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Abstract The heavy metal cadmium (Cd) is a

hazardous pollutant that exerts various toxic effects

on aquatic animals. The biomagnifying effects of this

non-essential element in the food chain also pose

threats to human health. In this study, the protective

effect of a dietary probiotic supplementation, Lacto-

bacillus plantarum CCFM8610, on the intestinal

microbiota and physiological conditions of Nile tilapia

(Oreochromis niloticus) exposed to waterborne Cd

was evaluated. Two hundred fish were divided into

four groups, i.e., control, probiotic-only, Cd-only and

Cd-plus-probiotic. The fish were exposed to

waterborne Cd at a level of 1 mg L-1 for 4 weeks

and the probiotic was administered twice daily at

108 CFU g-1 in the fish diet. Waterborne Cd exposure

caused a profound decline in the gut microbial

diversity and marked alterations in the composition

of the microbiota. Dietary supplementation with L.

plantarum CCFM8610 reversed the changes in the

intestinal microbiota composition in the Cd-exposed

fish and reduced the abundance of Flavobacterium and

Pseudomonas. Compared with the Cd-only group, the

probiotic treatment significantly promoted growth

performance and prevented the death of the Cd-

exposed fish. L. plantarum CCFM8610 supplementa-

tion also decreased Cd accumulation and alleviated

oxidative stress in the tissues, and reversed the

alterations in hemato-biochemical parameters in the

blood of fish. The results suggest that L. plantarum

CCFM8610 can be considered a safe dietary supple-

ment for the prevention of Cd-exposure-induced

problems in aquaculture and food safety.
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Introduction

Cadmium (Cd) is a non-essential element that can be

toxic and carcinogenic to humans and animals. This

heavy metal currently ranks seventh on the priority list
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of hazardous substances provided by the Agency for

Toxic Substances and Disease Registry (ATSDR

2015) of the United States. With industrial develop-

ment and population growth, increasing contamina-

tion of aquatic systems with Cd has been reported

worldwide (Chahid et al. 2014; Taweel et al. 2013;

Zhou et al. 2008). Through exposure to Cd present in

water, sediments and the food chain, this toxic metal

can be readily assimilated and bioaccumulated in a

variety of aquatic organisms, such as Nile tilapia

(Oreochromis niloticus), shrimp (Parapenaeus lon-

girostris), mussel (Mytilus edulis) and octopus (Octo-

pus vulgaris) (Morgano et al. 2014; Oimedo et al.

2013; Taweel et al. 2013). Cd exposure causes

oxidative stress and immunotoxicity in fish, which

induces structural and functional disorders in vital

organs including the gills, liver and kidneys, leading to

growth inhibition and abnormal mortality (Almeida

et al. 2002; Guardiola et al. 2013). Therefore, Cd

pollution in the aquatic environment not only causes

great economic losses in aquaculture, but also poses

potential human health risks as a result of aquatic

product consumption (Copat et al. 2013; Kumar and

Singh 2010; Oimedo et al. 2013). Thus, the develop-

ment of safe, economic and efficient strategies to

control Cd levels in fish is an area of ongoing research

(Schwarzenbach et al. 2006; Zhou et al. 2008).

The intestinal microbiota of fish plays an important

role in immunity, metabolism, maturation and patho-

gen resistance (Gómez and Balcázar 2008). Imbal-

ances of the microbiota may cause disturbances of the

intestinal immune system and contribute to the

development of diseases in fish (Pérez et al. 2010).

Cd exposure has been reported to significantly affect

the intestinal microbiota of mammals (Bisanz et al.

2014; Liu et al. 2014), but the effects of this toxic

metal on the gut microbiota of fish are not well

understood.

The application of probiotics in aquatic feeds has

been studied extensively and is accepted as an

alternative to reduce the misuse of antibiotics (Gate-

soupe 1999). A considerable number of studies have

also confirmed that probiotic supplementation can

effectively modulate the intestinal microbiota, pro-

mote growth performance and regulate immune

homeostasis in fish (Heo et al. 2013; Standen et al.

