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Abstract
Strategic customer behavior regarding the join-or-balk dilemma in queueing systems has been
studied intensively under various kinds of information structures. The majority of these stud-
ies focus on the observable and the unobservable cases, where an arriving customer observes
or does not observe, respectively, the number of present customers before making her deci-
sion. An important finding is that more information does not always improve customers’
and/or the administrator’s benefits and may result to a deterioration of a system. Therefore,
intermediate information structures have been proposed that bridge the two extreme cases:
partially observable models, models with delayed observations, alternating observable mod-
els etc. All these structures revolve around the idea that the administrator of a service system
should control somehow the information about the state of the system, which is usually the
number of present customers. In this paper we consider a new mechanism which consists in
informing customers about other customers’ decisions. Such a mechanism helps customers
to coordinate themselves and possibly leads to better outcomes. To present this idea in the
simplest possible framework we consider the M/M/1 queue with strategic customers that
face the join-or-balk dilemma and assume that each arriving customer is informed about the
decision of the most recent arrival. We show that this system outperforms the observable and
unobservable systems for certain ranges of the parameters. Moreover, the effective arrival
process is more regular, a fact that improves several performance measures of the system.

Keywords Queueing · Strategic customers · Equilibrium customer strategies · Information ·
Partially observable system · Coordination of customers · Throughput · Social welfare

1 Introduction

Rational Queueing, i.e. the branch of Queueing Theory that treats problems of economic
flavor where the various agents (customers and/or administrators-servers) are strategic, is a
flourishing scientific area for more than 50 years. The inception of the area goes back to
the pioneering papers of Naor (1969), and Edelson and Hildebrand (1975) who studied the
join-or-balk dilemma of arriving customers at the M/M/1 queue. Naor (1969) focused on
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the observable case, where the arriving customers have the possibility to observe the queue
length before making their decisions, whereas (Edelson and Hildebrand, 1975) considered
the unobservable case, where the decisions are based solely on the knowledge of the parame-
ters of the system. Since then there is a growing part of the literature that deals with strategic
considerations in queueing. The fundamental models, problems and results in this area can
be found in the monograph by Hassin and Haviv (2003). The recent progress has been sum-
marized in Hassin (2016) while a relevant overview of optimal design problems in queueing
systems can be found in Stidham (2009).

A fundamental question in theRationalQueueing literature is the impact of the information
that is provided to the customers. Several recent works summarize some important findings
and challenges regarding this question, see e.g. chapter 4 in the book of Hassin (2016) and
the review papers by Ibrahim (2018) and Economou (2021), Economou (2022). For more
details see the literature review in Sect. 2.Most studies about the impact of information on the
strategic behavior in a queueing system focus on the number of present customerswhich is the
key information that is provided to the customers. This is indeed a crucial information so that
the customers estimate the congestion of the system with accuracy. However, the provision
of this information to the customers has an undesirable effect: It makes the effective arrival
process (i.e. the process that records the entrances at the system) quite irregular. Indeed,
under such an information mechanism the customers continuously enter till they reach a
certain threshold and then the entrances are interrupted frequently as long as the system is
highly congested.As a remedy to this situationwe suggest that the effective arrival process can
becomemore regular if the customers are informed about other customers’ joining decisions.
Knowing the joining behavior of recently arrived customers can help customers to coordinate
at a certain degree.

Apart from the smoothing of the effective arrival process, the provision of information
about other customers’ decisions seems advantageous in several cases that occur in practice.
The first case is when there are independent web-based systems that receive the arriving
customers that do not have information about what is going on in the core service system.
This is typical when petitions for service are deposited through a web-platform and the
service consists of several stages that are not monitored by the platform. In such a case the
platform can provide information about previous arrivals and joining decisions but not about
the actual congestion. Another case is when the customers do not trust the server provider for
the information that he provides, so they report their decisions/evaluations to independent
sources that are accessible by other customers.

