 1 Phylogeny of the families and orders of class Plancto-
mycetia. The number of described species with 16S rRNA gene

available are given. The partial 16S rRNA gene-based tree was

constructed withMEGAX (Kumar et al., 2018) using type strain

sequences, which were retrieved from the NCBI database. The

alignment of sequences was performed with CLUSTALW

(Larkin et al., 2007) and the phylogeny was inferred by using the

Maximum Likelihood method and General Time Reversible

mode using the gamma substitution and estimation of proportion

of invariable sites option. Members belonging to the same

family were collapsed and the number of species within each

one presented. The outgroup consists of 3 members from the

phylum Verrucomicrobia
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distributed uniformly over the cell surface or only on

the reproductive pole. Overall, members of the class

Planctomycetia display what is considered a typical

planctomycetal cell structure, including a complex

pattern of cytoplasmic membrane invaginations (Boe-

deker et al. 2017; Lage et al. 2019; Wiegand et al.

2018). Colony colours within the class range from

unpigmented/white/beige to pink/red or orange. The

pigmentation is caused by the production of

carotenoids (Kallscheuer et al. 2019), while their

exact function remains to be elucidated.

Members of the class Planctomycetia divide by

budding (Lage et al. 2019; Wiegand et al. 2020c). This

is a striking difference to most other bacteria, which

divide by binary fission, including members of the

class Phycisphaerae (Fukunaga et al. 2009), as well as

the anammox planctomycetes (van Niftrik and Jetten

2012). Budding in bacteria is a rare division mode

shared only by a scarce number of taxa, such as

Fig. 2 Multi-locus- sequence analysis-based tree (MLST)

showing the phylogenomics of class Planctomycetia and a

summary of the core information clustered in this study. All
genomes currently available in the NCBI database of organisms

assigned to the class Planctomycetia were utilized to construct

the MLS tree, which was computed using the autoMLST:

Automated Multi-Locus Species Tree pipeline using default

gene parameters (Alanjary et al., 2019). The outgroup consists

of three members from phylum Actinobacteria (Streptomyces
spp.). Name labels in blue correspond to type strains of the

described species and names in black correspond to other strains

with the genome available at GenBank. Excluded species with

currently no genome available are Rhodopirellula lusitana,
Thermostilla marina, Novipirellula caenicola, N. rosea, Bre-
merella cremea, Thermogutta hypogea, ‘‘Singulispaera muci-
lagenosa’’, S. rosea, Tundrisphaera lichenicola, Planctomyces
bekefii, P. stranskae and P. guttaeformis. The datasets

containing the summarized information of Planctomycetia
species were added to the tree using the Interactive Tree Of

Life (iTOL) v5 online tool (Letunic and Bork, 2021)
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Caulobacter spp. and Hyphomicrobium spp., and

diverges from the budding normally associated to

yeasts (Stackebrandt et al. 1988). Planctomycetal

budding is characterized by the outgrowth of a bud

from the mother cell, which is regularly on the polar

side of the cell but can be formed laterally (Vitorino

et al. 2020; Wiegand et al. 2020c). Furthermore, other

unique division variations such as the formation of a

tubular neck-like structure between the mother and

daughter cells and consecutive budding were also

spotted in different Planctomycetia strains (Boersma

et al. 2020; Kohn et al. 2016; Lage 2013; Vitorino et al.

2020).

Ecology

Data on the ecology of the currently described

members of the class was gathered (Supplementary

Table 1a) and summarized in Fig. 3. Marine and

brackish environments are well-known habitats for

members of the class and material used for strain

isolation included diverse sources such as water,

sediments, marine organisms like algae, plants and

invertebrates (i.e. sponges, shrimps), etc. (Fig. 3a). In

particular, macroalgae are hotspot organisms that

harbour planctomycetal diversity (Bengtsson and

Ovreas 2010; Bondoso et al. 2014b, 2017; Lage and

Bondoso 2011, 2014). In fact, environments rich in

organic carbon sources such as macroalgal biofilms

that are composed of Extracellular polymeric sub-

stances (EPS) seem to favour the presence of members

of the class Planctomycetia. Furthermore, strains

belonging to the families Pirellulaceae and

Lacipirellulaceae were isolated from natural (wood

pellets) or artificial (polystyrene particles or poly-

ethylene) materials retrieved from marine/brackish

environments (Fig. 3a). On the other hand, freshwater

and terrestrial environments, seem to be promising

spots for the isolation of members of the families

Gemmataceae and Isosphaeraceae (Fig. 3b). Strains

affiliated to all families were also isolated from

‘extreme’ environments (such as hot springs and

hydrothermal vents) (Fig. 3b). The ranges regarding

temperature preference points towards potential dif-

ferences in the capacity of different taxa to adapt to

such conditions. Also, deep-surface environments

such as gold mines served as a source for the isolation

of Isosphaeraceae and Thermoguttaceae (Fig. 3b).

Although no strains were isolated from oil/petro-

leum/metal-contaminated environments so far, a vari-

ety of environmental 16S rRNA sequences likely

belonging to the families Pirellulaceae, Planctomyc-

etaceae and Gemmataceae were detected (Fig. 3b).

The indication of the presence of strains belonging to

this class in such environments demonstrates that

Planctomycetia members are promising organisms to

be studied in the context of bioremediation (either with

hydrocarbons or metals). So far, only uncultured

Planctomycetaceae, Gemmataceae, Lacipirellulaceae

and Thermoguttaceae were detected in anaerobic

reactors/activated sludge or wastewater treatment

plants (Fig. 3b). Taken together, known members of

this class, although mostly distributed in marine and

freshwater environments, appear to adapt well to a

variety of different habitats (Fig. 3).

