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Abstract In total, 435 pure bacterial strains were

isolated from microtherm oil-production water from the

Karamay Oilfield, Xinjiang, China, by using four

media: oil-production water medium (Cai medium),

oil-production water supplemented with mineral salt

medium (CW medium), oil-production water supple-

mented with yeast extract medium (CY medium), and

blood agar medium (X medium). The bacterial isolates

were affiliated with 61 phylogenetic groups that belong

to 32 genera in the phyla Actinobacteria, Firmicutes,

and Proteobacteria. Except for the Rhizobium, Dietzia,

and Pseudomonas strains that were isolated using all the

four media, using different media led to the isolation of

bacteria with different functions. Similarly, nonheme

diiron alkane monooxygenase genes (alkB/alkM) also

clustered according to the isolation medium. Among

the bacterial strains, more than 24 % of the isolates

could use n-hexadecane as the sole carbon source for

growth. For the first time, the alkane-degrading ability

and alkB/alkM were detected in Rhizobium, Rhodob-

acter, Trichococcus, Micrococcus, Enterococcus, and

Bavariicoccus strains, and the alkM gene was detected

in Firmicutes strains.

Keywords Oil-production water � Alkane

monooxygenase � Microtherm � Culturability

Introduction

Along with the depletion of easily recoverable crude oil

deposits, microbial enhanced oil recovery (MEOR) has

been gaining increasing interest because it is environ-

mentally friendly and cost-efficient (Lazar et al. 2007).

An oil reservoir is a very special environment contain-

ing high pressure and few nutrients, which accommo-

dates specific microorganisms. The low-temperature

strata are often found in shallow oil reservoirs with

depths ranging from 200 to 2,000 m. At relatively low

temperatures, crude oil in the low-temperature strata is

often poor in fluidity, which hampers the oil recovery.

Therefore, the microbial degradation of petroleum

hydrocarbons becomes more important for efficient

oil recovery in microtherm oilfields.

Recently, many studies have investigated the micro-

bial community in oil-production water from oil
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reservoirs (Dahle et al. 2008; Kaster et al. 2009; Li et al.

2006; Tang et al. 2012; Zhao et al. 2012). Simulta-

neously, many attempts have been made to isolate

microbial strains from oil reservoirs as well as oil-

production water (Kaster et al. 2009; Miroshnichenko

et al. 2001). However, majority of the investigations and

isolations were conducted on the mesotherm high-

temperature oil reservoirs and oil-production water

(Kaster et al. 2009; Wang et al. 2011), and only a few

studies have addressed microtherm oil-production

water.

Therefore, we investigated the isolation of bacterial

strains from low-temperature oil-production water,

which were obtained from the low-temperature oil

stratum, by using four types of media at 25 �C. We

also screened the strains that were able to degrade oil

components and detected the phenol hydroxylase and

alkane monooxygenase genes.

Materials and methods

Strain isolation and identification

The oil-production water was collected from the low-

temperature oil stratum in Liuzhong Block, Karamay

Oilfield, Xinjiang Uygur Autonomous Region, China,

and transported to the laboratory at 4 �C. The

temperature of the block strata and the production

water was 20.6 �C. Other characteristics of this block

have been previously described (Zhao et al. 2012).

First, cells in the production water were collected

with a filter (0.22 lm pore size) under aseptic condi-

tions. Then, the cells were resuspended with a sterile

saline solution and diluted to 10-3 to make an

inoculating suspension. Four types of media were

used: (i) Cai medium (1,000 mL production water,

20 g agar, sterilized); (ii) CW medium (1,000 mL

production water, 1.0 g NH4HO3, 1.0 g NaCl, 1.5 g

K2HPO4, 0.5 g KH2PO4, 20 g agar, sterilized); (iii)

CY medium (1,000 mL production water, 5.0 g yeast

extract, 20 g agar, sterilized); and (iv) X medium

(blood agar, Beijing Sybrisk Science & Technology

Co., Ltd). The inoculating suspensions (100 lL) were

plated on the four media and statically incubated at

25 �C in the dark for 9 days. All colonies that grew on

the plates were picked, purified, and stored for further

investigation. The isolates were named by the medium

name and the colony series numbers. For example, the

1st and 10th strains isolated from Cai medium were

named as Cai-1 and Cai-10, respectively.