2013, 2015). In our previous studies, a specific

probiotic, Lactobacillus plantarum CCFM8610, was

screened out for its useful Cd binding and anti-

oxidative stress ability both in vitro and in vivo (Zhai

et al. 2014, 2015). Preliminary experiments for the

present study also showed that dietary supplementa-

tion with this strain significantly decreased the mor-

tality (4/20 to 0/20) and muscle Cd level (decreased by

more than 50%) of Cd-exposed Nile tilapia. These

results indicated the potency of this lactic acid

bacterium for the treatment or prevention of Cd

exposure in aquaculture. 16S rRNA gene sequence

analysis confirmed the identification of the strain as L.

plantarum (99% sequence identity to L. plantarum

AJ965482).

Therefore, the aims of this study were to investigate

the effects of dietary L. plantarum CCFM8610

supplementation on the intestinal microbiota and

physiological conditions of Nile tilapia exposed to

waterborne Cd, and to gain insights into the possible

protective mechanisms of this probiotic.

Materials and methods

Bacterial strains and culture

L. plantarum CCFM8610 was obtained from the in-

house Culture Collections of Food Microbiology

(CCFM), Jiangnan University (Wuxi, China). The

strain was cultured in de Man-Rogosa-Sharpe (MRS)

broth (Hopebio Company, China) at 37 �C for 18 h.

Preparation of the fish diet

The fish diet (crude protein 32%, crude lipid 8%, crude

fiber 10% and ash 12%) was formulated as previously

reported, with minor modifications (Ma et al. 2015).

For the preparation of the experimental floating feed,

the L. plantarumCCFM8610 culture was suspended in

phosphate saline buffer (pH 7.2) and then mixed with a

weighed amount of fish diet powder at an initial

bacterial concentration of 1010 CFU g-1, which cor-

responded to a bacterial level of 108 CFU g-1 after

pelleting. The dose of the L. plantarum strain was

selected based on previous reports (Heo et al. 2013;

Ridha and Azad 2016). The bacterial concentration in

the fish diet was also confirmed by colony counting.

The probiotic-containing feed was prepared weekly

and stored at 4 �C. Based on our preliminary colony-

counting experiment with an incubation on MRS agar
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at 37 �C for 48 h, the viability of L. plantarum

CCFM8610 in the feed was confirmed to remain at the

level of 108 CFU g-1 during the 1-week storage.

Fish and experimental design

Nile tilapia were obtained from the Freshwater Fish-

eries Research Center of the Chinese Academy of

Fishery Sciences (Wuxi, China) with a health certifi-

cate. The fish were acclimated in cylindrical plastic

tanks for 3 weeks at 28 ± 0.3 �C, pH 7.6 ± 0.2,

dissolved oxygen 7.2–7.8 mg L-1, with a 12-h light–

dark photoperiod and continuous aeration. No death or

abnormity was observed during the acclimation.

After acclimation, 200 fish with an average body

weight of 34.0 ± 1.16 g were randomly divided into

four groups, i.e., control, CCFM8610-only, Cd-only

and Cd-plus-CCFM8610, with triplicate tanks per

group (16 or 17 fish per tank). Fish in the control group

received basal fish diet and were kept in Cd-free water.

Fish in the CCFM8610-only group received diet

containing L. plantarum CCFM8610 (108 CFU g-1)

and were kept in Cd-free water. Fish in the Cd-only

group received basal fish diet and were exposed to

waterborne Cd at 1 mg L-1. Fish in the Cd-plus-

CCFM8610 group were treated with both probiotic-

containing diet and waterborne Cd exposure. A dose of

waterborne Cd at a level of 1 mg L-1, in the form of

CdCl2, and a feeding period of 4-week were selected to

model environmental Cd exposure with sublethal

toxic effects on fish (Almeida et al. 2001; Franklin

et al. 2005; Guardiola et al. 2013). Our preliminary

experiment also showed that this feeding regime

exhibited a moderate toxic effect on fish with a

mortality at 20% and a muscle Cd level at

0.12 ± 0.031 lg g-1 of wet tissue. The fish were

fed with the experimental floating feed at 3% of their

body weight twice daily (9:00 a.m. and 5:00 p.m.).

