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Abstract The lantibiotic nisin is produced by Lac-

tococcus lactis as a precursor peptide comprising a 23

amino acid leader peptide and a 34 amino acid post-

translationally modifiable core peptide. We previously

demonstrated that the conserved FNLD part of the

leader is essential for intracellular enzyme-catalyzed

introduction of lanthionines in the core peptide and

also for transporter-mediated export, whereas other

positions are subject to large mutational freedom. We

here demonstrate that, in the absence of the extracel-

lular leader peptidase, NisP, export of precursor nisin

via the modification and transporter enzymes,

NisBTC, is strongly affected by multiple substitutions

of the leader residue at position -2, but not by

substitution of positions in the vicinity of this site.

Export levels of precursor nisin increased by more

than 70% for position -2 mutants Asp, Thr, Ser, Trp,

Lys, Val and decreased more than 70% for Cys, His,

Met. In a strain with leader peptidase, the Pro-2Lys

and Pro-2Asp precursor nisins were less efficiently

cleaved by NisP than wild type precursor nisin. Taken

together, the wild type precursor nisin with a proline at

position -2 allows balanced export and cleavage

efficiencies by precursor nisin’s transporter and leader

peptidase.

Keywords Lactococcus lactis � Lanthionine �
Lanthipeptide � Leader peptide � Nisin � Transporter

Introduction

Nisin A is a peptide antibiotic produced by some

Lactococcus lactis strains. It is ribosomally produced

as a precursor peptide of 57 amino acids, consisting of

an N-terminal leader peptide and a C-terminal core

peptide (Lubelski et al. 2008). The core peptide is

post-translationally modified by the nisin modification

enzymes, NisB (Grag et al. 2013; Koponen et al. 2002)

and NisC (Koponen et al. 2002; Li et al. 2006), before

it is exported as precursor nisin by the ABC-
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transporter NisT. The leader peptide guides the

interactions of the precursor peptide with the modifi-

cation enzymes and transporter (Oman and van der

Donk 2010). Outside the cell, the leader peptidase,

NisP, cleaves off the leader peptide thus liberating

active nisin.

Nisin is a pentacyclic peptide consisting of 21

unmodified amino acids, 2 dehydroalanines, 1 dehy-

drobutyrine, 1 lanthionine and 4 methyllanthionines

(Gross andMorell 1971). Serines and threonines in the

core peptide are dehydrated by NisB, resulting in

dehydroalanines and dehydrobutyrines respectively.

Subsequently, NisC catalyzes the coupling of the

double bond in the dehydroamino acids to the thiol

group of cysteines, forming a lanthionine (dAla-S-

Ala) or methyllanthionine (dAbu-S-Ala). Nisin is a

lanthionine-containing antibiotic, so-called called

lantibiotic (Schnell et al. 1988). Lantibiotics are a

subgroup of so-called lanthipeptides, which also

comprise peptides without antibiotic activity (Arnison

et al. 2013; Knerr and van der Donk 2012; Kodani

et al. 2004; Willey and van der Donk 2007).

The nisin modification enzymes and transporter

have a relaxed substrate specificity. This allows the

use of L. lactis containing the nisin enzymes for the

discovery of lanthionine-stabilized therapeutic pep-

tides (Kluskens et al. 2005; Kuipers et al. 2004; Rink

et al. 2010). Lanthionine-stabilized angiotensin-(1–7)

has enhanced receptor specificity, enhanced intrinsic

activity, strongly enhanced bioavailability, and poten-

tial for oral and pulmonary delivery (Kluskens et al.

2009; de Vries et al. 2010). It has multiple effective

therapeutic activities for instance against acute respi-

ratory distress syndrome (Wösten-van Asperen et al.

2011) and in the case of heart failure (Durik et al.

2012). Furthermore lanthionine-stabilized angioten-

sin-(1–7) and a lanthionine-containing agonist of the

angiotensin type 2 receptor significantly reduce car-

diopulmonary disease in hyperoxia treated neonatal

rats (Wagenaar et al. 2013).

The nisin leader peptide contains a conserved FNLD

sequence which is important for NisB activity (Plat et al.

2011; Khusainov et al. 2011; Mavaro et al. 2011), for

NisC activity (Abts et al. 2013) and for NisT-mediated

export (Plat et al. 2011). The exact mechanism(s) of

lanthipeptide leader peptide-induced export out of the

cell are unknown. Different mechanisms of LanT-

mediated export have been discussed (Plat et al. 2013).

