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Abstract The Eastern Mediterranean deep sea is

one of the most oligotrophic regions in the world’s

ocean. With the aim to classify bacteria from this

special environment we isolated 107 strains affiliating

to the Gammaproteobacteria, Alphaproteobacteria,

Firmicutes, Actinobacteria and Bacteroidetes from

sediments of the Eastern Mediterranean Sea. As

determined by 16S rRNA gene sequence analysis,

Actinobacteria and Firmicutes, in particular members

of the genus Bacillus, were dominant and represented

a remarkable diversity with 27 out of a total of 33

operational taxonomic units obtained from the

untreated sediment. The considerable percentage of

operational taxonomic units (42%) which may be

considered to be new species underlines the unique-

ness of the studied environment. In order to selec-

tively enrich bacteria which are adapted to the deep-

sea conditions and tolerate broad pressure ranges,

enrichments were set up with a sediment sample

under in situ pressure and temperature (28 MPa,

13.5�C) using N-acetyl-D-glucosamine as substrate.

Interestingly Gammaproteobacteria were signifi-

cantly enriched and dominant among the strains

isolated after pressure pre-incubation. Obviously,

Gammaproteobacteria have a selective advantage

under the enrichment conditions applied mimicking

nutrient supply under pressure conditions and cope

well with sudden changes of hydrostatic pressure.

However, under the continued low nutrient situation

in the Eastern Mediterranean deep-sea sediments

apparently Firmicutes and Actinobacteria have a

clear adaptative advantage.

Keywords Deep sea � Bacteria �Mediterranean sea �
Pressure-incubation � Cultivation

Introduction

Studies on microbial communities in marine deep-sea

sediments frequently focus on highly productive

spots, like hydrothermally active regions. However,

the major fraction of deep-sea sediments represents

extremely oligotrophic environments subjected to

high hydrostatic pressures. This holds especially true

for the Eastern Mediterranean sea (Lampadariou et al.

2009). The extreme depletion of nutrients in surface

waters results in low primary production. Only a

minor fraction of the produced organic matter (1%) is

reaching the deep-sea sediments (Lampitt and Antia

Electronic supplementary material The online version of
this article (doi:10.1007/s10482-011-9599-5) contains
supplementary material, which is available to authorized users.
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IFM-GEOMAR, Düsternbrooker Weg 20,

24105 Kiel, Germany

e-mail: jimhoff@ifm-geomar.de

123

Antonie van Leeuwenhoek (2011) 100:421–435

DOI 10.1007/s10482-011-9599-5

http://dx.doi.org/10.1007/s10482-011-9599-5


1997). Organic carbon values of the Southern Cretan

Margin sediments were found to be in the range of

0.07–1.55% of sediment dry weight (Polymenakou

et al. 2008). The Eastern Mediterranean deep sea is

furthermore characterised by comparably high tem-

peratures of approximately 14�C opposite to most

other deep-sea environments with temperatures of

2–4�C (Emig and Geistdoerfer 2004). The sediments

of the Eastern Mediterranean deep sea thus combine

different environmental features (extreme oligotro-

phy, high hydrostatic pressure of up to 52 MPa at the

deepest point and comparably high deep-water tem-

perature) which may be in favour of the development

of unique types of bacteria. T-RFLP analysis revealed

high values of bacterial diversity within Eastern

Mediterranean sediments of the deep Ionian sea

(Luna et al. 2004). Also environmental 16S rRNA

gene libraries of Western Mediterranean deep-sea

sediments revealed high bacterial diversity, while

Archaea appear to be of minor abundance and

diversity (Danovaro et al. 2009). Dominating bacte-

rial sequences from deep-sea sediments of the

Southern Cretan Margin were assigned to the Acido-

bacteria (18%), Gammaproteobacteria (13%), Plan-

ctomycetes (11%), Actinobacteria (11%),

Alphaproteobacteria (10%) and Deltaproteobacteria

(9%) (Polymenakou et al. 2009).