In terms of the geographical distribution of known

Planctomycetia (Fig. 4), sampling and isolation cam-

paigns focused on a limited number of locations

around the globe, in particular the European coast. The

Mediterranean Sea around Italy, including the Aeolian

Islands, turned out to be a promising location for the

isolation of members of all families with exception of

Gemmataceae. A variety of strains from the families

Pirellulaceae, Lacipirellulaceae and Planctomyc-

etaceae was also obtained from German coastlines

of the North and Baltic Sea and the Spanish and French

coastlines/islands (Wiegand et al. 2020c). The North

Coast of Portugal in the Atlantic ocean is also

inhabited by diverse Planctomycetaceae and Pirellu-

laceae (Bondoso et al. 2014b, 2017; Lage and

Bondoso 2011, 2014), as well as the Norwegian coast

(Bengtsson and Ovreas 2010). Additional coastlines

from which Planctomycetaceae and Pirellulaceae

were isolated are the Californian coast (Wiegand

et al. 2020c) and the eastern Australian coast (Izumi

et al. 2013). Valu Fa Ridge in the Southwest Pacific is

also a location with abundant Pirellulaceae and

Planctomycetaceae, as well as Lacipirellulaceae

(Storesund et al. 2018). Numerous locations in Russia,

namely peat bogs, subarctic lands and lakes, also serve

as habitats for a variety of known Gemmataceae and

Isosphaeraceae, as well as some Pirellulaceae and

Lacipirellulaceae (Dedysh and Ivanova 2019; Ivanova

et al. 2016; Kulichevskaya et al. 2017a, 2015, 2017b).

An isolation campaign in India also revealed diversity

of Planctomycetia (Gaurav et al. 2021; Kaushik et al.

2020; Kumar et al. 2020a; Kumar et al. 2020b; Kumar
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et al. 2021a; Kumar et al. 2020c; Kumar et al. 2021b;

Kumar et al. 2021c). Based on NCBI data, additional

locations with shown planctomycetal variety include

territories in the United States and India but also other

regions on the globe, including China, Mexico,

Antarctica, Pacific Ocean, Philippines, Indonesia,

Papua New Guinea, Japan and South Korea (Fig. 4),

which makes them good candidates for future diver-

sity and isolation studies. Taken together, known

members of the class Planctomycetia seem to be well

distributed around the globe and found when searched

for (Fig. 4). Exploring different niches and locations is

crucial to help bringing new taxa into pure culture and

unveil the untapped planctomycetal diversity.

Physiology and metabolism

Most of the currently described members of the class

Planctomycetia are aerobic (Lage et al. 2019; Wie-

gand et al. 2020c) while members of the class

Phycisphaerae are mostly facultatively or strictly

anaerobic (Dedysh et al. 2020a; Wiegand et al. 2018).

In general, Planctomycetia comprises heterotrophic,

neutrophilic, and mesophilic strains (Supplementary

Table 1c). Members of this class are rather slow-

growing bacteria, with the shortest doubling time of

around 5 h (Yadav et al. 2018) and the largest of up to

140 h (Salbreiter et al. 2020), both belonging to family

Planctomycetaceae. A variety of species have a motile

Fig. 3 Habitat distribution of the currently taxonomically

described members of the families within the class Plancto-
mycetia. In (a), the marine and brackish water ecosystems

display a very distinctive planctomycetal distribution compared

to freshwater/terrestrial/other environments (b). Data from type

strains was obtained from species description studies and

information on other isolates and environmental 16S rRNA gene

sequences, when available, was obtained by searching for hits

defined by a threshold of 99% similarity of the 16S rRNA gene,

in the NCBI database using the BLAST search
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stage in a dimorphic lifecycle (Gade et al. 2005). Most

Planctomycetia are resistant to several antibiotics

(Supplementary Table 1c) (Cayrou et al. 2010;

Godinho et al. 2019; Ivanova et al. 2021b), e.g. the

beta-lactam ampicillin and the aminoglycoside strep-

tomycin, which are the components of a common

antibiotic mixture used in isolation medium for the

selective enrichment of planctomycetes (Lage and

Bondoso 2012; Wiegand et al. 2020c) and also

glycopeptides (Godinho et al. 2019). Although most

species do not require vitamins for growth, the use of

vitamin B12 (cyanocobalamin) as supplement

enhances their growth.

Analysis of carbohydrate utilization patterns of

Planctomycetia assessed by traditional assays (Sup-

plementary Table 1c) showed that most species are

capable of using diverse sugars and other complex

polysaccharides as carbon and energy source. Fur-

thermore, most species can also utilize peptone, yeast

extract, urea, nitrate, and ammonium as nitrogen

sources. N-acetyl glucosamine can act both as a source

of carbon and nitrogen (Schlesner 1994). Members of

Gemmataceae and Isosphaeraceae and, more specif-

ically, strains isolated from the microbial community

inhabiting boreal Sphagnum peat bogs and lichen-

dominated tundra wetlands, also show the ability to

grow on compounds like xylan, pectin, starch,

lichenan, cellulose, chitin and polysaccharides of

microbial origin, which demonstrates their versatile

hydrolytic capabilities and wide repertoires of carbo-

hydrate-active enzymes (Dedysh and Ivanova 2019;

Rakitin et al. 2021).

The fatty acid (FA) composition present in the

various families is dominated by C16:0 with the

exception of the family Gemmataceae, in which

C18:0 and C16:1x5c are the major fatty acids. Besides

C16:0, the families Pirellulaceae, Lacipirellulaceae

and Isosphaeraceae also have C18:1x9c as another

major FA and the representatives of Thermoguttaceae

have a large content of C18:0. In general, the Planc-

tomycetaceae possesses C16:1x7c. Although a com-

prehensive analysis on all the described species is not

available, FA profiles are, to a certain extent, taxo-

nomically indicative. The main respiratory quinone

found in this class is menaquinone 6 (MK-6).