Care was taken to avoid feed losses during the

experiment. The water was refreshed every 2 days to

maintain a constant Cd level and the faeces of the fish

were collected and siphoned off daily. The water

quality was monitored throughout the trial and the

experiments were conducted under the same condi-

tions as in the acclimation period. Water samples were

collected every 24 h for Cd level determination using

a flame or graphite furnace atomic absorption spec-

trophotometer (Spectr AAS or AA; Varian).

During the 4-week trial, the body weight (BW) and

feed intake of the fish were recorded and the growth

performance was evaluated by calculating the growth

rate (GR), feed conversion ratio (FCR) and survival

rate as follows (Ma et al. 2015).

GRð%Þ ¼ ½ðBWf � BWiÞ=BWi� � 100%

FCR ¼ Total feed intake=ðBWf � BWiÞ

Survival rateð%Þ ¼ ðNs=NiÞ � 100%

where BWf and BWi are the final BW of the fish after

the 4-week treatment period and the initial BW of the

fish, respectively. Ns and Ni are the number of

surviving fish after the 4-week treatment period and

the initial number of fish, respectively.

At the end of the 4th week, faecal samples were

collected from each tank and stored at -80 �C. The
fish were then sacrificed under ethyl 3-aminobenzoate

methanesulfonate anesthesia. Blood was collected

from the caudal vasculature of five fish per tank (15

replicates per group) and divided into two aliquots:

one was centrifuged (3000g, 10 min) to obtain serum

samples and the other was stored in anti-coagulative

tubes (EDTA-2K). Tissue samples including spleen,

brain, kidney, liver, gill, gut andmuscle were collected

from three fish per tank (nine replicates per group) and

stored in metal-free Eppendorf tubes at -80 �C. The
intestinal contents were squeezed into a sterilised tube

and stored at -20 �C for further microbial analysis

after the removal of the gut.

All of the protocols for this study were approved by

the Ethics Committee of Jiangnan University, China

(JN no. 2015-09-F). The procedures of this study

involving fish were carried out in accordance with the

European Community guidelines (directive 2010/63/

EU) for the care and use of experimental animals.

Analysis of gut microbial diversity

and quantification of faecal L. plantarum

As very few gut contents could be collected from the

fish in the Cd-only group, the samples were pooled by

tank (thus n = 3 per treatment) and microbial DNA

was extracted from 200 mg gut content samples using

the E.Z.N.A.� DNA Kit (Omega Bio-tek, Norcross,

GA, US) following the manufacturer’s instructions.

The microbial DNA from faecal samples was
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extracted with the same kit for the quantification of L.

plantarum.

The V4–V5 region of the bacterial 16S ribosomal

RNA gene was amplified by PCR using the primers

515F (50-barcode-GTGCCAGCMGCCGCGG-30) and
907R (50-CCGTCAATTCMTTTRAGTTT-30), where
the barcode is an eight-base sequence and unique to

each sample. Amplicons were extracted from 2%

agarose gels, purified using the AxyPrep DNA Gel

Extraction Kit (Axygen Biosciences, CA, US) and

quantified using QuantiFluorTM-ST (Promega, US).

The purified amplicons were pooled in equimolar

amounts and paired-end sequenced (2 9 250) on an

Illumina MiSeq platform according to the standard

protocols. The raw reads were deposited into the NCBI

Sequence Read Archive (SRA) database (Accession

Number: SRP089871).

The raw fastq files were de-multiplexed and

quality-filtered using QIIME (version 1.17). Opera-

tional units (OTUs) were clustered with a 97%

similarity cutoff using UPARSE (http://drive5.com/

uparse/) and chimeric sequences were identified and

removed using UCHIME. The taxonomy of each 16S

rRNA gene sequence was analysed using the RDP

Classifier (http://rdp.cme.msu.edu/) against the

SILVA (SSU115) 16S rRNA database using a confi-

dence threshold of 70% (Amato et al. 2013).

