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Abstract Planctomycetes are a unique and impor-

tant phylum containing mostly aquatic bacteria, which

are often associated with phototrophic surfaces. A

complex lifestyle, their potential for the production of

bioactive small molecules, their unusual cell biology

and a large number of giant and hypothetical genes in

their genomes make these microorganisms a fascinat-

ing topic for further research. Here, we characterise

three novel planctomycetal strains isolated from

polystyrene and polyethylene particles that were

submerged in the German part of the Baltic Sea and

the estuary of the river Warnow. All three strains

showed typical planctomycetal traits such as division

by polar budding and formation of rosettes. The

isolated strains were mesophilic and neutrophilic

chemoheterotrophs and reached generation times of

10–25 h during laboratory-scale cultivation. Taxo-

nomically, the three strains belong to the genus

Rubripirellula. Based on our analyses all three strains

represent novel species, for which we propose the

names Rubripirellula amarantea sp. nov., Rubripir-

ellula tenax sp. nov. and Rubripirellula reticaptiva sp.

nov. The here characterised strains Pla22T (DSM

102267T = LMG 29691T), Poly51T (DSM 103356T

= VKM B-3438T) and Poly59T (DSM 103767T

= LMG 29696T) are the respective type strains of

these novel species. We also emend the description of

the genus Rubripirellula.

Keywords Marine bacteria � Planctomycetes �Baltic

Sea � Biofilm � Brackish water � Rubripirellula
amarantea � Rubripirellula reticaptiva �
Rubripirellula tenax

Introduction

Planctomycetes are ubiquitous bacteria often associ-

ated with nutrient-rich aquatic surfaces. By occupying

these ecological niches, Planctomycetes largely con-

tribute to the vital activity of global carbon and

nitrogen cycles (Wiegand et al. 2018). Phylogeneti-

cally, Planctomycetes form the PVC superphylum

alongside with the phyla of Verrucomicrobia, Len-

tisphaerae, Kirimatiellaeota, Candidatus Omnitroph-

ica and Chlamydiae (Spring et al. 2016; Wagner and

Horn 2006). Based on exceptional traits, such as,

presence of compartment-like structures (Lindsay

et al. 1997) and lack of peptidoglycan (König et al.

1984), Planctomycetes were thought to be beyond the
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bacterial cell plan (Devos et al. 2013; Fuerst and

Sagulenko 2011). It was even speculated that they

might represent the missing link between bacteria and

eukaryotes (Devos and Reynaud 2010). In the recent

years, however, presence of peptidoglycan was con-

firmed (Jeske et al. 2015; van Teeseling et al. 2015)

and compartment-like structures were re-interpreted

as invaginations of the cytoplasmic membrane (Ace-

han et al. 2013; Boedeker et al. 2017; Lage et al. 2013;

Santarella-Mellwig et al. 2013). Planctomycetes were

thus classified as Gram-negative bacteria (Devos

2014), but still remain exceptional and enigmatic in

comparison to well-characterised bacteria of other

phyla. Most Planctomycetes divide unusually by

budding, while some also perform binary fission or

even a combination of both modes of division

(Wiegand et al. 2019). The observed lack of canonical

divisome proteins including the otherwise universal

FtsZ (Jogler et al. 2012; Pilhofer et al. 2008) might

also be part of the explanation why Planctomycetes are

resistant to many antibiotics (Cayrou et al. 2010;

Godinho et al. 2019).

As a result of the absence of nutrients in olig-

otrophic seawater, several Planctomycetes attach to

nutrient-rich aquatic surfaces (Bengtsson et al. 2012;

Bondoso et al. 2014, 2015, 2017; Lage and Bondoso

2014; Vollmers et al. 2017). Attachment typically

goes along with a lifestyle switch between planktonic

swimmer cells and sessile stalked mother cells (Jogler

et al. 2011). Once attached to the surface, they start to

degrade polymeric compounds for biomass produc-

tion, e.g. utilising complex sugars released by algae.