Taking into account the aforementioned points, the aim of the present paper is to initiate
a path for the study of the impact of information about other customers’ decisions on the
join-or-balk dilemma in a queueing system. To keep the framework as simple as possible, we
consider the Markovian single-server queue (i.e. the M/M/1 queue) with strategic customers
that receive information about the decision of the most recent arrival. This is the first step
towards a more thorough investigation in the case where the customers are informed about
the decisions of a number of recent arrivals. However, the simplicity of the framework allows
to go more deeply and prove analytically various interesting results.

The main contributions of the paper are summarized below:

1. We study the performance of the systemwhen the population of potential customers follow
an arbitrary strategy.

2. We characterize the customer equilibrium strategies and show how their form changes as
the normalized service value increases from 0 to ∞.
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3. We compare the equilibrium strategies, the equilibrium social welfare and the equilibrium
throughput with the corresponding quantities of the unobservable and observable systems.

4. We derive conclusions about the benefits of providing customers with information about
other customers’ decisions and point to further generalizations and problems.

The rest of the paper is structured as follows: In Sect. 2 we present an extensive literature
review regarding the problem of information provision to strategic customers of a queueing
system. In Sect. 3 we describe in detail the queueing model under study, its performance
and economic parameters, and present the strategic framework for the interaction of the
customers. The performance evaluation of the model under an arbitrary strategy is studied
in Sect. 4. Subsequently, in Sect. 5, we characterize the customer equilibrium strategies and
show how they can be computed from the system parameters. The comparison of the equi-
librium strategies and the corresponding equilibrium throughput and social welfare with the
benchmark models (observable and unobservable) is carried out in Sect. 6. We present sev-
eral results that are proved analytically and also demonstrate other results that have been
consistently observed in a large number of numerical experiments. The study is finished with
a list of conclusions and managerial take-away messages that are presented in Sect. 7. We
also discuss some extensions and directions for future research there.

2 Literature review

The present paper belongs to a body of work in the Operations Research and the Opera-
tions Management literature that focuses on the effect of information on strategic customer
behavior in service systems. Two key references from this thread of research are the pio-
neering papers of Hassin (1986) and Chen and Frank (2004) who compared the equilibrium
performance of the observable and unobservable versions of an M/M/1 queue with strategic
customers who make their join-or-balk decisions upon arrival. The main take-away message
from these papers is that it is better in some cases to reveal the queue length and in other
cases to conceal it.

Various authors considered models that lie between the two extreme versions (observable
and unobservable) of queueing models with strategic customers who face the join-or-balk
dilemma.More specifically, the following categories ofmodels have appeared in the literature
(see Economou, 2021,2022):

• Systems with imperfect observation structure In such systems, the customers receive
imperfect information about the queue length. For example, Economou andKanta (2008)
and Guo and Zipkin (2009) considered imperfectly observable versions of the M/M/1
queue, where the state-space of the queue length is partitioned into subsets and the
arriving customers are not informed about the exact queue length, but rather about the
subset it belongs to. When the subsets are singletons, the imperfectly observable model
reduces to the observable M/M/1 queue, whereas if there is only one subset we have the
unobservable case. In another study, Hassin and Koshman (2017) considered the M/M/1
queue where the arriving customers are informed about whether the number of present
customers exceeds a critical level or not. They showed that this kind of information can
be used to maximize the profit generated by the system.

• Systems with delayed observation structure In such systems, the customers observe the
queue length with some delay. Burnetas et al. (2017) considered the M/M/1 with delayed
observations, where the customers decide whether to join or balk without knowing the
queue length, but later on they are informed about their current position and may renege.
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In a similar direction, Hassin andRoet Green (2020) studied amodel where the customers
observe the queue length before reaching it, using probably some web-based application,
and decide whether to go to the service facility or not. However, when they arrive at the
system they are informed about the current queue length and make their second decision,
to join or balk. Models with delayed observations reduce to the corresponding observable
or unobservable models, when the delay tends respectively to 0 or to ∞.

• Systemswithmixed observation structure In suchmodels, only a fraction of the customers
observe the queue length. Economou and Grigoriou (2015) and Hu et al. (2018) studied
the join-or-balk dilemma in the framework of an M/M/1 queue, where the population
of customers is divided into observing and uninformed (non-observing) customers. The
observable and unobservable models correspond to the extreme cases where the fraction
of uninformed customers is 0 and 1 respectively.