There is however, a considerable lack of cultiva-

tion-based studies of bacteria that is essential to

enlighten their ecological role in natural environ-

ments (Das et al. 2006). Studies of cultured bacterial

diversity from deep-sea environments are generally

performed at atmospheric pressure and there are only

few studies using in situ hydrostatic pressure incu-

bation (e.g. Yayanos et al. 1979; Kato et al. 1995,

1996, 1998, 1999; Yanagibayashi et al. 1999). In

contrast, low nutrient concentrations prevailing in

marine deep-sea habitats have been taken into

account in cultivation-based studies since the 1990s

(Rueger and Tan 1992; Rappé et al. 1999). The use of

low nutrient media turned out to significantly

improve the cultivation efficiency (Carlucci et al.

1986; Rueger and Tan 1992; Koch 2001), for the

growth of copiotrophic and fast growing bacteria is

retarded in low-nutrient media giving a chance for

growth of oligotrophic bacteria.

In the present study bacteria from Mediterranean

deep sea sediments were isolated and characterised

by culture-dependent studies using different media

with low nutrient content and as well enrichments

under in situ hydrostatic pressure with the chitin

monomer N-acetyl-D-glucosamine (NAG) as

supplement.

Materials and methods

Sample collection

All samples were obtained southwards of Crete during

Meteor cruise 71 leg 2 in December 2006–January

2007. Sediment was collected from the Ierapetra basin

(IB) at 4400 m (34�30.296N, 26�11.507E) and the

Herodotos plain (HP) at 2800 m (33�42.989N,

26�20.329E) using a multiple corer from the Sencken-

berg Research Institute in Wilhelmshaven, Germany

(DZMB, German Center for Marine Biodiversity

Research) which has the possibility to hold 12 cores

of 9.5 cm inner diameter. Of each sediment core the

uppermost 5 cm were aseptically sub sampled. The

deep-sea water column [[500 m referring to Kontoy-

iannis et al. (1999)] was sampled at the same locations

by a rosette sampler equipped with 24 Niskin Bottles

connected to a CTD probe. Sampling depth were 500,

1200, 2500 and 4000 m.

Isolation and cultivation

For standard isolation of aerobic bacteria from the

sediment, dilutions of 10-1–10-4 in sterile Mediter-

ranean seawater were prepared and plated on five

different agar media. MW-medium: 1.5% agar added

to Mediterranean seawater; MWY-medium: 1.5%

BactoTM agar (BD, Germany), 0.01% BactoTM yeast

extract (BD, Germany) in Mediterranean seawa-

ter; TSB0.1-medium: 1.5% BactoTM agar (BD,

Germany), 0.01% BBLTM tryptic soy broth (BD,

Germany), 3% NaCl in Aquademin; CFB-medium:

1.5% BactoTM agar (BD, Germany), 0.1% BBLTM

tryptone (BD, Germany), 0.05% BactoTM yeast

extract (BD, Germany), 0.05% CaCl2 9 2H2O

(Merck, Germany), 0.05% MgCl2 9 7H2O (Merck,

Germany) in Mediterranean seawater; Chitin-med-

ium: 1.5% BactoTM agar (BD, Germany), 0.2% chitin

(Fluka Biochemica, Switzerland) in Mediterranean

seawater. Water samples of different depths were

treated equally using dilutions of 100 and 10-1. Agar

plates (two parallels each) were incubated at onboard
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room temperature for up to three months and checked

frequently for growth.

