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Abstract Although nontuberculous mycobacteria

(NTM) are natural inhabitants of freshwater ecosys-

tems, few studies have focused on their distribution in

these habitats. Thus, the knowledge about the abun-

dance as well as the composition of NTM remains

limited and patchy in these environments. In this

context, a prospective study was performed to identify

favourable habitats for mycobacteria in two recre-

ational lakes. Mycobacterial density and diversity

were measured using quantitative real-time PCR and

the MiSeq Illumina platform. For both lakes, five

compartments were investigated, i.e. water column,

air–water interface, sediment, epilithon and epiphyton

biofilms. Nontuberculous mycobacteria were detected

in all compartments in large densities and displayed a

remarkable diversity. NTM were dominated by fast-

growing species. Lakes and compartments appeared to

shape mycobacteria assemblage composition as well

as their densities. In both lakes, some OTUs assigned

to the species level were identified as related to known

opportunistic pathogens.

Keywords Nontuberculous mycobacteria � Lake �
Quantitative real-time PCR � High-throughput
sequencing

Introduction

The genus Mycobacterium contains more than 170

species, mostly described as nontuberculous mycobac-

teria (NTM) (Euzéby 1997). Although some species are

recognized as opportunistic pathogens, many of these

bacteria are saprophytic and therefore are natural

inhabitants of terrestrial and aquatic environments

(Collins et al. 1984; Falkinham 2002; Hruska and

Kaevska 2012). However, studies focusing on NTM in

natural ecosystems remain rare in comparison with

drinking water distribution systems (e.g., Covert et al.

1999; Falkinham et al. 2001; Vaerewijck et al. 2005) or

hospital water supply networks (e.g., du Moulin et al.

1988; Fox et al. 1992; Fujita et al. 2002). These two

types of habitats have been particularly well studied

(Kazdaet al. 1999), owing to the increased susceptibility

of immunodeficient persons to mycobacteriosis follow-

ing contact with waters harbouring mycobacteria.
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The lack of studies exploring the environmental

habitats of mycobacteria could partly be explained by

the difficulties in isolating slow-growing bacteria from

natural environments using classical culture methods

(Falkinham 2002). Cultivation approaches also pro-

vide a limited view of NTM density and diversity.

However, improvements in extracting DNA from

natural samples (Guo and Zhang 2013) as well as

PCR-based methods, which have been developed over

the last decades, should solve some of these biases.

Nevertheless, studies describing the entire mycobac-

terial assemblage in ecosystems using molecular tools

are still scarce. These few published papers mainly

concentrated on soil habitats (e.g., Niva et al. 2006;

Pontiroli et al. 2013). Moreover, the majority of

studies investigating freshwater habitats either

focused on particular species (e.g., Stinear et al.

2000; Pickup et al. 2005, 2006; Gauthier et al. 2010) or

on cultivable species (e.g., Viallier and Viallier 1973;

Kirschner et al. 1992; Iivanainen et al. 1993; Bland

et al. 2005). Only few studies considering the whole

NTM assemblage have been performed in aquatic

ecosystems (Niva et al. 2006; Parashar et al. 2009;

Debruyn et al. 2009; Khera 2012). Consequently, it

appears necessary to improve our knowledge in terms

of abundance, diversity and potential niches of

mycobacterial species in surface freshwater ecosys-

tems, especially since NTM probably acquired their

virulence traits under selective pressures in their

natural habitat, as have other environmental pathogens

(Dyble et al. 2008; Adiba et al. 2010).

Among freshwater ecosystems, lakes appear to be

interesting models to investigate the distribution of

NTM. Indeed lakes are common ecosystems in urban

areas, where they attract a high number of visitors due

to the cultural and recreational services they provide.

Moreover, according to the literature, lakes could

provide relevant ecological niches for mycobacteria.

In boreal lakes, Niva et al. (2006) observed that the

mycobacterial assemblages constituted a large part of

the Actinobacteria phylum, one of the dominant phyla

in these ecosystems (Newton et al. 2011). Moreover,

numerous NTM species (e.g., M. avium, M. chelonae,

M. xenopi) are able to persist or develop in aquatic

environments within biofilms (Hall-Stoodley and

Lappin-Scott 1998; Dailloux et al. 2003; Williams

et al. 2009) or at water interfaces (Alavi et al. 2006)

due to their hydrophobic cell walls. Sediment seems

also to constitute a suitable habitat for NTM (Pickup

et al. 2005; Debruyn et al. 2009; Gauthier et al. 2010).