Primers (LP-F, 50-GGAGCCGCTATTAGTA
TTTTCAT-30 and LP-R 50-AATACAAGCAAGTCT
TGGACCAG-30), specific for L. plantarum, were used
to quantify the level of this species in the faeces as

previously reported, with minor modifications (Costa

et al. 2014; Klocke et al. 2006). The quantitative PCR

(qPCR) analysis was performed in a reaction mixture

(20 lL) containing 2 9 SYBR Green Supermix (Bio-

Rad, US), 1 lM of each primer and 1 lL of the

microbial DNA extracted from the faecal samples. A

dissociation curve analysis was then performed and

the cycle threshold (Ct value) of each sample was

compared with the corresponding standard curve to

determine the number of gene copies of L. plantarum

(Million et al. 2012; Romi et al. 2015).

Determination of hemato-biochemical parameters

in blood

Total white blood cell (WBC) and red blood cell

(RBC) counts were determined using a Neubauer

hemocytometer (BC-5300V; Mindray, China)

(Gabriel et al. 2015). The levels of hematocrit

percentage (HCT %) and hemoglobin (HGB) were

measured as previously described (Gabriel et al.

2015). The mean corpuscular volume (MCV), mean

corpuscular hemoglobin (MCH) and mean corpuscu-

lar hemoglobin concentration (MCHC) were calcu-

lated as follows (Gabriel et al. 2015).

MCV ¼ ðHCT� 10Þ=RBC

MCH ¼ ðHGB � 10Þ=RBC

MCHC ¼ ðHGB� 100Þ=HCT

Biochemical parameters in the serum of the fish,

including the total cholesterol (TC), total protein

content (TP), triglyceride (TG), high-density lipopro-

tein (HDL), aspartate aminotransferase (AST) and

alanine aminotransferase (ALT), were measured using

an automatic biochemical analyser (BS-400; Mindray,

China) (Ma et al. 2015).

Determination of Cd and other chemical elements

in tissues

The tissue samples were transferred to metal-free

digestion vessels (OMNI; CEM, UK) and digested in

concentrated HNO3 using a microwave digestion

system (MARS; CEM, UK). The Cd concentrations

in all of the tissue samples and the Cd, calcium (Ca),

iron (Fe), magnesium (Mg) and zinc (Zn) levels in the

muscles were determined by inductively coupled

plasma mass spectrometry (NexIon-300X; Perk-

inElmer, China).

Determination of oxidative stress levels in tissues

The levels of glutathione (GSH), of malondialdehyde

(MDA) and the activities of superoxide dismutase

(SOD) and glutathione peroxidase (GPx) in the brain,

liver and kidneys of the fish were measured with

commercial assay kits (Jiancheng Bioengineering

Institute, China). The assays were performed accord-

ing to the recommendations of the manufacturer.

Statistical analysis

The data are expressed as the mean ± standard error

of the mean (SEM) for each group. The differences

among the groups were evaluated by one-way analysis
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of variance, followed by the Tukey post hoc test. A

P value of \0.05 was considered to be statistically

significant.

Results

Fish growth and survival performance

Waterborne Cd exposure without probiotic supple-

mentation (Cd-only) caused a marked inhibition of

growth and feed utilisation, and a mortality of 6 of the

50 tilapia (Table 1). Compared with the Cd-only

group, dietary supplementation with L. plantarum

CCFM8610 significantly increased the GR and

decreased the FCR (P\ 0.05), and completely pre-

vented the death of Cd-exposed fish. The growth

performance and feed utilisation of the tilapia fed L.

plantarum CCFM8610 without Cd exposure (probi-

otic-only) were also significantly promoted compared

with those in the control group (P\ 0.05). As shown

in Table S1, the Cd levels in the aquatic environment

of the Cd-only group decreased after 24 and 48 h,

which may be due to the uptake by fish and the natural

sedimentation. Water Cd levels in the Cd-plus-L.

plantarum group were lower than that in the Cd-only

group.

