
ORIGINAL PAPER

Blastopirellula retiformator sp. nov. isolated
from the shallow-sea hydrothermal vent system close
to Panarea Island

Nicolai Kallscheuer . Sandra Wiegand . Anja Heuer . Stephanie Rensink .

Alje S. Boersma . Mareike Jogler . Christian Boedeker . Stijn H. Peeters .

Patrick Rast . Mike S. M. Jetten . Manfred Rohde . Christian Jogler

Received: 2 October 2019 / Accepted: 11 December 2019 / Published online: 1 January 2020

� Springer Nature Switzerland AG 2020

Abstract Aquatic bacteria belonging to the deep-

branching phylum Planctomycetes play a major role in

global carbon and nitrogen cycles. However, their

uncommon morphology and physiology, and their

roles and survival on biotic surfaces in marine

environments, are only partially understood. Access

to axenic cultures of different planctomycetal genera

is key to study their complex lifestyles, uncommon

cell biology and primary and secondary metabolism in

more detail. Here, we describe the characterisation of

strain Enr8T isolated from a marine biotic surface in

the seawater close to the shallow-sea hydrothermal

vent system off Panarea Island, an area with high

temperature and pH gradients, and high availability of

different sulphur and nitrogen sources resulting in a

great microbial diversity. Strain Enr8T showed typical

planctomycetal traits such as division by polar bud-

ding, aggregate formation and presence of fimbriae

and crateriform structures. Growth was observed at

ranges of 15–33 �C (optimum 30 �C), pH 6.0–8.0

(optimum 7.0) and at NaCl concentrations from 100 to

1200 mM (optimum 350–700 mM). Strain Enr8T

forms white colonies on solid medium and white

flakes in liquid culture. Its genome has a size of

6.20 Mb and a G ? C content of 59.2%. Phylogenet-

ically, the strain belongs to the genus Blastopirellula.

We propose the name Blastopirellula retiformator sp.

nov. for the novel species, represented by the type

strain Enr8T (DSM 100415T = LMG 29081T).

Keywords Marine bacteria � Planctomycetes �
Hydrothermal area � Panarea � Blastopirellula marina

Introduction

Members of the family Planctomycetaceae, which

belong to the environmentally, medically and biotech-

nologically relevant PVC superphylum (Plancto-

mycetes-Verrucomicrobia-Chlamydiae, and others)

(Spring et al. 2016; Wagner and Horn 2006), are

ubiquitous microorganisms dwelling mostly in aquatic

environments, in which they play key roles in cycling

of carbon and nitrogen. However, the mechanisms as

to how these microorganisms gain nutrients from
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biotic material in the oceans (in particular carbon and

nitrogen for biomass and energy formation) are only

partially understood. Species belonging to the family

Planctomycetaceae are typically found to be attached

to marine biotic surfaces, such as algae or kelp, and

probably form biomass by using algal compounds as

carbon and energy sources (Bondoso et al. 2015;

Wiegand et al. 2019). Such nutrient-rich environ-

ments—in contrast to the oligotrophic seawater—

attract also faster-growing competing microorgan-

isms, e.g. Roseobacter sp. (Frank et al. 2014; Wiegand

et al. 2018), but the latter fail to outcompete the

slower-growing species of the family Planctomyc-

etaceae. Two theories provide plausible explanations

for this counter-intuitive observation: (I) Planctomyc-

etaceae harbour a specialised machinery for uptake

and degradation of complex polysaccharides released

by algae or (II) they produce small molecules as a

metabolic defence strategy. Both theories are sup-

ported by large planctomycetal genomes and the high

number of predicted enzymes involved in the

catabolism of complex sugars (Naumoff et al. 2014;

Reisky et al. 2018; Wegner et al. 2013) (supporting

theory I) or for production of secondary metabolites

(supporting theory II) (Graça et al. 2016; Jeske et al.

2016; Wiegand et al. 2018, 2019). Uptake and

catabolism of polymeric sugars might be facilitated

by the unique pili-forming crateriform structures and

an enlarged periplasm (Boedeker et al. 2017), while

the mostly unexplored secondary metabolism could be

a promising source for novel compounds, including

those with health-promoting activities in humans

(Graça et al. 2016).