DNA extraction, amplification, and analysis of the

16S rRNA gene from the purified isolates were

conducted using previously described protocols (Wang

et al. 2007). Before sequencing, the isolates were

affiliated to different groups according to the colony

phenotype and restriction fragment length polymor-

phism according to a previously described protocol (Yu

et al. 2011).

Degradation of petroleum components by bacterial

strains

After cells of different strains were grown in liquid LB

medium (5.0 g L-1 yeast extract, 10.0 g L-1 tryptone,

10 g L-1 NaCl; pH 7.0) at 25 �C for 2 days, they were

harvested as pellets after centrifugation (2,0009g at

4 �C for 10 min). Then, the pellets were washed twice

and resuspended in an aseptic saline solution to

prepare the inoculating suspension for further physi-

ological experiments.

To investigate the petroleum degrading ability of

different strains, the inoculum suspensions were added to

30 mL of mineral salt medium (MSM: 1.0 g L-1

NH4NO3, 1.0 g L-1 NaCl, 1.5 g L-1 K2HPO4,

0.5 g L-1 KH2PO4, 0.2 g L-1 MgSO4�7H2O) supple-

mented with phenol (100 mg L-1, final concentration), n-

hexadecane (100 mg L-1, final concentration), or phen-

anthrene (100 mg L-1, final concentration) as the sole

carbon and energy source. Then, the cultures were

incubated at 25 �C and shaken at 150 rpm in the dark. On

the 5th day, the cultures were sampled for the detection of

residual organic compounds as well as cell growth.

The concentrations of phenol and n-hexadecane

were detected by using the HPLC–UV and GC-FID

with the previously described methods and protocols

(Sun et al. 2011; 2012). The residual phenanthrene in

the culture was extracted with dichloromethane.

Briefly, the samples were thoroughly extracted with

an equal volume of dichloromethane. From the

dichloromethane layer, 2 mL of the mixture was

collected and dried by anhydrous Na2SO4. Then,

1 mL of the dried mixture was transferred into a new

tube for volatilization. The dichloromethane residue

was dissolved in 0.5 mL of methanol. Then, methanol

was used to determine the concentration of phenan-

threne following the same protocol as that used for
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determining the phenol concentration except that the

results were recorded at a wavelength of 250 nm.

Analysis of phenol hydroxylase and alkane

monooxygenase genes

The previous described primers used to amplify

phenol hydroxylase genes (pheN) as well as alkane

monooxygenase genes, including nonheme diiron

alkane monooxygenase gene (alkM/alkB), Cyto-

chrome P450 enzymes gene (CYP153A), and Flavin-

binding monooxygenase gene (almA) (Kloos et al.

2006; Wang et al. 2010; Wang and Shao 2011; Xu

et al. 2001) and are listed in Table 1. DNA fragments

corresponding with the correct target size for each

gene were cloned into the pMD19-T vector (TaKaRa

Biotechnology (Dalian) Co. Ltd., Dalian, China) and

sequenced.

The obtained DNA sequences were aligned in

GenBank by using the BLAST tools (http://blast.ncbi.

nlm.nih.gov/Blast.cgi). The amino acid sequences of

alkane monooxygenase and phenol hydroxylase were

translated using the MEGA software package version

5.0 according to the universal codon (Tamura et al.

2011). The reference sequences were retrieved from

GenBank. After multiple sequence alignment of the

sequences by CLUSTAL X and manually correction,

the phylogenetic tree based on the phenol hydroxylase

or alkane monooxygenase gene sequences were con-

structed using neighbour-joining method (Saitou and

Nei 1987) in the MEGA software package version 5.0

(Tamura et al. 2011). The stability of tree topology

was evaluated with maximum-likelihood and maxi-

mum parsimony algorithms.

Results

Phylogenetic distribution of the isolates

from different media

After cultivation on four different kinds of media at

25 �C in the dark, X and Cai media led to the fastest

and slowest growth, respectively, whereas CY and

CW media showed the highest number of colonies

(Fig. S1). At the end of the cultivation period (9 days),

435 colonies were isolated and purified from CY (134

isolates), CW (140 isolates), X (119 isolates), and Cai

(42 isolates) media. Screened according to colony

topologies, these 435 isolates were classified into 246

representative strains. Then, 246 representative strains

were selected for further analyses including 16S rRNA

gene sequencing. These 246 strains were classified

into 61 groups according to 16S rRNA gene sequences

and 16S rRNA gene fragment restriction digestion

patterns, which could be further assigned to 32 genera

belonging to the Actinobacteria, Firmicutes, Alpha-

proteobacteria, Betaproteobacteria, and Gammapro-

teobacteria (Fig. 1).