This prospective study investigated the spatial

distribution of the mycobacterial assemblages in two

shallow lakes with different trophic status (eutrophic

and mesotrophic) in order to evaluate the density and

diversity of NTM in different compartments. First, we

sought to determine the main reservoirs of NTM

among a set of different compartments (water column,

air–water interface, sediment and biofilms). Second,

we evaluated to what extent mycobacterial density

could be impacted by spatial parameters. We hypoth-

esized that NTM would be preferentially found at the

air–water interface and in biofilms, and that the

species composition would differ among the different

compartments in both lakes. For that purpose, an

approach combining a quantitative and a composi-

tional analysis of NTM based on recent molecular

tools (Pontiroli et al. 2013; Radomski et al. 2013) was

used. Mycobacterial densities were quantified using

quantitative real-time PCR and NTM diversity was

assessed using MiSeq Illumina high-throughput

sequencing.

Materials and methods

Sampling sites

Créteil Lake and Daumesnil Lake are two shallow lakes

separated by less than 10 km. They are located in the

Paris area (France), near the confluence of the Seine and

Marne Rivers. Créteil Lake (Suppl. Material 1) is a

0.40 km2mesotrophic lake thatwas originally a sandpit.

This lake ismainly supplied by an alluvial groundwater,

however the water quality of Créteil Lake can be

affected by the presence of a storm sewer outlet, which

drains 1 km2 of a residential area. Daumesnil Lake

(Suppl.Material 1) is a 0.12 km2 eutrophic lake thatwas

dug for recreational purposes in the 1860s in the Bois de

Vincennes (Paris). Daumesnil Lake is supplied bywater

pumped in the Ourcq Channel.

Sample collection

Lakes were sampled in August and October 2012. For

both lakes, five stations (C1–C5 and D1–D5 for Créteil

and Daumesnil Lake respectively) were surveyed
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(Fig. 1). For each station, five compartments were

collected: water column, surface microlayer (air–

water interface), sediment, epilithic and epiphytic

biofilms. For each station, water column samples were

collected at three depths (depending on the depth of

the water column) using a Niskin bottle (General

Oceanics Inc., Miami, USA). The surface microlayer

was collected using a metal screen as described in

detail by Agogué et al. (2004). Pooled sediment

samples were constituted with the aerobic top sedi-

ment layer (*1 cm) from three cores. Epilithic

biofilms (epilithon) were removed from rock surface

by scraping 20 cm2 biofilm area with a sterile syringe-

toothbrush sampler inspired from Steinman et al.

(2006). Epiphytic biofilms (epiphyton) were collected

by harvesting submerged leaves sheath of phragmites

(Phragmites australis) and milfoil (Myriophyllum

spicatum) within Créteil and Daumesnil lakes respec-

tively. All compartments were stored in sterile

containers and placed at 4 �C until return to the

laboratory in less than 10 h.

Sample processing

One liter of water sample (water column and surface

microlayer) was centrifuged (75009g, 4 �C) and the

resulting cell pellet was collected into a 2 mL sterile

tube. Before centrifugations, 1 mL of Tween 80 (final

concentration, 0.01 % vol/vol) was added to each

sample in order to facilitate pellet resuspension.

Sediments and biofilms were immediately frozen,

then lyophilized. All samples were stored at -20 �C
until DNA extraction.

DNA extraction

For water samples, pellets were resuspended in

400 lL of sterile water. Extractions were performed

using aMagNA Pure Compact system (Roche Applied

Science, Bâle, Switzerland) and the MagNA Pure

Compact Nucleic Acid Isolation Kit I using the

Bacteria V3 protocol, according to the manufacturer’s

instructions. Prior to extraction, samples underwent

freeze–thaw cycles that consisted in three cycles of

1 min in liquid nitrogen and 5 min at 90 �C. Approx-
imately 250 mg of sediment, 50 mg of dry epilithic

biofilms and 40 mg of dry leaves were extracted using

the FastDNA� SPIN Kit (Qbiogene, Carlbad, CA,

USA) according to the manufacturer’s instructions.

Two modifications to this protocol were applied: cells

were lysed in a FastPrep bead beater three times for

30 s at 4.0 ms-1 and the SPIN filters were washed

twice. DNA was recovered in 50 lL eluent buffer and

DNA quality and quantity were analyzed at 230, 260,

and 280 nm by spectrophotometry before storage at

-20 �C.