Introduction of a negatively charged cleavage site for

enterokinase, DDDDK, in the C-terminal part of the

nisin leader appeared to hamper export of precursor nisin

(Plat et al. 2011).We here investigated whether inserting

positively charged residues in the C-terminal part of the

leader peptide might modulate export via NisBTC.

Position -2 in the wild type nisin leader is a helix-

breaking proline. We found that substitution of this

proline can have an important, amino acid-dependent

impact on the efficiency of export of precursor nisin.

Materials and methods

Bacterial strains and plasmids

Lactococcus lactis NZ9000 was used for expression of

the modification enzymes and precursor nisin constructs.

L. lactiswas grown in M17 broth (Terzaghi and Sandine

1975) supplemented with 0.5% glucose (GM17) or in

minimal medium (Rink et al. 2005) with or without

chloramphenicol (5 lg/ml) and/or erythromycin (5 lg/
ml). Prior to analysis of peptides produced in the media,

cells were cultured as follows. Overnight cultures of L.

lactis NZ9000, grown in GM17 broth containing antibi-

otics, were diluted 1/100 inminimalmedium. Production

of mutated precursor nisin was induced by adding

supernatant of L. lactis NZ9700 1:1000, containing

approximately 1 mg/l wild type nisin. Strains and

plasmids are listed in Table 1.

Molecular cloning

Standard genetic manipulations were performed using

established procedures (Sambrook et al. 1989). Con-

structs coding formutated precursor nisin weremade by

amplifying plasmid pNZnisA-E3 (Kuipers et al. 2004)

via round-PCR using a downstream sense primer and an

upstream antisense primer. Each primer pair contained

one 50 phosphorylation and a (non-annealing) peptide-

encoding tail. The pORI280 system was used for

integration of the P-2K mutation on the chromosome

of an industrial stain (Leenhouts et al. 1996). This

mutation was confirmed by sequencing of the mutation-

containing PCR fragment obtained using chromosomal

DNA as template. DNA amplification was performed

with Phusion DNA polymerase (Finnzymes, Finland).

Digestions were performed using restriction enzymes

fromNewEnglandBioLabs (Ipswich,MA). Ligation of

the plasmids was carried out with T4 DNA ligase
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(Roche, Mannheim, Germany). Electrotransformation

ofL. lactiswas carried out as previously described using

a Bio-Rad gene pulser (Richmond, CA) (Holo and Nes

1995). Nucleotide sequence analysis was performed by

BaseClear (Leiden, Netherlands).

Purification

Precursor nisin was purified from culture supernatants.

Minimal medium culture supernatant was diluted with

an equal volume of 100 mM lactic acid (pH 2.5). The

precursor peptides were subsequently purified by a

single passage of the supernatant over a 5 ml HiTrap

SP Sepharose cation-exchange column (GE Health-

care). Elution was performed at pH 4.0 with 1 MNaCl

in 50 mM lactic acid. The fraction containing the

precursor peptide was desalted on a PD10 column (GE

Healthcare) and subsequently lyophilised or dried in a

speed-vac. Nisin (mutants) were further purified and/or

analysed via reversed-phase high-performance liquid

chromatography (HPLC) on a C12 or C18 columnwith

a gradient of 10–50% acetonitrile in 0.1% trifluo-

roacetic acid.

Cleavage of the leader peptide from precursor nisin

The leader peptide was cleaved off by incubating

precursor nisin with 0.02 mg/ml trypsin for 30 min to

1 h at 37 �C. Alternatively, precursor nisin was

incubated with NisP-expressing cells L. lactis

NZ9000 pNGnisT pNGnisP cells at 30 �C.

Gel electrophoresis and quantification

Production levels of precursor nisin (mutants) were

analysed via gel electrophoresis. Peptides were

isolated from the supernatant of minimal medium cell

cultures by TCA precipitation. Peptides were sepa-

rated on tricine SDS gel (Schägger and von Jagow

1987). Analysis was performed by Coomassie staining

(PageBlueTM). Peptide bands were quantified by

measuring the gel band density using ImageJ (Sch-

neider et al. 2012). Cell free extract was obtained using

a previously described washing procedure (Kleere-

bezem et al. 1997). As a control for the applied

quantification, HPLC peak areas were compared for

wild type precursor nisin and mutants in the medium.