Intestinal microbial diversity and composition

Cd exposure caused a profound decline in the gut

microbial diversity and marked alterations in the

composition of the microbiota. At the phylum level

(Fig. 1), Cd exposure resulted in a significant increase

in Bacteroidetes and a considerable decrease in

Fusobacteria. At the genus level, both Cd exposure

and L. plantarum CCFM8610 treatment altered the

structure and composition of the fish gut microbiota

(Fig. 2). 152, 149, 116 and 103 classified genera were

detected in the control, CCFM8610-only, Cd-only and

Cd-plus-CCFM8610 groups, respectively. Compared

with the Cd-free groups, Cd exposure caused profound

decreases in Cetobacterium, Plesiomonas and Deef-

gea and significantly increased the abundance of

Flavobacterium, Pseudomonas, Cellvibrio and Acine-

tobacter (Fig. 3, P\ 0.05). Dietary supplementation

with L. plantarum CCFM8610 reduced the abundance

of Flavobacterium (P = 0.093) and Pseudomonas

(P = 0.061) in the Cd-exposed fish. Compared with

the control group, L. plantarum CCFM8610 treatment

by itself resulted in a significant increase in the

abundance of Deefgea (P = 0.016). The qPCR assay

demonstrated that the supplementation with the pro-

biotic-containing diet markedly increased the concen-

tration of L. plantarum in the faeces of the fish, while

Cd exposure caused a reduction in the L. plantarum

population in the 4th week (Table 2, P\ 0.05).

Cd, Ca, Fe, Mg and Zn levels in the tissues

and blood

The Cd levels detected in the blood, spleen, brain,

kidneys, liver, gills, gut and muscles of the tilapia are

shown in Tables 3 and 4. Compared with the control

group, waterborne Cd exposure significantly increased

the levels of this toxic metal in the blood and tissues

(P\ 0.05), and the kidneys and liver were the organs

with the greatest Cd accumulation. L. plantarum

CCFM8610 supplementation significantly decreased

the Cd levels in the blood, spleen, kidneys, gills and

muscles of the fish (P\ 0.05). The Cd levels in the gut

were higher in the Cd-plus-CCFM8610 group than in

Table 1 Effects of dietary L. plantarum CCFM8610 supplementation on growth performance of Nile tilapia during the 4-week

experiment

Treatment (group) GR (%) FCR Survival rate (%)

Control 29.69 ± 0.52a 1.98 ± 0.03a 100

8610 only 35.47 ± 1.24b 1.70 ± 0.06b 100

Cd only 2.63 ± 0.25c 18.21 ± 0.05c 88

Cd ? 8610 18.59 ± 1.28d 2.80 ± 0.01d 100

GR relative growth rate, FCR feed conversion ratio. Data are expressed as the mean ± SEM for each group. The superscript letters

indicate statistically significant differences at a P value of\0.05 within each row comparison
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the Cd-only group. Cd exposure also caused alter-

ations of the Ca and Zn levels in the muscles of the fish

(Table 4). These alterations were not reversed in the

Cd-plus-CCFM8610 group (P[ 0.05). L. plantarum

CCFM8610 treatment by itself did not result in

significant differences in the levels of any of the

metals from those in the control group, with the

exception of an increase in the Zn level in the muscles.

Hemato-biochemical parameters in blood

Cd exposure significantly decreased the levels of the

hematological parameters HCT, HGB, MCV and

WBC (Figures S1 and S2). Compared with the Cd-

only group, the decreases in the HGB and WBC levels

were markedly reversed by L. plantarum CCFM8610

treatment (P\ 0.05), while the other parameters

remained unaffected. As shown in Figure S3, Cd

exposure also caused significant alterations of the

blood biochemical parameters TC, TG, TP, ALT, AST

and HDL (P\ 0.05). Dietary supplementation with L.

plantarum CCFM8610 markedly recovered the levels

of TG, ALT and AST (P\ 0.05). We also noted that

CCFM8610 treatment by itself did not result in

significant differences in the levels of the hemato-

biochemical parameters from those in the control

group, with the exception of enhancements of the

HGB and HDL levels.

Fig. 1 Effects of waterborne Cd exposure and dietary L. plantarumCCFM8610 supplementation on the relative abundance of the main

phyla of the gut microbiota of Nile tilapia. Data are expressed as the mean ± SEM for each group
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SOD, GPx, GSH and MDA in the tissues

The activities of SOD and GPx and the level of GSH

in the livers of the fish (Figure S4) were significantly

reduced in the Cd-only group, accompanied by a

marked increase in the levels of MDA (P\ 0.05).