• Systems with alternating observation structure Under such an information structure, a
system alternates between observable and unobservable periods. Dimitrakopoulos et al.
(2021) studied the M/M/1 queue with strategic customers who decide whether to join or
balk upon arrival, in the case where the system remains observable for an exponentially
distributed period, and subsequently becoming unobservable for another exponentially
distributed period (with a different mean duration) and so on. They showed that alter-
nating a system between observable and unobservable periods can be advantageous for
increasing the equilibrium throughput and/or the equilibrium social welfare.

• Systems with non-standard or augmented observation structure In such systems, the
customers observe system features other than or in addition to queue length. For example,
in systems with a controllable or unreliable server, the customers may observe the state
of the server upon arrival (see e.g. Burnetas & Economou, 2007). In other situations, the
system feature that can be observed is the state of a random environment that influences
the arrival and service rates (see e.g. Economou & Manou, 2013). Moreover, another
example of such systems corresponds to the situation where customers are informed
about the elapsed or remaining service time in process. This type of information is
usually provided in transportation systems (see e.g. Logothetis and Economou (2023)).

Some other significant studies regarging the influence of information on strategic customer
behavior in queueing systems have been reported inAllon et al. (2011), Armony andMaglaras
(2004), Cui and Veeraraghavan (2016), Debo and Veeraraghavan (2014), Guo and Zipkin
(2007), Hassin and Roet-Green (2017), Hassin and Snitkovsky (2020), Haviv and Kerner
(2007), Haviv and Oz (2016), Haviv and Oz (2018), Ibrahim et al. (2017), Inoue et al.
(2023), Kerner (2011), Veeraraghavan and Debo (2009), Veeraraghavan and Debo (2011),
Wang et al. (2018), Wang and Hu (2019), and Yu et al. (2018). In these works the authors
examine various dimensions of the information impact on the customers, e.g., its function to
signal quality of services, its relationship with customers’ heterogeneity, its interplay with
customers’ beliefs and herding behavior, its role for the coordination of customers’ behavior
with social objectives, estimation procedures etc. For detailed overviews and comments see
Chapter 3 in Hassin (2016) and the recent papers Economou (2021), Economou (2022) and
Ibrahim (2018).
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Fig. 1 Transition diagram of {(N (t), I (t))} under a given population strategy (q0, q1)

3 Themodel

We consider a single server queue with infinite waiting space, where strategic customers
arrive according to a Poisson process at rate λ and have independent exponential service
times with rateμ, independent of the arrival process. The queue discipline is the First-Come-
First-Served (FCFS). We define ρ = λ

μ
to be the utilization factor of the model.

Arriving customers at this M/M/1 queue face the dilemma of whether to join or balk with
the objective of maximizing their own utilities. Each customer receives a reward of R units
upon service completion and accumulates waiting costs at rate C as long as she stays in the
system.We define ν = Rμ

C to be the normalized service value, which corresponds to the ratio
of the service value over the mean cost of a service time.

The operational and economic parameters of the system are assumed to be commonknowl-
edge for all customers. This is a reasonable assumption when the population of customers
visits the system recurrently. Moreover, upon arrival, each customer is informed about the
decision of the last arrival before her, being join (1) or balk (0), and then makes her own
decision. Therefore, a customer’s mixed strategy is specified by a vector (q0, q1), where qi
is the joining probability, if the previous arrival made the decision i , for i = 0, 1.