In the following sections, data will be discussed at

the family level, including the main distinctive

features between the six families of class Plancto-

mycetia which are summarized in Table 1. Further-

more, particular aspects of Planctomycetia species

currently described will also be presented.

Fig. 4 Geographical distribution of the currently taxonomically

described members of the families within the class Plancto-
mycetia. Data from type strains was obtained from species

description studies and information on other isolates and

environmental 16S rRNA gene sequences, when available,

was obtained by searching for hits, defined by a threshold of

99% similarity of the 16S rRNA gene, in the NCBI database

using the BLAST search
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Family Planctomycetaceae

The type family Planctomycetaceae currently com-

prehends 14 genera and 29 species and is the second

largest family in terms of isolated and studied

members (Table 1). The type genus Planctomyces

comprises three members, including the first plancto-

mycete, Planctomyces bekefii (Gimesi 1924). The

genus is constituted by as-yet-uncultivated plancto-

mycetes with validly published names, namely the

type species P. bekefii, P. stranskae and P. guttae-

formis (Gimesi 1924; Starr and Schmidt 1984).

Certain pieces of information are available for these

taxa, however, it is crucial to bring them into pure

culture to allow a full description, as already evi-

denced by Dedysh et al. (Dedysh et al. 2020b). The

remaining described species are listed in Table 2, as

well as their main features.

Members of this family are mostly spherical to

ovoid but can also be rice/pear-shaped. Thalas-

soglobus polymorphus Mal48T, as the name indicates

(‘‘polymorphus’’: multiform, various shapes of the

cells), has typically pear-shaped cells but other forms

(such as coccoid and ovoid cells) are also observed

(Rivas-Marin et al. 2020c). Members of Planctomyc-

etaceae can be generally found in aggregates or

rosettes, often harbour stalk-like structures and many

members produce a holdfast structure. Morphologi-

cally, members of the genus Planctomyces are distinct:

P. bekefii has a unique morphotype of rosettes formed

by cells separated through stalk-like structures, which

was the morphotype initially used for the distinction of

this phylum (Dedysh et al. 2020b; Gimesi 1924). The

other two Planctomyces species have also distinctive

morphotypes: P. stranskae was described as a bulb-

iform bacterium with numerous multifibrillar appen-

dages and bristles extending from the spherical end of

the cell, while P. guttaeformis is described as a bulb-

shaped bacterium with only one prominent multifib-

rillar appendage, like a spike (but not a stalk) (Starr

and Schmidt 1984). Other species also possess distinct

morphological features, such as Caulifigura coni-

formis Pan44T, which has an uncommon cell texture

comprised of triangles or rectangles (resembling a

pinecone) (Kallscheuer et al. 2020e), and Schlesneria

paludicola MPL7T, which has short stalk-like struc-

tures which resemble twisted fibrils connecting the

cells (Kulichevskaya et al. 2007). Thalossoglobus

neptunius KOR42T differs from others by being the

only family member capable of occasional aggrega-

tion in filaments (Kohn et al. 2020a). Calycomorpho-

tria hydatis V22T possesses striking cell internal

characteristics, such as putative filamentous

cytoskeletal elements (Schubert et al. 2020). Although

all known class members divide by budding, several

members of this family have distinctive variations of

the cell division process, such as polar and lateral

budding inAlienimonas chondriLzC2T (Vitorino et al.

2020; Vitorino et al. 2021a), consecutive budding in A.

californiensis CA12T (Boersma et al. 2020) and the

formation of a tubular-like structure between mother

and daughter cells in A. chondri LzC2T, Planctopirus

hydrillae JC280T (Yadav et al. 2018) and Fuerstiella

marisgermanici NH11T (Kohn et al. 2016; Kohn et al.

2019). Most members are white/cream to pink

pigmented while species Maioricimonas rarisocia

(type strain Mal4T) and Rubinisphaera brasiliensis

(type strain IFAM 1448 T) are orange coloured

(Kallscheuer et al. 2019; Rivas-Marin et al. 2020b;

Schlesner 1989).

The family comprises, in general, heterotrophic,

mesophilic, aerobic and neutrophilic organisms,

although some members such as the strains isolated

from the microbial communities inhabiting boreal

tundra wetlands can be psychrotolerant and/or acid-

tolerant (Supplementary Table 1c). Overall, the most

common fatty acids found in the family are palmitic

acid (C16:0), palmitoleic acid (C16:1x7c) and C18:1x7
but some members display a different lipid profile,

such as F. marisgermanici NH11T, which is mainly

constituted by fatty acids C16:1x6c and C18:1x7c
(Kohn et al. 2016; Kohn et al. 2019), R. italica Pan54T

with the uncommon fatty acid C15:0 iso2-O

(Kallscheuer et al. 2020b) and A. chondri LzC2T

which produces iso-C15:0 and anteiso-C15:0 in major

amounts (Vitorino et al. 2020, 2021a). Additional

uncommon fatty acids (either C14:0,3-OH or C16:1iso)

are also part of the lipid composition of most known

members of the genus Gimesia. The main polar lipids

found in the family are phosphatidylglycerol, di-

phosphatidylglycerol, phosphatidylcholine, phos-

phatidyl-dimethylethanolamine, phosphocholine and

phosphatidyl-monomethylethanolamine besides a

variety of non-identified lipids. Planctomicrobium

piriforme P3T is different from other family members

by having a specific polar lipid composition (diacyl-

glycerol-O-(N,N,N-trimethyl)homoserine lipid plus

phosphocholine (Kulichevskaya et al. 2015).
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Although menaquinone 6 is the main respiratory

quinone found in the class, an additional one,

menaquinone 7 (MK-7), was found in P. hydrillae

JC280T (Yadav et al. 2018).