This strategy was demonstrated for the model polysac-

charide dextran (Jeske et al. 2013; Lachnit et al. 2013).

Unique sugar-binding pili attached to crateriform

structures and an extremely enlarged periplasm are

believed to be involved in the uptake of such high

molecular weight sugars (Boedeker et al. 2017), which

requires further attention in the next years.

Planctomycetes were found to be predominant

members in biofilms on the mentioned nutrient-rich

aquatic surfaces (Bengtsson and Øvreås 2010; Kohn

et al. 2019), which is counter-intuitive when consid-

ering their slow growth compared to other natural

competitors, e.g. members of the Roseobacter clade

(Frank et al. 2014; Wiegand et al. 2018). It was

proposed that this observation is the result of defense

strategies involving secondary metabolite production,

which, in presence of a competitor, ultimately lead to

release of antimicrobial compounds. This notion, that

Planctomycetes are ‘talented’ producers of such small

bioactive molecules, is substantiated by large genomes

(Kohn et al. 2016) as well as several predicted gene

clusters involved in small molecule production (Graca

et al. 2016; Jeske et al. 2016; Wiegand et al. 2019).

Succinctly, Planctomycetes are amongst the most

maverick of all bacteria (Wiegand et al. 2018), which

motivated us to expand the collection of Plancto-

mycetes by isolating and characterising 79 novel

planctomycetal strains presented in an overview

article (Wiegand et al. 2019). Here, we validly

describe three novel strains, Pla22T, Poly51T, and

Poly59T, isolated from plastic particles submerged in

the Baltic Sea and the river Warnow in northern

Germany. The genus Rubripirellula, to which the

three here proposed species belong, was described

earlier with Rubripirellula obstinata as the type

species and the only member of the genus so far.

The type strain R. obstinata LF1T was isolated from

algae (Laminaria sp.) at the coast of Porto, Portugal

(Bondoso et al. 2015).

Materials and methods

Preparation of cultivation medium

For strain isolation and subsequent cultivations M1H

NAG ASW medium [M1 medium with HEPES as

buffering agent (M1H) additionally supplemented

with N-acetyl glucosamine (NAG) as carbon and

nitrogen source and artificial seawater (ASW)] was

used. This medium is originally based on a recipe

described earlier (Staley et al. 1992). This recipe was

extensively modified to allow cultivation of a broad

range of different planctomycetal strains and was

prepared as described before (Kallscheuer et al. 2019).

Isolation of the strains

Strain Pla22T was sampled on the 4th of September

2014 from polyethylene (PE) pellets (ExxonMobil

HDPE HTA 108, diameter 3 mm), which were

incubated in 2 m depth for 14 days in the Warnow

river north of Rostock, Germany. The sampling site

(54.106 N, 12.096 E) is located close to a wastewater

treatment plant discharge. The exact setup of sampling

was described earlier (Oberbeckmann et al. 2018).
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Strain Poly51T and strain Poly59T were sampled on

the 8th of October 2015 at Heiligendamm, Germany

(54.146 N, 11.843 E) from polystyrene (PS) and PE

particles, respectively, stored in separate incubators in

the water for 14 days in 2 m depth and accessed via

Heiligendamm pier. The strains were isolated from the

plastic particles as described before (Wiegand et al.

2019). Plastic was chosen as material for sampling as

it is cheap and easily available, provides a high surface

area, is non-toxic and inert, i.e. it neither reacts with

the seawater nor is degraded. Briefly, for the isolation

of Pla22T (September 2014) samples were stored for

8 weeks at 4 �C before isolation of bacterial biofilms

by digestion with 2 mg/mL (28 U/mL) b-galactosi-

dase for 30 min at 30 �C and simultaneous vortexing

every 5 min followed by 10 min sonication at 30 �C.