Under a given population strategy (q0, q1), to obtain a Markovian description of the
system, we should keep track of the evolution of the number of customers in the system
and the decision of the the most recent arrival. Let N (t) be the number of customers in the
system at time t and I (t) be the decision of the last arrival before time t . Then, a moment of
reflection reveals that {(N (t), I (t))} is a continuous-time Markov chain with state space

S = {(n, i) : n ≥ 0, i = 0, 1} (3.1)

and non-zero transition rates

q(n,0),(n+1,1) = λq0, n ≥ 0, (3.2)

q(n,1),(n+1,1) = λq1, n ≥ 0, (3.3)

q(n,1),(n,0) = λ(1 − q1), n ≥ 0, (3.4)

q(n,i),(n−1,i) = μ, n ≥ 1, i = 0, 1. (3.5)

The transition diagram is shown in Fig. 1.
We will refer to this model as the last-customer’s-decision (lcd) model when we compare

it with other models that have been reported in the literature as the unobservable (un) and the
observable (obs) models.
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4 Performance evaluation

The information process {I (t)} which records the decisions of the customers is a 2-state
continuous-time Markov chain on {0, 1} with rates q0,1 = q0 and q1,0 = 1 − q1. Let
(pI (0), pI (1)) be its steady-state distribution. Then, we have

pI (0) = 1 − q1
1 − q1 + q0

and pI (1) = q0
1 − q1 + q0

. (4.1)

To obtain the performance measures of the model, we should compute the steady-state dis-
tribution (p(n, i) : n ≥ 0, i = 0, 1) of {(N (t), I (t))}. The balance equations are

λq0 p(0, 0) = λ(1 − q1)p(0, 1) + μp(1, 0), (4.2)

λp(0, 1) = μp(1, 1), (4.3)

(λq0 + μ)p(n, 0) = λ(1 − q1)p(n, 1) + μp(n + 1, 0), n ≥ 1, (4.4)

(λ + μ)p(n, 1) = λq0 p(n − 1, 0) + λq1 p(n − 1, 1) + μp(n + 1, 1), n ≥ 1. (4.5)

Let

Pi (z) =
∞∑

n=0

p(n, i)zn, |z| ≤ 1, i = 0, 1, (4.6)

be the partial generating function of the number of present customerswhen the last customer’s
decision is i , i = 0, 1. Theorem 4.1 provides the stability condition for the model and closed-
form expressions for Pi (z), for i = 0, 1.

Theorem 4.1 The continuous-time Markov chain {(N (t), I (t))} is positive recurrent if and
only if

ρ < 1 + 1 − q1
q0

. (4.7)

When the stability condition holds, the partial generating functions of the steady-state dis-
tribution, Pi (z), i = 0, 1, are given by

P0(z) = 1 − q1
1 − q1 + q0

· ρq0 + ρ + 1 − ρ2 − ρq1z

ρq0 + ρ + 1 − ρ2 − ρq1
· 1 − ρ2

1 − ρ2z
, (4.8)

P1(z) = q0
1 − q1 + q0

· 1 + (ρ − ρ2)z

1 + ρ − ρ2
· 1 − ρ2

1 − ρ2z
, (4.9)

where ρ2 = ρ2(q0, q1) is given by

ρ2 = ρ2(q0, q1) =
ρq0 + ρ + 1 −

√
(ρq0 + ρ + 1)2 − 4

(
ρ2q0 + ρq1

)

2
. (4.10)

Proof The stability condition can be justified directly and intuitively as follows: Let α denote
the steady-state probability that an arriving customer joins the queue. Then, conditioning on
whether the previous arriving customer joined or balked, we have that

α = αq1 + (1 − α)q0

which yields

α = q0
1 − q1 + q0

.
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For stability, we need ρα < 1 which is written as (4.7). Formal derivations of (4.7) are
presented in the sequel, using the generating function approach and the mean-drift criterion
for homogeneous QBD processes.

To derive the formulas (4.8) and (4.9) for the probability generating functions P0(z) and
P1(z), we apply the standard generating function approach. Multiplying equation (4.4) by
zn , summing all these equations, for n ≥ 1, and adding Eq. (4.2) yields:

(λq0 + μ)P0(z) − μp(0, 0) = λ(1 − q1)P1(z) + μ

∞∑

n=0

p(n + 1, 0)zn

= λ(1 − q1)P1(z) + μ

z
(P0(z) − p(0, 0)). (4.11)

Multiplying by z and rearranging terms, we derive the equation:

[(λq0 + μ)z − μ] P0(z) − λ(1 − q1)zP1(z) = μ(z − 1)p(0, 0). (4.12)