As referred previously, members of this family are

geographically widely distributed (Fig. 4) and present

in a variety of marine habitats, such as sediments, the

water column and in association with macro- and

microalgae, plants and animals (Fig. 3). Gimesia spp.

are particularly widely spread in different marine

locations and have also been isolated and detected in

extreme environments, such as hot lakes and petro-

leum- and metal-contaminated sites (Supplementary

Table 1a) which makes the members of the genus

Gimesia promising organisms for future studies deal-

ing with bioremediation of contaminated locations.

Some members of the family such as Planctopirus

spp., P. piriforme and S. paludicola are exclusively

found in freshwater associated environments.

Members of family Planctomycetaceae turned out

to be good candidates for future studies focusing on

bioactive molecules: P. limnophila, P. hydrillae and R.

brasiliensis strains showed antimicrobial activity

(Graca et al. 2016; Jeske et al. 2016; Yadav et al.

2018). Additionally, the first detected phage capable

of infecting a planctomycete was observed in P.

ephydatiae spb1T and posteriorly isolated and charac-

terized (Kohn et al. 2020b).

The average genome size in this family is approx-

imately 6.9 ± 1.1 Mb and it ranges from 5.16 to

8.92 Mb. The mean DNA G ? C content is

54.8 ± 6.6 mol% (the lowest of the class) and it

ranges from 45.1 to 70.7 mol%. P. limnophila MU

290 T, the only family member harbouring a plasmid,

is considered a model organism for planctomycetal

studies and has been one of the few successfully

genetically modified planctomycetes (Boedeker et al.

2017; Jeske et al. 2016; Rivas-Marin et al. 2016b;

Rivas-Marin et al. 2020a).

During the analysis of the family, we encountered a

taxonomic conflict regarding the genus Gimesia. The

16S rRNA gene comparison between G. benthica E7T

and G. chilikensis JC646T indicated that these two

species are very similar (99.9% similarity). Both

species descriptions were published almost at the same

time (May and June 2020) (Kumar et al. 2020a; Wang

et al. 2020) and both names are currently valid. The

resulting conflict required reassessment of the phy-

logeny of the two strains. In fact, Wiegand and

collaborators already employed several phylogenetic

markers (rpoB gene identity, Average nucleotide

identity (ANI), Amino acid identity (AAI) and

percentage of conserved proteins) to re-analyse phy-

logenetic positions and concluded that the two strains

belong to the same species (in this case,G. chilikensis,

which was published and validated first) (Wiegand

et al. 2020b). By the comparative analysis of our data

clustered for both strains (Supplementary Table 1) we

corroborate that these strains are indeed highly similar

in morphological and physiological traits. Strain E7

should therefore be re-classified as a strain of the

species G. chilikensis.

Family Pirellulaceae

The family Pirellulaceae is the group with the highest

number of studied members in the entire class

Planctomycetia (Table 1) and comprises 15 described

genera and 39 species. The type genus Pirellula is

constituted by a single species, Pirellula staleyi

(Schlesner and Hirsch 1987) that was the first

Pirellulaceae isolated, although it was originally

named Planctomyces staleyi (Staley 1973) and then

Pirella staleyi (Schlesner and Hirsch 1984). All

described species are listed in Table 3 and their main

traits presented. Very recently, an additional member

of this family, Candidatus ‘‘Laterigemmans bacula-

tus’’ was described (Kumar et al. 2021a), which

possesses the Candidatus status due to the loss of

viability in the laboratory culture (Kumar et al. 2021a).

Members of the family Pirellulaceae are often

ovoid/pear-shaped/elongated (‘‘pirellula’’ = small

pear) and rosettes are the most common form of

aggregation, with exception of species Rhodopirellula

solitaria CA85T that does not aggregate at all (Sup-

plementary Table 1b). The recently described Candi-

datus ‘‘Laterigemmans baculatus’’ was the first

reported rod-shaped planctomycete in the family

(Kumar et al. 2021a). Stalk-like structures have never

been observed in members of this family. Most species

have a motile stage and produce a holdfast structure or

fibrous materials. A strong glycocalyx or extracellular

polymeric substance (which renders the cells adhe-

sive) were additionally observed for some members of

the genus Rubripirellula (R. obstinata LF1T and R.

tenax Poly51T) (Bondoso et al. 2015; Kallscheuer

et al. 2020c). The main colony colours in the family
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are white and pink while Stieleria varia Pla52T is the

sole member of the family to form orange-pigmented

colonies (Surup et al. 2020).

Current data on known Pirellulaceae shows that

they are wide-spread around the globe (Fig. 4) and live

mostly in a variety of marine habitats (Fig. 3).

Members of the genus Rhodopirellula seem to be the

most disseminated one in these environments (Sup-

plementary Table 1a) and they are often strongly

associated with different macroalgal species (Bondoso

et al. 2017; Lage and Bondoso 2011, 2012; Schlesner

et al. 2004; Winkelmann and Harder 2009). Strains

from the genera Pirellula and ‘‘Anatilimnocola’’ were

only found in freshwater environments. Pirellulaceae

strains belonging to additional genera, such as

Novipirellula and Rubripirellula, were isolated from

non-natural and abiotic surfaces like polystyrene or

polyethylene particles. One strain affiliated to the

genus Bremerella was isolated from an anaerobic,

sulfide- and sulfur-rich spring in Oklahoma (Elshahed

et al. 2007) and an uncultured clone putatively from

the same genus was detected in chromium-contami-

nated tannery sludge, which indicates that Bremerella

spp. may be promising organisms with relevance in

bioremediation studies.

