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Abstract New structurally diverse natural products

are discovered when novel screening procedures are

introduced or when high quality biological materials

from new sources are examined in existing screens,

hence it is important to foster these two aspects of

novelty in drug discovery programmes. Amongst

prokaryotes, actinomycetes, notably streptomycetes,

remain a rich source of new natural products though

it has become increasingly difficult to find such

metabolites from common actinomycetes as screen-

ing ‘old friends’ leads to the costly rediscovery of

known compounds. The bioprospecting strategy

which is the subject of this review is based upon

the premise that new secondary metabolites can be

found by screening relatively small numbers of

dereplicated, novel actinomycetes isolated from

marine sediments. The success of the strategy is

exemplified by the discovery of a range of novel

bioactive compounds, notably atrop-abyssomicin C

and proximicins A, B and C from Verrucosispora

strains isolated from sediment samples taken from the

Sea of Japan and the Raune Fjord, respectively, and

the dermacozines derived from Dermacoccus strains

isolated from the Challenger Deep of the Mariana

Trench in the Pacific Ocean. The importance of

current advances in prokaryotic systematics in work

of this nature is stressed and a plea made that

resources be sought to train, support and employ the

next generation of actinobacterial systematists.
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Introduction

New drugs, especially antibiotics, are urgently needed

to counter and reverse the spread of antibiotic resistant

pathogens (Talbot et al. 2006; Payne et al. 2007) and to

combat life-threatening diseases such as cancer (Olano

et al. 2009a). It is widely acknowledged that the most

promising source of new drugs remain natural prod-

ucts (Bull et al. 2000; Fenical and Jensen 2006; Bull

and Stach 2007), especially given the inconvenient

truth that alternative strategies, such as combinatorial

chemistry and fragment-based drug design, have been

relatively unproductive with only one de novo com-

binatorial New Chemical Entity approved anywhere in

the world (Newman 2008). Experience has shown that

previously unknown, important natural products are

found when new screening systems are introduced or

when high quality biological materials from new

sources are examined in existing screens (Fig. 1). It is,

therefore, essential in drug discovery programmes to
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foster these two aspects of novelty by building upon

scientific and technological developments in these

areas.

The choice of bacteria for pharmacological screen-

ing programmes is a daunting one given the taxo-

nomic diversity of cultivable prokaryotes (Bull

2004a; De Vos et al. 2009). However, this diversity

is but a tiny fraction of the uncultivated prokaryotic

diversity present in natural habitats (Bull et al. 2000;

Bull 2004a, b; Sogin et al. 2006), a silent majority of

prokaryotes which encompasses enormous genetic

diversity for exploitable biotechnology (Whitman

et al. 1998; Bull 2004a, b). This extensive gene pool

is being sampled by the application of innovative

procedures for the selective isolation of previously

unknown bacteria (Fry 2004; Epstein et al. 2010),

including actinomycetes (Goodfellow 2010), thereby

compounding the problem outlined above.

Amongst prokaryotes, members of the order

Actinomycetales, notably the genus Streptomyces,

remain the richest source of natural products, includ-

ing clinically useful antibiotics, antimetabolites and

antitumour agents (Bérdy 2005; Newman and Cragg

2007; Olano et al. 2009a, b). Actinomycete sources

account for about 45% of all microbial bioactive

secondary metabolites with 7,600 of these compounds

(80%) being produced by Streptomyces (Bérdy 2005).

Despite this astonishing productivity, it has been

predicted that only about 10% of the total number

of natural products that can be synthesized by

these organisms have been discovered (Watve et al.

2001). However, the key to a resurgence of interest

in actinomycetes as a source of new chemical enti-

ties came from the application of genomic technolo-

gies which showed that the whole genomes of

Rhodococcus sp. RHA1 (McLeod et al. 2006),

Saccharopolyspora erythraea NRRL 23338 (Oliynyk

et al. 2007), Salinispora tropica CNB-440 (Udwary

et al. 2007), Streptomyces avermitilis MA-4680

(Ōmura et al. 2001; Ikeda et al. 2003) and ‘Strepto-

myces coelicolor’ A(3)2 (Bentley et al. 2002) each

contained around 20 or more natural product biosyn-

thetic gene clusters for the production of known or

predicted secondary metabolites. In contrast, few, if

any, such gene clusters have been detected in the

genomes of other bacteria, as shown by the presence of

three in Bacillus subtilis 168 (Kunst et al. 1997), four

in Pseudomonas aeruginosa PA01 (Stover et al. 2000)

and two in Ralstonia solanacearum GMI 1000 (Sal-

anoubat et al. 2002).

So, once again, the focus is on actinomycetes as a

source of novel, clinically significant natural prod-

ucts. However, it is becoming increasingly difficult to

find such metabolites from common actinomycetes as

screening ‘old favourites’ leads to the costly redis-

covery of known compounds (Williams 2008). This

problem can be met by using standard procedures for

the selective isolation of novel actinomycetes from

poorly studied habitats (Sembiring et al. 2000;

Goodfellow et al. 2007; Okoro et al. 2009), by

applying new methods for the selective isolation of

rare and uncommon actinomycetes (Suzuki et al.

2001a, b; Tan et al. 2006) and by devising innovative

procedures for the cultivation of specific components

of previously uncultivated actinomycetes known to

be present in natural habitats (Stach et al. 2003a, b;

Giovanonni and Stingl 2005; Allgaier and Grossart

2006), as exemplified by the isolation of seven

candidate species from lakes and ponds in temperate,

subtropical and tropical climatic zones (Hahn 2009).

The traditional perception of actinobacteria as

authothonous soil and freshwater organisms is being

radically reviewed as it is increasingly evident that

members of this phylum are among the most

successful colonizers of all environments in the

extremobiosphere, often occurring as the dominant

population (Bull 2010). Progress has also been made

in drug discovery from actinomycetes by using high-

throughput screening and fermentation, metabolic

profiling technologies, genome scanning, mining

genomes for cryptic pathways, and combinatorial

biosynthesis to generate new secondary metabolites

related to existing pharmacophores (Bull and Stach

2007; Baltz 2008). Metagenomic screening of DNA

from environmental samples provides an alternative
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Fig. 1 Twin-tracked approach to drug discovery
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way of discovering new antibiotic biosynthetic genes

(Handelsman 2004; Schloss and Handelsman 2005).

Our culture-dependent bioprospecting strategy is

outlined in Fig. 2. The initial steps in this strategy are

based on the use of a judicious choice of selective

isolation procedures, the recognition and dereplica-

tion of target actinomycetes and on the subsequent

selection of representative strains for screening.

These steps are heavily dependent on developments

in actinomycete systematics, based on the hypothesis

that taxonomic diversity is a surrogate for chemical

diversity (Ward and Goodfellow 2004; Bull and

Stach 2007; Jensen 2010) and on the concept that

novel species may contain unique compounds as the

evolution of secondary metabolites may act as a

driver for bacterial speciation (Czaran et al. 2002;

Jensen 2010).

The remaining steps in the procedure complement

those outlined above, namely the expression/detec-

tion of the desired properties in dereplicated strain

libraries using appropriate fermentation conditions,

primary screening of fermentation broths/mycelia

extracts using HPLC-diode array screening, detection

of metabolite novelty using an in-house HPLC-UV-

visual database and structural chemical elucidation of

active principles. The final step in the process

involves the full taxonomic characterization of strains

giving interesting hits.

There is evidence that systematics, especially

microbial systematics, is in critical decline as exem-

plified by a recent report from the UK House of Lords

Science and Technology Committee (2008). This

report paints a bleak picture of a subject which is

becoming marginalised but does offer a series of

recommendations to help alleviate the situation.