Separation of plastic from the biofilm was performed

by filtration. Biofilms were stored for 11 months at

4 �C prior to plating. For isolation of Poly51T and

Poly59T (October 2015) incubated plastic particles

were washed three times with sterile natural seawater

and stored at 4 �C until cultivation (5 days after

sampling). Plastic particles were vortexed and 50 lL

of the liquid seawater was used for cultivation on M1H

NAG ASW plates containing 8 g/L gellan gum. For

selection of Planctomycetes 500 mg/L streptomycin

and 200 mg/L ampicillin were added as antibiotic

reagents, while 20 mg/L cycloheximide was used to

prevent fungal growth. In order to check whether the

isolated strains indeed represent Planctomycetes the

16S rRNA gene was amplified by PCR and sequenced

as previously described (Rast et al. 2017).

Light microscopy

Phase contrast (Phaco) analyses were performed

employing a Nikon Eclipse Ti inverted microscope

with a Nikon DS-Ri2 camera (blue LED). Specimens

were immobilised in MatTek glass bottom dishes

(35 mm, No. 1.5) employing a 1% agarose cushion

(Will et al. 2018). Images were analysed using the

Nikon NIS-Elements software (version 4.3). To

determine the cell size, at least 100 representative

cells were counted manually (Annotations and Mea-

surements, NIS-Elements) or by using the NIS-

Elements semi-automated Object Count tool (smooth:

49, clean: 49, fill holes: on, separate: 49).

Electron microscopy

For field emission scanning electron microscopy

bacteria were fixed in 1% (v/v) formaldehyde in

HEPES buffer (3 mM HEPES, 0.3 mM CaCl2,

0.3 mM MgCl2, 2.7 mM sucrose, pH 6.9) for 1 h on

ice and washed once employing the same buffer (Rast

et al. 2017). Cover slips with a diameter of 12 mm

were coated with a poly-L-lysine solution (Sigma-

Aldrich) for 10 min, washed in distilled water and air-

dried. 50 lL of the fixed bacteria solution was placed

on a cover slip and allowed to settle for 10 min. Cover

slips were then fixed in 1% glutaraldehyde in TE

buffer (20 mM TRIS, 1 mM EDTA, pH 6.9) for 5 min

at room temperature and subsequently washed twice

with TE buffer before dehydrating in a graded series of

acetone (10, 30, 50, 70, 90, 100%) on ice for 10 min at

each concentration. Samples from the 100% acetone

step were brought to room temperature before placing

them in fresh 100% acetone. Samples were then

subjected to critical-point drying with liquid CO2

(CPD 300, Leica). Dried samples were covered with a

gold/palladium (80/20) film by sputter coating (SCD

500, Bal-Tec) before examination in a field emission

scanning electron microscope (Zeiss Merlin) using the

Everhart–Thornley HESE2 detector and the inlens SE

detector in a 25:75 ratio at an acceleration voltage of

5 kV.

Genome information

Genome information of the three isolated strains is

available under accession numbers SJPI00000000

(Pla22T), SJPW00000000 (Poly51T) and

SJPX00000000 (Poly59T). The corresponding 16S

rRNA gene sequences can be found under accession

numbers MK554581 (Pla22T), MK554552 (Poly51T)

and MK554553 (Poly59T).

Physiological analysis

For determination of the pH optimum 100 mM

HEPES was used for cultivations at pH 7.0, 7.5 and

8.0. For cultivation at pH 5.0 and 6.0 HEPES was

replaced by 100 mM 2-(N-morpholino)ethanesulfonic

acid (MES), whereas 100 mM N-cyclohexyl-2-ami-

noethane-sulfonic acid (CHES) served as a buffering

agent at pH 9.0 and 10.0. Cultivations for determina-

tion of the pH optimum were performed at 28 �C. For
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determination of the temperature optimum the strains

were cultivated at temperatures ranging from 10 to

40 �C in M1H NAG ASW medium at pH 7.5.