In general (Supplementary Table 1c), Pirellulaceae

are heterotrophs and aerobes, with few exceptions

capable of microaerobic or anaerobic growth, such as

Rhodopirellula rubra, Rhodopirellula lusitana and

Blastopirellula marina. They all divide by polar

budding, with the exception of the recently described

Candidatus ‘‘Laterigemmans baculatus’’, which is

also capable of lateral budding (Kumar et al. 2021a).

Overall, Pirellulaceae are neutrophilic and mesophi-

lic, with a few psychrotolerant species. Members of

this family have the smallest generation times of the

current class Planctomycetia, with a mean value of

15.3 ± 7.4 h, with exception of Aureliella helgolan-

densis Q31aT, which has a relatively high doubling

time (41 h). Some members require vitamin B12 for

growth. Phosphatidylcholine, diphosphatidylglycerol

and phosphatidylglycerol are the main polar lipids

found in the studied strains, however, a chemotaxo-

nomic analysis was not presented in a considerable

number of studies describing members of this family.

Moreover, still unknown (phospho)lipids are also

present in most species. Studies with Novipirellula

rosea LHWP3T (Roh et al. 2013) showed that it

produces an extra polar lipid rare in the family:

phosphatidylethanolamine. The major fatty acids

found in members of this family are oleic/elaidic acid

(C18:1x9) and palmitic acid (C16:0), while P. staleyi

ATCC 27377 T also produces the long-chain unsatu-

rated fatty acid C20:1x11c and Mariniblastus fucicola

FC18T the C14:0 myristic acid in major amounts, which

are unique in the family.M. fucicola FC18T is also the

only member in the class Planctomycetia to produce

menaquinone 5 (MK-5) besides the standard mena-

quinone 6 (MK-6) found in planctomycetes.

As briefly discussed previously, Planctomycetia

have the genomic potential to produce secondary

metabolites with potential biotechnological applica-

tions (Kallscheuer and Jogler 2021). The natural

function of such compounds is probably linked to

the survival in complex and competitive habitats such

as macroalgae biofilms (Graca et al. 2016). In fact,

Pirellulaceae have been demonstrated to be promising

organisms for bioprospection, in particular Bremerella

members. Cell extracts of these bacteria have been

linked to anti-cancer activity (Calisto et al. 2019),

Roseimaritima ulvae UC8T showed antimicrobial

activity (Graca et al. 2016) and diverse strains from

the genus Rhodopirellula showed antimicrobial and

anti-cancer activities (Calisto et al. 2019; Graca et al.

2016; Jeske et al. 2016). Members of the genus

Stieleriawere the source for the isolation of a new type

of secondary metabolite with moderate antimicrobial

activity named stieleriacine (Kallscheuer et al. 2020a;

Sandargo et al. 2020). Moreover, R. rubra LF2T was

studied for its adequacy as a supplementary food

source for Daphnia magna (Marinho et al.

2019, 2018).

R. baltica SH1T was the first planctomycete with a

sequenced genome (Glockner et al. 2003) and cur-

rently 64 genomes of strains belonging to this family

are available. The average genome size in this family

is approximately 7.7 ± 1.2 Mb with a minimum and

maximum size of 6.1 and 11.0 Mb, respectively. The

mean DNA G ? C content is 56.5 ± 2.5 mol% and it

ranges from 49.5 to 62.4 mol%. No current member of

the family harbours a plasmid.

A phylogenetic analysis of the family led to a

taxonomic conflict between the validly published

genus Stieleria and the more recently and not yet

validated name of the genus ‘‘Roseiconus’’ (Kumar

et al. 2020c). This is possibly related to the fact that the

genus description of Stieleria was not published in a

taxonomy journal, but in the context of the analysis of
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identified stieleriacines. Based on the 16S rRNA gene

comparison between the five taxa (2 species of

‘‘Roseiconus’’ and 3 species of Stieleria), we found

that ‘‘Roseiconus lacunae’’ JC635T is more similar to

other Stieleria than to ‘‘Roseiconus nitratireducens’’,

with a 16S rRNA gene sequence similarity of 99.36%

between ‘‘R. lacunae’’ JC635T and its closest relative

S. neptunia Enr13T. On the other hand, ‘‘R. nitratire-

ducens’’ JC645T shares 96.9% 16S rRNA gene

similarity with its closest relative S. maioricaMal15T.

Following the rules of priority, these analysis suggest

that ‘‘Roseiconus lacunae’’ JC635T is a strain that

belongs to species S. neptunia and that ‘‘R. nitratire-

ducens’’ JC645T is probably a new species within the

genus Stieleria (following the well-established thresh-

olds for delineation of new species of 98.7% and new

genera of\ 94.5% (Yarza et al. 2014)). However, the

use of the 16S rRNA gene as sole phylogenetic marker

is not always reliable for phylogenetic inference in the

phylum Planctomycetes (Kallscheuer et al. 2020a;

Kohn et al. 2020b; Wiegand et al. 2020b). Re-analysis

of the phylogenetic position of both ‘‘Roseiconus’’

species using other phylogenetic markers is thus

envisaged, ideally before the names of the genus

‘‘Roseiconus’’ and the proposed species belonging to

the genus are validly published.

Family Lacipirellulaceae

The current family Lacipirellulaceae comprises 8

genera and 13 species (Table 1 and 4). Bythopirellula

goksoeyrii Pr1dT (initially described as ‘‘Bythopir-

ellula goksoyri’’), was the first identified member of

this family (Storesund and Ovreas 2013, 2021), how-

ever, the type genus is Lacipirellula and the type

species L. parvula (Dedysh et al. 2020c).