Quantitative real-time PCR

To quantify the abundance of Mycobacterium in the

five compartments, TaqMan� real-time PCR assays

targeting the atpE gene were carried out as previously

described by Radomski et al. (2013). The assay was

performed using the forward primer FatpE 50-
CGGYGCCGGTATCGGYGA-30, the reverse primer

RatpE 50-CGAAGACGAACARSGCCAT-30 and the

probe PatpE 50-ACSGTGATGAAGAACGGBG-
TRAA-30 labeled with the fluorescent dyes 6-car-

boxyfluorescein (50 end) and Black Hole Quencher (30

end). Contaminations in PCR mix were checked using

negative controls. Moreover, the presence of PCR

inhibitors in DNA templates was verified using a non-

competitive exogenous internal control that was

included in the PCR buffer. This internal control was

made of a partial sequence of the human b-actin gene

cloned in pGEM-T-easy vector (Promega, Madison,

WI, USA) (Wurtzer et al. 2014). Absence of
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Fig. 1 Location of the five stations in Créteil Lake (a) and

Daumesnil Lake (b). Nontuberculous mycobacteria composi-

tion was analyzed in the stations symbolized by open circles
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significant PCR inhibition of the atpE assay was

confirmed based on the average Cq values (±SD)

obtained from 100 repeated PCR reactions containing

1000 copies of human b-actin.
The atpE copy numbers concentration was esti-

mated from crude extracts using a Mycobacterium

chelonae standard curve from 1.0 9 101 to 1.0 9 106

copies/lL. The PCR method presented a high ampli-

fication efficiency (82 %) and the standard curve had a

good linearity (R2 = 0.998). Results were expressed

as atpE gene copies per liter for water samples, per

gram (dry weight) for sediments and per square

centimeter for biofilms. Relationships between biofilm

area and mass are presented in the Supplementary

Material 2.

Illumina sequencing of the V2–V3 region

of the 16S rRNA gene

For the study of mycobacterial diversity in each

compartment, twenty samples from the summer

campaign were analyzed. The samples were selected

from two stations corresponding to the inlet and the

outlet of both lakes: C2 and C3 for Créteil Lake; D1

and D3 for Daumesnil Lake (Fig. 1).

PCR libraries were created by amplifying a frag-

ment of the 16S rRNA gene (rrs) including the V2–V3

hypervariable regions using mycobacterial primers

JSY16SF 50-TGGGAAACTGGGAAACTGGGTC-
TAATA-30 and JSY16SR 50-CCCGCACGCC-
CAAGTTAAGCTGTGAG-30 (Pontiroli et al. 2013).
PCR and sequencing were performed by Research and

Testing Laboratory (Lubbock, TEXAS) using the

Illumina MiSeq platform (Illumina, Inc.). All DNA

extracts were adjusted to 120 ng/lL prior to PCR

reactions.

Quality control and sample processing were per-

formed using QIIME v. 1.8.0-20140103 (Caporaso

et al. 2010). Sequences of poor quality were removed

using the default parameters (quality score\ 25,

length\ 200 nt and the presence of at least six

ambiguous bases or six successive homopolymers).

Chimeric sequences were then identified with

USEARCH 6.0 using the UCHIME algorithm in de

novo mode (Edgar et al. 2011) implemented in the

online service FunGene pipeline and ignored for

further analysis. Filtered sequences were clustered

into classical 97 % similarity-based operational taxo-

nomic units (OTU). A clustering cutoff at 99 % rather

than 97 % would lead to a six-fold increase of the

OTU number (data not shown). Each OTU represented

by a single sequence was removed from the analysis.

Rarefaction curves are presented in the Supplementary

Material 3. OTUs were assigned to the genus level

with the SILVA 111 database (Quast et al. 2013) using

UCLUST (Edgar 2010). Assignment to the species

level was performed using blastn 2.2.31 search

(Morgulis et al. 2008) provided by GenBank (http://

blast.ncbi.nlm.nih.gov/Blast.cgi). Query coverage

was set to at least 97 %. A 97 % threshold was chosen

based on Pontiroli et al. (2013) who did not notice a

change of the most preponderant species identities or

the overall numbers of sequences affiliated to these

species using the more stringent cutoff of 99 %.

Sequence data have been deposited in the NCBI

Sequence Read Archive (SRA) and can be accessed

through accession number SRP061716.

Data analysis

All statistical analyses and indices computing were

conducted using the statistical environment R version

3.1.1 (R Development Core Team 2014) and the

‘vegan’ package (Oksanen et al. 2013). The default

statistical significance was based on a P B 0.05 level.

Quantitative data analysis

Paired Wilcoxon or t tests were used to compare the

data between August and October for each compart-

ment and each lake. An intra-lake analysis was

conducted to identify significant differences between

the water compartments and between the biofilms. For

that purpose, linear models were performed with

stations as covariables. An inter-lake analysis was also

conducted to characterize differences between the two

lakes for all of the five compartments using linear

models. All statistical analyses were performed with

log-transformed data.