Not only from a metabolic perspective, but also

structurally, the phylum Planctomycetes is an inter-

esting research topic. Eukaryotic-like morphological

traits of Planctomycetes led to the conclusion that they

might be beyond the bacterial cell plan (Fuerst and

Sagulenko 2011; König et al. 1984; Lonhienne et al.

2010). In recent years, this picture changed with the

advent of novel microscopic techniques and detailed

physiological analyses of Planctomycetes (Jeske et al.

2015; Jogler et al. 2011; Jogler and Jogler 2013; Rivas-

Marin et al. 2016; van Teeseling et al. 2015). The cell

envelope of Planctomycetes was ultimately found to

resemble that of Gram-negative bacteria (Boedeker

et al. 2017; Devos 2014). But still, Planctomycetes

remain exceptional. They divide by budding, binary

fission or even a combination of both and lack proteins

of the canonical divisome (Wiegand et al. 2019).

Many strains have been shown to be resistant to

several antibiotics (Cayrou et al. 2010; Godinho et al.

2019), either because of their degradation, or intrinsic

resistance due to the lack of targets (Jogler et al. 2012;

Pilhofer et al. 2008).

In conclusion, Planctomycetes have some charac-

teristic traits (Wiegand et al. 2018, 2019), which

encourages more detailed research and motivates us to

steadily expand the collection of axenic cultures. In

this study, we took samples in the surroundings of

Panarea Island in the Tyrrhenian Sea off the south-

western coast of Italy. This region includes a shallow-

sea hydrothermal vent system and consists of areas

with increased temperatures, steep temperature gradi-

ents and high levels of different nitrogen and sulphur

sources (Maugeri et al. 2010). Due to the expected

microbial diversity (Manini et al. 2008), we consid-

ered this location a valuable source of so far unknown

species of the family Planctomycetaceae and here

describe the characterization of the novel strain Enr8T

isolated from a hydrothermal area close to Panarea

Island.

Materials and methods

Isolation and cultivation conditions

Strain Enr8T was isolated on the 10th of September

2013 from a marine biotic surface (Fig. 1) in a

hydrothermal area in the Tyrrhenian Sea (sampling

site 38.6387 N 15.1068 E) 2.5 km east of the port of

Fig. 1 Representative picture of the sampling location. Strain

Enr8T was isolated from the surface of the marine plant shown

on the right side of the photograph
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Panarea Island. The strain was isolated as described

previously (Wiegand et al. 2019) and subsequently

cultivated in M1 medium with HEPES as buffering

agent and supplemented with N-acetyl glucosamine

(NAG) and artificial seawater (ASW) (medium des-

ignation M1H NAG ASW) (Kallscheuer et al. 2019a).

Physiological analyses

The temperature optimum of strain Enr8T was deter-

mined in M1H NAG ASW medium by cultivation at

temperatures of 10, 15, 20, 22, 24, 27, 30, 33, 36 and

40 �C in a shaking incubator at 110 rpm with an initial

pH of 8.0. For the determination of the pH optimum

100 mM HEPES was used as buffering agent for

cultivations at pH 7.0, 7.5 and 8.0. For cultivations at

pH 5.0 and 6.0 HEPES was replaced by 100 mM 2-(N-

morpholino)ethanesulfonic acid (MES) and at pH 9.0

and 10.0 100 mM N-cyclohexyl-2-aminoethanesul-

fonic acid (CHES) was used as buffering agent.

Cultivations for determination of the pH optimum

were performed at 28 �C in a shaking incubator at

110 rpm. For analysis of the salt tolerance, strain

Enr8T was cultivated in M1H NAG ASW medium

with different concentrations of NaCl. The tested

concentrations were 0, 100, 200 (standard NaCl

concentration in ASW), 350, 500, 700, 900, 1200

and 1600 mM NaCl. Due to formation of white flakes

by aggregation of cells in all experiments, growth was

assessed by visual inspection of the culture taking the

number and size of white flakes into account.