Most known members of this family were isolated

in marine habitats, either on natural (algae, wood,

sediments) or artificial (polyethylene) surfaces

(Fig. 3). Dedysh and collaborators (Dedysh et al.

2020c) also demonstrated that several members are

preferably found in low-oxygen aquatic habitats,

which is corroborated by the isolation and detection

of strains in sites such as wastewater treatment plants,

hydrothermal vents and the gut microbiome of some

aquatic invertebrates (Supplementary Table 1a). The

genus Lacipirellula is the sole genus of the family to

be exclusively found in freshwater habitats.

Members of this family are overall pear-shaped/

ovoid/ellipsoidal and cells are mostly observed in

aggregates (Supplementary Table 1b), although

rosettes were additionally found in L. parvula PX69T

and Posidoniimonas corsicanaKOR34T (Dedysh et al.

2020c; Wiegand et al. 2020a). No stalks were

observed. Most members produce fibrous extracellular

materials or a holdfast structure which helps in cell

aggregation. Aeoliella mucimassa Pan181T was

described as forming very fibrous materials and slime

(Wiegand et al. 2020a) and Bythopirellula polymeriso-

cia Pla144T was found to be able to attach to

polymeric material (Wiegand et al. 2020a). Pirelluli-

monas nuda Pla175T differs from its relatives by an

uncommon absence of matrix or fibers (Wiegand et al.

2020a). Members from this family are either unpig-

mented/white or hot pink/red pigmented, with cur-

rently no orange-pigmented species.

In general, Lacipirellulaceae are aerobic, mesophi-

lic, neutrophilic and heterotrophic, with the exception

of L. parvula PX69T which is microaerobic and

facultatively anaerobic (Supplementary Table 1c).

This family has the highest mean doubling time

(43.0 h ± 26.6 h) of the class Planctomycetia with

the lowest doubling time of 17 h of Pseu-

dobythopirellula maris Mal64T and the highest of B.

polymerisocia Pla144T(94 h). The fatty acids

C16:1x9c, palmitic acid (C16:0), oleic/elaidic acid

(C18:1x9), palmitoleic acid (C16:1x7c) and stearic

acid (C18:0) are the major ones found in this family,

although a chemotaxonomic analysis was not pre-

sented for most members. The same is true for the

polar lipid content: the only compound detected until

now was dimethylphosphatidylethanolamine in L.

parvula PX69T (Dedysh et al. 2020c).

Although the family Lacipirellulaceae was only

recently introduced, the biotechnological potential of

its members is already starting to be unveiled:

antimicrobial activity was recently detected in L.

parvula PX69T (Belova et al. 2020). Similar to

Pirellulaceae and Planctomycetaceae, Lacipirellu-

laceae are present in complex habitats rich in micro-

bial diversity, and we can hypothesize that production

of antimicrobial metabolites by these organisms can

give them advantage to survive in such environments.

The average genome size in this family is

6.1 ± 0.8 Mb and it ranges from 4.30 to 6.83 Mb.

The average DNAG ? C content is 62.1 ± 5.3 mol%

and it ranges from 52.8 to 66.7 mol% (Supplementary
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Table 1d). The presence of a plasmid was only

reported in one member, L. parvula PX69T (Dedysh

et al. 2020c).

Family Thermoguttaceae

The family Thermoguttaceae is underrepresented in

terms of isolated strains and is constituted by only 2

genera and 3 species (Table 1 and 5). The genus

Thermogutta includes two species, T. terrifontis and T.

hypogea (Slobodkina et al. 2015). An additional strain

of this genus that was initially designated ‘‘Ther-

mopirellula anaerolimosa’’ VM20-7 was isolated

from an anaerobic sludge blanket and described as

an obligate anaerobic hydrogen-producing ther-

mophilic bacterium (Liu et al. 2012). However, the

genus ‘Thermopirellula’ was not formally described

and thus the strain was added as a member of the

species T. terrifontis (Slobodkina et al. 2015). The

genus Thermostilla has only one species, T. marina

(Slobodkina et al. 2016).

Members of this family are coccoid to ellipsoidal,

form aggregates and are motile. No pink or orange

pigmentation was observed in this family, as all

members are white/cream pigmented (Supplementary

Table 1b).

They can be found in extreme environments (such

as hot springs, hydrothermal vents, high-temperature

horizons) and deep-subsurface sites (such as gold

mines) and were also detected in anaerobic reactors

(Fig. 3b and Supplementary Table 1a).

All current members are thermophilic, facultatively

anaerobic and capable of microaerobic growth, neu-

trophilic, halotolerant and chemoorganotrophic (Sup-

plementary Table 1c). Palmitic acid (C16:0), stearic

acid (C18:0) and eicosanoid acid (C20:0) are the major

fatty acids in the family and T. marina produces an

additional fatty acid (11-methyl C18:0) (Slobodkina

et al. 2016). Data on polar lipid and respiratory

quinone content is currently not available.

Only one member (Thermogutta terrifontis R1T)

has a genome sequence available for further analyses:

with 4.8 Mb, the genome is relatively small and no

plasmids are present (Supplementary Table 1d). The

average DNA G ? C content between the three

current members is 60.8 ± 0.8 mol% and the range

is from 57.3 to 66.6 mol%.

Family Isosphaeraceae

The family Isosphaeraceae is constituted by 6 genera

and 13 published species (Table 6).

The type genus Isosphaera was the first described

genus of the family. The type species is Isosphaera

pallida (Giovannoni et al. 1987).