While support for this beleaguered discipline is to

be welcomed from almost any quarter it is a matter of

concern that the conceptual basis of the subject is

frequently misunderstood even by microbiologists.

Consequently, the underlying principles of prokary-

otic systematics are briefly touched upon here with

particular reference to actinobacteria. More detailed

and expansive consideration of the discipline can be

found elsewhere (Priest and Goodfellow 2000; Bren-

ner et al. 2005; Schleifer 2010).

Roots of prokaryotic systematics

Prokaryotic systematics is the scientific study of the

kinds, diversity, and relationships within and between

Archaea and Bacteria. The subject is usually divided

into three separate, sequential, but interrelated subdis-

ciplines, namely classification, nomenclature and

identification. The initial step, classification, is the

process of ordering organisms into taxonomic groups

(taxa) on the basis of similarities and differences. The

outcome is an orderly arrangement or system that is

designed to show natural relationships between taxa

and to serve as an information storage and retrieval

system. The term classification encompasses both the

process and the outcome of the exercise though

outcomes are often referred to as taxonomies. Sound

classification of prokaryotes is a prerequisite for stable

nomenclature and reliable identification procedures.

Classifications based on large suites of genotypic

and phenotypic properties are termed phenetic. This

approach encompasses measurable features of pro-

karyotes (e.g. biochemical, chemical, morphological

and physiological properties), including genetic rela-

tionships (e.g. DNA:DNA homology values). Phenetic

classifications show relationships between organisms

as they exist now, that is, without reference to

evolutionary pathways or ancestry. In contrast, phy-

logenetic classifications express inferred evolutionary

relatedness between organisms and thereby reflect the

extent of change over time. In practice, phylogenetic

Current bottleneck

Fig. 2 Culture-dependent bioprospecting strategy

Antonie van Leeuwenhoek (2010) 98:119–142 121

123



classifications are usually found to be phenetically

coherent. Current approaches to prokaryotic classifi-

cation based on 16S rRNA gene sequences purport to

be phylogenetic, but many are in fact phenetic

measures of affinity with homologous nucleotide

sequences as characters.

The second step, nomenclature, deals with the

terms used to denote ranks in the taxonomic hierar-

chy (e.g. species, genera, families) and with the

practice of assigning the correct, internationally

recognized names to taxonomic groups according to

rules laid out in successive editions of the Interna-

tional Code of Nomenclature of Bacteria (Lapage

et al. 1975, 1992). Two reforms in the ‘Bacteriolog-

ical Code’ edited by Lapage and his colleagues in

1975 have had far reaching impacts on the nomen-

clature of prokaryotes.

• A definitive document and starting date for the

recognition of names introduced with the publi-

cation of the Approved Lists of Bacterial Names

on January 1, 1980 (Skerman et al. 1980). Names

published prior to this date and omitted from the

Approved Lists lost their standing in nomencla-

ture, a development that cleared away thousands

of meaningless names. Old names can be resur-

rected if the system for doing so is followed.

• Names of new taxa can only be validly published

in the International Journal of Systematic and

Evolutionary Microbiology (IJSEM; formerly the

International Journal of Systematic Bacteriol-

ogy), but can be effectively published in appro-

priate international journals and then cited in

Validation Lists published in the IJSEM.

These changes mean that the IJSEM serves as a

convenient ‘one-stop-shop’ for the recognition of

validly described new names of species, genera and

other taxonomic ranks.

A principle of paramount importance in nomen-

clature and identification is the nomenclatural type

concept. A taxon in the taxonomic hierarchy up to

class may contain a number of elements. The

elements of species are strains and those of a genus

are species and so on. The nomenclatural type of a

taxon is that element with which the name of a taxon

is permanently associated. The type species of a

genus, for instance, must be retained in the genus

even if all other species are removed from it. A type,

therefore, is the nominifer or name bearer, it is a

reference point for the name in question.

The type of a taxon does not have any physical

existence above the rank of species, it is merely a

name. In contrast, at the species and subspecies level

the nomenclatural type is represented by a particular

strain, the type strain, which does have a physical

existence, as any number of subcultures. Type strains

are designated by taxonomists who describe new

species. They are the permanent living embodiments

of validly described species and have to be deposited

in two service culture collections in different coun-

tries, so that they are readily available for study. Type

strains are of the greatest importance for taxonomic

work as they are reference points when attempting to

identify unknown microorganisms. The knowledge

that type strains may not be entirely typical of a

species is outweighed by the fact that by definition

they are authentic.

The correct use of names is central to all aspects of

the microbial sciences as microbiologists need to

know which organisms they are studying before they

can pass on information about them within and

outwith the scientific community. In other words, an

organism’s name is a key to its literature, an entry to

what is known about it. Comprehensive accounts on

the nomenclature of prokaryotes can be found

elsewhere (Bousfield 1993; Sneath 2005), as can

practical guidelines for the recognition of new

prokaryotic taxa (Trüper 1999, 2005). Once prokary-

otes have been rigorously characterized and classified

it is a relatively easy matter to name them.

Identification, the final stage of the taxonomic

trinity, is sometimes seen as the raison d’etre of

prokaryotic systematics due to the importance of

accurately identifying unknown organisms, not least

pathogenic bacteria. It is both the act and the result of

determining whether unknown organisms belong to

established and validly named taxa (Krieg 2005). It

involves determining the key characteristics of

unknown organisms and matching them against

databases containing corresponding information on

established taxa (Priest 2004). Organisms found to

fall outside known groups should be described and

classified as new taxa.

Classifications of prokaryotes are not only mark-

edly data dependent but are in a continuous state of

development as high quality information becomes
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available from the application of both new and

improved taxonomic methods. Such taxonomies are

essentially pragmatic as they are driven by practical

imperatives not by theoretical considerations akin to

the biological species concept (Goodfellow et al.

1997; Schleifer 2010). Current approaches to the

classification of prokaryotes are based upon the

integrated use of genotypic and phenotypic features

acquired through the application of chemotaxonomic,

molecular systematic and numerical and non-numer-

ical phenotypic methods. This practice, known as

polyphasic taxonomy, was introduced by Colwell

(1970) to signify successive or simultaneous studies

on groups of prokaryotes using methods chosen to

yield high quality data. The polyphasic approach

provides a sound basis for stable nomenclature and

reliable identification, essential factors for a practical

or utilitarian taxonomy designed to serve diverse end

users. Detailed accounts of the polyphasic approach

to the classification of prokaryotes are available

(Vandamme et al. 1996; Goodfellow et al. 1997;

Gillis et al. 2005).

The widespread application of polyphasic taxon-

omy led to significant improvements in the classifi-

cation of prokaryotes, notably in groups like the

Actinobacteria and Cyanobacteria where traditional

approaches based on form and function proved

unreliable (Goodfellow and Maldonado 2006; Krop-

penstedt and Goodfellow 2006; Gupta 2009). It has

not been possible to assemble a recommended set of

methods for polyphasic studies as taxonomic toolkits

are influenced by the biological properties and ranks

of the taxa under study and by the equipment

available to investigators. However, sequencing

highly conserved macromolecules, notably 16S

rRNA genes, has provided valuable data for con-

structing phylogenies at and above the genus level

(Woese 1987; Ludwig and Klenk 2005) whereas

DNA:DNA relatedness, molecular fingerprinting and

phenotypic techniques are methods of choice for

delineating taxa at and below the rank of species

(Rosselló-Mora and Amann 2001). It is important to

remember that distinguishing phenotypic features are

required for the formal description of new species

(Wayne et al. 1987). Procedures used to characterize

and circumscribe prokaryotic taxa have been consid-

ered in detail (Felis et al. 2010; Tindall et al. 2010)

and the strengths and weaknesses of genomic meth-

ods have been highlighted by Schleifer (2010).