Mycobacterial composition analysis

First, OTU richness, diversity and evenness indices

were calculated. Theoretical richness was estimated

according to the non-parametric model of Chao-1

(Chao 1987). Alpha diversity was estimated using the

exponential form of Shannon entropy. Evenness was

calculated using the Simpson’s evenness index (Smith
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and Wilson 1996). Results of evenness ranged from 0

(when one OTU is predominant) to 1 (when all OTUs

are equally abundant). Second, variations in the NTM

community assembly were explored. For each lake, a

Mann–Whitney test was conducted with Bray-Curtis

dissimilarities to determine if the variability in the

community structure within each compartment was

significantly different from the variability between

compartments. The dissimilarity of NTM assemblages

among compartments (beta diversity) was evaluated

using the Sørenson dissimilarity index. The beta

diversity was then partitioned following the frame-

work proposed by Baselga using the ‘betapart’ pack-

age (Baselga 2010; Baselga et al. 2013) to quantify the

fraction of dissimilarity explained by OTUs replace-

ment (based on the Simpson’s dissimilarity index) and

from pure random richness variation of the OTUs

(Azeria et al. 2011). To evaluate the influence of lakes

and compartments in the composition of the NTM

communities, a redundancy analysis was performed

on Hellinger-transformed data (Legendre and Gal-

lagher 2001). Finally, samples were associated

depending of their NTM community composition

similarity using the unweighted-pair group method

with UPGMA clustering (bootstrap = 999).

Results

Quantification of nontuberculous mycobacteria

The atpE gene was successfully amplified from all the

samples with copy numbers of atpE gene ranging from

5.0 9 102 to 1.1 9 105 per liter of water samples,

from 2.2 9 106 to 5.3 9 108 per gram of dry sediment

and from 1.0 9 103 to 6.9 9 105 per square centime-

ter of biofilms (Fig. 2). No significant difference in the

atpE gene copy number was found between August

and October for each compartment and each lake,

except for the epiphytic biofilm from Créteil. For this

compartment, the atpE gene copy number was signif-

icantly higher in October than in August (paired t test,

P = 0.006), with values of 4.4 ± 2.4 9 104 copies/

cm2 in summer against 1.3 ± 0.9 9 105 copies/cm2

in autumn. Despite this unique difference, the remain-

ing analysis was performed by combining data from

the two sampling dates for all the compartments.

Intra-lake analysis indicated that for both lakes, the

atpE gene copy numbers were significantly higher in

the surface microlayer compared to the water column

(linear models, P = 0.014 for Créteil Lake and

P = 0.007 for Daumesnil Lake) (Fig. 2a). The copy

numbers of atpE gene in epilithic biofilms were

significantly higher than the copy numbers in the

epiphytic biofilms (linear model, P\ 0.001 within

Créteil and Daumesnil Lake) (Fig. 2c). For each

compartment, an inter-lake comparison revealed that

the atpE gene copy numbers in the water column was

significantly lower in Créteil compared to Daumesnil

Lake (linear model, P = 0.010), whereas for the

epiphytic biofilm the copy number was significantly

higher in Créteil Lake (linear model, P\ 0.001). No

significant difference was observed between the two

lakes for the NTM densities in the surface microlayer,

the epilithic biofilm and the sediment (linear models,

P = 0.555, P = 0.191 and P = 0.748 respectively).

Interestingly, Fig. 2b showed high NTM densities for

the two sediment samples collected in front of the

storm sewer outlet of the Créteil Lake (Fig. 1). After

removal of these two outliers from the analysis, the

atpE gene copy numbers were significantly higher in

Daumesnil than in Créteil Lake (linear model,

P\ 0.001).

Richness of nontuberculous mycobacteria

For each lake, ten samples collected in summer at two

stations were sequenced, which produced a total of

503,164 sequences with an average length of 418 bp.