Among the 61 groups of bacterial strains, 13, 15, 27,

and 25 groups were isolated from Cai, CW, CY, and X

media, respectively (Table 2; Figs. S2–S6). Further-

more, 1 (3 isolates), 4 (6 isolates), 3 (6 isolates), and 2 (2

isolates) groups isolated from Cai, CW, CY, and X

media, respectively, which accounts for 7.7, 26.7, 11.1,

and 7.7 % of the total groups in the corresponding

media, potentially represented novel bacterial taxo-

nomical groups because they shared\98 % 16S rRNA

gene sequence identity with validly published bacterial

species (Supplementary Table S2). Considerably more

Table 1 Primer sets used

in the present study
Genes Primer Primer sequence

Multiple-components phenol

hydroxylase genes (pheN)

(Xu et al. 2001)

Phe1 50-AGGCATCAAGATCACCGACTG-30

Phe2 50-CGCCAGAACCATTTATCGATC-30

Nonheme diiron alkane

monooxygenase gene (alkB/

alkM) (Kloos et al. 2006)

AlkB-1f 50-AAYACNGCNCAYGARCTNGGNCAYAA-30

AlkB-1r 50-GCRTGRTGRTCNGARTGNCGYTG-30

Cytochrome P450 enzymes gene

(CYP153A) (Wang et al. 2010)

P450FS 50-TGTCGGTTGAAATGTTCAT-30

P450RS 50-TGCAGTTCGGCAAGGCGGTT-30

Flavin-binding monooxygenase

gene (almA) (Wang and Shao

2011)

AlmAdf 50-GGNGGNACNTGGGAYCTNTT-30

AlmAdr 50-ATRTCNGCYTTNAGNGTCC-30
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Fig. 1 Phylogenetic tree based on the 16S rRNA gene of the

representative strains of the 61 groups was constructed by using

neighbor-joining method, with the tree topology evaluated by

bootstrap analysis based on 1,000 resampling replicates with

MEGA software package version 5.0. The bootstrap values (%)

are indicated at the nodes. The scale bars represent 0.01

substitutions per site. The strains with overstriking names were

isolated in the present study, while the sequences with asterisks

are the sequences from a clone library analysis of the same

stratum production water (Zhao et al. 2012). The numbers in

brackets after the strains are the numbers of phylogenetic group

(prior) (The 1 means all the stains in this pattern sharing the

same 16S rRNA gene, and similar hydrocarbon-degrading

genes, clone topology, and hydrocarbon-degrading characteris-

tics; 2, 3, and 4 mean the strains in this pattern forming 2, 3 and 4

groups respectively, all sharing the same 16S rRNA gene but

with different functional characteristics) and numbers of the

isolates within this pattern (later) obtained in the present study

404 Antonie van Leeuwenhoek (2014) 105:401–411

123



bacteria belonging to Proteobacteria were isolated

from the high-nutrient (CY and X) media than from the

relatively low-nutrient (Cai and CW) media.

Acinetobacter strains were isolated only from Cai

medium. Sanguibacter, Exiguobacterium, and Sphing-

obium strains were isolated only from CW agar.
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Microbacterium strains were only isolated from Cai and

CW media, whereas no Betaproteobacteria strains

were obtained from these 2 media. Halolactibacillus,

Enterococcus, Planomicrobium, Paracoccus, and one

Actinomycetaceae strains (with the 16S rRNA gene

sequence identities \94 % with all of the known

species) were unique species isolated from CY agar.

Cellulosimicrobium, Micrococcus, Paenibacillus,

Sphingobium, Delftia strains, in addition to 2 strains

belonging to the genera Erysipelotrichaceae and Alca-

ligenaceae (with identical 16S rRNA gene sequence

identities with 2 known genera of Alcaligenaceae:

Kerstersia and Bordetella) were unique species isolated

from X agar.

Three genera, Dietzia (18 isolates), Rhizobium

(30 isolates), and Pseudomonas (66 isolates), could

be isolated from all four media. In all, 4, 6, 5, and 3

Dietzia strains; 16, 7, 6, and 1 Rhizobium strains;

and 2, 45, 12, and 7 Pseudomonas strains isolated

from Cai, CW, CY, and X agars, respectively (Table

S2).