The phylum Actinobacteria

Actinobacterial systematics has been revolutionized

by the application of chemotaxonomic, molecular

systematic and numerical taxonomic methods (Good-

fellow and Cross 1984; Stackebrandt and Schumann

2006). The class Actinobacteria is now seen to be one

of the major phyla in the domain Bacteria, as inferred

from its branching position in the 16S rRNA gene

tree (Ludwig and Klenk 2005). The separation of this

taxon from other bacterial groups is supported by

conserved indels in protein (e.g. cytochrome-coxi-

dase subunit 1, CTP synthase and glutamyl-tRNA

synthase) and 23S rRNA sequences (Gao and Gupta

2005; Gao et al. 2006) and by characteristic gene

arrangements (Kunisawa 2007) though it is still not

possible to identify the phylogenetically closest

neighbours to the actinobacteria with any confidence

(Ventura et al. 2007).

The current hierarchical classification of the

phylum Actinobacteria is outlined in Fig. 3. The

phylogenetic relationships of taxa above the genus

level is based solely on taxon-specific 16S rRNA

signatures, as spelt out by Zhi et al. (2009) and

summarized in Fig. 4. In contrast, classification at

generic and species ranks also take into account the

Class Actinobacteria

5 Subclasses

9 Orders

55 Families

240 Genera

3000 Species

Fig. 3 Hierarchic classifi-

cation of the phylum

Actinobacteria
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discontinuous distribution of chemotaxonomic, mor-

phological and physiological properties, as exempli-

fied by the circumscription of novel genera, such as

Actinovallomurus (Tamura et al. 2009) and Plantac-

tinospora (Qin et al. 2009) and by new species of

Dactylosporangium (Kim et al. 2010) and Strepto-

myces (Kumar and Goodfellow 2010). It should be

noted that the term actinobacteria refers to all

members of the phylum whereas the designation

actinomycetes only refers to strains belonging to the

order Actinomycetales.

The current classification of actinobacteria is a

marked improvement on earlier taxonomies of the

group but needs to be seen as a staging post leading

towards better classifications in the future. It can, for

instance, be anticipated that the suprageneric rela-

tionships between taxa based on 16S rRNA signa-

tures will need to be adjusted as sequences of novel

taxa are added to the 16S rRNA Actinobacteria gene

tree (Zhi et al. 2009). In addition, the somewhat

opaque evolutionary history of the phylum should be

clarified by the generation of trees based on whole-

genome sequences (Ventura et al. 2007), especially

ones taken to represent diverse taxa, not least those

lying towards the root of the 16S rRNA tree. It is

evident that such a phylogeny-driven approach pro-

vides invaluable data for the reconstruction of

prokaryotic phylogenetic history and for the discov-

ery of new protein families and biological properties

(Wu et al. 2009).

Subclass Acidimicrobidae Order Acidimicrobiales Family Acidimicrobiaceae
Family Iamiaceae

Subclass Actinobacteridae
Order Actinomycetales
Order Bifidobacteriales Family Bifidobacteriaceae

Subclass Coriobacteridae Order Coriobacteriales Family Coriobacteriaceae

Subclass Rubrobacteridae Order Rubrobacterales Family Rubrobacteriaceae

Order Solirubrobacterales Families Solirubrobacteriaceae
Conexibacteriaceae
Patulibactericeae

Order Thermoleophilales Family Thermoleophilaceae 

Subclass Nitriliruptoridae Order Nitriliruptorals Family Nitriliruptoraceae

Order Euzebyales Family Euzebyaceae

Suborder
Actinomycineae

Family
Actinomycetaceae

Suborder  
Actinopolysporineae

Family
Actinopolysporaceae

Suborder
Catenulisporineae

Families
Actinospicaceae
Catenulisporaceae

Suborder
Corynebacterineae

Families
Corynebacteriaceae
Dietziaceae
Mycobacteriaceae
Nocardiaceae
Segniliparaceae
Tsukamurellaceae

Suborder
Frankineae

Families
Acidothermaceae
Cryptosporangiaceae
Frankiaceae
Geodermatophilaceae
Nakamurellaceae
Sporichthyaceae

Suborder
Glycomycineae

Family
Glycomycetaceae

Suborder
Jiangellineae

Suborder
Micrococcineae

Family 
Kineosporiaceae

Suborder
Kineosporineae

Families
Beutenbergiaceae
Bogoriellaceae
Brevibacteriaceae
Cellulomonadaceae
Dermabacteraceae
Dermacoccaceae

Intrasporangiaceae
Jonesiaceae
Microbacteriaceae
Micrococcaceae
Promicromonosporaceae
Rarobacteraceae
Ruaniaceae

Suborder
Micromonosporinae

Family 
Micromonosporaceae

Suborder
Propionobacterinae

Families
Nocacardiodaceae
Propionobacteriaceae

Suborder
Pseudonocardieae

Families
Pseudonocardiaceae

Suborder
Streptomycineae

Family
Streptosporangineae

Suborder
Streptosporangineae

Families
Streptosporangiaceae
Nocardiopsaceae
Thermonosporaceae

Family
Jiangellineae

Fig. 4 Classification of actinobacteria at the suprageneric level
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Culture dependent bioprospecting strategy

Marine actinobacteria

In our search for novel natural products that can be

developed as resources for healthcare we have

focused on the isolation of actinomycetes from

extreme and neglected environments, notably deep-

sea sediments, on the premise that they are likely to

be a rich source of novel strains with the capacity to

produce new metabolites (Bull et al. 2005; Maldo-

nado et al. 2005a; Pathom-aree et al. 2006d). The

earlier view that actinomycetes in marine habitats

were restricted to the genera Micromonospora, Rho-

dococcus and Streptomyces (Goodfellow and Haynes

1984; Colquhoun et al. 1998) has been comprehen-

sively revised as culture-independent surveys have

shown that immense actinobacterial diversity is

present in marine habitats (Fenical and Jensen

2006; Gontang et al. 2007; Jensen and Lauro 2008),

as exemplified by the estimate of over 1,300 novel

actinobacterial taxa in marine sediments based on the

application of species richness estimators to micro-

bial diversity data (Stach et al. 2003a, b; Stach and

Bull 2005). It is likely that many of these novel taxa

will be an important source of new bioactive

compounds as they share an evolutionary pedigree

with known producers (McVeigh et al. 1996; Ward

and Goodfellow 2004; Maldonado et al. 2005a,

2009).

Many cultivable actinomycetes from marine hab-

itats have been characterized and screened in recent

times (Fiedler et al. 2005; Fenical and Jensen 2006).

Taxonomically diverse communities of actinomy-

cetes have been detected in marine sediments (Jensen

et al. 2005a, b; Bredholdt et al. 2007, 2008;

Maldonado et al. 2009), notably deep-sea sediments

(Pathom-aree et al. 2006d), as well as from mangrove

forests (Hong et al. 2009), marine sponges (Kim et al.

2005; Montalvo et al. 2005; Zhang et al. 2006; Jiang

et al. 2007), sea cucumbers (Kurahashi et al. 2010)

and seaweed (Lee 2008; Lee et al. 2008).

Selective isolation

Our recent studies have been focused on the isolation

of actinomycetes from geographically diverse sedi-

ment samples using taxon specific isolation proce-

dures. Sediment samples were taken from the Canary

Basin (Atlantic Ocean), the Japan Trench (NW

Pacific Ocean) and from Norwegian fjords, as

described previously (Colquhoun et al. 1998; Stach

et al. 2003a, b) and from the deepest place on Earth,

the Challenger Deep of the Mariana Trench in the

western Pacific Ocean (Pathom-aree et al. 2006d).