Trimming and chimera check removed 39,939

sequences (Table 1). For Créteil Lake, two samples

from different compartments were removed from the

analysis due to a problem in amplification and

sequencing (Table 1), thus the rest of the analysis

was performed on 18 samples. After removal of the

singleton sequences, 317,923 sequences were identi-

fied as belonging to the Mycobacterium genus

(Table 1). These sequences were clustered into 658

OTUs. The observed richness covered on average

73 % of the estimated richness (Chao-1 index). A

median of 125 OTUs was encountered in the different

samples. Only six percent of these OTUs (37/658),

presented in Fig. 3, had a relative abundance higher

than 1 % in at least one of the 18 samples. This result

suggests that the mycobacterial assemblages were

dominated by few OTUs and mainly composed of rare

OTUs, as underscored by the low values of the

evenness index (Table 1).
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Although Créteil and Daumesnil Lakes have dif-

ferent trophic status, no significant difference was

encountered between these lakes regarding the

observed and the estimated richness (t tests,

P = 0.966 and P = 0.435 respectively). However,

the exponential form of Shannon entropy was signif-

icantly higher (t test, P = 0.002) within Créteil Lake

(11.6 ± 9.3 OTUs) compared to Daumesnil samples

(3.3 ± 2.3 OTUs). Epilithic biofilms from Créteil

possessed the highest diversity (Table 1).

Composition of the mycobacterial assemblages

The blastn algorithm allowed a putative assignment of

364 out of 658 total OTUs to Mycobacterium species,

each belonging to the NTM group (see Suppl. Material

4). The remaining OTUs were not assigned or were

assigned to unclassified mycobacteria. Among the 364

identified OTUs, 94 were assigned to several

mycobacterial species without any possible discrim-

ination. Among the 270 remaining OTUs, 141 were

assigned to a single species, 71 to two species and 58

OTUs to three species. When only considering these

270 OTUs, a large part (68 OTUs) was affiliated toM.

moriokaense, 35 to the undifferentiated species M.

neglectum/tusciae, 34 to the undifferentiated species

M. bacteremicum/frederiksbergense/sacrum, 12 to M.

rhodesiae and 9 to M. asiaticum.

The majority of all the sequences (87 %) were

assigned to fast-growing mycobacteria. These fast-

growing species were mostly identified as M. mor-

iokaense/barrassiae (41 %), M. frederiksbergense

(11 %) or M. austraoafricanum (5 %). Some OTUs

related to fast-growing mycobacterial species domi-

nated some of the compartments. Such was the case

for the otu1026, which represented up to 99 % of all

the sequences retrieved from the Daumesnil sediments

(Fig. 3).

Potential opportunistic pathogens

When considering the 270 OTUs (Suppl. Material 4),

93 were affiliated with at least one potential pathogen

species listed by Katoch (2004) and Tortoli (2009).

However, few of these 93 OTUs (16 OTUs) were

exclusively assigned to opportunistic pathogen spe-

cies. Among these 16 OTUs a large fraction (9 OTUs)

were identified asM. asiaticum. The remaining OTUs

were affiliated to M. fortuitum, M. immunogenum, M.

kansasii, M. lentiflavum, M. smegmatis, M. thermore-

sistibile and M. vaccae. All the OTUs were assigned

with an identity close to 97.0 % except for M. vaccae
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Fig. 2 Comparison of the atpE gene copy numbers between

Créteil Lake (white boxplot) and Daumesnil Lake (grey boxplot)

for water (a), sediment (b) and biofilms compartments

(c) (n = 10). Different letters indicate a significant difference

between lakes or compartments (linear models)
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and M. thermoresistibile with identities of 98.1 and

99.4 % respectively. M. asiaticum was mainly

encountered in the epilithic biofilm for both lakes

and also in the sediment of Créteil Lake. These 16

OTUs were detected in both lakes, in almost all

compartments except in waters. However, for all these

OTUs characterized as potential opportunistic patho-

gens, the prevalence in each sample never exceeded

0.34 %.

Comparison of the mycobacterial assemblages

For both lakes, the intra-compartment variations of the

NTM assemblages, evaluated using Bray-Curtis dis-

tances, were significantly lower than the inter-com-

partment variations (Mann–Whitney, P = 0.006).

Overall, mycobacterial community structure varia-

tions between compartments, i.e. beta diversity, was

about 72 % of dissimilarity. The beta diversity

partitioning showed that the variation in the mycobac-

terial assembly was mainly due to lake or compart-

ment particularities (83 %) and only 17 % was

explained by pure random fluctuation of the OTUs

richness. Besides, a redundancy analysis performed on

the 18 samples with a goodness-of-fit of 0.73 (adjusted

R-squared) revealed that the NTM assemblages were

significantly shaped by the lake (P\ 0.001) and the

type of compartment (Fig. 3).

