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Abstract Ginseng has been used for thousands of

years in Asian countries as a traditional medicinal herb

and has gained great popularity in the past decade.

Ginsenosides are the major pharmacological compo-

nents in ginseng. We here show that Cladosporium

cladosporioide is able to convert the major ginsenoside

Rb1 into four known metabolites (ginsenosides Rd, F2,

CK and PPD) and two new metabolites [12b-hydrox-
ydammar-3-one-20(S)-O-b-D-glucopyranoside (3-oxo-

CK) and dammar-24-en-12b,20(S)-diol-3-one (3-oxo-

PPD)]. CK, PPD and 3-oxo-PPD were shown to have a

potent antiproliferative activity against A549 lung

cancer cells. We found that Rb1 ? Rd ? F2 ?
CK ? PPD or 3-oxo-CK ? 3-oxo-PPD represents

the ginsenoside metabolic pathway.

Keywords Ginseng � Ginsenoside � Ketonization �
Transformation � Anticancer

Introduction

As a traditional medicinal herb, ginseng has been used

for thousands of years in the Far East. It has gained

great popularity in the West during the past decade

(Attele et al. 1999; Ang-Lee et al. 2001). Ginsenosides

are the major pharmacological components in ginseng

with Rb1, Rb2, Rc, Rd, Rg1 and Re as the major

compounds (Yang et al. 2014; Cheng et al. 2008). For

instance, Rb1 is the major component of the pro-

topanaxadiol group saponins in roots, making up

23.8 % of the total ginsenosides (Son et al. 2008).

Orally ingested major ginsenosides are activated by

intestinal bacterial deglycosylation (Hasegawa 2004).

In recent decades, many studies have reported the

successful transformation of major ginsenosides into

more active ginsenosides such as Rg3, CK and PPD.

For instance, CK has anti-cancer (Kim et al. 2009;

Ming et al. 2011), anti-angiogenic (Jeong et al. 2010),

anti-inflammation (Joh et al. 2011) and hepatoprotec-

tive effects (Lee et al. 2005), while PPD provides anti-

lung cancer (Zhang et al. 2013) and anti-prostate

cancer activity (Cao et al. 2014). The natural avail-

ability of these ginsenosides in ginseng is low. The

conversion of major ginsenosides to the more active

minor ginsenosides can be accomplished through a

number of methods such as acid treatment (Bae et al.
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2004), alkali treatment (Yang et al. 2003), heating

(Sun et al. 2009) and microbial transformation (Wu

et al. 2012). Chemical transformation produces non-

specific racemic mixtures of ginsenosides, which is

why Microbial transformation is preferred (Quan et al.

2011). Microbial modification includes side-chain

oxidation–reduction, hydroxylation and ketonization

(Liu et al. 2011; Chen et al. 2013; Jin et al. 2014).

Lung cancer is the leading cause of cancer death in

the world (Ferlay et al. 2010). Non-small-cell lung

carcinoma (NSCLC) is the most common type of lung

cancer accounting for 85–90 % of the cases (Gong

et al. 2011). A large number of bioactive compounds

are used to treat cancers, including vinblastine,

paclitaxel and camptothecin. Still it is important to

search for alternative therapeutic agents. Here we

show thatCladosporium cladosporioideKACC 43926

converts Rb1 into several ginsenosides with potent

antiproliferative activity against A549 lung cancer

cells.

Materials and methods

Materials and organisms

Yeast mold (YM) broth was purchased from Difco

(USA). The Silica gel 60 F254 plates and silica gel 60

(Merck, Germany) was used for TLC and column

chromatography. All chemicals and solvents were

analytical or HPLC grade. The strain C. cladospori-

oide KACC 43926 was purchased from Korean

Agricultural Culture Collection (Suwon, Republic of

Korea).

Preparation of ginsenoside Rb1

American ginseng extract with a ginsenoside con-

tent C 80 % (w/w) was purchased from Jiuhui Co.

Ltd. (Changsha, Hunan, China). The crude extract was

subjected to a silica gel column and eluted with

CHCl3–MeOH–H2O (5:1:3–65:35:5, v/v/v). The elu-

ate was then purified by semi-preparative HPLC to

yield pure Rb1.