Isolates were obtained by plating serial dilutions of

wet sediment samples, prepared using � strength

Ringer’s solution, onto selective isolation media

which were incubated at 28�C for 2 or more weeks.

Aliquots of the serial dilutions (75–100 ll) were

spread over the surfaces of a range of media known to

favour the isolation of specific actinomycete taxa,

notably glucose-yeast extract agar supplemented with

rifampicin and streptomycin (Athalye et al. 1981),

humic acid-vitamin agar (Hayakawa and Nonomura

1987), M3 agar (Rowbotham and Cross 1977),

raffinose-histidine agar (Vickers et al. 1984), SM3

agar (Tan et al. 2006) and starch-casein-nitrate agar

(Küster and Williams 1964). Agar media were

routinely dried for 15 min prior to inoculation, as

recommended by Vickers and Williams (1987). All

media were supplemented with nystatin (50 lg/ml) to

suppress fungal growth.

Many other procedures have been recommended

for the selective isolation of actinomycetes from

natural ecosystems, including marine habitats (Good-

fellow 2010). These include the use of media

prepared with natural seawater and the identification

of strains that fail to grow when seawater is

substituted with deionized water (Jensen et al. 1991;

Gontang et al. 2007), which most notably led to the

isolation of members of the genus Salinispora

(Jensen et al. 1991; Mincer et al. 2002; Maldonado

et al. 2005b).

Recognition and dereplication of target

actinobacteria

Historically, little attempt was made to establish the

effectiveness of selective isolation procedures hence

the selection of strains for screening programmes was

somewhat arbitrary. This situation, while unsatisfac-

tory, was understandable due to the lack of suitable

procedures for the identification of even well estab-

lished taxa. However, it is now relatively straight-

forward to determine whether colonies growing on

isolation plates belong to target or novel taxa as

reliable diagnostic procedures are available for this
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purpose (The Society for Actinomycetes Japan 2001;

Goodfellow et al. 2010a, b).

In general, the assignment of representative iso-

lates growing on isolation plates to target or novel

taxa is essentially a two-stage process. Reliable

methods are needed to assign isolates to higher

taxonomic categories (e.g. genera and families) prior

to the selection of diagnostic tests for the recognition

of new or validly described species. The assignment

of representative isolates to target or putatively novel

taxa at and above the genus level can be readily

achieved by comparing their full 16S rRNA gene

sequences with those of their nearest neighbours

drawn from GenBank (for details see Felis et al.

2010) and by evaluating the resultant data in light of

appropriate chemotaxonomic and morphological data

(The Society for Actinomycetes Japan 2001; Good-

fellow et al. 2010a, b). Similarly, the assignment of

isolates to established or new species can be achieved

by using appropriate combinations of phenotypic

tests, as illustrated by the delineation of novel species

of Dermacoccus (Pathom-aree et al. 2006b, c),

Nonomuraea (Hozzein and Goodfellow 2007), Strep-

tomyces (Khan et al. 2010) and Williamsia (Stach

et al. 2004; Pathom-aree et al. 2006a).

The use of taxon-specific oligonucleotide probes

as amplification primers offers a practical way of

identifying large numbers of target actinomycetes

(Mehling et al. 1995; Yoon et al. 1996; Monciardini

et al. 2002). Genus-specific probes are available for

the one-stop identification of strains of Amycolatopsis

(Tan et al. 2006), Gordonia (Shen and Young 2005),

Pseudonocardia (Morón et al. 1999) and Saccharo-

monospora (Salazar et al. 2000), and for members of

the Streptomyces violaceusniger 16S rRNA gene

clade (Kumar et al. 2007).

Standard diagnostic procedures, such as those

outlined above, were used to identify representatives

of the different colony types of actinomycetes

growing on selective isolation plates seeded with

dilutions of the various marine sediment samples.

Isolates were placed into genera based on partial or

complete 16S rRNA gene sequence data that had

been acquired and analysed using appropriate proce-

dures and software packages (Maldonado et al.

2005a; Pathom-aree et al. 2006d). Similarly, selected

isolates were assigned to novel or validly described

species using combinations of phenotypic criteria,

including chemotaxonomic and morphological data

(Stach et al. 2004; Pathom-aree et al. 2006a, b, c;

Hohmann et al. 2009a; Goodfellow et al. 2010a, b).

Dereplication of isolates

There is a contradiction between formal taxonomic

practice and the need to select representatives from

extensive actinobacterial populations for screening

purposes. Taxonomic studies require a thorough

characterization of relatively few isolates whereas

the choice of high quality material for pharmacolog-

ical screens requires the rapid selection of represen-

tative strains from many isolates of the target taxa.

This tension between the requirements of formal and

practical taxonomy was first addressed by Williams

et al. (1969).

Williams and his colleagues assigned large num-

bers of soil streptomycetes to groups based on aerial

spore mass, colony reverse and diffusible pigment

colours produced on oatmeal agar and on their

capacity to form melanin pigments on peptone-yeast

extract-iron agar. It was subsequently shown that

such colour-groups reflected the extent of the taxo-

nomic diversity of cultivable streptomycetes in

rhizosphere and non-rhizosphere soils (Williams

and Vickers 1988; Atalan et al. 2000; Sembiring

et al. 2000) as isolates taken to represent such taxa

key out to either established or novel Streptomyces

species or species-groups based on computer-assisted

identification (Williams and Vickers 1988; Atalan

et al. 2000) and polyphasic taxonomic procedures

(Manfio et al. 2003; Goodfellow et al. 2007). Other

rapid methods that can be used to rapidly assign

actinomycetes to predictive groups include analytical

chemical and molecular fingerprinting procedures

(Ferguson et al. 1997; Maldonado et al. 2008).

Dereplication is the term used for differentiating

phenotypically ambiguous strains in order to facili-

tate efficient screening and thereby minimize costs

and time in sorting large collections of isolates

(Brandão et al. 2002).

The assignment of streptomycetes to colour-

groups has been used to gain an insight into the

taxonomic diversity of these organisms in marine

sediments (Goodfellow and Haynes 1984; Pathom-

aree et al. 2006d) and in a beach and dune sand

system (Antony-Babu and Goodfellow 2008) and

thereby to the selection of representative isolates for

screening assays. We have found that the use of such
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high quality biological material leads to a marked

increase in hit rates, notably from strains isolated

from different geographical locations. It is also

encouraging that a reasonable linear correlation exists

between streptomycete colour- group and corre-

sponding rep-PCR data (Antony-Babu et al. 2010).

These workers introduced a computer-assisted

numerical system for the objective analysis of

colour-group data, and in doing so opened up the

prospect of generating cumulative colour-group dat-

abases which can be used to objectively select

representative streptomycetes for screening.

Novel taxa

To date, members of 50 genera of actinomycetes

have been isolated from marine sources (see

Table 1). These include isolates assigned to novel

genera, including Demequina (Yi et al. 2007), Iamia

(Kurahashi et al. 2009), Marinactinospora (Tian et al.

2009a), Marisediminicola (Li et al. 2010), Miniimonas

(Ue et al. 2010), Paraoerskovia (Khan et al. 2009),

Phycicococcus (Lee 2008), Phycicola (Lee et al.

2008), Salinibacterium (Han et al. 2003), Salinispora

(Maldonado et al. 2005b), Sciscionella (Tian et al.

2009b) and Serinicoccus (Yi et al. 2004). In addition, a

steady stream of new marine-derived species have

been classified in established genera, including

Arsenicococcus (Hamada et al. 2009) Dermacoccus

(Pathom-aree et al. 2003b, c), Kocuria (Seo et al.