Similar trends were also observed in the brains of the

fish (Figure S5) i.e., Cd exposure inhibited the

activities of SOD and GPx and increased the level

of MDA. Compared with the control group, all of

these parameters remained unaffected in the group

treated with L. plantarum CCFM8610 only. Com-

pared with the fish in the Cd-only group, L. plantarum

CCFM8610 supplementation was effective in revers-

ing the alterations in GPx and MDA in the liver and

the changes in SOD and MDA in the brain, respec-

tively. Neither Cd exposure nor probiotic treatment

caused significant alterations in these oxidative stress-

related parameters in the kidneys of the fish (data not

shown).

Fig. 2 Effects of waterborne Cd exposure and dietary L.

plantarum CCFM8610 supplementation on the gut microbial

compositions of Nile tilapia. a Principal coordinate (PCoA)

score plots based on unweighted UniFrac metrics. Indication of

principal coordinate percent variation is next to each axis. Each

point represents the composition of the gut microbiota of one

tank of fish. b Effects of Cd and probiotic treatments on the gut

microbial compositions of Nile tilapia at the genus level

Fig. 3 Effects of waterborne Cd exposure and dietary L.

plantarum CCFM8610 supplementation on the changes in the

bacterial species of interest. a Relative abundance of

Cetobacterium, Plesiomonas and Deefgea. b Relative abun-

dance of Flavobacterium, Pseudomonas, Cellvibrio and Acine-

tobacter. Data are expressed as the mean ± SEM for each group
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Discussion

The heavy metal Cd is a hazardous pollutant that has

various toxic effects on aquatic animals. The biomag-

nifying effects of this non-essential element in the

food chain also pose challenges to public human

health. Motivated by the previously identified poten-

tial of a specific probiotic (L. plantarum CCFM8610)

against Cd toxicity, this study investigated the use of

diet containing this probiotic for protection against

waterborne Cd exposure in fish.

Based on previous reports (Kumar and Singh 2010;

Wright and Welbourn 1994), the cycle of Cd in the

aquatic ecosystem is illustrated in Fig. 4. Besides

being primarily taken up by the gills, waterborne Cd

can also contaminate the diet and be absorbed via the

intestines of fish (Wang et al. 2012). After absorption,

Cd accumulates in the tissues and can be excreted by

the kidneys, liver, intestine and gills, thus recycling

through the aquatic system (Kumar and Singh 2010).

L. plantarum CCFM8610 has been reported to

effectively bind Cd in vitro and sequester Cd in the

intestines of mice (Zhai et al. 2014, 2015). This strain

is able to bind dissociated aqueous Cd ions in vitro and

sequester foodborne Cd in vivo, thus preventing this

toxic metal from being absorbed via the gills and

intestines of fish. Moreover, a portion of the Cd

accumulated in the liver can be excreted into the gut

via hematic and enterohepatic circulation and be re-

absorbed by the intestines efficiently (Nordberg et al.

2011; Roberts et al. 2002). Therefore, intestinal L.

plantarum CCFM8610 could bind and immobilise

such secreted Cd before the intestinal re-absorption,

due to its superior Cd binding ability (Zhai et al. 2013).

This may explain the higher Cd level in the gut of the

Cd-plus-CCFM8610 group than that of the Cd-only

group (Table 3). Dietary supplementation with this

strain can therefore increase faecal Cd excretion,

because lactic acid bacteria are excreted through the

faeces of fish (Ringø and Gatesoupe 1998). As the

faecal Cd is sequestered by the strain, L. plantarum

CCFM8610 can also prevent the recycling of Cd into

the aquatic system, thus reducing the risk of re-

exposure of fish. This is confirmed by a lower water Cd

level in the Cd-plus-L. plantarum group than that in

the Cd-only group (Table S1). These mechanisms

(Fig. 4) may explain the significant effects of dietary

L. plantarum CCFM8610 supplementation against Cd

accumulation in the tissues and blood of fish

(Tables 3, 4).