Biotransformation of ginsenoside Rb1

C. cladosporioide KACC 43926 was incubated in

150 mL YM broth containing 0.4 mg/mL Rb1 as the

carbon source in flasks at 28 �C and 150 rpm. After

10 days of incubation, the reaction mixture was

extracted three times with water-saturated butanol.

TLC analysis was performed using Silica Gel 60 plates

and CHCl3–CH3OH–H2O (65:35:10 v/v/v). Com-

pounds were detected by spraying 10 % (v/v) H2SO4

followed by heating at 110 �C for 10 min (Shibata

et al. 1965). HPLC was performed using an Agilent

1260 system (Agilent). The separation was performed

on a C18 column (50 9 4.6 mm, ID 2.6 lm) with

H2O (solvent A) and acetonitrile (solvent B) at A/B

ratios of 81:19, 81:19, 71:29, 71:29, 60:40, 44:56,

30:70, 10:90, 10:90, 81:19, and 81:19; with run times

of 0–7, 7–11, 11–14, 14–25, 25–28, 28–30, 30–31.5,

31.5–34, 34–34.5, and 34.5–40 min, respectively. The

flow rate was 0.6 mL min-1 and detection wavelength

was 203 nm.

Isolation of metabolites

Fractions A–C were obtained by separating the

reaction extract on silica gel column chromatography

using CHCl3–CH3OH (13:1). Fraction A was sepa-

rated with CH2Cl2–EtOH (50:1–1:1) yielding frac-

tions D-E. Fraction were further purified by semi-

preparative HPLC. Metabolites were dissolved in

pyridine-d5 and identified by 1H, 13C, and 2D NMR

using an FT-NMR spectrometer (400 MHz; Varian

Inova AS 400, Varian, Palo Alto, CA, USA). Chem-

ical shifts are given in d (ppm) based on tetramethyl-

silane (TMS) as internal standard.

Proton NMR data of metabolite 5 were: 1H-NMR

(400 MHz, pyridine-d5, dH) 5.25 (1H, dd, J = 6.8,

6.4 Hz, H-24), 5.16 (1H, d, J = 7.6 Hz, H-10),
4.46–3.89 (sugar moieties), 1.60 (9H, s, H-28, 21,

29), 1.11 (3H, H-26), 1.03 (3H, s, H-27), 0.96 (3H, s,

H-18), 0.91 (3H, s, H-19), 0.87 (3H, s, H-30). Proton

NMR data of metabolite 6 were: 1H-NMR (400 MHz,

pyridine-d5, dH) 5.47 (1H, dd, J = 6.4, 5.6 Hz, H-24),

3.89 (1H, m, H-12), 1.69 (3H, s, H-28), 1.66 (3H, s,

H-21), 1.40 (3H, s, H-29), 1.13 (3H, H-26), 1.04 (3H,

s, H-27), 0.99 (3H, s, H-18), 0.92 (3H, s, H-19), 0.87

(3H, s, H-30).

Cytotoxicity assay

Cell viability was measured by using the 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT)

assay (Mosmann 1983). A549 Lung Cancer cells were
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cultured for 24 h with different 0-300 lMginsenoside

in 96-well plates at a density of 1 9 104 cells/well.

After incubation at 37 �C in a humidified incubator

containing 5 % CO2, 10 lL of MTT (5 mg/mL) was

added to each well and incubated for an additional 4 h.

Precipitated formazan was dissolved in 100 lL of

DMSO for 30 min. The absorbance was recorded with

a plate reader (Bio-Tek Instrument, USA) at a test

wavelength of 570 nm and a reference wavelength of

630 nm.

Results

Biotranformation of ginsenoside Rb1

C. cladosporioide KACC 43926 converted gin-

senoside Rb1 into several products as shown by TLC

and HPLC analysis. Reaction products were separated

on silica gel column chromatography. As a result, 4

known metabolites (ginsenoside Rd (metabolite 1), F2

(metabolite 2), CK (metabolite 3) and PPD (metabolite

4)) and 2 new metabolites (metabolites 5, 6) were

obtained (Figs. 1, 2). Metabolite 1, 2 are intermediate

metabolites, while metabolites 3, 4, 5, 6 represent final

products.