The chromosomal P-2K and wild type strains were

compared in repeated small scale (10L) fermentations

in parallel under conditions that essentially replicate

commercial-scale production, including pH control

during growth, inoculum ratios, and general media

conditions. Samples were removed aseptically,

hourly, as the culture approached stationary phase

and thereafter until the end of fermentation. The

samples were processed and analysed quantitatively

for the presence of nisin using a validated reversed-

phase analytical method using a HP HPLC System.

Cleavage of wild type precursor nisin was compared

with cleavage of the P-2K and P-2D mutants by

incubating the precursor peptides with NisP-express-

ing cells. Samples were collected at different time

points, and analyzed with HPLC to generate quanti-

tative data of NisP cleavage.

Antimicrobial activity

Antimicrobial activity of the nisin mutants was

measured against nisin-sensitive L. lactis strains.

Indicator strain L. lactis LL108(pORI 280) (Kuipers

et al. 1997; Leenhouts et al. 1998) or L. lactis NZ9000

pNGnisT pNGnisP (Kuipers et al. 2004) was grown in

Table 1 Bacterial strains

and plasmids
Strain or plasmid Characteristics References

Strain

L. lactis NZ9000 nisRK ? Kuipers et al. (1997)

L. lactis NZ9700 nisABTCIPRKEFG Kuipers et al. (1997)

L. lactis LL108(pORI 280) Emr Cmr Kuipers et al. (1997),

Leenhouts et al. (1998)

L. lactis pNGnisT pNGnisP nisTP Kuipers et al. (2004)

Plasmid

pNZnisA-E3 nisA Kuipers et al. (2004)

pIL3BTC nisBTC Rink et al. (2005)
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GM17 containing chloramphenicol (5 lg/ml) and

erythromycin (5 lg/ml) to an optical density of 0.1

at 600 nm. After 3–6 h of incubation in microwell

plates with a series of two-fold dilutions of the nisin

mutant, growth inhibition was measured at 600 nm.

The 50% inhibitory concentration (IC50) was obtained

from the midpoint of the sigmoidal growth curve.

Halo-forming capacities of (mutant) nisin-producing

L. lactis NZ9000 colonies were measured using an

overlay with the NisP-expressing L. lactis NZ9000

pNGnisT pNGnisP strain.

Mass spectrometry

Mass spectrometry was performed to confirm that the

correct (precursor) nisin mutants were produced and,

in case of leader cleavage, that the intended mutant

leader peptide was produced. In case of (precursor)

nisin mutants samples were pre-incubated with 1 mg/

ml tris[2-carboxyethyl]phosphine (TCEP) to prevent

cysteinylation of free cysteines. For all samples, and

also when just the leader peptide was measured, either

1 ll of culture supernatant or purified peptide was

applied to a target and allowed to dry. Spots from

culture supernatants were washed once with 5 ll of
Millipore water to remove the salts. Spots were

subsequently overlaid with 1 ll of matrix (5 mg/ml

a-cyano-4-hydroxycinnamic acid in 50% acetonitrile

containing 0.1% [vol/vol] trifluoroacetic acid). Mass

spectra were recorded with a Voyager-DE PRO

matrix-assisted laser desorption ionization-time-of-

flight (MALDI-TOF) mass spectrometer (Applied

Biosystems). In order to maintain high sensitivity, an

external calibration was applied.

Results

Introduction of C-terminal lysines in the nisin

leader peptide

To investigate the influence of positively charged

residues in the C-terminal part of the leader peptide,

we introduced lysines at position P-2, D-7 and S-3/P-2

(Fig. 1). Analysis of the production on a tricine SDS

gel showed a nearly two-fold increased production for

the P-2K mutant (Fig. 2a). Nisin mutant I?4K/L?6I

(‘‘KSI’’, a positive control, (Rink et al. 2007b)) was

also produced better than wild type nisin. The D-7K

mutant and the S-3K/P-2K (‘‘KKR’’) double mutant

showed decreased production. These data demonstrate

that lysines in positions -2 or?4, which are both close

to the leader peptide to core peptide border, enhance

production.

Shifted trypsin-mediated cleavage of precursor

nisin mutant P-2K

The antimicrobial activity of the mutants was tested by

overlaying a duplicate gel with a nisin-sensitive strain.

In the case of I?4K/L?6I and S-3K/P-2K precursor

nisin the size of the halo correlated roughly to the

amount of precursor produced (Fig. 2b).

In contrast, the relatively small halo surrounding

the P-2K mutant clearly showed low activity of the

P-2K mutant. In the activity assay, the leader peptide

was removed from the (mutant) precursor nisin by

adding trypsin in the overlay. Trypsin usually cleaves

most efficiently after an Arg but it will also cleave

after a Lys. We therefore investigated whether this

comparatively low activity of P-2K nisin might result

from incomplete removal of the leader peptide.