To the best of our knowledge, very few studies on

the toxic effects of Cd exposure on fish gut microbiota

have been carried out to date. The present study

showed that waterborne Cd exposure profoundly

affected the diversity and composition of the gut

microbiota of Nile tilapia (Figs. 1, 2, 3). Among the

bacteria that were significantly decreased after Cd

exposure, Cetobacterium is a predominant genus in

the intestines of freshwater fish (Larsen et al. 2014)

and Cetobacterium somerae has been reported to be

significant in vitamin B12 synthesis in fish (Tsuchiya

et al. 2008). Members of the genera Plesiomonas and

Deefgea have also been found to commonly inhabit

the intestinal tracts of fish (Herrera et al. 2006; Jung

and Jung-Schroers 2011). Among the bacteria that

were markedly increased after Cd exposure,

Flavobacterium strains have been reported to be

pathogenic to fish: Flavobacterium psychrophilum is

the pathogen responsible for bacterial cold water

disease and Flavobacterium columnare causes the

disease columnaris in several freshwater fish species

(Leal et al. 2010; Nematollahi et al. 2003). Some

strains of the genera Pseudomonas and Acinetobacter

may also exert adverse effects on fish health:

Table 2 Quantification of L. plantarum population in the faeces of Nile tilapia during the 4-week experiment by qPCR assay

Treatment (group) Log10 gene copies/g faecal sample ± SEM at

0 week 2nd week 4th week

Control 5.27 ± 0.06a 5.43 ± 0.03a 5.23 ± 0.03a

8610 only 5.46 ± 0.13a 7.76 ± 0.03b 7.55 ± 0.04b

Cd only 5.33 ± 0.02a 5.32 ± 0.04a 4.71 ± 0.04c

Cd ? 8610 5.62 ± 0.21a 6.93 ± 0.02c 6.95 ± 0.05d

Data are expressed as the mean ± SEM for each group. The superscript letters indicate statistically significant differences at a

P value of\0.05 within each row comparison
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Pseudomonas plecoglossicida and Pseudomonas

anguilliseptica infections in ayu and salmonid fish

have been reported in Japan and Finland, respectively

(Park et al. 2000; Wiklund and Bylund 1990), and

Acinetobacter baumannii has been identified as a

pathogen for channel catfish in China (Xia et al. 2008).

The gut microbiota is in continuous direct contact with

the intestinal mucosa and plays an important role in

fish health (Pérez et al. 2010). Cd-induced alterations

in the gut microbiota may cause severe dysfunctions in

Nile tilapia, which can be another possible cause of the

adverse effects observed on the growth performance,

antioxidant defense system and hemato-biochemical

indices of Cd-exposed fish. Compared with the Cd-

only group, dietary supplementation with L. plan-

tarum CCFM8610 restored the structure and compo-

sition of the fish gut microbiota, although the recovery

was not very significant. The abundances of Flavobac-

terium and Pseudomonas were decreased in the Cd-

plus-CCFM8610 group, indicating the potential pro-

tection of L. plantarum CCFM8610 treatment against

Cd-induced infectious diseases. On the other hand,

CCFM8610 supplementation increased the abundance

of Cellvibrio and Acinetobacter in the Cd-exposed

fish. Strains of Cellvibrio sp. have been reported to

possess a specific protein (Cdae-1), which enhanced

Cd accumulation when expressed in Escherichia coli

(Mori et al. 2016). Acinetobacter strains such as

Acinetobacter calcoaceticus, Acinetobacter cal-

coaceticus var. antratus and Acinetobacter johnsonii

have been reported to have a good Cd binding ability

and can be used for bioremediation of Cd-contami-

nated wastewaters (Minz et al. 1996; Boswell et al.

1998). Therefore, the increased abundance of these

bacteria may enhance the Cd sequestration in the gut,

due to cellular accumulation and bio-removal mech-

anisms. This may also explain the higher Cd level in

the gut of the Cd-plus-CCFM8610 group than that of

the Cd-only group.

Consistent with previous reports (Almeida et al.