2009), Nocardiopsis (Chen et al. 2009), Saccharomo-

nospora (Liu et al. 2010), Streptomyces (Pimentel-

Elardo et al. 2009; Xu et al. 2009; Khan et al. 2010),

Williamsia (Stach et al. 2004; Pathom-aree et al.

2006a) and Verrucosispora (Liao et al. 2009; Dai et al.

2010).

Production media

The media used for submerged cultivation of actino-

mycetes have a dramatic impact on the expression of

secondary metabolite gene clusters though, in gen-

eral, it is not known why. The success or otherwise of

screening programmes is not only dependent on the

composition of complex media and/or the use of

specific carbon and nitrogen sources, but is influ-

enced by the taxonomic status of the organisms under

study. A selection of media commonly used by our

group for the production of secondary metabolites is

shown in Table 2.

Medium 410, which has a high content of both

carbon and nitrogen, permits optimal growth of

nearly all actinomycetes, notably members of the

suborder Corynebacterineae, such as Gordonia,

Nocardia, Rhodococcus and Tsukamurella strains.

However, this medium is not ideal for inducing

secondary metabolite production from actinomycetes

which form aerial mycelia (e.g. streptomycetes) or

Table 1 Culturable actinomycetes isolated from marine habitats

Isolates assigned to known genera

Actinocorallia ?Actinomadura Actinoplanes *Aeromicrobium

Amycolatopsis Arthrobacter Arsenicococcus Brevibacterium
?Corynebacterium ??Dermacoccus *,?Dietzia Glycomyces
?Gordonia Isoptericola Knoella ??Kocuria

Microbacterium Microbispora Micrococcus ?,??Micromonospora
?Mycobacterium Nocardia Nocardioides Nocardiopsis

Nonomuraea Prauserella ?,??Pseudonocardia *,?Rhodococcus

Saccharopolyspora ?Sanguibacter ?Streptosporangium Tessaracoccus
??Streptomyces ?,??Tsukamurella Verrucosispora ?,??Williamsia

Isolates assigned to novel genera

Actinoaurantispora Demequina Euzebya Iamia

Marinactinispora Marisedimenicola Miniinunas Phycicola

**Salinibacterium **Salinispora Sciscionella **Serinicoccus

* Contains or is ** composed of indigenous marine actinomycetes; ? includes strains isolated from sediments collected from the

Atlantic and Pacific Oceans and Norwegian fjords, and ?? from the Challenger Deep of the Mariana Trench
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spore vesicles (e.g. streptosporangiae) though it is a

good seed medium for the production of biomass

from such organisms. In contrast, media 19, 400, OM

and SGG promote the production of novel drug

candidates from Streptomyces strains whereas mem-

bers of genera classified in the family Micromonos-

poraceae are best grown in media 333, MMM and

SGG. Consequently, the success of screening pro-

grammes for secondary metabolite production are

heavily dependent on the assignment of isolates to the

correct taxa.

In our experience it is essential to grow derepli-

cated isolates in a diverse range of production media

(Fiedler 1994; Theobald et al. 2000) including the use

of formulations which mimic conditions in the

environment in the case of strains from marine

habitats. However, most of the 700 dereplicated

marine isolates assigned to the families Micromo-

nosporaceae, Nocardiaceae, Pseudonocardiaceae

and Streptomycetaceae were salt tolerant and did

not require seawater for the production of secondary

metabolites in submerged culture. Indeed, a few of

the isolates showed better growth and enhanced

secondary metabolite production in media lacking

seawater. The richest and most chemically diverse

secondary metabolites detected by HPLC diode array

analysis were recorded for members of the genus

Streptomyces. Approximately, 26% of extracts from

these organisms gave positive results, the corre-

sponding figures for strains assigned to the families

Micromonosporaceae, Nocardiaceae and Pseudono-

cardiaceae were 24, 6.4 and 1.7%.

Monitoring secondary metabolite production

A well established method for analyzing the produc-

tivity of strains and the diversity of their secondary

metabolite patterns is reversed-phase HPLC in

gradient mode coupled with diode array monitoring

(Huber and Fiedler 1991). Known metabolites can be

excluded by using a database containing many

secondary and primary metabolites which were ana-

lyzed by using the same HPLC conditions; e.g. our in-

house HPLC-UV-Visible absorption spectral database

contains more than 950 entries, mainly of antibiotics

(Fiedler 1993). Presumptive new metabolites can be

characterized by this method according to their

UV–Visible properties and retention times. The pre-

sumptive novelty of metabolites are then confirmed by

HPLC-MS analysis, followed by scale-up fermenta-

tion of strains, and isolation and structural elucidation

of pure compounds. The application of this screening

strategy to freshly isolated strains has resulted in

the detection of a high number of identified novel

Table 2 Media suitable for submerged cultivation of actinobacteria (g/l)

Medium 19 333 400 410 MMM OM SGG

Glucose 5 10 10 10 10

Glycerol 10 10

Mannitol 20

Casamino acids 15

Casitone 5

Cornsteep powder 2.5

Meat extract 3

Oatmeal 5 20

Peptone 20 3 3 10 5

Soluble starch 10 20 20 10

Yeast extract 3 5 5 5 2

CaCO3 2 3 1 1 3

NaCl 1

NH4 NO3 3

pH 7.5 7.2 7.0 7.0 7.6 7.3 7.3

C content (g/l) 13.8 10.5 12.7 13.4 12.5 5.2 14.0

C:N ratio 6.3:1 6.05:1 11.3:1 3.5:1 12.5:1 15:1 15.4
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compounds compared to a low throughput of strains

(Fiedler 2010). The advantage of this method is based

in the separation selectivity and diode array monitor-

ing which permit a very close look at each individual

generated extract. The method allows the detection

and characterization of broad metabolite patterns in

culture filtrates or raw extracts of organisms. However,

polar metabolites and metabolites without UV–Visible

chromophors cannot be detected in culture broths or

extracts by this method.

Alternative methods for the detection of secondary

metabolites that are commonly used include target

assays based on enzyme or receptor inhibition. Such

procedures are preferred by the pharmaceutical

industry because of the strong correlation between

metabolite, biological activity and target. Neverthe-

less, such high and ultra-high throughput assays have

not led to the marketing of any novel compound to

date (Baltz 2005). Small research groups lack the

expensive robotic equipment and manpower neces-

sary for such high throughput procedures and hence

have to develop individual assays that are easy to

handle, as in our detection of abyssomicins, potent

and selective inhibitors of the biosynthesis of para-

aminobenzoic and folic acids (Riedlinger et al. 2004).

Recent discoveries from our research group

A harmonized collaboration is absolutely necessary

for success in research, as can be demonstrated by the

discoveries of our broader research team which

includes the groups of Professor Roderich D. Süss-

muth from the Organic Chemistry Department at the

Technical University of Berlin, Professor Marcel

Jaspars from the Marine Biodiscovery Centre, Depart-

ment of Chemistry at the University of Aberdeen, and

Professor Alan Bull, School of Biosciences, Univer-

sity of Kent.

Abyssomicins B, C, atrop-C, D, G and H

These unique polycyclic polyketide synthase type

1-antibiotics (Fig. 5) were found using a combination

of a target assay and HPLC-diode-array detector

(DAD) monitoring. The target, the biosynthesis of

para-aminobenzoic acid (Pab), was based on a whole-

cell agar plate diffusion assay that permitted the

detection of antibiotics which selectively inhibited the

biosynthesis of the aromatic amino acids and para-

aminobenzoic acid, respectively (Riedlinger et al.