Phylogenetic analysis

16S rRNA gene phylogeny was computed for strains

Pla22T, Poly51T and Poly59T, the type strains of all

described planctomycetal species (available in May

2019) and all isolates recently published (Wiegand

et al. 2019). The 16S rRNA gene sequences were

aligned with SINA (Pruesse et al. 2012). The phylo-

genetic analysis was done with RAxML (Stamatakis

2014) employing a maximum likelihood (ML)

approach with 1000 bootstraps, the nucleotide substi-

tution model GTR, gamma distributed rate variation

and estimation of proportion of invariable sites

(GTRGAMMAI option). Three 16S rRNA genes of

bacterial strains from the PVC superphylum were used

as outgroup. Average nucleotide identities (ANI) were

calculated using OrthoANI (Lee et al. 2016) and

average amino acid identities (AAI) were calculated

using the aai.rb script of the enveomics collection

(Rodriguez-R and Konstantinidis 2016). Values of

percentage of conserved proteins (POCP) were calcu-

lated as described before (Qin et al. 2014). The rpoB

nucleotide sequences were taken from the above-

mentioned as well as other publicly available genome

annotations and the sequence identities were deter-

mined as described (Bondoso et al. 2013). Upon

extracting only those parts of the sequence that would

have been sequenced with the described primer set the

alignment and matrix calculation was done with

Clustal Omega (Sievers et al. 2011).

Results and discussion

Phylogenetic analysis

The phylogenetic positions of strains Poly59T,

Poly51T and Pla22T were determined by 16S rRNA

gene analysis as shown in Fig. 1. The three strains

cluster monophyletically with R. obstinata LF1T

(Bondoso et al. 2015). An assessment of different

phylogenetic markers describing the relationship

between the type strain and the novel isolates can be

found in Table 1. The 16S rRNA gene similarities of

Poly59T, Poly51T and Pla22T to R. obstinata LF1T are

all below the species threshold of 98.7% (Stackebrandt

and Ebers 2006), but above the proposed genus

threshold of 94.5% (Yarza et al. 2014). The compar-

ison of rpoB sequence fragments as described (Bon-

doso et al. 2013) gave similarity results between 80.9

and 82.9%, which are values below the proposed

species threshold, but above the given genus threshold

(Bondoso et al. 2013). This implies that none of the

novel strains belong to the species Rubripirellula

obstinata, but that all are members of the genus

Rubripirellula. The ANI values of under 95% support

this result of separate species (Kim et al. 2014).

Additionally, the two-way AAI in the range of

60–80% (Luo et al. 2014) and a POCP of [ 50%

(Qin et al. 2014) also indicate that all strains belong to

the same genus. The two closely related strains

Poly51T and Poly59T have a 16S rRNA gene sequence

identity of 98.4%, an rpoB sequence identity of 85.8%,

and an ANI of 75.4% implying that they also form two

separate species.

Morphological and physiological analysis

Cell morphologies and cell sizes of strains Pla22T,

Poly51T and Poly59T were analysed by light micro-

scopy (Fig. 2) and scanning electron microscopy

(Fig. 3) during exponential growth. The obtained

images were compared to the already described strain

R. obstinata LF1T. All four strains form mainly loose

aggregates and divide by polar budding. Buds have the

same shape as the mother cell. Flagella formation was

only observed for LF1T. All four strains contain

fimbriae at the budding pole but lack a stalk. A

holdfast structure was only observed in strain LF1T.

Only Poly51T and LF1T formed a visible capsule.

Detailed information on morphology, locomotion and

mechanism of cell division is summarised in Table 2.

Cells of strain Pla22T are round grain rice-shaped

with an average size of 1.7 ± 0.3 lm in length and

0.9 ± 0.2 lm in width (Fig. 2a, g). Colonies have an

amaranth pink color. The strain is aerobic and grew at

pH values ranging from 6.0 to 8.5 with an optimum at

pH 7.5 (Fig. 4). Growth was observed at temperatures

from 10 to 36 �C with optimal growth at 33 �C. In

M1H NAG ASW medium a maximal growth rate of

0.068 h-1 was observed, which corresponds to a

doubling time of approximately 10 h (Fig. 4).