Distributions of isolates with different

hydrocarbon-degrading abilities as well as alkane

monooxygenase and phenol hydroxylase genes

Among the 61 representative strains, four strains from

CY and X media belonging to Alcaligenes, Coma-

monas, and Enterococcus genera could use phenol as

the sole carbon source for growth (Table S1). In

contrast, no strains from Cai and CW agars showed

phenol-degrading ability. Five strains belonging to

Halolactibacillus, Exiguobacterium, Paenibacillus,

Pseudomonas, and Alcaligenaceae (a potential novel

genus) and isolated from the four media could use

phenanthrene as the sole carbon and energy source for

growth (Tables 2, S1). It is notable that no study has

described Enterococcus spp. using phenol and Exig-

uobacterium and Halolactibacillus spp. using phen-

anthrene as the sole carbon and energy sources for

growth. Four phenol hydroxylase genes (pheN)

responsible for the hydroxylation of phenolic com-

pounds were obtained from four strains isolated from

CY and X media that belonged to Alcaligenes,

Sphingobium, and Comamonas. The four pheN were

grouped into different clusters in the phylogenetic tree

(Fig. S7). Although the pheN gene was PCR amplified

from strain Sphingobium sp. X-b4, no phenol-degrad-

ing ability was detected. In contrast, no phe gene was

detected in the phenol-degrading Enterococcus sp.

CY-29 (Table S1).

Compared with the small amount of strains able to

degrade phenol and phenanthrene, 46.2, 40.0, 33.3,

and 24.0 % of the total strains from Cai, CW, CY, and

X media were able to degrade n-hexadecane, respec-

tively (Table S2). These included Planococcus, Rhi-

zobium, Acinetobacter, Pseudomonas, Rhodobacter,

and Dietzia strains from Cai medium; Pseudomonas,

Rhodobacter, Planococcus, and Dietzia strains from

CW medium; Pseudomonas, Paracoccus, Planococ-

cus, Trichococcus, Enterococcus, Bavariicoccus, and

Dietzia strains from CY medium; and Pseudomonas,

Acidovorax, Micrococcus, Dietzia strains from X

medium. The genes encoding alkane monooxygenase,

which is responsible for alkane hydroxylation, were

also detected using PCR amplification from the

isolates. The alkB/alkM could be clustered into three

groups (Fig. 2). Cluster I represents the alkB genes

from all of the Dietzia strains. Cluster II represents the

alkM genes from Trichococcus, Micrococcus, Entero-

coccus, Paracoccus, Pseudomonas, and Bavariicoc-

cus, which is also clustered with alkM from

Acinetobacter strains (Ratajczak et al. 1998; Sun

et al. 2012). Cluster III represents the alkB genes from

Rhizobium, Rhodobacter, and Acinetobacter, which is

also clustered with the alkB gene from Pseudomonas

putida Gpo1 (van Beilen et al. 2001). CYP153A,

another medium-chain alkane hydroxylation gene

(Nie et al. 2013b), and almA, a long-chain alkane

hydroxylation genes, were detected only in Dietzia

strains (data not shown).

Discussions

It is believed that environmental conditions drive micro-

bial community to evolve relevant functions or to select

special microorganisms to adapt the environments. In a

microtherm oil reservoir, such as the Liuzhong Block of

the Karamay Oilfield, microorganisms should be able to

use the crude oil components for growth and adapt to

temperatures as low as 22 �C. Therefore, it is reasonable

that more than 24 % of the bacteria isolated from this oil-

rich environment have the ability to degrade petroleum

hydrocarbons, including n-hexadecane and phenan-

threne. Among them, strains belonging to Rhizobium,

Rhodobacter, Trichococcus, Micrococcus, Enterococcus,

and Bavariicoccus genera were detected, for the first
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time, with the ability to degrade n-hexadecane, as well as

contain the alkB/alkM genes. Phylogenetically distant but

related bacteria, including Micrococcus, Trichococcus

and Enterococcus, Paracoccus and Bavariicoccus, and

Pseudomonas, had closely related alkB/alkM genes

(Fig. 2). In addition, alkM genes, usually detected in

Acinetobacter (Ratajczak et al. 1998; Sun et al. 2012),

Actinobacteria (Alonso-Gutiérrez et al. 2011; Shen et al.