Similarly, multiplying Eq. (4.5) by zn , summing all these equations, for n ≥ 1, and adding
Eq. (4.3) yields:

(λ + μ)P1(z) − μp(0, 1) = λq0zP0(z) + λq1zP1(z) + μ

z
(P1(z) − p(0, 1)), (4.13)

which easily reduces to

− λq0z
2P0(z) + [

(λ + μ)z − λq1z
2 − μ

]
P1(z) = μ(z − 1)p(0, 1). (4.14)

Equations (4.12)–(4.14) form a linear system for (P0(z), P1(z)):
[

(λq0 + μ)z − μ −λ(1 − q1)z
−λq0z2 (λ + μ)z − λq1z2 − μ

] [
P0(z)
P1(z)

]
= μ(z − 1)

[
p(0, 0)
p(0, 1)

]
. (4.15)

The determinant of the system can be written after some algebraic manipulation in the form

D(z) = (1 − z)
[(

λ2q0 + λμq1
)
z2 − (

λμq0 + λμ + μ2) z + μ2] = (1 − z)z2C(1/z),

(4.16)

where the polynomial C(x) is given by

C(x) = (
λ2q0 + λμq1

) − (
λμq0 + λμ + μ2) x + μ2x2. (4.17)

The roots of C(x) are given as

ρ1,2 = λμq0 + λμ + μ2 ± √
�

2μ2 (4.18)

where

� = (
λμq0 + λμ + μ2)2 − 4μ2 (

λ2q0 + λμq1
)

= (
λμq0 − λμ + μ2)2 + 4λμ3(1 − q1) ≥ 0.

We can now easily see that ρ2 assumes the simplified form (4.10) by dividing the numerator
and denominator of (4.18) by μ2. Therefore, (4.16) can be written as

D(z) = (1 − z)z2μ2
(
1

z
− ρ1

)(
1

z
− ρ2

)
= μ2(1 − z)(1 − ρ1z)(1 − ρ2z). (4.19)
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Cramer’s rule applied to the system (4.15) for the unknown variable P0(z) yields:

P0(z) =
μ(z − 1) det

[
p(0, 0) −λ(1 − q1)z
p(0, 1) (λ + μ)z − λq1z2 − μ

]

D(z)

=
[
λq1z2 − (λ + μ)z + μ

]
p(0, 0) − λ(1 − q1)zp(0, 1)

μ(1 − ρ1z)(1 − ρ2z)
. (4.20)

Similarly, for P1(z), we have:

P1(z) =
μ(z − 1) det

[
(λq0 + μ)z − μ p(0, 0)

−λq0z2 p(0, 1)

]

D(z)

= −λq0z2 p(0, 0) + [μ − (λq0 + μ)z)]p(0, 1)
μ(1 − ρ1z)(1 − ρ2z)

. (4.21)

Regarding the stability condition, note that forC(x), given by (4.17), we have thatC(0) =
λ2q0 + λμq1 > 0, whereas C(1) = λ2q0 + λμq1 − λμ − λμq0 < C(0). There are two
cases: Either condition (4.7) holds (in which case C(1) < 0) or does not hold (in which case
C(1) ≥ 0). In the former case, we have that C(x) has a root in (0, 1), i.e., 0 < ρ2 < 1 < ρ1,
whereas in the latter we have 0 < 1 ≤ ρ2 < ρ1.

Therefore, if condition (4.7) does not hold, we have that ρ−1
1 and ρ−1

2 reside both in the
closed unit disk and are roots of the denominators in (4.20) and (4.21). Hence, they should be
also roots of the corresponding numerators, since the partial probability generating functions
P1(z), P2(z) converge in the closed unit disk. Since the numerators are second degree polyno-
mials, we conclude that they should also factorize as constant multiples of (1−ρ1z)(1−ρ2z).
Hence, P0(z), P1(z) are constants and setting z → ∞ yields p(0, 0) = p(0, 1) = 0, so
P1(z), P2(z) are identically zero. Therefore, in this case, the CTMC {(N (t), I (t))} has not a
steady-state distribution, and we conclude that condition (4.7) is necessary for stability.