Members of this family (Supplementary Table 1b)

have spherical cells which are found singly, in pairs,

aggregates or even chains (filaments). Cells connected

by chains were observed in Paludisphaera borealis

PX4T, Tundrisphaera lichenicola P12T and Iso-

sphaera pallida 1S1BT (Giovannoni et al. 1987;

Kulichevskaya et al. 2017b, 2016). I. pallida 1S1BT

is the only planctomycete that forms long filaments

with often more than one hundred cells (Giovannoni

et al. 1987). No stalk-like structures were observed in

members of this family. Cells are non-motile and

colonies pink pigmented while Singulisphaera acid-

iphila MOB10T and ‘‘Singulisphaera mucilagenosa’’

Z0071T are the sole unpigmented/milky-yellow-pig-

mented members of the family. Distinctive character-

istics are observed in some species, such as phototactic

gliding motility in I. pallida 1S1BT (Giovannoni et al.

1987) and the tendency to attach strongly to plastic

surfaces for Tautonia plasticadhaerens ElPT, a char-

acteristic that justifies its name (Jogler et al. 2020).

Members of this family are primarily found in

freshwater and terrestrial environments (Fig. 3). The

majority of the isolated strains were retrieved from

boreal regions in Russia and acidic wetlands (Fig. 4),

while other species such as I. pallida and T. sociabilis

were isolated from extreme environments such as hot

springs (Giovannoni et al. 1987) and a deep subsurface

environment (gold mine) (Kovaleva et al. 2019),

respectively. The genus Tautonia is the only genus of

the family with isolates from marine environments, in

this case macroalgae biofilms and sediments (Jogler

et al. 2020).

Members of this family are heterotrophic, neu-

trophilic, mesophilic and aerobic, although some

members such as P. borealis and Singulisphaera

spp. are also capable of microaerobic growth (Sup-

plementary Table 1c). As most members were isolated

from cold regions and acidic wetlands, most species

are also acid-tolerant and psychrotolerant, while

others isolated from extreme environments are ther-

motolerant, which is the case for I. pallida 1S1BT and

T. sociabilis (Giovannoni et al. 1987; Kovaleva et al.
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2019). Almost all known members are salt-sensitive,

with the exception of the strains isolated from marine

environments belonging to the genus Tautonia (Gau-

rav et al. 2021; Jogler et al. 2020). The average

doubling time in the family is 29.9 ± 8.0 h and

Aquisphaera giovannonii OJF2T has the highest

doubling time (48 h) of the family, although this data

is not available for most of the other family members.

The major fatty acids in the family are oleic/elaidic

acid (C18:1x9), palmitic acid (C16:0) and stearic acid

(C18:0). Members of the genus Singulisphaera produce

an additional rare fatty acid: C18:2x6c,12c. The main

polar lipids are phosphatidylcholine, phosphatidyl-

glycerol, trimethylornithine and phosphocholine.

The average genome size in this family is

8.3 ± 1.7 Mb, the average DNA G ? C content is

64.1 ± 6.0 mol% (the highest in the class) and almost

all known members possess more than one plasmid,

which is very distinctive in comparison to the other

families. The I. pallida type strain IS1BT has the

smallest genome of the family (5.4 Mb) and A.

giovannonii OJF2T the largest one (10.4 Mb).

Family Gemmataceae

The family Gemmataceae contains 9 genera and 11

species, which are listed in Table 7. Gemmata was the

first identified genus with the description of G.

obscuriglobusUQM 2246 T (Franzmann and Skerman

1984).

Gemmataceae are mostly spherical and can be

found singly and more often in shapeless aggregates,

although some species can assemble in rosettes or in

short chains, such as the cells of Frigoriglobus

tundricola PL17T (Kulichevskaya et al. 2020a).

Stalk-like structures are observed in some species,

namely Limnoglobus roseus PX52T, Telmatocola

sphagniphila SP2T and Zavarzinella formosa A10T.

All known members are pink/red-pigmented. The

cytoplasmic membrane invaginations (a characteristic

cell biological features of planctomycetes) can be re-

arranged in an even more complex way in some

Gemmataceae (Sagulenko et al. 2014), which is the

case ofG. obscuriglobus, which shows a very complex

cytoplasmic membrane invagination system (Santar-

ella-Mellwig et al. 2013). In fact, several studies

regarding cell structure, division and genetic manip-

ulation have focused on this species (Boedeker et al.

2017; Jeske et al. 2015; Rivas-Marin et al. 2016b;

Sagulenko et al. 2014; Sagulenko et al. 2017). A

tubulo-vesicular network was also reported in G.

obscuriglobus, which is unique among prokaryotes

and reveals similarities with the endocytosis that is

exclusively associated with eukaryotes (Acehan et al.

2014). Taken together, these studies demonstrated

how complex and unique it is the Planctomycetes cell

biology. Other distinctive morphotypes are also seen

in this family, such as the cells from T. sphagniphila

SP2T which cluster in unique dendriform-like struc-

tures (Kulichevskaya et al. 2012b). Z. formosaA10T is

the only taxon of the family forming a holdfast

structure, which supports aggregation in rosettes

besides the formation of abnormally thick stalk-like

structures (Kulichevskaya et al. 2009).

Known members of the family are found in

freshwater and terrestrial environments (Fig. 3). ‘‘G.

massiliana’’ IIL30T was initially isolated from a water

network in a hospital (Aghnatios et al. 2015) and

consequently Gemmata-like organisms have been

hypothesized as possible opportunistic human patho-

gens (Aghnatios and Drancourt 2016), however, this

still remains to be clarified (Wiegand et al. 2018).