Pre-incubation of sediment at in situ hydrostatic

pressure

In order to selectively enrich deep-sea bacteria that are

adapted to broad ranges of hydrostatic pressure and

spontaneous nutrient input, a sediment sample from

2800 m depth (Herodotos Plain) was pre-incubated at

28 MPa (13.5�C) in supplemented sea water and

N-acetyl-D-glucosamine prior to plating on identical

media and incubation at identical conditions as

described above. For this purpose 10 ml of sediment

were transferred into a plastic bag with 9 ml of sterile-

filtered seawater (taken from the multicorer) and 1 ml

solution of N-acetyl-D-glucosamine (100 lM). Using

compression-proof steel tubes connected to a pumping

system, which generates hydrostatic pressure by

pumping water into the tubes in situ hydrostatic

pressure (28 MPa) was impressed. A manometer

attached to the pumping system allowed the adjust-

ment of the respective hydrostatic pressure within the

tubes. After reaching the desired pressure, the pump

was disconnected and the tubes were incubated for

6 days at in situ temperature (13.5�C). During the

incubation, maintenance of the hydrostatic pressure

within the tubes was checked frequently by attachment

of the manometer. After this incubation, 10-1 and

10-2 dilutions were plated directly on the above-

mentioned agar media and incubated under the stan-

dard conditions used throughout these experiments.

Using a binocular microscope, all colonies appear-

ing morphologically different were transferred to fresh

agar medium until pure cultures were obtained. Strains

were checked for purity by microscopy and identified

by 16S rRNA gene sequencing. For long term storage,

all strains were kept at -80�C using the Cryobank

system (Mast Diagnostica GmbH, Germany).

Testing the growth properties of selected strains

Selected strains of all operational taxonomic units

(strains are marked by an asterisk in Table 1) were

grown (i) in nutrient-rich Marine Broth medium at in

situ temperature (ii) in oligotrophic MW-medium

(containing solely autoclaved oligotrophic Mediter-

ranean seawater) using room temperature and (iii) in

low-nutrient medium MWY (containing autoclaved

oligotrophic Mediterranean Sea water with 0.01%

yeast extract) at in situ temperature of 13.5�C.

DNA extraction, PCR and sequencing

DNA extraction, PCR and 16S rRNA gene sequenc-

ing was performed according to Gärtner et al. (2008).

16S rRNA gene sequences determined during this

study were deposited in the EMBL Nucleotide

Sequence Database and were assigned accession no.

FM992709–FM992846 and FN179280.

Sequence analysis

Sequences were edited by ChromasPro v.1.33 and

were compared to the NCBI database using BLAST

[see http://blast.ncbi.nlm.nih.gov/Blast.cgi (Altschul

et al. 1990)]. Subsequently, all sequences were aligned

to the ARB database (see http://www.arb-home.de,

(Ludwig 2004)) using the integrated aligner function.

Type strains most closely related to the isolates

according to BLAST were added to the ARB database

when not already present. Alignments were refined

manually and aligned sequences were added to the

ARB tree using the quick-add-marked function (Par-

simony). According to the results from Stackebrandt

and Ebers 2006strains showing sequence similari-

ties \98.7% were assigned to different operational

taxonomic units (OTUs) using MOTHUR software

(http://www.mothur.org/).

Phylogenetic trees

Phylogenetic trees were calculated applying maxi-

mum likelihood analysis using PHYML (Guindon

and Gascuel 2003). Maximum Likelihood analysis

was performed assuming the GTR model (Keane

et al. 2006) with an optimised gamma distribution

parameter alpha and 100 bootstrap replicates.

Results

The majority of the strains isolated during this study

were affiliated to bacterial genera commonly found in

the ocean. The 107 strains were grouped into 49

operational taxonomic units (OTUs showing C98.7%

sequence similarity). A considerable percentage of

42% of the OTUs can be considered to represent new
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species (Table 1). The high proportion of presumably

new bacteria is considered to underline the special

features of the Mediterranean deep sea.