Assume, now, that (4.7) holds. Then ρ−1
1 resides in the closed unit disk and hence it is

also root of the two numerators of P0(z) and P1(z). Hence, the numerator N0(z) of P0(z) in
(4.20) is written as N0(z) = N0(z) − N0(ρ

−1
1 ). Grouping similar terms yields

N0(z) = [
λq1z

2 − (λ + μ)z + μ
]
p(0, 0) − λ(1 − q1)zp(0, 1)

−
[
λq1ρ

−2
1 − (λ + μ)ρ−1

1 + μ
]
p(0, 0) + λ(1 − q1)ρ

−1
1 p(0, 1)

=
{
λ(1 − q1)ρ

−1
1 p(0, 1) −

[
λq1

(
z + ρ−1

1

)
− (λ + μ)

]
ρ−1
1 p(0, 0)

}
(1 − ρ1z).

(4.22)

Then, plugging N0(z) given by (4.22) in (4.20) and simplifying yields

P0(z) =
λ(1 − q1)p(0, 1) −

[
λq1

(
z + ρ−1

1

)
− (λ + μ)

]
p(0, 0)

μρ1(1 − ρ2z)
. (4.23)

Moreover, N0

(
ρ−1
1

)
= 0 yields

p(0, 1) = μρ2
1 − (λ + μ)ρ1 + λq1

λ(1 − q1)ρ1
p(0, 0). (4.24)
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Substituting (4.24) in (4.23) and simplifying yields

P0(z) = μρ1 − λq1z

μρ1(1 − ρ2z)
p(0, 0). (4.25)

Finally, p(0, 0) can be determined using (4.1):

1 − q1
1 − q1 + q0

= pI (0) = P0(1) = μρ1 − λq1
μρ1(1 − ρ2)

p(0, 0),

which shows that

p(0, 0) = μρ1(1 − ρ2)(1 − q1)

(μρ1 − λq1)(1 − q1 + q0)
. (4.26)

Substituting (4.26) in (4.25) yields

P0(z) = 1 − q1
1 − q1 + q0

· μρ1 − λq1z

μρ1 − λq1
· 1 − ρ2

1 − ρ2z
. (4.27)

Now, since ρ1 and ρ2 are roots of C(x), by Vieta’s formulas we have ρ1 +ρ2 = λμq0+λμ+μ2

μ2

which shows that

ρ1 = ρq0 + ρ + 1 − ρ2. (4.28)

Substituting ρ1, given by (4.28), in (4.27) and simplifying yields (4.8).
Equation (4.9) is proved along the same lines. Again, when (4.7) is valid, we have that

the numerator N1(z) of P1(z) in (4.21) has a root at z = ρ−1
1 . Therefore, N1(z) = N1(z) −

N (ρ−1
1 ) and grouping similar terms yields the factorization

N1(z) =
{
(λq0 + μ)ρ−1

1 p(0, 1) + λq0(z + ρ−1
1 )ρ−1

1 p(0, 0)
}

(1 − ρ1z). (4.29)

Moreover, N1

(
ρ−1
1

)
= 0 yields

p(0, 1) = λq0
μρ2

1 − (λq0 + μ)ρ1
p(0, 0). (4.30)

Substituting (4.29) and (4.30) in (4.21) and simplifying yields

P1(z) = (μρ1 − λq0 − μ)z + μ

μ(1 − ρ2z)
p(0, 1). (4.31)

We can now determine p(0, 1), using (4.31) and (4.1):

p(0, 1) = μ(1 − ρ2)q0
(μρ1 − λq0)(1 − q1 + q0)

. (4.32)

Substituting (4.32) in (4.31) yields

P1(z) = q0
1 − q1 + q0

· (μρ1 − λq0 − μ)z + μ

μρ1 − λq0
· 1 − ρ2

1 − ρ2z
. (4.33)