Structure of metabolites

Metabolite 5 was obtained as a white powder. The 1H

and 13C NMR and DEPT (distortionless enhancement

by polarization transfer) spectra of metabolite 5 were

very similar to CK except for the appearance of a

ketone (dC 216.2, C-3) and the disappearance of an

oxygenated methine signal. The molecular weight of

Fig. 1 TLC analysis of metabolites of ginsenoside Rb1

converted by C. cladosporioide KACC 43926. C, ginsenoside

Rb1 control, without inoculation of the strain; S, ginsenosides

standard. The samples were withdrawn at different time. 1, 2 h;

2, 1 day; 3, 4 days; 4, 7 days; 5, 10 days

Fig. 2 HPLC profiles of metabolites of ginsenoside Rb1 transformed by C. cladosporioide KACC 43926
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metabolite 5 was 2 daltons less than that of CK,

indicating that the ketonization was introduced at C-3.

The proton and carbon signals attributed to the sugar

moiety suggested the presence of a b-glucopyranosyl
group. The correlation between dH 5.16 (H-10) and dC
83.3 (C-20) in the HMBC (heteronuclear multiple

bond correlation) spectrum and the chemical shift of

the anomeric carbon signal (dC 98.2) supported the

presence of a glucopyranosyl group at C-20. There-

fore, the structure of metabolite 5 was determined as

12b-hydroxydammar-3-1-20(S)-O-b-D-glucopyranoside
(3-oxo-CK).

Metabolite 6 was obtained as a white powder. The
13C-NMR spectrum of metabolite 6 displayed 30

carbon signals. All signals could be assigned based on

a DEPT experiment, the HSQC (heteronuclear single

quantum coherence) spectrum, and a comparison with

the 13C-NMR data of PPD (Asakawa et al. 1977)

(Table 1). The data were similar to PPD with the

exception of the proton and carbon resonances indi-

cating the presence of a carbonyl functional group

instead of an oxygenated methane at the C-3 position.

The 1H and 13C NMR spectra (Table 1) showed

signals of an olefine methine group [dH 5.47 (J = 6.4,

5.6 Hz, H-24), dc 126.0 (C-24)], eight tertiary methyl

groups (Table 1) and an oxygenated methine group

[dH 3.89 (H-12), dc 70.5 (C-12)]. A ketone signal at dc
215.9 (C-3) was observed in the low magnetic field. In

comparison to a previously isolated compound,

metabolite 6 lacked a sugar moiety at the C-20

position. Consequently, the structure of metabolite 6

was determined to be dammar-24-en-12b,20(S)-diol-
3-one (3-oxo-PPD) (Anufriev et al. 1997).

Biotransformation pathway

TLC analysis was performed to identify the metabolic

pathway of the ginsenosides. To this end, samples of

the reaction mixture were taken in time (Fig. 3).

Ginsenoside Rb1 was converted into ginsenoside Rd

by hydrolysis of a glucose unit at C-20 position. Then,

ginsenoside F2 was produced from ginsenoside Rd by

additional hydrolysis of a single glucose moiety at C-3

position. Ginsenoside F2 was converted into CK by

hydrolysis of a glucose unit at C-3 position. Gin-

senoside CK was transformed into PPD by hydrolysis

of a glucose unit at C-20 position or 3-oxo-CK by

ketonization at C-3 position. Finally, ginsenoside PPD

and 3-oxo-CK were transformed into 3-oxo-PPD by

ketonization at C-3 position and hydrolysis of a glucose

unit at C-20 position, respectively. These results

suggest thatC. cladosporioideKACC43926 has potent

b-glucosidase and ginsenoside dehydrogenase activity.