Measurement of the optical density at 600 nm

(OD600) was not possible.

Light microscopy and electron microscopy

Microscopic analyses were performed according to a

previously published protocol (Kallscheuer et al.

2019a).

Genome information and analysis of genome-

encoded features

The genome (accession no. SJPF00000000) and 16S

rRNA gene sequence (accession no. MK554541) of

strain Enr8T are available from GenBank (Wiegand

et al. 2019). The primary metabolism was analysed by

examining locally computed InterProScan (Mitchell

et al., 2019) results cross-referenced with information

from the UniProt database and BLASTp results of

‘typical’ protein sequences.

Phylogenetic analysis

16S rRNA gene phylogeny was computed for strain

Enr8T, the type strains of all described planctomycetal

species (as available in May 2019) and all isolates

recently published (Wiegand et al. 2019), including

the strains described recently (Boersma et al. 2019;

Kallscheuer et al. 2019a, b, c, d; Kohn et al. 2019). The

16S rRNA gene sequences were aligned with SINA

(Pruesse et al. 2012). The phylogenetic analysis was

performed with RAxML (Stamatakis 2014) employ-

ing a maximum likelihood approach with 1000

bootstraps, the nucleotide substitution model GTR,

gamma distributed rate variation and estimation of

proportion of invariable sites (GTRGAMMAI option).

Three 16S rRNA genes of bacterial strains from the

PVC superphylum were used as outgroup. The aver-

age nucleotide identity (ANI) was calculated using

OrthoANI (Lee et al. 2016) and the average amino

acid identity (AAI) was calculated using the aai.rb

script of the enveomics collection (Rodriguez-R and

Konstantinidis 2016). The percentage of conserved

proteins (POCP) was calculated as described (Qin

et al. 2014).

Results and discussion

Phylogenetic analysis

According to maximum likelihood-based 16S rRNA

gene sequence analysis shown in Fig. 2, the current

closest relative of strain Enr8T is Blastopirellula

marina, which is also the type species of the genus

(Schlesner et al. 2004). The type strain of B. marina,

DSM 3645T, was originally isolated from brackish

water in the Baltic Sea (Schlesner 1986) and together

with Blastopirellula cremea (Lee et al. 2013) forms

the current genus Blastopirellula. B. marina DSM

3645T and strain Enr8T share a 16S rRNA similarity of

98.9%. This value is slightly above the proposed

species threshold of 98.7% (Stackebrandt and Ebers

2006), which could indicate that strain Enr8T belongs

to the species B. marina. However, it was shown

before that 16S rRNA genes are not in all cases a

reliable marker for Planctomycetes as some strains
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have high 16S rRNA gene sequence identities, but

nevertheless belong to different species (Bondoso

et al. 2013; Kohn et al. 2019). Thus, other phyloge-

netic markers need to be considered in order to achieve

a reliable classification of strain Enr8T. For example,

the similarity of the analysed partial rpoB sequence is

88.4%, which is clearly below the proposed threshold

of 95.5% for strains belonging to the same species

Fig. 2 Maximum likelihood analysis of 16S rRNA gene

sequences. Phylogenetic tree showing the position of strain

Enr8T. 16S rRNA gene phylogeny was computed as described in

the Materials and methods section. Bootstrap values after 1000

re-samplings are given in % at the nodes. The outgroup consists

of three 16S rRNA genes from the PVC superphylum. The

Gimesia clade includes species of the genera Gimesia,
Planctopirus, Fuerstiella, Schlesneria, Rubinisphaera and

Planctomicrobium, while the thermophilic clade includes

species of the genera Thermostilla, Thermogutta and

Thermopirellula
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(Bondoso et al. 2013). The same is true for ANI values

of 78.3% when applying the species threshold of

95–96% (Kim et al. 2014). Taken together, rpoB

similarity and ANI values clearly reinforce the con-

clusion that strain Enr8T belongs to a separate species

and does not represent a strain of the species B.

marina. Thus, it appears likely that 16S rRNA gene

identity comparisons in this clade do not follow the

proposed species threshold of 98.7% (Stackebrandt

and Ebers 2006). Accordingly, strain Enr8T and B.

marina have an AAI of 75.8% and a POCP of 77.6%.