Finally, we observed that the majority of the 37

dominant OTUs were present in both lakes and in

almost all the compartments (Fig. 3). Inversely, two

OTUs were only detected in a single sample: otu547 in

Table 1 Comparison of sequenced libraries, including the number of reads pre- and post-trimming, the observed richness of OTUs,

the estimated richness, the diversity index and the evenness index for each sample

Sample

namea
No. of raw

sequences

No. of filtered

sequences

Belonging to the Mycobacterium

genus

Richness

estimator

(Chao-1)

Diversity index

(Exp. form of

Shannon)

Evenness index

(Simpson

evenness)
No. of sequencesb No. of OTUsb

C2W 3548 3128 2708 87 108.7 10.69 0.07

C3W 7961 6862 6616 105 181.6 9.11 0.06

C2 SMLc 135 99 19 3 3.0 2.76 0.85

C3 SML 6963 5504 5466 64 77.6 7.21 0.07

C2 S 14,052 13,182 13,092 85 114.3 3.84 0.02

C3 Sc 159,736 136,815 116,827 402 435.5 19.47 0.02

C2 El 6992 5681 5630 167 226.6 26.92 0.09

C3 El 20,789 17,377 16,699 268 332.5 26.60 0.05

C2 Ep 14,817 14,097 13,997 139 160.1 4.20 0.01

C3 Ep 10,589 10,010 9816 101 117.0 5.17 0.02

D1 W 3079 2969 2556 51 61.9 4.23 0.05

D3 W 16,007 15,354 12,842 110 129.4 5.15 0.03

D1 SML 2564 2490 2056 59 92.0 7.57 0.07

D3 SML 3764 3684 2744 78 109.2 5.67 0.03

D1 S 126,217 123,967 123,587 147 184.1 1.10 0.01

D3 S 16,974 16,682 16,578 61 204.5 1.09 0.02

D1 El 22,332 20,907 20,422 222 315.8 3.04 0.01

D3 El 40,176 38,979 38,359 158 246.4 1.89 0.01

D1 Ep 14,808 13,917 13,257 79 102.4 1.92 0.02

D3 Ep 11,661 11,521 11,498 14 23.3 1.23 0.08

OTUs operational taxonomic units; C Créteil Lake; D Daumesnil Lake; SML surface microlayer; W water column; S sediment; Ep

epiphytic biofilm; El epilithic biofilm
a Numbers correspond to the stations numbers
b Without singleton sequences
c Samples removed from the analysis due to a problem of amplification (C2 SML) and sequencing (C3 S)
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epilithon from Créteil Lake and otu1779 in epiphyton

from Daumesnil Lake. Otu29 and otu88 were identi-

fied in both lakes but exclusively in epilithic biofilms.

Only one OTU (otu1399) was present in all the

compartments but only in Créteil Lake.

Discussion

This study aimed to prospect the distribution of

nontuberculous mycobacteria and identify their natu-

ral reservoirs in two recreational lakes. For this

purpose, NTM assemblages were conjointly quantified

and characterized within five compartments (water

column, surface microlayer, sediment, epilithic and

epiphytic biofilms) using quantitative real-time PCR

and high-throughput sequencing. To date, this

sequencing approach has already been applied in soils

(Pontiroli et al. 2013) or in drinking water systems

(van der Wielen et al. 2013), but as far as we are aware

it is the first time that these analyzes have been

performed in recreational lakes and in different

compartments within the same lake. The results reveal

that NTM are ubiquitous and diverse.

Ubiquity of nontuberculous mycobacteria

In natural habitats, NTM have been more frequently

identified in extreme environmental conditions, such

as in alkaline or acid brown-water and in highly

polluted soils and sediments or in environments with

low oxygen concentration (Brooks et al. 1984;

Kirschner et al. 1992; Iivanainen et al. 1993; Bland

et al. 2005; Leys et al. 2005). However, in this study,

NTM were detected at high levels in both lakes, in all

the collected samples. This result suggests that even in
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Fig. 3 Heatmap dendrogram illustrating similarities of nontu-

berculous mycobacteria assemblage composition for the five

compartments (W water; SML surface microlayer; S sediment;

El epilithic and Ep epiphytic biofilms) in Créteil (C) and

Daumesnil (D) Lakes. The OTU ID as well as species to which

they were assigned are presented in abscissa (only OTUs with

relative abundances[1 % in at least one compartment were

represented). Asterisk indicates an assignation for a single OTU

to more than three species
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non-extreme environments, mycobacteria are able to

persist and/or grow in the five investigated compart-

ments at relatively high diversity and abundance.

However, it is difficult to compare the densities

measured in this study with the literature, since no

other study has used the same extraction and ampli-

fication methodologies. Nevertheless, some studies

using quantitative real-time PCR targeting the entire

NTM assemblages reported similar values in a coastal

lagoon (Jacobs et al. 2009), in freshwater samples in

Ethiopia (Khera 2012) or in sediments from Lake Erie

(Debruyn et al. 2009).