Phylogenetic affiliation of the strains

Strains isolated from the sediment

Using low-nutrient media, colony numbers of up to

2.1 9 102 CFU/cm3 sediment were determined. Just

slightly higher cell numbers (2.4 9 102 CFU/cm3)

sediment were obtained with sediment samples using

the CFB medium which had the highest nutrient

content. Altogether 65 strains were obtained from the

Eastern Mediterranean sediment (37 strains from

sediment of the Ierapetra basin and 28 strains from

the Herodotos plain). The strains isolated from the IB

and HP sediments revealed a similar distribution

among phylogenetic groups (Figure S1). The major-

ity of strains affiliated to the Firmicutes (34 of 65

strains, 52%) and Actinobacteria (21 of 65 strains,

32%) with only few representatives of the Alpha- and

Gammaproteobacteria (Figs. 1, 2). Firmicutes and

Actinobacteria were dominant among the isolated

strains of the untreated sediment and represented

highly diverse groups with 17 OTUs of Firmicutes

and 10 OTUs of Actinobacteria (Table 1). Especially

the genus Bacillus was isolated with a remarkable

high number of OTUs (16 OTUs). Some of the

Firmicutes and Actinobacteria were exclusively iso-

lated using Mediterranean Sea Water medium (MW-

medium) without additional nutrients (OTUs 22, 23,

24 and 30). Strains with close relationship to known

species (C98.7%) are summarised in Table 1. Fifteen

strains represented thirteen putative new species.

These strains affiliated to the genera Micromonos-

pora (strains S32a and S29), Pseudonocardia (strains

S82 and S78), Streptomyces (strains S06 and D92),

Halobacillus (strain S40) and Bacillus (strains S54,

D89, S33, D94, S10, S11, D87 and S44x).

Strains isolated from the deep-sea water

To demonstrate differences between strains inhabit-

ing the sediment and the deep water, isolates from

deep water samples of both stations (cell counts were

\1.7 9 101 CFU/ml deep-sea water, 19 strains

obtained in total) were obtained and compared to

those isolated from the sediment. According to their

phylogenetic position, strains isolated from the deep

water differed substantially from those isolated from

the sediments. The 19 isolates grouped in 12 different

OTUs: 3 (5 strains) Gammaproteobacteria, 2 (3

strains) Bacteroidetes, 4 (8 strains) Alphaproteobac-

teria, 3 (3 strains) Firmicutes (Fig. 1, 2; Table 1).

Members of the Bacteroidetes were exclusively

obtained from the deep water and all of them showed

sequence similarities below 98.7% to known species.

Other isolates from the deep sea water possibly can be

assigned to new species assigned to the genera of

Pseudomonas (strains W01 and W29), Citreicella

(strain N108), Paracoccus (strain W14), Lee-

uwenhoekiella (strain W32) and Pontibacter (strain

W27).

Strains isolated after hydrostatic pressure incubation

Pre-incubation was performed to selectively enrich

bacteria supposed to be well adapted to the extreme

conditions of the deep Mediterranean (high deep-sea

temperatures, elevated hydrostatic pressure, oligotro-

phy). Noteworthy, CFU were increased at least tenfold

compared to plating of sediment samples without pre-

incubation. The 23 strains obtained after hydrostatic

pressure incubation grouped into 15 different OTUs

(10 Gammaproteobacteria, 3 Firmicutes, 1 Alphapro-

teobacteria and 1 Actinobacteria). Interestingly, the

hydrostatic pressure pre-incubation yielded a consid-

erable increase in the number of Gammaproteobacte-

ria (78% of all isolates after hydrostatic pressure

incubation of the sediment from Herodotos plain

compared to 14% from this untreated sediment

(Figs. 2, S1; Table 1). In contrast, the proportion of

Firmicutes strains was drastically reduced (13% after

hydrostatic pressure incubation compared to 50% from

untreated sediment, Table 1, Figs. 2, S1). Noteworthy,

8 OTUs were exclusively obtained after this treatment

and could not be isolated from the untreated sediment

(Fig. S2). Most of these (7) are likely to represent new

species and were assigned to the genera Alteromonas

(strains D42, D39, D33, D45, D47 and D56) and

Bacillus (strain D04).

Growth under selected in situ conditions

The strains isolated during this study originate from

media with different nutrient concentrations. All

tested strains were able to grow in oligotrophic
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Fig. 1 a Maximum likelihood tree of the 16Sr RNA gene

sequences of all Gram-negative strains obtained from sediment

and water samples. Numbers on nodes represent bootstrap

percentages [ 50, calculated from 100 replicates. S Isolate

from sediment’ PE isolate from pressure experiment, W isolate

from water column. b Maximum likelihood tree of the 16Sr

RNA gene sequences of Actinobacteria strains obtained from

sediment and water samples. Numbers on nodes represent

bootstrap percentages [ 50, calculated from 100 replicates.