Strain Poly51T has a similar shape and color as

strain Pla22T, but the cells are slightly smaller and
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appear chubbier (Poly51T: 1.4 ± 0.2 9 0.9 ±

0.1 lm) (Figs. 2c, h, 3c). Strain Poly51T grows at a

pH range of 6.5–9.0 with an optimum at pH 8.0. The

temperature optimum of the strain is between 22 and

24 �C, while cell growth was observed at temperatures

ranging from 10 to 28 �C (Fig. 4). The strain did not

Fig. 1 16S rRNA gene-based phylogeny. The phylogenetic

tree highlights the position of the three here investigated strains

in relation to their closest described relatives. 16S rRNA gene

phylogeny was computed using the maximum likelihood

method. Bootstrap values after 1000 re-samplings are given at

the nodes (in %). The outgroup consists of three 16S rRNA

genes from the PVC superphylum

Table 1 Phylogenetic markers

Strain 16S rRNA sequence

similarity (%)

rpoB sequence

similarity (%)

Average nucleotide

identity (ANI) (%)

Average amino acid

identity (AAI) (%)

Percentage of conserved

proteins (POCP) (%)

Pla22T 96.60 80.90 71.80 66.80 54.70

Poly51T 95.90 82.90 71.60 64.30 52.30

Poly59T 95.30 82.90 71.10 64.10 51.30

Comparison of the different phylogenetic markers 16S rRNA, rpoB, ANI, two-way AAI and POCP between the novel Rubripirellula
strains and Rubripirellula obstinata LF1T
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grow at temperatures of 30 �C or higher. The highest

observed growth rate is 0.028 h-1 corresponding to a

generation time of 25 h.

Cells of Poly59T appear round grain rice-shaped to

round (Figs. 2e, 3e, f) with an average cell size of

1.5 ± 0.3 lm (length) 9 1.0 ± 0.2 lm (width), are

pink-colored and show the same behavior as Poly51T

with regard to pH (growth range 6.5–9.0, optimum

7.5–8.0) (Fig. 4). Comparable to Poly51T, strain

Poly59T grows best at 24 �C, but in contrast could

also grow at 30 and 33 �C. Its highest grow rate was

calculated to 0.043 h-1, corresponding to a doubling

time of approx. 16 h. The type species R. obstinata

LF1T has a temperature optimum at 25 �C (range

10–30 �C) and grows in a pH range of 7.5–10.5

(Bondoso et al. 2015). Thus, the temperature optimum

of LF1T is very similar to Poly51T and Poly59T, but

different from Pla22T (33� C). Remarkably, the

temperature optimum of Pla22T being 8 �C higher

than that of the three other strains is the most striking

difference and is also reflected by a higher growth rate

of Pla22T at the optimal temperature. While Poly51T,

Poly59T and LF1T were isolated from the Baltic Sea or

the Atlantic Ocean, Pla22T was isolated from the

estuary of the river Warnow close to a wastewater

treatment plant. The water temperature profile in the

sampling areas might be considerably different and

allows at least to speculate that the higher temperature

optimum of Pla22T might be related to the sampling

location. With regard to pH, LF1T, growing at a range

of 7.5–10.5, is slightly more alkaliphilic than the other

three strains, which grow at a pH range of 6.5–9.0.

None of the strains grew at pH 5.5 or lower and the

observed differences between the strains were less

pronounced compared to the parameter temperature.

Genomic characteristics

All three strains show similarities in genome size

(6.9–8.0 Mb) and G ? C content (53.7–56.2%). The

genome size (7.1 Mb) and G ? C content (54.3%) of

R. obstinata LF1T also fit in the ranges obtained for the

novel species. The number of putative open reading

frames (ORFs) ranges from 5182 to 6274 (of which

2096–2640 are annotated as hypothetical proteins),

which corresponds to 746–785 putative protein-cod-

ing genes per Mb. These values give a nearly identical

coding density of 89.0 ± 0.3%. Genomic

Fig. 2 Light microscopy images and cell size plots of the three

isolated strains. The mode of cell division (a, c, e) and a general

overview of cell morphology (b, d, f) is shown in the pictures.