MALDI-TOF MS of intact P-2K precursor nisin

(Fig. 3a), trypsin-cleaved P-2K precursor nisin

(Fig. 3b) and NisP-cleaved P-2K precursor nisin

(Fig. 3c) showed that trypsin cleaves primarily

between K-2 and R-1, resulting in R-nisin (Fig. 3b).

This shifted cleavage likely results from sterical

hindrance from ring A. Incubating the P-2K precursor

nisin with NisP-producing L. lactis cells (Kuipers et al.

2004) resulted in complete removal of the leader

peptide (Fig. 3c). After incubation with the NisP-

producing cells, the antimicrobial activity of the

peptides was measured in a dilution assay. The

P-2K-precursor-nisin-derived nisin showed a two-fold

higher activity than wild type nisin (data not shown)

which is consistent with its two-fold higher production

level. These results show that, in this particular case of

P-2K precursor nisin, trypsin has a higher affinity for

the -2K position than for -1R, and that the presence of

an additional N-terminal Arg decreases the antimicro-

bial activity of nisin. Moreover, the results demon-

strate that the P-2K substitution does not hamper

interaction with the modification enzymes and allows

cleavage by NisP-producing L. lactis (Kuipers et al.

2004).
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Randomization of position -2

Is the increased production of the P-2K precursor nisin

mutant positive charge-dependent or could other

factors be involved? We investigated this by substi-

tuting the Pro on position -2 with other amino acids

and subsequently measured production (Table 2).

Interestingly, large differences were observed

between production levels of the different mutant

types ranging from a two-fold increase to a ten-fold

decrease. Besides precursor nisin mutant P-2K, also

the precursor nisin mutants P-2D, P-2T, P-2S, P-2W,

and P-2V show strongly enhanced production. Very

low production was measured for the P-2C, P-2H, and

P-2M. Especially surprising is the high production of

the P-2D mutant and the low production of the P-2H

mutant. These results clearly demonstrate that the

enhanced production of P-2K precursor nisin is not

determined by positive charge alone.

Production stability

As an additional control, the transformation of each

mutant was repeated and the precursor nisin production

of the resultingmutants wasmeasured. For tenmutation

types production was satisfactorily reproducible. Only

three type of mutations displayed variation in produc-

tion: P-2A, P-2Q and P-2R. Strikingly P-2Rmutants led

to precursor nisin production which varied from very

high for some transformants to very low for others.

Apparently by unknown cause(s) these three specific

mutations led to variable results, whereas the majority

of the mutations caused stable production.

Chromosomal P-2K leader substitution

The P-2K mutation was inserted on the chromosome

of a commercial nisin production strain. This strain, in

contrast to the studies above, also naturally expresses

NisP. Incorporation of the P-2K mutation on the

chromosome of this strain was confirmed by mass

Fig. 1 An overview of the amino acid substitutions in precursor nisin used in this study.‘‘X’’ indicates randomization

Fig. 2 Production and antimicrobial activity of nisin mutants.

a A comparison of the production in the supernatant of wild type

precursor nisin (wt) with precursor nisin mutants I?4K/L?6I

(KSI), S-3K/P-2K (KKR, two transformants), P-2K, and D-7K.

Production was measured by TCA-precipitating 1 ml of

supernatant, running it over a tricine SDS gel, and subsequent

staining with PageBlue. Band intensities were quantified using

ImageJ and relative values are given below the peptide names.

b Overlay of a duplicate gel with nisin-sensitive strain

LL108pORI280. Precursor nisin peptides were cleaved by

adding trypsin
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spectrometry of the produced leader peptide and DNA

sequence analysis. Production was compared at var-

ious time points using HPLC. At no time point did

mature nisin production of P-2K mutant strain exceed

that of the wild type strain. Mature nisin production by

the P-2K mutant strain reached at 24 h maximally

93.4% of that of the wild type strain. Hence, we

observed enhanced P-2K and P-2D precursor nisin

production in cells without NisP, whereas production

of mature nisin by a production strain carrying the

chromosomal P-2K mutation was not increased. To

investigate whether this could be caused by less

efficient cleavage of P-2K precursor nisin by NisP we

investigated whether or not NisP cleaves the P-2

mutant as readily as wild type precursor nisin.