S Isolate from sediment, PE isolate from pressure experiment,

W isolate from the water column. c Maximum likelihood tree

of the 16Sr RNA gene sequences of Firmicutes strains obtained

from sediment and water samples. Numbers on nodes represent

bootstrap percentages [ 50, calculated from 100 replicates.

S Isolate from sediment, PE isolate from pressure experiment,

W isolate from the water column
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Mediterranean Sea water medium and also on Marine

Broth medium with elevated nutrient concentrations.

All strains could grow at room temperature as well as

at the lower in situ temperature of 13.5�C. Apparently

growth at the lower temperature was dependent on

the medium and nutrient concentration. Cultivation

Bacillus aminovorans, X62178
S37(S), FM992797
Z0G (Mediterranean sapropel), AJ630198
S43 (S), FM992757
D44 (PE), FM992718
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51

77
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Arthrobacter oxidans, AJ243423

100

100
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uncult. bacterium (Canary Island), AF544287
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experiments using MWY, which contained 0.01%

yeast extract, revealed that the great majority of the

selected strains (93%) grew well under experimental

low-nutrient conditions and in situ temperature of

13.5�C. Strains that did not grow under these

conditions were Bacillus sp. D29a, Corynebacterium

sp. S35 and Staphylococcus sp. W15. These strains

did grow, however, at 13.5�C when the nutrient

concentration was increased. Thus, most of the

isolates were able to grow under in situ conditions

(temperature and nutrient conditions) prevailing in

the Eastern Mediterranean deep sea. This includes

strains of Alteromonas spp. (D33, D42, D47 and

D56), Pseudomonas sp. D43 and Sphingobium sp.

D53, which were enriched and isolated exclusively

after incubation at in situ hydrostatic pressure and in

situ temperature with N-acetyl-D-glucosamine as

energy and nutrient source. Most of the strains (14/

23) obtained from the in situ hydrostatic pressure

enrichment were isolated from low-nutrient seawater

media (MW, MWY or Chitin-medium).

Discussion

Isolation from sediment samples

Gram-positive bacteria were clearly dominant among

the strains isolated from the Eastern Mediterranean

deep-sea sediment. This is in accordance to the

frequent isolation of mainly Firmicutes and Actino-

bacteria from diverse marine habitats (Marteinsson

et al. 1996; Colquhoun et al. 1998; Yanagibayashi

et al. 1999; Siefert et al. 2000; Süß et al. 2004; Jensen

et al. 2005; Koepke et al. 2005; Pathom-aree et al.

2006; Gontang et al. 2007; Stevens et al. 2007; Prieto-

Davó et al. 2008). Members of the Firmicutes are

moreover considered to be the most frequently isolated

strains from subsurface sediments (D’ Hondt et al.

2004).

In contrast to the high isolation frequency of

Gram-positive bacteria, they were of minor relevance

in 16S rRNA gene libraries of Mediterranean deep-

sea sediments (Heijs et al. 2008). Actinobacteria

accounted for 4–28% of total sequences in clone

libraries of Cretan margin sediments, while Firmi-

cutes accounted for a maximum of 3% (Polymenakou

et al. 2009). Both taxonomic groups might well be

under-represented in 16S rRNA gene based molecu-

lar approaches, most likely because they often resist

commonly applied DNA extraction techniques or

may be missed due to primer biases (McVeigh et al.

1996; Mincer et al. 2005; Carrigg et al. 2007).