2010), and Proteobacteria (Tesar et al. 2002; Wang et al.

2010), were first detected in Firmicutes strains. It is

notable that although Planococcus spp. CW-123 and CY-

b41 as well as Pseudomonas spp. CW-122 and X-b2

could use n-hexadecane as the sole carbon and energy

source for vigorous growth, none of the alkB/alkM,

CYP153A and almA genes could be detected by using

PCR method.
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Fig. 2 Phylogenetic tree based on the partial amino acid

sequences of the alkane monooxygenase was constructed by

using the neighbor-joining method. The tree topology was

evaluated by bootstrap analysis based on 1,000 resampling

replicates with the MEGA software package version 5.0. The

bootstrap values (%) are indicated at the nodes. The scale bars

represent 0.05 substitutions per site
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It is interesting that so many Rhizobium strains were

isolated from the microtherm oil-rich environment,

which is in consistent with the results analyzed by

clone library analysis of the 16S rRNA genes (Zhao

et al. 2012). Rhizobium strains are usually isolated

from soil or aquatic environments, especially in the

plant rhizosphere (Yoon et al. 2010), although a few

Rhizobium strains were recently obtained from a

bioreactor (Hunter et al. 2007; Quan et al. 2005; Wen

et al. 2011). Recently, some Rhizobium strains were

reported to be capable of utilizing aromatic com-

pounds such as phenanthrene (Wen et al. 2011; Zhang

et al. 2012). In the present study, most of the

Rhizobium strains isolated from Cai medium could

efficiently degrade n-hexadecane and harbored a

special alkane monooxygenase gene.

These phenomena may be ascribed to the horizontal

transfer of the alkane monooxygenase genes between

different bacteria, as argued by Nie et al. (2013a).

However, further investigation is needed to explain the

phenomena as well as to understand the behaviors of

bacterial strains under mesophilic conditions.

As artificial environmental selecting pressure, each

medium led to the isolation of different and unique

bacterial strains. For example, seven groups of bac-

teria were isolated only from X medium, 6 groups

from CY medium, three groups from CW medium,

and one group from Cai medium (Table 2). In

addition, crude oil constituents from oil production

could enhance the ability of Cai, CW, and CY media to

grow more bacterial strains that are able to degrade

petroleum hydrocarbons such as n-hexadecane and

phenanthrene. In contrast, the yeast extract in CY and

X media resulted in the isolation of phenol-degrading

strains. A similar pattern was also found in the

distribution of the alkB/alkM genes. Except for those

from the Dietzia and Rhizobium strains (isolated from

four media simultaneously), alkB genes clustered with

the media: Cai-strains harbored Cluster III (alkB)

nonheme diiron alkane monooxygenase and CY-

strains harbored Cluster II (alkM) nonheme diiron

alkane monooxygenase, regardless of the phyloge-

netic differences among the host bacterial strains.

Further investigation is needed to address whether the

medium selection of the isolates with specific func-

tions is a universal phenomenon.

Although four kinds of media were used, they were

obviously not enough to isolate all the bacteria in the

production water. As revealed by the clone library

analyses, some bacterial lineages could not be isolated by

the four media, including bacteria belonging to Delta-

proteobacteria and Spirochaetes (Zhao et al. 2012). In

contrast, Betaproteobacteria and Actinobacteria which

were isolated by cultivation were not detected by the

clone library analyses. In addition, the Clostridia

relatives were only detected by the culture-independent

method, while Bacilli and Erysipelotrichi strains were

isolated (Fig. 1). The common predominant bacteria

detected with both methods were Pseudomonas.

In summary, 435 pure bacterial strains were isolated

from microtherm oil-production water by using four

different media, which were affiliated with 61 phyloge-

netic groups belonging to phyla of Actinobacteria,

Firmicutes, and Proteobacteria. Only Rhizobium, Diet-

zia, and Pseudomonas strains were commonly isolated

from the 4 media. Different medium selected bacterial

strains with different n-hexadecane degradation abilities

with alkB/alkM genes being clustered according to the

media. In addition, the alkane-degrading abilities and

alkB/alkM genes were detected in Rhizobium, Rhodob-

acter, Trichococcus, Micrococcus, Enterococcus, and

Bavariicoccus strains.
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