Both values are above the respective genus threshold

ranges (AAI: 60–80% and POCP: 50%) (Luo et at.

2014; Qin et al. 2014), confirming that both strains

belong to the same genus. In order to show that strain

Enr8T and B. marina DSM 3645T do not belong to the

recently proposed genus ‘Bremerella’ (Rensink et al.

2019), minimal 16S rRNA gene sequence identities,

AAI values, rpoB similarities and POCP values of

strain Enr8T and ‘Bremerella vulcanica’ Pan97T were

compared. Comparison yields a 16S rRNA gene

identity of 94.3%, an AAI value of 54.7% and a

partial rpoB sequence of 74.7%, which are below the

genus thresholds of 94.5%, 60–80% and 75.5–78%,

respectively (Kallscheuer et al. 2019d; Luo et al. 2014;

Yarza et al. 2014). The POCP value of 60.4% is only

slightly above the genus threshold of 50% (Qin et al.

2014).

Morphological and physiological analyses

Strain Enr8T was cultivated in M1H NAG ASW

medium and exponentially growing cells were used

for morphological characterisation using phase con-

trast microscopy and scanning electron microscopy

(Fig. 3). Detailed information on morphology, loco-

motion and cell division in comparison to the closely

related species B. marina is summarised in Table 1.

Cells of strain Enr8T appear ovoid to pear-shaped

(length: 1.3 ± 0.2 lm, width: 0.7 ± 0.1 lm)

(Fig. 3a), form strong aggregates and contain crater-

iform structures at the cell poles (Fig. 3b–e). Polar

budding was observed as mode of cell division with

the shape of the bud being similar to that of the mother

cell (Fig. 3a). Fibres together with an extracellular

matrix facilitate attachment to other cells or surfaces,

thereby causing white flake formation visible with the

naked eye in broth cultures. Colonies of strain Enr8T

Fig. 3 Phase contrast and scanning electron microscopy

images and cell size plot of strain Enr8T. The figure shows the

mode of cell division (a) and gives an overview on the cell

morphology of strain Enr8T (b, d, e). The scale bar is 1 lm. For

determination of the cell size (c) at least 100 representative cells
were counted manually or by using a semi-automated object

count tool
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are white indicating the lack of carotenoid formation.

Size, cell morphology and colour are similar to B.

marina (Schlesner et al. 2004) (Table 1).

In cultivation experiments, strain Enr8T was found

to grow at a pH range of 6.0–8.0 and at temperatures

from 15 to 33 �C (Fig. 4a, b). The optimal conditions

were determined to be pH 7.0 and 30 �C. During

cultivation, formation of strong aggregates was

observed, which became visible as white flakes

settling down in the cultivation tubes, for example as

shown for the determination of the pH optimum

(Fig. 4a). This rendered measurement of cell densities

using OD600 impossible. Instead, optimal conditions

(pH, temperature and NaCl concentration) were

determined by visual inspection taking the observed

differences in the number and size of flakes into

account. The temperature optimum at 30 �C is the

same as for B. marina and both failed to grow at

36–38 �C (Schlesner 1986). Due to aggregate forma-

tion, a maximal growth rate could not be calculated for

strain Enr8T. In the salt tolerance experiments, the

strain showed growth in the presence of 0.6–7.0% (w/

v) NaCl (100–1200 mM), but failed to grow without

NaCl or with 9.3% (w/v) NaCl (1600 mM) (Fig. 4c).

Optimal growth was observed in the range of

2.1–4.1% (w/v) NaCl (350–700 mM), which is in

the range of natural seawater in the Mediterranean Sea

with a total salt concentration of around 3.8% (w/v).