The scale bar is 1 lm. For determination of the cell size (g, h,

i) at least 100 representative cells were counted manually or by

using a semi-automated object count tool
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characteristics are summarised in Table 2. The

observed genome sizes of the three strains are not

only comparable to R. obstinata LF1T, but also to other

closely related species, e.g. Rhodopirellula baltica

(7.1 Mb) and Roseimaritima ulvae (8.1 Mb). The

genome of Pla22T (6.9 Mb) is around 1 Mb smaller

than those of Poly51T and Poly59T (both 7.9 Mb). R.

obstinata LF1T contains two copies of the 16S rRNA

gene, while the gene is present in single copy in the

three other strains. The number of 67 tRNAs in LF1T is

similar to Pla22T (74 tRNAs) and Poly59T (71

tRNAs), but much lower compared to Poly51T (120

tRNAs).

Fig. 3 Scanning electron microscopic pictures of the three novel strains. The scale bar is 1 lm
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Conclusion

Based on our physiological, genomic and phyloge-

netic analysis the three strains represent each a novel

species of the genus Rubripirellula, for which we

present the here characterised strains as respective

type strains.

Emended description of the genus Rubripirellula

Bondoso et al. 2016

The description of the genus Rubripirellula is as given

previously (Bondoso et al. 2015), with the following

modification: Colonies are amaranth pink- to red-

coloured.

Table 2 Phenotypic and genotypic features of the three characterized Rubripirellula species in comparison to R. obstinata LF1T

(Bondoso et al. 2015)

Characteristics Pla22T Poly51T Poly59T R. obstinataLF1T

Phenotypic features

Size

(length 9 width)

1.7 9 0.9 lm 1.4 9 0.9 lm 1.5 9 1.0 lm 1.5–2.0 9 1.3–1.7 lm

Shape Round grain rice-shaped Round grain rice-

shaped

Round grain rice-shaped to

round

Ovoid to pear-shaped

Colony color Amaranth pink Amaranth pink Pink Red

Aggregates Yes Yes Yes Yes

Division Budding Budding Budding Budding

Flagella n.o. n.o. n.o. Yes

Crateriform

structures

Polar Polar Polar Polar

Fimbriae Matrix or fiber, at budding

pole

Matrix or fiber Fibercap at budding pole At budding pole

Capsule n.o. Yes n.o. yes

Bud shape Like mother cell Like mother cell Like mother cell Like mother cell

Budding pole Polar Polar Polar Polar

Stalk n.o. n.o. n.o. n.o.

Holdfast structure n.o. n.o. n.o. yes

Genotypic features

Genome size (bp) 6,945,823 7,988,747 7,852,560 7,094,218

Plasmids (bp) n.o. n.o. n.o. n/a

G?C (%) 53.7 ± 0.9 56.2 ± 2.1 54.8 ± 1.7 54.3 ± 1.7

Completeness (%) 96.91 98.28 98.28 98.28

Contamination (%) 1.72 1.72 1.72 1.72

Protein-coding genes 5182 6274 6088 5870

Hypothetical proteins 2096 2794 2640 2888

Protein-coding genes/

Mb

746 785 775 827

Coding density (%) 89.3 88.8 89.3 84.4

16S rRNA genes 1 1 1 2

tRNA genes 74 120 71 67

n.o. not observed, n/a not available
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Description of Rubripirellula amarantea sp. nov

Rubripirellula amarantea (a.ma.ran’te.a. N.L. fem.

adj. amarantea of amaranth; corresponding to the

amaranth colour of the cells).