Nontuberculous mycobacteria dominated by fast-

growing species

High-throughput sequencing of the hypervariable

regions V2–V3 from the 16S rRNA gene allowed an

in depth-analysis of the NTM composition. With 41 %

of the OTUs assigned to one, two or three Mycobac-

terium species, the percent of unclassified mycobac-

teria was comparable to that reported by Pontiroli et al.

(2013) who used the same primers to characterize soil

samples. The large proportion of unassigned

sequences suggests, as already known, that the rrs

gene does not have enough information to properly

identify NTM to the species level (Kim et al. 2005)

and/or that many NTM species are still unknown or

poorly described. Indeed, partly due to the improve-

ment of the isolation and identification techniques, the

number of described species belonging to the My-

cobacterium genus is steadily growing, with 50

identified species in 1997 and up to 170 presently

(Euzéby 1997, Accessed on August 2015).

For all the analyzed samples, NTM assemblages

were mainly composed of rare OTUs and were

dominated by fast-growing species. Similar results

were encountered in studies focusing on water and soil

samples (Khera 2012; Pontiroli et al. 2013), which

also identified NTM by targeting the rrs gene with the

same primer set. This prevalence could suggest that

fast-growing species possess more plasticity to envi-

ronmental changes and/or are more competitive com-

pared to slow-growing species. It could also be a PCR

artifact due to a difference in rrs gene copy numbers

between fast and slow-growers (Bercovier et al. 1986)

and/or it may also be due to the preferential binding of

the primer set to the rrs gene in fast-growing

mycobacteria. Besides, two previous culture-based

studies that investigated freshwater ecosystems (Vial-

lier and Viallier 1973; Bland et al. 2005) did not find

any noticeable dominance of the fast-growing species.

Among the fast-growing OTUs identified in the

present study, numerous species have already been

identified for their potential role in polycyclic aro-

matic hydrocarbon degradation. Indeed, M. aus-

troafricanum or M. frederiksbergense have been

characterized for their abilities to degrade anthracene

or pyrene (Willumsen et al. 2001; Wick et al. 2003;

Leys et al. 2005; Uyttebroek et al. 2006). The

dominant OTU, identified as M. moriokaense and M.

barrassiae (up to 99 % of the identified OTUs for the

sediment in Daumesnil Lake), have been previously

observed in Japanese and Ethiopian soils (Tsukamura

et al. 1986; Pontiroli et al. 2013), in German hospital

tap water (Hussein et al. 2009) or in a French water

distribution system (Dubrou et al. 2013), but this is the

first time it was reported in lakes.

Mycobacterial densities and diversity differed

among compartments

The abundance and diversity of mycobacterial assem-

blage was significantly shaped by the compartments,

potentially due to differences in physicochemical

properties and type of substrates.

In water compartments, NTM densities were sig-

nificantly higher in the surface microlayer compared

to the water column. This result is consistent with

Parker et al. (1983) who experimentally found a

concentration ofM. intracellulare up to 15,000 higher

in aerosols (formed from the surface microlayer)

compared with the bulk water. Even if the surface

microlayer is exposed to high levels of UV, the

enrichment of mycobacteria in the lipid microlayer

could be due to the hydrophobicity of the mycobac-

teria, which can be concentrated at the surface by

preferential binding to air bubbles rising in the water

column (Blanchard 1964). Moreover the high NTM

concentration in this compartment could be due to

high concentrations of hydrophobic compounds such

as hydrocarbons (Cincinelli et al. 2001; Wurl and

Obbard 2004; Manodori et al. 2006) that could

constitute a substrate for mycobacteria.

In the sediment, large differences among assem-

blages were observed between the different samples.

This result could be due to differences in the quantity

and/or the quality of the nutrients available for the
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bacteria. The high densities of NTM in the sediment

near the storm sewer outlet in the Créteil Lake were in

agreement with Pickup et al. (2006), who found that

densities ofM. avium subsp. paratuberculosis in river

were well predicted by rainfall events. This result

suggests that significant densities of NTM are trans-

ported by runoff effluents and settle in the lake

sediment close to the storm sewer outlet.