The high salt tolerance of strain Enr8T is a distinctive

difference compared to B. marina. While concentra-

tions of 1% NaCl were lethal for B. marina (Schlesner

1986), Enr8T showed optimal growth at 2–4% NaCl

and could even grow in the presence of 7% NaCl.

Table 1 Phenotypic and

genotypic features of strain

Enr8T (Genbank acc. no.

SJPF00000000) in

comparison to B. marina
DSM 3645T (GenBank acc.

no. AANZ00000000)

(Schlesner 1986; Schlesner

et al. 2004)

n.o. not observed, n.a. not
available

Characteristics Enr8T B. marina
DSM 3645T

Phenotypic features

Size (length 9 width) 1.3 9 0.7 lm 1.0–2.0 9 0.7–1.5 lm

Shape Ovoid to pear-shaped Ovoid, ellipsoidal or pear-shaped

Aggregates Yes Yes

Colony colour White Off-white to light brown

Division Budding Budding

Dimorphic life cycle n.o. n.o.

Flagella Yes n.o.

Crateriform structures Yes Yes

Fimbriae Matrix or fibre At reproductive pole

Capsule n.o. n.o.

Bud shape Like mother cell Bean-shaped

Budding pole Polar Polar

Stalk n.o. n.o.

Holdfast structure n.o. n.o.

Genotypic features

Genome size (bp) 6,196,617 6,663,851

Plasmids (bp) n.o. n.a.

GC (%) 59.2 ± 2.6 57.4

Completeness (%) 98.28 96.55

Contamination (%) 1.72 1.72

Protein-coding genes 5033 5406

Hypothetical proteins 2107 3023

Protein-coding genes/Mb 812 811

Coding density (%) 86.0 86.8

16S rRNA genes 2 1

tRNA genes 72 56
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Genomic characteristics

The relevant genome characteristics in comparison to the

closely related species B. marina are summarised in

Table 1. The genome size of strain Enr8T is 6.20 Mb.

The genome is slightly smaller compared to B. marina

DSM 3645T (6.66 Mb), but both strains have a similar

G ? C content (Enr8T: 59.2%, DSM 3645T: 57.4%).

Automated annotation yielded 5033 putative protein-

encoding genes for strain Enr8T, of which 42% (2107

genes) are annotated as hypothetical proteins. The

calculated values, corresponding to 812 protein-coding

genes per Mb and a coding density of 86%, are nearly

identical toB.marina. Two copies of the 16S rRNAgene

and 72 tRNA-encoding genes were detected in strain

Enr8T, while B. marina harbours only one 16S rRNA

gene and 56 tRNA-encoding genes.

Genome-based analysis of the central carbon

metabolism

Based on the genome sequences of Enr8T and B.

marina DSM 3645T, we analysed the presence of key

metabolic enzymes of the central carbon metabolism.

The analysis included glycolytic pathways, gluconeo-

genesis, the tricarboxylic acid (TCA) cycle and

anaplerotic reactions (Table 2). Both strains harbour

the genes coding for enzymes involved in glycolytic

reactions either using the Embden-Meyerhof-Parnas

pathway (referred to as glycolysis) or the alternative

Entner-Doudoroff pathway. However, we failed to

identify the gene coding for phosphoglycerate mutase

(Pgm), which catalyses the reversible isomerisation of

3-phosphoglycerate to 2-phosphoglycerate and is

required for the activity of both pathways. As the

degradation of glucose by both strains suggests that

the glycolysis is active, the two strains either bypass

the reaction, e.g. by using 2,3-bisphosphoglycerate as

intermediate or the protein sequence of Pgm differs

from canonical sequences and escaped our analysis.