2004). One out of 930 extracts from 201 marine and

terrestrial actinomycetes was positive in the assay, an

extract generated from Verrucosispora maris AB-18-

032 (Goodfellow et al. 2010a, b), which was isolated

from a sediment sample collected from the Sea of

Japan at a depth of 289 m. HPLC-DAD monitoring of

the extract revealed a metabolite family (Fig. 5) in

which the main compound, atrop-abyssomicin C, was

active against Gram-positive bacteria, including mul-

tiresistant—and vancomycin-resistant—Staphylococ-

cus aureus isolates (Riedlinger et al. 2004; Bister et al.

2004; Keller et al. 2007a). All of the abyssomicins

mimic the structure of chorismate, the natural substrate

for the PabB subunit of 4-amino-4-deoxychorismate

synthase, though only abyssomicin C and atrop-

abyssomicin C bind covalently to PabB by a Michael

addition mechanism (Keller et al. 2007b).

Albidopyrone

This new a-pyrone containing secondary metabolite

was detected by HPLC-DAD analysis in a culture

filtrate extract of Streptomyces sp. NTK 227, a strain

isolated from an Atlantic Ocean sediment and found

to be a member of the Streptomyces albidoflavus 16S

rRNA gene clade. Albidopyrone shows a moderate

inhibitory activity against protein-tyrosine phospha-

tase B (Hohmann et al. 2009a). The structure of this

compound is shown in Fig. 6.

Benzoxazine NTK 935

Streptomyces sp. NTK 935 was isolated from an

Atlantic Ocean sediment core (3, 814 m) at the

southern edge of the Canary Basin. HPLC extracts of

the organism showed that it produced a new benzox-

azine compound which had a strong inhibitory

activity against the enzyme glycogen synthase kinase

3-beta (H-P Fiedler, M Goodfellow, RD Süssmuth, JF

Imhoff, unpubl.). The structure of this compound is

shown in Fig. 7.

Caboxamycin

This new benzoxazole antibiotic was detected by

HPLC-diode array screening in extracts of Strepto-

myces sp. NTK 937, another strain which was

Antonie van Leeuwenhoek (2010) 98:119–142 129

123



isolated from sediment collected from the Canary

Basin. The compound, caboxamycin, was named

after the first letters of the collection site from which

the organism was isolated and from letters drawn

from its chemical structure. Caboxamycin showed

inhibitory activity against both Gram-positive bacte-

ria and against the tumour cell lines gastric adeno-

carcinoma (AGS), hepatocellular carcinoma (Hep

G2) and breast carcinoma cells (MCF7). The antibi-

otic also showed an inhibitory activity against the

enzyme phosphodiesterase (Hohmann et al. 2009b).

Its structure is shown in Fig. 8.

Dermacozines

Nineteen out of 38 actinomycetes isolated from a

sediment sample collected from the Challenger Deep

(10898 m) of the Mariana Trench, using the remotely

operated submersible, Kaiko, were found to belong to

the genus Dermacoccus (Pathom-aree et al. 2006d).

HPLC-DAD analysis of culture filtrates of these

isolates showed an interesting pattern of secondary

metabolites which were considered to be a group of

phenazine compounds. High-resolution mass spec-

trometry and structural eludication of the compounds

carried out by the group of Professor Marcel Jaspars

at the University of Aberdeen resulted in the iden-

tification of 14 novel phenazine-type metabolites

which were named dermacozines. The structure of

seven of these compounds have been determined

(Fig. 9), they show antitumour, antiprotozoal and free

radical scavenging activities (Abdel-Mageed et al.

2010).
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Lipocarbazoles A1–A4

A family of new secondary metabolites with a

carbazole moiety and an alkyl side chain were

detected by HPLC-DAD analysis in cell extracts of

Tsukamurella pseudospumae strain Acta 1857, an

organism isolated from activated sludge foam col-

lected at Stoke Bardolph Water Reclamation Works,

near Nottingham, UK. The metabolites, which were

named lipocarbazoles in accordance with their chem-

ical structure, exhibited strong free radical scaveng-

ing activity (Schneider et al. 2009). Interestingly, the

same secondary metabolite pattern was detected in

Tsukamurella strains isolated from the sediment

collected from the Challenger Deep of the Mariana

Trench (M Goodfellow, AT Bull, H-P Fiedler,

unpubl.). The structures of these new metabolites

are shown in Fig. 10.

Lysolipin

Streptomyces sp. NTK 963 was isolated from the

same Canary Basin deep-sea sediment sample as the

caboxamycin producer, Streptomyces sp. NTK937.

HPLC-DAD and HPLC-MS analysis of extracts of

this organism showed that it produced lysolipin, an

interesting antibiotic with strong antitumour and

antibacterial activity. This compound was initially

detected in Streptomyces violaceusniger Tü 96, a

strain isolated from soil collected in Ajhu, India

(Drautz et al. 1975) and re-discovered in Streptomy-

ces tendae Tü 4042, an isolate from an arid soil

sample collected near Alice Springs in Australia. The

structure of this compound is shown in Fig. 11.

Proximicins A, B and C

These novel aminofuran-type antibiotics were

detected by HPLC-DAD analysis in extracts of

Verrucosispora strain MG-37, an organism which

was isolated from a sediment sample collected from
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the Raune Fjord, Norway at a depth of 250 m. One of

these compounds, proximicin A, was detected in the

abyssomicin producer Verrucosispora maris AB-18-

032 (Fiedler et al. 2008). The characteristic structural

element of proximicins is 4-amino-furan-2-car-

boxylic acid, a hitherto unknown c-amino acid

(Schneider et al. 2008). Proximicins exhibit weak

antibacterial activity but have a strong cytostatic

effect against various human tumour cell lines. All of

the proximicins showed significant growth inhibitory

activity towards gastric adenocarcinoma (AGS) and

hepatocellular carcinoma (Hep G2) though breast

carcinoma cells (MCF 7) were less sensitive. The

proximicins were found to arrest AGS cells in the

G0/G1 phase of the cell-cycle and increase the level

of cell-cycle regulatory proteins p53 and p21

(Schneider et al. 2008). The structures of the

proximicins are shown in Fig. 12.

Conclusions

Overview and new directions of travel

It can be concluded from the application of our

bioprospecting strategy that a combination of selec-

tive isolation, strain dereplication and screening

procedures can lead to the discovery of new natural

products from novel actinomycetes isolated from

geographically diverse sediment samples, as exem-

plified by the production of atrop-abyssomicin C

from V. maris (Bister et al. 2004; Riedlinger et al.

2004; Keller et al. 2007a, b; Goodfellow et al. 2010a,

b), the dermacozines from Dermacoccus species

(Abdel-Mageed et al. 2010) and caboxamycin and

proximcins A, B and C from putatively novel species

of Streptomyces and Verrucosispora, respectively

(Schneider et al. 2008; Hohmann et al. 2009b). These

results provide further evidence that marine-derived

actinomycetes are an important source of new

secondary metabolites (Magarvey et al. 2004; Fiedler

et al. 2005; Fenical and Jensen 2006; Lam 2006;

Bull and Stach 2007; Williams 2008; Olano et al.

2009a, b).

Our results help underpin the re-emerging concept

that taxonomic diversity can be used as a surrogate

for chemical diversity amongst actinomycetes, espe-

cially at the species level (Ward and Goodfellow

2004; Goodfellow et al. 2007; Tan et al. 2007). The

strongest evidence for this concept comes from

extensive studies on the genus Salinispora, a taxon

which encompasses two valided described species,

Salinispora arenicola and S. tropica (Maldonado

et al. 2005b) and the presumptive new species,

‘Salinispora pacifica’ (Fenical and Jensen 2006).

These bacteria are widely distributed in marine

sediments (Jensen and Mafnas 2006) and are a rich

source of structurally unique secondary metabolites

(Feling et al. 2003; Fenical and Jensen 2006;

Williams et al. 2007; Oh et al. 2008; Asolkar et al.