Mycobacteria are well known to colonize biofilms,

as they tend to easily stick to surfaces and to clump

together. Indeed, high mycobacterial densities and

diversity were found in the epilithic and epiphytic

biofilms. Moreover, the density and composition of

NTM differed between the epilithic and epiphytic

biofilms, which may be related to the difference of

biofilm ages. Epilithic biofilms were established since

several decades, while phragmites and milfoils regrew

every year. It may also be due to the colonization of

specific algal species in the epilithon or epiphyton

(Danilov and Ekelund 2000) that could interact

differently with the bacteria. The mycobacterial

densities were significantly higher in the phragmite

biofilms compared to the milfoil biofilms, although the

mycobacterial assemblages showed similar OTU

compositions. This result indicates that the plant

species did not exhibit a strong influence on the NTM

assemblage composition, contrary to a previous result

obtained for the total bacterial community (Hempel

et al. 2008). This discrepancy could potentially be due

to the microaerophile nature of NTM. However, plant

biofilms had lower Mycobacterium density compared

with epilithic biofilms. One potential explanation

could rely in the capacity of Myriophyllum spicatum

to produce polyphenols that can affect the bacterial

growth (Walenciak et al. 2002; Hempel et al. 2009).

Potential opportunistic pathogens

Several OTUs were identified as potential opportunis-

tic pathogens (M. asiaticum, M. fortuitum, M.

immunogenum, M. kansasii, M. lentiflavum, M. seg-

matis, M. thermoresistibile and M. vaccae), known to

be responsible for a large range of diseases including

pulmonary, cutaneous and soft tissue infections (Ka-

toch 2004; Griffith et al. 2007; Tortoli 2009). All these

species have previously been isolated in terrestrial or

aquatic habitats (Viallier and Viallier 1973; Engel and

Berwald 1980; Covert et al. 1999; Narang et al. 2009;

Pontiroli et al. 2013; Klanicova et al. 2013). Although

most of these pathogenic species were detected in both

lakes in almost all compartments except in waters,

some species were preferentially present in particular

compartments. For instance, M. asiaticum was only

identified in epilithon and sediment.

Due to methodological aspects, it is possible that

some species could be either underestimated or

overestimated. On one hand, it is likely that the

number of potential pathogens was underestimated

owing to the highly conservative sequence of the rrs

gene. On the other hand, it is possible that this number

was overestimated due to the poor discrimination of

the 16S rDNA sequences at the species levels using the

97 % similarity threshold. Drancourt et al. (2000)

recommended using 99 % as identity cutoff to assign

OTU sequences to bacterial species. When we applied

this recommendation, only one OTU could be iden-

tified as an opportunistic pathogen species: M.

thermoresistibile.

Sequencing genes encoding for hsp65 and rpoB are

necessary for a proper identification of mycobacterial

species (Adékambi and Drancourt 2004; Kim et al.

2005). Although rrs sequencing may not be a

suitable tool to reliably identify mycobacterial species

in environmental samples, it could be an initial screen

for dominant NTM groups that could later be studied

in detail using quantitative real-time PCR or DNA

microarrays.

To conclude, our results showed that a molecular

approach combining quantification and characteriza-

tion of the bacterial composition is suitable to screen

for NTM in complex aquatic ecosystems. High-

throughput sequencing of the rrs gene offered suffi-

cient depth to investigate variations in the mycobac-

terial assemblages between lakes and compartments.

Although the 16S rRNA gene fragment had a too low

resolution to assign all the OTUs at the species level,

this approach represents a useful tool to prospect for

potential pathogenic species that should be studied in

detail with appropriate methods.

This study emphases the ubiquity of NTM in

natural aquatic environments and the high diversity of

mycobacterial assemblages. However, although they

were detected in all five compartments, large varia-

tions shaped by compartments and lakes were

observed in the mycobacterial densities and diversity.

Moreover, the density of NTM in the water column

and sediment was significantly greater in the eutrophic

Daumesnil Lake. These results could be due to the
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difference of quantity and/or quality of nutrients

available for bacteria (Suppl. Material 1). The differ-

ence in epilithic mycobacteria between the two lakes

could be also due to differences in the substratum

nature (rocks in Créteil and concrete in Daumesnil

Lake). However, it is difficult to conclude about the

environmental parameters that structure the NTM

community since the two lakes were different in terms

of trophic status. To establish a clear relationship

between limnological properties and mycobacteria

density and diversity, it would be necessary to perform

a study on a larger number of lakes in order to perform

a robust statistical analysis. Despite all these discrep-

ancies, NTM assemblages were mainly composed of

fast-growing species, regardless of compartment.

Finally, it would be interesting to take into account

biotic reservoirs, such as amoebae (Delafont et al.

2014), fishes (Mrlik et al. 2012) or insects (Marsollier

et al. 2002), which could represent relevant vectors of

mycobacteria and favour the survival of these bacteria

in environment.
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