Cells are round grain rice-shaped (length:

1.7 ± 0.3 lm, width: 0.9 ± 0.2 lm), form aggregates

and divide by polar budding. Colonies have amaranth

pink color. Cells of the type strain grow at ranges of

10–36 �C (optimum 33 �C) and at pH 6.0–8.5 (opti-

mum 7.5). The genome of the type strain has a size of

6,945,823 bp and a G ? C content of 53.7 ± 0.9%.

The type strain genome (acc. no. SJPI00000000) and

16S rRNA gene sequence (acc. no. MK554581) are

available from GenBank.

The type strain is Pla22T (DSM 102267T = LMG

29691T), isolated from polyethylene particles incu-

bated in brackish water of the Warnow river estuary

close to a wastewater treatment plant near Rostock,

Germany.

Description of Rubripirellula tenax sp. nov

Rubripirellula tenax (te’nax. L. fem. adj. tenax

holding fast, clinging; corresponding to the character-

istic of the cells to be adhesive).

Cells are round grain-rice shaped (length:

1.4 ± 0.2 lm, width: 0.9 ± 0.1 lm), form aggregates

and divide by polar budding. Pink amaranth coloured

colonies are formed. The temperature optimum is

22–24 �C (growth observed from 10 to 28 �C). The

type strain failed to grow at 30 �C or higher. The

preferred pH is 8.0, but growth is also observed at pH

6.5–9.0. The type strain genome has a size of

7,988,747 and a G ? C content of 56.2 ± 2.1%. The

type strain genome (acc. no. SJPW00000000) and 16S

Fig. 4 Temperature and pH optima of the isolated strains. In

the upper panel, the given data points show the average growth

rates obtained after cultivation of the three isolated strains in

M1H NAG ASW medium in biological triplicates at different

temperatures and a constant pH of 7.5. In the bottom panel, the

data points show the average growth rates for cultivation at

different pH values and a constant temperature of 28 �C
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rRNA gene sequence (acc. no. MK554552) are

available from the GenBank database.

The type strain is Poly51T (DSM 103356T = VKM

B-3438T), isolated from polystyrene particles incu-

bated in the Baltic Sea in 2 m depth near Heiligen-

damm, Germany.

Description of Rubripirellula reticaptiva sp. nov

Rubripirellula reticaptiva (re.ti.cap.ti’va. L. n. rete a

fishing net; L. fem. adj. captiva captive; N.L. fem. adj.

reticaptiva corresponding to the capture of the cells in

water).

Cells are round rice grain-shaped to round

(1.5 ± 0.3 lm 9 1.0 ± 0.2 lm), form aggregates

and divide by polar budding. Colonies have a red

colour. The preferred temperature and pH is 24 �C
and 7.5–8.0, respectively, while growth is observed

in the range of 10–33 �C and at pH 6.5–9.0. The

type strain genome has a size of 7,852,560 and a

G ? C content of 54.8 ± 1.7%. The type strain

genome (acc. no. SJPX00000000) and 16S rRNA

gene sequence (acc. no. MK554553) are available

from GenBank.

The type strain is Poly59T (DSM 103767T = LMG

29696T), isolated from polyethylene particles incu-

bated in the Baltic Sea in 2 m depth near Heiligen-

damm, Germany.
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Jeske O, Schüler M, Schumann P, Schneider A, Boedeker C,

Jogler M, Bollschweiler D, Rohde M, Mayer C, Engelhardt

H, Spring S, Jogler C (2015) Planctomycetes do possess a

peptidoglycan cell wall. Nat Commun 6:7116

Jeske O, Surup F, Ketteniß M, Rast P, Förster B, Jogler M, Wink

J, Jogler C (2016) Developing techniques for the utilization

of Planctomycetes as producers of bioactive molecules.

Front Microbiol 7:1242
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Spormann AM, Op den Camp HJM, Overmann J, Amann

R, Jetten MSM, Mascher T, Medema MH, Devos DP,
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