Preliminary data indicated that both P-2 K and P-2D

precursor nisin are less efficiently cleaved by NisP

than the wild type leader. Taken together, the data

indicate that the wild type nisin precursor with a

proline at position -2 allows balanced export- and

cleavage efficiencies by precursor nisin’s transporter

and leader peptidase.

Discussion

Lanthipeptide leader peptides are very interesting

since each single leader peptide functionally interacts

with proteins as different as a serine/threonine dehy-

dratase, a cyclase, a transporter and –if present- a

leader peptidase (Plat et al. 2013). Here we studied the

role of C-terminal mutations in the nisin leader peptide

on export. Previous observations (Plat et al. 2011)

showed decreased production when substituting C-ter-

minal residues in the leader peptide of nisin with

negatively charged residues. Therefore we aimed in

this study at enhancing production levels by mutating

C-terminal amino acids of the leader peptide into

lysines. A strong increase in production was measured

for the nisin P-2K mutant. By contrast the D-7K did

not cause increased production nor did the simultane-

ous introduction of -2K and -3K, indicating the

relevance of the selective mutagenesis of the -2

Fig. 3 Removal of leader peptide from precursor nisin P-2K.

a Mass spectrometry analysis of precursor nisin containing the

P-2K mutation. The [MH?] peak of 5719.01 Da corresponds to

precursor nisin with the P-2K substitution; theoretical value

without Met1: 5719.86 Da. b Mass spectrometry analysis after

incubation with trypsin. The [MH?] peak of 3511.84 Da

corresponds to R-nisin, theoretical value: 3511.38 Da. c Mass

spectrometry analysis after incubation with NisP-expressing

cells (Kuipers et al. 2004). The [MH?] peak of 3355.15

corresponds to nisin; theoretical value 3355.20 Da

Table 2 Relative production by L. lactis of P-2X precursor nisin mutants

X D T S W K V N G

Relative

production

1.97 ± 0.28 1.88 ± 0.20 1.75 ± 0.21 1.73 ± 0.28 1,72 ± 0.10 1.70 ± 0.24 1.40 ± 0.08 1.36 ± 0.12

I P L E F Y C H M

1.27 ± 0.11 1.00 ± 0.00 0.96 ± 0.22 0.62 ± 0.11 0.62 ± 0.12 0.58 ± 0.08 0.25 ± 0.03 0.13 ± 0.04 0.09 ± 0.04
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position. Substituting the Pro at position -2 with other

amino acids showed a more complicated picture: P-2D

causes enhanced production; P-2H causes reduced

production. Interestingly, also P-2T caused enhanced

production and precursor nisin Q also contains a Thr at

position -2. In an old pioneer study P-2V and P-2G did

not have any detectable effect on mature nisin

production (van der Meer et al. 1994), whereas in

the present study both these mutations caused

increased production of precursor nisin, respectively

1.70 ± 0.24 and 1.36 ± 0.12 (Table 2). In addition to

the inherent differences between studying production

of mature nisin and precursor nisin, the observed

production differences may result from the here used

improved two-plasmid expression system. The mod-

ulation of export depends on the -2 leader site and is

amino acid dependent. This precludes that modulated

production is caused by more optimal or less optimal

codons. Furthermore the reproducibility of the data for

plasmid-containing cells that result from different

transformations also precludes that modulated pro-

duction is caused by heterogeneity of lactococcal

cells. Our data indicate that production of wild type

precursor nisin, containing a Pro at position -2, is

average compared to production of P-2X precursor

nisin mutants. Taken together the data indicate that the

helix breaking proline-2 might be relevant for optimal

NisP-mediated cleavage but possibly not optimal for

export of precursor nisin.

Lanthipeptide leader peptides are much more

hydrophilic than the lanthipeptides themselves. Most

class I leader peptides end up in the extracellular

medium after cleavage from the core peptide by LanP

or other proteases (Kuipers et al. 2004; Stein and

Entian 2002). Outside the FNLD box a large muta-

tional freedom has been demonstrated without affect-

ing the capacity to modify substrate. Even a 6His tag

could be introduced (Plat et al. 2011). Residues

between the FNLD box and the core peptide might

function as a spacer (Plat et al. 2011). The same

hypothesis has been suggested for a class III lan-

thipeptide labyrinthopeptin (Müller et al. 2011). A

large part of the diverse leaders of class II ProcM

substrates is dispensable (Zhang et al. 2014). Replace-

ment of the conserved FNLD sequence in the nisin

leader peptide by four alanines eliminates the capacity

to induce NisB activity (Plat et al. 2011) by eliminat-

ing binding to NisB (Khusainov et al. 2011; Mavaro

et al. 2011). Furthermore, this leader peptide with the

FNLD box replaced by four alanines, hardly induced

any export. Deleting a sequence in NisB itself, which

resembles the FNLD sequence, also eliminated NisB

activity (Khusainov et al. 2011). The co-crystal

structure of NisB and precursor nisin together with

exciting mechanistic information provided an expla-

nation of the importance of the leader peptide FNLD

box for interaction with NisB (Ortega et al. 2014).