Nevertheless, it appears that Actinobacteria and

Firmicutes represent only a small fraction of the

microbial community. On the other hand, quantitative

occurrence does not give any information about the

ecological relevance of these groups. It was shown

e.g. that spores of Bacillus strains are capable for

manganese oxidation in hydrothermal sediments of

Guaymas basin (Rosson and Nealson 1982; Dick

et al. 2006). The high abundance of Firmicutes

isolated during this study and in particular the

remarkable high diversity of different operational

taxonomic units of the genus Bacillus demonstrates

the importance of culture-dependent techniques as an

additional tool to assess the microbial diversity.

Members of the genus Bacillus are ubiquitary, but

very little is known about the metabolic activity of

Bacillus sp. in marine sediments. Bacillus species

frequently recovered from different marine environ-

ments are B. marinus, B. badius, B. subtilis, B. cereus,

B. licheniformis, B. firmus, B. lentus and B. pumilis

(Ivanova et al. 1999). B. marinus e.g. was isolated

from tropical Atlantic, Antarctic and Arctic deep-sea

sediments and turned out to be psychrophilic or

psychrotolerant (Rueger et al. 2000). Closest phylo-

genetic relatives to isolates assigned to Bacillus

obtained during this study originated from various

environments and varied in their physiological prop-

erties. Though inference of physiological properties
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from those of closest phylogenetic relatives is possible

to a limited extent, with some probability it may be

used to delineate key properties of genetic relatives.

With consideration of these limitations, it is interesting

to see that Bacillus licheniformis as closest relative to

isolate D94 is known for its specific strategy to cope

with nutrient limitation (Hoi et al. 2006), which is

important for adaptation to the extreme oligotrophy

prevailing in the deep Eastern Mediterranean.

Interestingly, the Mariana Trench sediment was

also dominated by Gram-positive bacteria and Bacil-

lus sp. accounted for 25% thereof (Takami et al.

1997) (Figs. 1c,b). In addition, isolates from the

present study assigned to Micromonospora and

Streptomyces have close relatives to those recovered

from the Mariana Trench (Pathom-aree et al. 2006)

(Fig. 1b). This close affiliation of strains from

different deep-sea sediments indicates their possibly

wide distribution in deep sea sediments. More

distantly related OTUs of our isolates might represent

bacteria specifically adapted to the conditions of the

Mediterranean Sea.

Isolation after enrichment under in situ

hydrostatic pressure

Hydrostatic pressure incubation of the sediments

clearly shifted the composition towards Gammapro-

teobacteria which is considered to reflect their

ecological importance in the nutrient degradation of

the deep sea. Apparently, they cope very well with

changes of hydrostatic pressure as they have been

decompressed during sampling, recompressed to in

situ hydrostatic pressure and again decompressed for

cultivation. It has already been demonstrated that

decompression during retrieval of deep-sea samples

affects microbial activity and microbial production

rates (Seki and Robinson 1969; Jannasch et al. 1976;

Bianchi et al. 1999). Especially cell membranes were

shown to be damaged by changing hydrostatic

pressure (Chastain and Yayanos 1991; Pagan and

Mackey 2000; Park and Clark 2002). The gamma-

proteobacterial strains recovered by this approach

might be assumed to be barotolerant. The majority of

gammaproteobacterial OTUs (six out of ten) were

exclusively isolated after this enrichment and are

regarded as specifically selected by this treatment.

This refers in particular to strains affiliating to the

genus Alteromonas, which is commonly found in

marine habitats including the deep sea (Yanagibay-

ashi et al. 1999; Li et al. 1999a, b; Lopez-Lopez et al.

2005). Most of the barophilic bacterial strains iden-

tified to date (bacteria with optimal growth at

hydrostatic pressure [0.1 MPa) affiliate to the Gam-

maproteobacteria (Yayanos et al. 1979; Kato et al.

1995; Delong et al. 1997; Kato et al. 1999; Lauro and

Bartlett 2008). Lopez-Lopez et al. 2005 compared

shallow water strains of Alteromonas macleodii to

those obtained from the deep water by detailed

sequence analyses of the 16S rRNA gene, the internal

transcribed spacer and of house-keeping genes such

as gyrB and rpoB. They demonstrated characteristic

differences between deep-sea and shallow-water

strains and ascribed them to different ecotypes

(Lopez-Lopez et al. 2005; Lauro et al. 2007; Lauro

and Bartlett 2008). This hints towards the existence

of specifically adapted bacterial ecotypes in the deep

sea (Lauro and Bartlett 2008).