The pentose phosphate pathway and the TCA cycle

appear to be fully functional in both strains since we

were able to assign genes to all participating enzymes

(Table 2). Both strains also encode phosphoenolpyru-

vate carboxykinase (ATP) and fructose-1,6-bisphos-

phatase, the key enzymes required for de novo

Fig. 4 Optimum of pH, temperature and NaCl concentration

for strain Enr8T. Cultivations in M1H NAG ASWmedium were

performed at different pH values (a constant temperature of

28 �C), different temperatures (b at pH 7.5, temperatures given

in �C) and different NaCl concentrations (c given in mM) in

biological triplicates. Due to strong formation of aggregates

during cultivation it was not possible to measure cell density as

OD600. Instead, exemplary photographs of the cultures of the pH

optimum determination experiment after a cultivation time of

170 h are shown (a). Growth was classified in the range from

‘‘-’’ (no growth) to ‘‘???’’ (very good growth)
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Table 2 Genome based-analysis of the central carbon metabolism of Enr8T and B. marina DSM 3645T

Enzyme EC

number

Gene Enr8T B. marina DSM 3645T

Glycolysis

Glucose-6-phosphate isomerase 5.3.1.9 pgi Enr8_27980 GCF_000153105_52400

ATP-dependent 6-phosphofructokinase isozyme 1 2.7.1.11 pfkA Enr8_35550 GCF_000153105_47750

Fructose-bisphosphate aldolase class 2 4.1.2.13 fbaA Enr8_24470 GCF_000153105_01670

Triosephosphate isomerase 5.3.1.1 tpiA Enr8_45880 GCF_000153105_41410

Glyceraldehyde-3-phosphate dehydrogenase 1.2.1.12 gapA Enr8_00350 GCF_000153105_02490

Phosphoglycerate kinase 2.7.2.3 pgk Enr8_07460 GCF_000153105_10610

2,3-Bisphosphoglycerate-independent phosphoglycerate mutase 5.4.2.12 gpmI n n

2,3-Bisphosphoglycerate-dependent phosphoglycerate mutase 5.4.2.11 gpmA n n

Enolase 4.2.1.11 eno Enr8_34480 GCF_000153105_25320

Pyruvate kinase I 2.7.1.40 pykF Enr8_14540 GCF_000153105_18700

Pyruvate dehydrogenase E1 component 1.2.4.1 aceE Enr8_43650 GCF_000153105_45170

Dihydrolipoyllysine-residue acetyltransferase component of pyruvate

dehydrogenase complex

2.3.1.12 aceF Enr8_43660 GCF_000153105_45160

Gluconeogenesis

Phosphoenolpyruvate carboxylase 4.1.1.31 ppc n n

Phosphoenolpyruvate synthase 2.7.9.2 ppsA n n

Pyruvate, phosphate dikinase 2.7.9.1 ppdK Enr8_43210 GCF_000153105_45620

Phosphoenolpyruvate carboxykinase (ATP) 4.1.1.49 pckA Enr8_45450 GCF_000153105_41130

Fructose-1,6-bisphosphatase class 1 3.1.3.11 glpX Enr8_23750 GCF_000153105_40330

Pyrophosphate–fructose 6-phosphate 1-phosphotransferase 2.7.1.90 pfp n n

Pentose phosphate pathway

Glucose-6-phosphate 1-dehydrogenase 1.1.1.49 zwf Enr8_32830 GCF_000153105_27210

6-Phosphogluconolactonase 3.1.1.31 pgl Enr8_38350 GCF_000153105_20950

6-Phosphogluconate dehydrogenase, decarboxylating 1.1.1.44 gndA Enr8_32810 GCF_000153105_27230

Transketolase 2 2.2.1.1 tktB Enr8_02650 GCF_000153105_04910

Transaldolase B 2.2.1.2 tal Enr8_28950 GCF_000153105_51220

Entner–Doudoroff pathway

KHG/KDPG aldolase 4.1.3.16 kdgA Enr8_37080 GCF_000153105_22230

Phosphogluconate dehydratase 4.2.1.12 edd Enr8_11390 GCF_000153105_14920

TCA cycle

Citrate synthase 2.3.3.16 gltA Enr8_32230 GCF_000153105_47880

Aconitate hydratase A 4.2.1.3 acnA Enr8_16410 GCF_000153105_26150

Isocitrate dehydrogenase (NADP) 1.1.1.42 icd Enr8_11000 GCF_000153105_14510

2-Oxoglutarate dehydrogenase E1 component 1.2.4.2 sucA Enr8_50880 GCF_000153105_37900