In vitro cytotoxicity assay in A549 lung cancer

cells

Cell viability effects of four derivatives (CK, 3-oxo-

CK, PPD, 3-oxo-PPD) on A549 cells was evaluated by

Table 1 13C-NMR spectrum of metabololites 5 and 6

Metabolite 5 Metabolite 6

Aglycone moiety Sugar moiety Aglycone moiety

No. ppm No. ppm No. ppm

C-1 39.7 C-10 98.2 C-1 39.6

C-2 34.2 C-20 75.1 C-2 34.1

C-3 216.3 C-30 79.2 C-3 215.9

C-4 47.3 C-40 71.7 C-4 47.0

C-5 55.3 C-50 78.2 C-5 55.0

C-6 19.9 C-60 62.9 C-6 20.8

C-7 36.1 C-7 35.6

C-8 39.9 C-8 39.4

C-9 49.9 C-9 49.4

C-10 36.9 C-10 36.6

C-11 30.7 C-11 31.0

C-12 70.0 C-12 70.5

C-13 49.6 C-13 48.5

C-14 51.4 C-14 51.4

C-15 30.7 C-15 31.0

C-16 26.6 C-16 26.8

C-17 51.6 C-17 51.3

C-18 17.2 C-18 16.6

C-19 17.7 C-19 17.4

C-20 83.3 C-20 72.7

C-21 22.3 C-21 20.8

C-22 36.1 C-22 35.6

C-23 23.15 C-23 22.7

C-24 126.0 C-24 126.0

C-25 130.9 C-25 130.5

C-26 25.7 C-26 25.5

C-27 17.7 C-27 17.4

C-28 26.7 C-28 26.5

C-29 15.6 C-29 15.2

C-30 15.8 C-30 15.7
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MTT assay. The 3-oxo-CK did not affect A549 cell

growth in 24 h (data not shown). However, prolifer-

ation of A549 cells was suppressed in a dose-

dependent way by CK, PPD and 3-oxo-PPD (Fig. 4).

CK, PPD and 3-oxo-PPD significantly inhibited the

growth of A549 cells at 50, 100 and 300 lM, while

3-oxo-PPD only showed activity at 10 lM. Thus, CK

and PPD are more cytotoxic than 3-oxo-PPD.

Discussion

The natural major ginsenosides are excreted after

uptake by the human body but when modified by the

intestinal microbiota these bioactive compounds are

retained. For instance, the ginsenosides Rb1, Rb2, Rc

and Rd are metabolized into CK by intestinal micro-

biota (Hasegawa et al. 1996; Akao et al. 1998). Oral

administration of ginsenoside Rb1 resulted in eight

metabolites in rats, including gypenoside XVII,

ginsenosides Rd, F2, CK and 3-oxo-CK (Chen et al.

2008). In addition, Jin et al. (2013) reported that PPD

was metabolized into 3-oxo-PPD in rats after oral

administration. It should be noted that individuals

have their own characteristic indigenous gut micro-

biota (Simon and Gorbach 1986; Rumney and Row-

land 1992; Wakabayashi et al. 1997) and their

ginsenoside modifying activity can thus be different.

Moreover, microbial intestinal composition can be

affected disease, unbalanced diet, stress and lifestyles.

Hence, the pharmacological effects of ginseng will

depend on how effectively a person can metabolize

and absorb ginsenosides. To circumvent this, ginseno-

sides can be modified in vitro.

This study shows for the first time that C.

cladosporioide KACC 43926 can convert the major

ginsenoside Rb1 into bioactive compounds that can

also be found after oral administration. Evidence was

presented that the metabolic pathway of Rb1 follows

Rb1 ? Rd ? F2 ? CK ? PPD or 3-oxo-CK ? 3-

Fig. 3 Microbial

transformation pathway of

ginsenoside Rb1 by C.

cladosporioide KACC

43926
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Fig. 4 Effects of CK, PPD

and 3-oxo-PPD on A549

cells viability. A549 cells

were treated with different

doses of CK, PPD, 3-oxo-

PPD, and then measured by

MTT assay. *p\ 0.05,

***p\ 0.001,
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compounds-treated versus
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oxo-PPD. C. cladosporioide KACC 43926 has potent

b-glucosidase for hydrolysis of a glucose unit at C-3 or
C-20 position and ginsenoside dehydrogenase activity

for ketonization at C-3 position.

The non-polar ginsenosides, such as Rg3, Rh2,

Rk1, Rg5, CK and PPD are taken up in human breast

cancer cells. The most non-polar ginsenoside PPD has

the highest uptake rate, followed by CK (Ha et al.

2010). The Rb1 metabolites of C. cladosporioide

should thus be easily absorbed in the body even in the

absence of an intestinal microbiota that canmetabolize

ginsenosides. Based on the cytotoxicity results of four

compounds, the ketonized compounds may reduce the

cytotoxicity in cell lines. CK, PPD and 3-oxo-PPD

significantly inhibited growth of A549 lung cancer

cells at 50–300 lM. Therefore, these compounds have

both high uptake and potent antiproliferative activity

against these cells.
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