2002; Valavanidis et al. 2006), our results demon-

strated that Cd exposure inhibited the activities of

antioxidant enzymes and increased the level of MDA

(an indicator of the lipid peroxidation process) in the

liver and brain of Nile tilapia (Figures S4 and S5). The

protective effect of dietary probiotic supplementation

against oxidative stress may be caused by the reduc-

tion in the tissue Cd burden and the protection of the

antioxidant defense systems by L. plantarumT
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CCFM8610 (Zhai et al. 2014). As a downstream effect

of the above-mentioned protection, the Cd-induced

growth inhibition and abnormal mortality of fish were

also markedly reversed by L. plantarum CCFM8610

treatment (Table 1).

Cd exposure has been reported to affect iron

metabolism and result in microcytic hypochromic

anemia, with decreased levels of hematological

parameters such as MCV (Pratap 2008; Reynders

et al. 2006). With the exception of MCH and MCHC,

Cd exposure significantly inhibited these parameters

(Figures S1 and S2), which is consistent with a

previous report (Ruparelia et al. 1990). Dietary

supplementation with L. plantarum CCFM8610 was

effective in recovering the HGB and WBC levels in

the Cd-exposed fish, indicating that this strain is

protective against Cd-induced dysfunctions of the

immune system and protects the health status of Nile

tilapia (Davis et al. 2008; Houston 1997). The

restoration of ALT and AST in fish by dietary L.

plantarum CCFM8610 (Figure S3) indicated the

protective effect of this strain against Cd-induced

organ dysfunctions such as liver and heart damage in

Nile tilapia (Shahsavani et al. 2010). The alterations in

TC, TP, TG and HDL of Cd-exposed fish demon-

strated that Cd exposure also adversely affects the

Table 4 Effects of dietary L. plantarum CCFM8610 supplementation on metal levels in the muscles of Nile tilapia

Treatment (group) Mean concentration (lg g-1 of wet tissue) ± SEM

Cd Ca Fe Mg Zn

Control – 204.44 ± 24.67a 2.94 ± 0.15a 260.00 ± 4.71a 3.54 ± 0.093a

8610 only – 195.56 ± 26.67a 3.43 ± 0.26a 262.22 ± 9.54a 4.29 ± 0.17b

Cd only 0.14 ± 0.020a 364.44 ± 43.14b 3.68 ± 0.45a 265.56 ± 6.26a 5.62 ± 0.42c

Cd ? 8610 0.057 ± 0.006b 378.89 ± 46.68b 3.73 ± 0.29a 263.57 ± 9.30a 5.29 ± 0.28bc

–, Cd concentration in the muscles was too low to detect. Data are expressed as the mean ± SEM for each group. The superscript

letters indicate statistically significant differences at a P value of\0.05 within each row comparison

Fig. 4 Cycle of Cd in the aquatic ecosystem and the potential protective pathways of probiotics against tissue Cd accumulation in Nile

tilapia
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lipid and protein metabolism (Ma et al. 2015). L.

plantarum CCFM8610 treatment markedly reversed

the alteration of the level of TG, which may be another

reason for the enhancement of growth performance

(Table 1) by the strain.

Besides the protective effects of dietary L. plantarum

CCFM8610 supplementation against waterborne Cd

exposure, its safety of use in in Nile tilapia was also

evaluated. L. plantarum CCFM8610 treatment by itself

did not exert adverse effects on the growth performance,

hemato-biochemical biomarkers, oxidative stress status

or intestinal microbiota of the fish. Compared with the

control group, the growth rate and feed utilisation were

superior in the probiotic-supplied group, which is

consistent with a previous report demonstrating that

probiotics can enhance the growth performance of fish

(Ridha and Azad 2016). L. plantarum CCFM8610

supplementation did not cause losses of the essential

metals Ca, Fe, Mg or Zn from the muscles of fish

(Table 4). Taking these analyses into consideration, it

can be concluded that dietary supplementation of

L. plantarum CCFM8610 is safe for Nile tilapia.

In conclusion, the protective effects of dietary

probiotic supplementation on the growth performance,

tissue oxidative stress status and Cd levels, hemato-

biochemical parameters and intestinal microbiota of

Nile tilapia exposed to waterborne Cd were evaluated

in the present study. The results suggest that L.

plantarum CCFM8610 can be used as a safe dietary

supplement for the prevention of Cd-exposure-in-

duced problems in aquaculture and food safety.
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