Dihydrolipoyllysine-residue succinyltransferase component of

2-oxoglutarate dehydrogenase complex

2.3.1.61 sucB Enr8_50870 GCF_000153105_37910

Succinate–CoA ligase [ADP-forming] subunit alpha 6.2.1.5 sucD Enr8_03400 GCF_000153105_05740

Succinate–CoA ligase [ADP-forming] subunit beta 6.2.1.5 sucC Enr8_03390 GCF_000153105_05730

Succinate dehydrogenase flavoprotein subunit 1.3.5.1 sdhA Enr8_25660 GCF_000153105_00080

Succinate dehydrogenase iron-sulfur subunit 1.3.5.1 sdhB Enr8_25670 GCF_000153105_00070

Succinate dehydrogenase cytochrome b556 subunit 1.3.5.1 sdhC Enr8_25650 GCF_000153105_00090

Fumarate hydratase class II 4.2.1.2 fumC Enr8_30140 GCF_000153105_50000

Malate dehydrogenase 1.1.1.37 mdh Enr8_10980 GCF_000153105_14490
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synthesis of sugar phosphates from the TCA cycle

intermediate oxaloacetate. The gluconeogenesis path-

way, however, also requires the phosphoglycerate

mutase, which we could not identify in the two strains

(as discussed above). Bacteria typically perform

anaplerosis (replenishing of TCA cycle intermediates)

by the glyoxylate shunt or by carboxylation of

pyruvate or phosphoenolpyruvate (PEP). The car-

boxylation reactions rely on additional pathways

providing pyruvate or PEP (typically glycolysis),

while the glyoxylate shunt converts the TCA cycle

intermediate isocitrate and the TCA cycle substrate

acetyl-CoA to one molecule of succinate and malate.

Both strains apparently lack the genes required for a

functional glyoxylate shunt (Table 2), which is

required e.g. during growth with acetate or fatty acids

as sole carbon and energy source. This would imply

that both strains are unable to use acetate or fatty acids

as sole carbon and energy source, which may support

the hypothesis that species of the family Planctomyc-

etaceae consume complex sugars derived from pho-

totrophs rather than short- or long-chain carboxylic

acids.

Putative gene clusters involved in secondary

metabolite production

To gain a first insight into the potential of strain Enr8T

as a source of secondary metabolites an AntiSMASH

analysis based on its genome sequence was conducted

(Blin et al. 2019). It appears reasonable to assume that

the complex lifestyle and growth in competitive

environments such as marine surfaces is related to

the production of secondary metabolites allowing

strain Enr8T to cope with abiotic and biotic stresses. Of

major interest in this case are multi-domain protein

complexes of the families of polyketide synthases

(PKSs) or non-ribosomal peptide synthetases (NRPSs)

as these serve as molecular assembly lines for

production of secondary metabolites starting from

metabolites of the primary carbon metabolism (e.g.

malonyl-CoA or amino acids) (Park et al. 2019). Strain

Enr8T harbours three genes or clusters involved in the

production of terpenoids. These are probably not

involved in the production of carotenoids (a major

class of terpenoids) as the strain is white and thus lacks

pigmentation. In addition, Enr8T harbours genes

coding for a putative type I PKS, a putative NRPS, a

putative mixed NRPS-type I PKS and a protein related

to bacteriocin biosynthesis. The same set of clusters is

also encoded in the genome of B. marina DSM 3645T

except for the putative NRPS gene, which was not

identified in B. marina. The exact products formed by

the identified PKS and NRPS enzymes should be

identified in future studies to gain insights into their

biological significance.

Taken together, our phylogenetic analysis and the

results of the morphological and physiological char-

acterisation support the conclusion that strain Enr8T

represents a novel species of the genus Blastopirellula,

for which we propose the name Blastopirellula

retiformator sp. nov.

Description of Blastopirellula retiformator sp. nov

Blastopirellula retiformator (re.ti.for.ma’tor. L. neut.

n. rete a net; L. masc. n. formator a shaper, creator;

N.L. masc. n. retiformator corresponding to the

characteristic fibre- and extracellular matrix-mediated

formation of visible flake-like structures).