2009), including salinosporamide A which is pres-

ently in clinical trials for the treatment of cancer

(Fenical et al. 2009). The three Salinispora species

synthesize a range of species-specific metabolites;

S. arenicola strains produce rifamicin derivatives and

staurosporine analogues and S. tropica strains sali-

nosporamides and sporalides (Fenical and Jensen

2006; Jensen 2010). In contrast, some ‘S. pacifica’

strains produce the structurally novel metabolites

cyanosporasides A and B and others the polyketides

pacificanones A and B, and salinipyrones A and B

(Oh et al. 2008). These findings chime with reports

that the secondary metabolite profiles of filamentous

fungi are species-specific (Larsen et al. 2005; Frisvad

et al. 2008; Frisvad 2010).

The couplings between taxonomic and chemical

diversity are at variance with the widely held view

that secondary metabolite production is strain spe-

cific, a stance partly based on the contention that

Streptomyces species, notably Streptomyces griseus

and Streptomyces hygroscopicus, synthesize diverse

secondary metabolites and on the proposition that
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taxonomy is not necessarily a good indicator of

bioactive potential (Strohl 2004). However, claims

that S. griseus and S. hygroscopicus encompasses

strains with diverse secondary metabolite profiles

need to be re-assessed in light of the improved

taxonomy of these species (Guo et al. 2008; Kumar

and Goodfellow 2008), especially since several new

Streptomyces species are based on strains previously

misclassified as S. hygroscopicus (Kumar and Good-

fellow 2010). Indeed, it would be interesting to see if

coupling between taxonomic and chemical diversity

occurs below the species level, a hypothesis that

could be tested by screening S. griseus ecovars

isolated from sampling sites taken along a transect

across a beach and dune-sand system (Antony-Babu

et al. 2008). Representatives of this species would be

ideal candidates for testing this proposition as bona

fide members of this taxon are a source of new

bioactive compounds (Piel 2004; Graf et al. 2007).

The proposition that the search for new actinomy-

cete diversity is an important element in our drug

discovery strategy (Fig. 2) is strongly supported by

comparative full genome sequence data of the type

strains of S. arenicola and S. tropica (Penn et al.

2009; Jensen 2010). A comparison of the full genome

sequences of these strains helps explain the ability of

members of the two species to produce core sets of

species-specific secondary metabolites and allows

insight into the processes that drive speciation in this

genus. The most interesting feature drawn from a

comparison of the two genomes is that species-

specific genes are concentrated in genomic islands

(Coleman et al. 2006; Penn et al. 2009). These islands

are sites within which niche specific genes, including

the biosynthetic genes linked to Salinispora species-

specific secondary metabolite production, are located

and ecological adaptation between the three closely

related Salinispora species resolved. The species-

specificity of Salinispora biosynthetic pathways

(Jensen et al. 2007) strongly supports the view that

secondary metabolites can provide valuable taxo-

nomic information, as inferred from studies on

Amycolatopis regifaucium (Tan et al. 2007), Strepto-

myces clavuligerus (Ward and Goodfellow 2004) and

the Streptomyces violaceusniger 16S rRNA gene

clade (Goodfellow et al. 2007).

Isolates representing a broad range of taxa are

needed to assess the chemical and genetic diversity of

marine actinobacteria and hence their full potential as

a source of novel secondary metabolites. However,

representatives of relatively few taxa have been

isolated from marine as opposed to terrestrial habitats

(see Goodfellow 2010). In general, many of the

media formulations used to isolate actinomycetes

from marine sources have been somewhat empirical

and have led to the isolation of relatively small

numbers of strains belonging to a few established

taxa (Jiang et al. 2007; Bredholdt et al. 2007, 2008;

Hong et al. 2009; Maldonado et al. 2009). In contrast,

large numbers of strains have been isolated using

reliable selective isolation procedures, notably ones

used to isolate members of the genera Micromonos-

pora (Maldonado et al. 2008; Qui et al. 2008),

Rhodococcus (Colquhoun et al. 1998) and Strepto-

myces (Goodfellow and Haynes 1984; Jensen et al.

1991), as well as the seawater requiring genus

Salinispora (Mincer et al. 2002; Jensen et al.

2005a, b).

The application of additional selective isolation

methods can be expected to yield additional taxo-

nomic diversity from the marine biome, such as

procedures which have shown that members of the

genera Actinomadura (Athalye et al. 1981), Amyco-

latopsis (Tan et al. 2006), Planobispora (Suzuki et al.

2001b) and Planomonospora (Suzuki et al. 2001a)

are common and widespread in terrestrial habitats. In

addition, new selective procedures are available for

the isolation of alkaliphilic streptomycetes (Antony-

Babu and Goodfellow 2008) and for members of the

Streptomyces violaceoruber 16S rRNA gene clade

(Duangmal et al. 2005).

It will also be necessary to devise innovative

selective isolation strategies to isolate novel actino-

bacteria detected in culture-independent surveys of

marine habitats (Stach et al. 2003a, b; Kim et al.

2004; Gontang et al. 2007; Jensen and Lauro 2008)

and additional strains of genera such as Verrucosis-

pora which are potential sources of novel secondary

metabolites. However, there is an even more urgent

requirement to focus on the isolation of understudied

taxa, such as members of the families Conexibacteri-

aceae, Coriobacteriaceae and Rubrobacteriaceae,

which form deep lineages in the 16S rRNA actino-

bacterial tree (Zhi et al. 2009) even though members

of these taxa isolated from terrestrial sources have not

been shown to be prolific sources of bioactive

compounds. The isolation of members of such taxa

may require leads from bioinformatic analyses of
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representative whole-genome sequences. Other meth-

ods which might be used to good effect include the

use of long incubation times (Salt et al. 2002;

Gontang et al. 2007), in situ procedures (Epstein

et al. 2010), dilution to extinction culturing (Stingl

et al. 2008) and cultivation approaches using electron

acceptors and substrate gradients (Kopke et al. 2005).

Additional thought needs to be given to the

selection of marine habitats for study, to representa-

tive sampling, and to the ecology of target organisms

(Bull et al. 2005; Bull and Stach 2007; Goodfellow

2010; Jensen 2010). Taxonomic landscapes of marine

actinomycetes generated by terminal restriction frag-

ment—length RFLP (T-RFLP) or by single-strand

conformation polymorphism (SSCP) of clone libraries

or by analysis of community 16S rRNA can be used to

select appropriate sampling sites (Stach et al. 2003a;

Bull et al. 2005; Maldonado et al. 2005a). Physico-

chemical interactions between microorganisms and

particulate matter influence the composition of inoc-

ula. The dispersion and differential centrifugation

technique (DDC), a multistage procedure introduced

by Hopkins et al. (1991), combines several physico-

chemical treatments which are effective in increasing

the yield and diversity of actinobacteria from natural

habitats (MacNaughton and O’Donnell 1994; Atalan

et al. 2000; Sembiring et al. 2000), including marine

sediments (Mexson 2000; Maldonado et al. 2005b).

The DDC procedure, for instance, yielded fivefold

increases in actinobacteria isolated from a fjord

sediment (Maldonado et al. 2005b) and has led to

the delineation of several new Streptomyces species,

albeit from soil (Manfio et al. 2003; Goodfellow et al.

2007). In addition, the seminal studies on Salinispora

show that increased efforts are needed to isolate novel

actinobacteria with an obligate requirement for

sodium. Studies on the growth and metabolic activ-

ities of actinobacteria in situ might help to inform

approaches to targeting the isolation of a greater

diversity of indigenous marine actinobacteria; eco-

physiological approaches have led to the isolation of

novel actinobacteria from activated sludge systems

(Seviour et al. 2008).