In our experiments, the pressurised sediment was

supplemented with N-acetyl-D-glucosamine (NAG),

which is known to induce bacterial degradation of

chitin, the (1-4)-linked b-homopolymer of NAG and a

structural component of many organisms including

fungi, protists, animals and plants. Chitin, as a

valuable carbon and nitrogen source, is reported to

be mainly degraded by chitinolytic bacteria, e.g.

members of the genera Pseudomonas, Aeromonas,

Xanthomonas, Serratia, Cytophaga, Arthrobacter as

well as Bacillus and is supposed to be the most

abundant biopolymer in the marine environment

(Gooday 1990). It can be assumed that many bacteria

adapted to the oligotrophic conditions of the Eastern

Mediterranean deep sea are able to use a broad

spectrum of available carbon sources, including chitin

and its degradation products such as NAG. All strains

from the pressurised enrichment were grown with

NAG as sole carbon source and 11 additional strains of

the untreated sediment were isolated from solid chitin

media. These strains belong to the Gammaproteobac-

teria, the Firmicutes and the Actinobacteria. Appar-

ently, the ability to degrade chitin and derivatives

thereof is a beneficial and a widely distributed property

of bacteria inhabiting the deep sea.

Growth at low nutrient concentrations

All strains tested during this study grew easily well

with minor nutrient concentrations and as well at in
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situ temperature of 13.5�C, conditions prevailing in

the deep Mediterranean Sea. The bacterial isolates

apparently are well adapted to low nutrient concen-

trations of oligotrophic deep-sea sediments as well as

to spontaneous and occasional nutrient supply due to

seasonal changes or sinking carcasses. An example is

represented by isolates assigned to Alteromonas

(D33, D42, D47 and D56). As demonstrated by their

growth on low nutrient media, they coped well with

minute nutrient concentrations but also successfully

competed with others at in situ hydrostatic pressure in

the presence of N-acetyl-D-glucosamine. Members of

the Gammaproteobacteria are frequently appointed

to be r-strategists that can stand long periods of

starvation but they outcompete others when nutrients

become available (Fuchs et al. 2000; Pinhassi and

Berman 2003). This is in accordance with D’ Hondt

et al. (2004) who showed that Gammaproteobacteria

are common in sediments of the ocean margin where

concentrations of organic matter and net metabolic

rates are high. As it was already shown for the Cretan

Sea, bacterial abundance and biomass are sensitive to

sudden changes in nutrient availability (Danovaro

et al. 2000). Our data indicate that Gammaproteo-

bacteria might considerably contribute to detectable

changes in the composition of the bacterial commu-

nities in the Eastern Mediterranean deep-sea

sediments.

In contrast Actinobacteria and Firmicutes domi-

nated the strains obtained from the untreated sedi-

ment and some of these were exclusively isolated

using low nutrient media. The suitability of low-

nutrient media for the isolation of Gram-positive

bacteria was also approved by other culture-depen-

dent studies (D’ Hondt et al. 2004; Jensen et al. 2005;

Gontang et al. 2007). The lifestyle of these bacteria

apparently is adapted to minute nutrient concentra-

tions (k-strategists) and under such conditions gives

them advantage over the fast growing Gammaproteo-

bacteria. This is supported by a study of D’ Hondt et al.

(2004) who consistently isolated Actinobacteria and

Firmicutes from sediments of ocean margins and open

ocean sites exhibiting low concentrations of organic

matter and net metabolic rates. As biopolymer degra-

dation was shown to be of special importance in the

Mediterranean deep Sea (Martin-Cuadrado et al.

2009), Actinobacteria might be considered as impor-

tant players in the degradation of complex biopolymers

of the studied environment.
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