Colonies are white. Cells are pear-shaped (length:

1.3 ± 0.2 lm, width: 0.7 ± 0.1 lm) and form large

aggregates which become visible as white flakes in

liquid culture. Cells divide by polar budding and grow

Table 2 continued

Enzyme EC

number

Gene Enr8T B. marina DSM 3645T

Glyoxylate shunt

Isocitrate lyase 4.1.3.1 aceA n n

Malate synthase 2.3.3.9 glcB n n
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at ranges of 15–33 �C (optimum 30 �C), pH 6.0–8.0

(optimum 7.0) and NaCl concentrations from 100 to

1200 mM (optimum 350–700 mM). The genome

(accession no. SJPF00000000) and 16S rRNA gene

sequence (accession no. MK554541) of the type strain

are available from GenBank. The type strain genome

has a size of 6.20 Mb and a G ? C content of 59.2%.

The type strain is Enr8T (DSM 100415T = LMG

29081T, also designated Enrichment 8), isolated from

a hydrothermal area close to the island Panarea, Italy.
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Mascher T, Kolter R (2012) Identification of proteins likely

to be involved in morphogenesis, cell division, and signal

transduction in Planctomycetes by comparative genomics.

J Bacteriol 194:6419–6430

Kallscheuer N, Jogler M, Wiegand S, Peeters S, Heuer A,

Boedeker C, Jetten M, Rohde M, Jogler C (2019a) Ru-
binisphaera italica sp. nov. isolated from a hydrothermal

area in the Tyrrhenian Sea close to the volcanic island

Panarea. Antonie van Leeuwenhoek. https://doi.org/10.

1007/s10482-019-01329-w

123

1820 Antonie van Leeuwenhoek (2020) 113:1811–1822

https://doi.org/10.1007/s10482-019-01367-4
https://doi.org/10.1007/s10482-019-01367-4
https://doi.org/10.1007/s10482-019-01329-w
https://doi.org/10.1007/s10482-019-01329-w


Kallscheuer N, Jogler M, Wiegand S, Peeters S, Heuer A,

Boedeker C, Jetten M, Rohde M, Jogler C (2019b) Three

novel Rubripirellula species isolated from artificial plastic

surfaces submerged in the German part of the Baltic Sea

and the estuary of the river Warnow. Antonie Van

Leeuwenhoek. https://doi.org/10.1007/s10482-019-01368-

3

Kallscheuer N, Wiegand S, Jogler M, Boedeker C, Peeters S,

Rast P, Heuer A, Jetten M, Rohde MCJ (2019c) Rhodo-
pirellula heiligendammensis sp. nov., Rhodopirellula pil-
leata sp. nov., and Rhodopirellula solitaria sp. nov.

isolated from natural or artificial marine surfaces in

Northern Germany and California, USA. Antonie van

Leeuwenhoek, USA. https://doi.org/10.1007/s10482-019-

01366-5

Kallscheuer N, Wiegand S, Peeters SH, Jogler M, Boedeker C,

Heuer A, Rast P, Jetten MSM, Rohde M, Jogler C (2019d)

Description of three bacterial strains belonging to the new

genus Novipirellula gen. nov., reclassificiation of Rhodo-
pirellula rosea and Rhodopirellula caenicola and read-

justment of the genus threshold of the phylogenetic marker

rpoB for Planctomycetales. Antonie van Leeuwenhoek.

https://doi.org/10.1007/s10482-019-01374-5

Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic

coherence between average nucleotide identity and 16S

rRNA gene sequence similarity for species demarcation of

prokaryotes. Int J Syst Evol Microbiol 64:346–351

Kohn T, Wiegand S, Boedeker C, Rast P, Heuer A, Schüler M,
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JE, Kallscheuer N, Lücker S, Lage OM, Pohl T, Merkel BJ,

Hornburger P, Müller R-W, Brümmer F, Labrenz M,
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