Thermogemmata fonticola 2918 T is the only

Gemmataceae member isolated from a terrestrial hot

spring (Elcheninov et al. 2020). Furthermore, uncul-

tured strains belonging to this species were detected in

other hot springs (including the radioactive Paralana

hot spring in Australia), in sediments from an U.S.

Department of Energy contaminated site (Abulencia

et al. 2006) and associated with the marine inverte-

brate Pocillopora meandrina found in the Pacific

Ocean.

The family comprises, in general, heterotrophic,

mesophilic, neutrophilic and aerobic organisms, how-

ever, a small number of members are also psychrotol-

erant (F. tundricola and T. sphagniphila) or

thermophilic (T. fonticola) or acid tolerant (e.g.

Frigoriglobus ruber SP5T and T. sphagniphila) (Sup-

plementary Table 1c). All the isolated strains are

halophobic. The average doubling time in the family is

21.8 ± 14.5 h, however, this data is not available for

all members. Strain MBLW1T of the species Tuwon-

gella immobilis has a low doubling time (6 h) in

comparison to the other family members (Seeger et al.

2017). The main fatty acids in the family are stearic

acid (C18:0), C18:1x5c and C16:1x5c. In T. fonticola

2918 T, C20:0 fatty acids were also detected. The fatty
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acid composition in F. ruber SP5T differs from the

other family members as it includes C20:1x9c,
C16:1x9c and C16:0 as the major fatty acids. In this

family, the fatty acid C18:1x7c is produced in major

amounts by only L. roseus PX52T and the uncommon

fatty acid (bOH-C16:1) by F. tundricola PL17T. The

main polar lipid is trimethylornithine, although others

such as phosphatidylglycerol, dimethylphos-

phatidylethanolamine, monomethylornithine and

dimethylornithine can be present.

The average genome size in this family is approx-

imately 9.1 ± 2.2 Mb (among the highest in the

class). The largest genome of the class Planctomycetia

(and even of the entire phylum) belongs to F. ruber

SP5T (12.4 Mb), while T. fonticola 2918 T has a small

genome (4.81 Mb) compared to the average size in the

family (9.1 Mb). The average DNA G ? C content is

63.5 ± 4.6 mol% and Urbifossiella limnaea

ETA_A1T has the highest DNA G ? C content of

the class Planctomycetia (71.3 mol%). F. tundricola

PL17T is the only member of the family that possesses

a plasmid.

Conclusions

In this overview article, the clustered data obtained

from species description studies dealing with members

of the class Planctomycetia, allowed for a more

holistic view and comparison of phylogeny, ecology,

morphology, physiology, and genomic traits of the

cultured taxa in this group. Shared as well as

distinctive (or even unique) features of the different

families are presented and discussed. This overview

showed the importance of a complete characterization

of the novel taxonomic groups, namely genomic

information, chemotaxonomy and physiology of the

strains, to allow a better discrimination between taxa.

The last decades were a great momentum for the

discovery of planctomycetes and in particular of the

class Planctomycetia. However, the planctomycetal

scientific community faces the great challenge of

bringing into culture much of the biodiversity that still

stays beyond our capacity of isolation. The bias in the

number of isolated strains towards the class Plancto-

mycetia and specifically towards mesophilic, neu-

trophilic and aerobic members may be due to several

factors such as the uniform isolation techniques and

growth conditions, the media formulation used, the

use of selective factors like N-acetylglucosamine as

the only source of carbon and nitrogen and also our

unawareness of the nutritional and metabolic require-

ments of so far non-culturable planctomycetes. In fact,

the media developed for isolation are based on the

knowledge gathered on the nutritional needs of the

isolated strains which are mainly from the class

Planctomycetia. As the majority of the isolated

planctomycetes are resistant to betalactam antibiotics

and streptomycin, a mixture of these antibiotics is

currently used to achieve an enrichment of plancto-

mycetes, making it impossible to isolate non-resistant

planctomycetes. Furthermore, most planctomycetes

seem to be resistant to most classes of antibiotics,

however, the mechanisms behind these resistances are

still unknown. It is hypothesized that many of the

antimicrobial resistance genes in pathogens are obtain

via horizontal gene transfer events from environmen-

tal bacteria, which is why it is also important to gather

knowledge on the resistome-mobilome of highly

resistant bacteria such as the planctomycetes.

To overcome the isolation difficulties here dis-

cussed, new strategies are needed to bring the

untapped diversity of uncultured clades of plancto-

mycetes into culture. This can possibly by achieved by

the exploitation of less investigated ecological niches

and by focusing on different culture conditions (such

as anaerobic growth) and testing new medium formu-

lations (e.g. by incorporating nutrients from the

isolation environments or the use of other selective

antibiotics). The development and refinement of novel

isolation techniques is also essential, such as the use of

in-situ methodologies, which recently proved to be

useful to isolate novel taxa. As many strains have long

doubling times, it is always needed to wait for a long

period to allow slow growing planctomycetes to

appear in culture. Another approach should be the

dilution of the initial inoculum or its cell sorting to

obtain single cell cultures per well in order to avoid

completion from fast growing bacteria.

Thanks to the isolation and description of many

species that lead to a taxonomic revolution in the

phylum in the last years, scientists became aware of

several aspects of the cell biology of this group. The

availability of many planctomycetal strains and

genomes will facilitate the investigation of the secrets

in their cell biology. In the light of more than 40% of

the genome-encoded proteins with an unknown func-

tion, their genomes are another enigmatic feature of
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their divergent morphology and physiology. Future

studies with members of the current family Plancto-

mycetia will contribute to understand their division

mode, their resistance to antibiotics, the function

behind many genes, their complex structure, the role

played in many ecosystems and the biotechnological

potential that starts to be discovered.
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