It can be anticipated that technological change,

especially in bioinformatics, genomics, metagenom-

ics and metabolite profiling, will greatly influence

approaches to the selective isolation, dereplication

and characterization and hence on the selection of

novel marine actinobacteria for screens (Bull and

Stach 2007; Wu et al. 2009; Jensen 2010). Phyloge-

netic analyses of biosynthetic genes, for instance, are

already fostering new methods for predicting second-

ary metabolite production thereby maximizing oppor-

tunities for drug discovery. Strain selection will be

critical for such studies so there will be a requirement

for improved dereplication technologies, notably the

use of molecular screens to rapidly highlight isolates

with the greatest genetic potential to produce both

target and new secondary metabolites.

Systematics in the post-genomic era

Actinobacterial systematics has played a significant

role in the discovery of secondary metabolites from

novel actinomycetes isolated from marine habitats.

These advances were made at a time when microbial

systematics was being seen to be in a state of critical

decline (House of Lords Science and Technology

Committee 2008) and when the use of strain names

was vying with the practice of employing formal

species names underpinned by the International Code

of Nomenclature of Bacteria (Lapage et al. 1975,

1992). Type strains not only provide anchor points

for the names of prokaryotic species but their full 16S

rRNA gene sequences are essential for comparative

purposes now that sequences of this gene are the

primary means used in the initial taxonomic assign-

ments of putative novel isolates. A drift towards the

abandonment of the nomenclatural type concept risks

a return to the pre-Bergey days of classification where

many common bacteria carried a confusing mix of

multiple names and where strains were so poorly

described that they were difficult to tell apart.

Nevertheless, the current classification of prokary-

otes, as exemplified in the present edition of Bergey’s

Manual of Systematic Bacteriology (De Vos et al.

2009; Goodfellow et al. 2010a, b), is based on a

utilitarian model, the polyphasic approach, which

draws upon genotypic and phenotypic data, as well as

phylogenetic information (Vandamme et al. 1996;

Goodfellow et al. 1997; Schleifer 2010). The exten-

sive application of polyphasic taxonomy has led to

revolutionary improvements in prokaryotic systemat-

ics, including the classification of actinobacteria

(Goodfellow et al. 2010a, b). Indeed, this approach

has helped clarify relationships between even the

most closely related Streptomyces species (Goodfel-

low et al. 2007; Kumar and Goodfellow 2008, 2010).
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In addition, major differences can be found in

actinobacterial 16S rRNA gene trees generated by

different workers (e.g. Ludwig and Klenk 2005; Zhi

et al. 2009). These result from different strategies

chosen to construct the gene trees and different

sequences used for the analyses. There is no sound

basis to accept one tree over another, and experience

has shown that some ambiguities remain in most

phylogenetic trees for any gene, including the 16S

rRNA gene.

Schleifer (2010) has reminded us that the ultimate

aim is to generate a theory-based classification

grounded on a phylogenetic/evolutionary concept.

He also made it clear that even in light of genomic

fluidity there is a strong case for believing that the

typical genotypic and phenotypic characteristics of

taxa are maintained and sufficient for reliable clas-

sification and identification, as exemplified by the

maintenance of the species-specific properties of the

three species of Salinispora (Jensen 2010). There is

also a wealth of evidence which shows that well-

defined genotypic clusters are congruent with known

species circumscribed using polyphasic approaches

(Konstantinidis and Tiedje 2005). There are, there-

fore, good grounds for continuing with and extending

current polyphasic classifications while the merits of

theory-based alternatives are explored (Staley 2006;

Konstantinidis and Tiedje 2007; Achtman and Wag-

ner 2008; Koeppel et al. 2008). There is, however, a

real need to find quicker and more reliable procedures

for describing new species as current methods are

laborious and time-consuming.

It can be concluded that advances in prokaryotic

systematics have provided well-defined taxa, a stable

nomenclature and improved identification systems

which have contributed to developments in actino-

bacterial biology, not least in strategies for natural

product discovery. A lot has been achieved but much

remains to be done. There is now an urgent need to

train, support and employ the next generation of

actinobacterial systematists, a process that needs to

be addressed by the microbiological community as it

cannot solely be left to the vagaries of ‘market

forces’.
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Ōmura S, Ikeda H, Ishikawa J et al (2001) Genome sequence of

an industrial microorganism Streptomyces avermitilis:

deducing the ability of producing secondary metabolites.

Proc Natl Acad Sci 98:12215–12220

Pathom-aree W, Nogi Y, Sutcliffe IC, Ward AC, Horikoshi K,

Bull AT, Goodfellow M (2006a) Williamsia marianensis
sp. nov., a novel actinomycete isolated from the Mariana

Trench. Int J Syst Evol Microbiol 56:1123–1126

Pathom-aree W, Nogi Y, Sutcliffe IC, Ward AC, Horikoshi K,

Bull AT, Goodfellow M (2006b) Dermacoccus abyssi sp.

nov., a piezotolerant actinomycette isolated from the

Mariana Trench. Int J Syst Evol Microbiol 56:1233–1237

Pathom-aree W, Nogi Y, Ward AC, Horikoshi K, Bull AT,

Goodfellow M (2006c) Dermacoccus barathri sp. nov.

and Dermacoccus profundi sp. nov., novel actinomycetes

isolated from deep-sea mud of the Mariana Trench. Int J

Syst Evol Microbiol 56:2303–2307

Pathom-aree W, Stach JEM, Ward AC, Horikoshi K, Bull AT,

Goodfellow M (2006d) Diversity of actinomycetes iso-

lated from Challenger Deep sediment (10, 898 m) from

the Mariana Trench. Extremophiles 10:181–189

Payne DJ, Bradley J, Edwards JE, Gilbert D, Scheld, Bartlett

JG (2007) Drugs from bad bugs: confronting the chal-

lenges of antibacterial discovery. Nat Rev Drug Discov

6:29–40

Penn K, Jenkins C, Nett M, Udwary DW, Gontang EA et al

(2009) Genomic islands link secondary metabolism to

functional adaptation in marine actinomycetes. ISMEJ

3:1193–1203

Piel J (2004) Metabolites from symbiotic bacteria. Nat Prod

Rep 21:519–538

Pimentel-Elardo SM, Scheuermayer M, Kozytska S, Hentschel

U (2009) Streptomyces axinellse sp. nov., isolated from

the Mediterranean sponge Axinella polyporides (Porife-

rae). Int J Syst Evol Microbiol 59:1433–1437

Priest FG (2004) Approaches to identification. In: Bull AT (ed)

Microbial diversity and bioprospecting. ASM Press,

Washington, DC, pp 49–56

Priest FG, Goodfellow M (eds) (2000) Applied microbial

systematics. Kluwer Academic Publishers, Dordrecht, pp

1–479

Qin S, Li J, Zhang Y-Q, Zhu W-Y, Zhao G-Z, Xu L-H, Li W-J

(2009) Plantactinospora mayteni gen. nov., sp. nov., a

member of the family Micromonosporaceae. Int J Syst

Evol Microbiol 59:2527–2533

Qui D, Ruan J, Huang Y (2008) Selective isolation and iden-

tification of members of the genus Micromonospora. Appl

Environ Microbiol 74:5593–5597

Riedlinger J, Reicke A, Zähner H, Krismer B, Bull AT,

Maldonado LA, Ward AC, Goodfellow M, Bister B,

Bischoff D, Süssmuth R, Fiedler H-P (2004) Abyssom-

icins, inhibitors of the para-aminobenzoic acid pathway

produced by the marine Verrucosispora strain AB-18-032.

J Antibiot 57:271–279
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Tindall BJ, Roseselló-Mora R, Busse HJ, Ludwig W, Kämpfer
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