Experiments using Isothermal Titration Calorime-

try (ITC) and a combination of Size Exclusion

Chromatography (SEC) with Multi-Angle Light Scat-

tering (MALS) analysis have demonstrated that NisC

binds the FxLx motif of the nisin leader peptide (Abts

et al. 2013). Replacement with all alanines of six

regions of 2–4 leader peptide amino acids followed by

co-purification with NisB and NisC yielded a more

complex and detailed picture on binding and modifi-

cation and indicated that leader regions LVSV(-14-

11), STKD(-22-19) and especially FNLD(-18-15)

contributed to interaction with NisB and NisC (Khu-

sainov et al. 2013). In addition replacement of PR(-2-

1) with alanines strongly reduced co-purification of

NisB and NisC (Khusainov et al. 2013). The latter

implies that it can not be excluded that replacement of

P-2 might indirectly affect export by modulated

interaction of the leader with the modification

enzymes.

A propensity to form an alpha helical structure has

been demonstrated for the leader peptides of nisin,

lacticin 481 (Patton et al. 2008) and nukacin (Nagao

et al. 2009) and predicted for other leader peptides

(Oman and van der Donk 2010). The nisin leader

peptide showed a random coil in aqueous solution (van

den Hooven et al. 1997), but adopts a helical form in a

mixture of trifluoroethanol and water (Beck-Sickinger

and Jung 1993; Lian et al. 1992). However, the nisin

leader peptide binds to NisB as an antiparallel-strand

(Ortega et al. 2014). Introduction of a proline in

position -8 or -6 or -4 in lacticin 481 abolished LctM

synthetase activity, while introduction of a proline in

position -5 reduced LctM synthetase activity (Patton

et al. 2008). Introduction of a proline in position -8 or -

9 in the nukacin leader, abolished, respectively

reduced antimicrobial activity in the supernatant

(Nagao et al. 2009). Mutational freedom, except for

the introduction of proline, appeared to be high for any

position. Proline has a turn propensity and thereby

disturbs alpha helical structure (Piela et al. 1987). On

the contrary, here we eliminated a helix-breaking
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proline residue at position -2 of the nisin leader peptide

by substituting it for other amino acids. Replacement

of proline for Asp, Thr, Ser, Trp, Lys and Val

enhanced export without compromising the extent of

NisB- and NisC-mediated modification.

With respect to removal of the leader peptide,

different cases occur within lanthipeptides. Most

Class I leader peptides are cleaved off extracellu-

larly by a dedicated peptidase LanP (Plat et al.

2013) or in the case of subtilin (Stein and Entian

2002) by non-dedicated extracellular peptidases.

Also transport of the nisin leader peptide itself, if

it is produced without any attached core peptide, has

been demonstrated (Rink et al. 2007a). In contrast

the leader peptide of Class II lanthipeptides is

cleaved off by an intracellular peptidase domain

within the transporter. Hence, most Class I trans-

porters export the leader peptide, whereas class II

transporters do not.

NisT has been reported to be present as a dimer

(Ortega et al. 2014; Siegers et al. 1996).We previously

presented three models of the NisT-mediated export

(Siegers et al. 1996). A tentative model involves

binding of the FNLD box to NisT, which induces

ATP-driven segregation of the two NisT molecules

and opening of a NisT-pore, through which the

N-terminal site of the core peptide first diffuses to

the outside of the cell. Alternatively, the C-terminus of

the peptide moves first out of the cell, after the ‘‘knock

on the door’’ effectuated by the binding of the FNLD

box to NisT. A third possibility might be that the

FNLD box binds to NisT after which an ATP-driven

pumping of the whole peptide with N- to C-terminal

directionality moves out of the cell.

In conclusion, the present study demonstrates

that mutagenesis of position -2 of the nisin leader

peptide strongly modulates export of precursor

nisin. Future research will establish the mechanistic

role of this leader site in export, the order of the

export of the leader and the core peptide and the

overall mechanism of leader peptide-induced trans-

port via NisT.
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