Now, substituting ρ1, given by (4.28), in (4.33) yields (4.9).
The stability condition (4.7) can be proved independently of the generating functions

approach by noting that the process {(N (t), I (t))} is a QBD process and applying the mean-
drift criterion for the stability of such processes (see e.g. Nelson, 1995, Chapter 9). Indeed,
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the phase process of the QBD is {I (t)} with steady-state distribution given by (4.1). The
mean drift of the QBD process is

pI (0)(λq0 − μ) + pI (1)(λq1 − μ) = λq0
1 − q1 + q0

− μ. (4.34)

According to the mean-drift criterion, a QBD process is positive recurrent if and only if the
mean drift is strictly negative, which reduces to λq0

1−q1+q0
− μ < 0 in the present case. This

is equivalent to the validity of (4.7). ��
Consider, now, a tagged arriving customer and let S be her sojourn time in the system.

Moreover, let Q− and I− be the number of customers in the system and the decision of
the last arrival before her. Due to the Poisson arrivals (PASTA property) we have that the
joint distribution of (Q−, I−) coincides with the steady-state distribution of {(Q(t), I (t)} in
continuous time. Therefore, the conditional probability that the tagged customer will see n
customers in the system, given that the last arrival before her made the decision i is

Pr[Q− = n|I− = i] = p(n, i)

pI (i)
, n ≥ 0, i = 0, 1. (4.35)

Therefore, we can easily see that

E[S|I− = i] =
∞∑

n=0

n + 1

μ
· p(n, i)

pI (i)
= E[Q|I = i] + 1

μ
= P ′

i (1)/pI (i) + 1

μ
. (4.36)

Let Si (q0, q1) be the net benefit of a tagged arriving customer who sees I− = i upon arrival
and decides to join, given that the population of customers follows a strategy (q0, q1). Then,
we have that

Si (q0, q1) = R − C

μ
E[S|I− = i]. (4.37)

Using (4.37), (4.36) and Theorem 4.1, we can derive explicit formulas for the quantities
Si (q0, q1), i = 0, 1.

Corollary 4.1 The net benefit functions of a tagged customer who sees upon arrival that the
last decision before her was i = 0 or i = 1 and decides to enter are given by

S0(q0, q1) = R − C

μ

(
1

1 − ρ2
− ρρ2q1

ρ2q0 + ρ(1 − ρ2)q1

)
, (4.38)

S1(q0, q1) = R − C

μ

(
1

1 − ρ2
+ ρ(ρ − ρ2)q0 + ρq1 − ρ2

ρ(ρ − ρ2)q0 + ρq1

)
. (4.39)

Proof We evaluate the derivatives of Pi (z), i = 1, 2 at z = 1 using (4.8) and (4.9). Then, we
substitute them in (4.37) and (4.36). ��

Using the formulas (4.1) we can easily derive the throughput of the system under a given
customer strategy (q0, q1). In conjunction with (4.38) and (4.39) we can also obtain the social
welfare per time unit generated by the system.

The throughput generated from a customer strategy (q0, q1) is given by

T Hlcd(q0, q1) = pI (0)λq0 + pI (1)λq1 = λq0
1 − q1 + q0

(4.40)
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and the corresponding welfare is

SWlcd(q0, q1) = pI (0)λq0S0(q0, q1) + pI (1)λq1S1(q0, q1)

= λq0(1 − q1)S0(q0, q1) + λq0q1S1(q0, q1)

1 − q1 + q0
. (4.41)

5 Equilibrium customer behavior

Formulas (4.38) and (4.39) show that

S0(q0, q1) > S1(q0, q1). (5.1)

This inequality shows that if a population follows a given strategy (q0, q1), then a tagged
customer who is informed that the last customer balked anticipates a higher net benefit than a
customer who is informed that the last customer joined. This implies that, for an equilibrium

strategy
(
qlcd−e
0 , qlcd−e

1

)
, we should necessarily have qlcd−e

0 ≥ qlcd−e
1 .Moreover, inequality

(5.1) implies that the only possible forms for an equilibrium strategy are (0, 0), (q∗
0 , 0), (1, 0),

(1, q∗
1 ) and (1, 1), with q∗

0 , q∗
1 ∈ (0, 1). This is proved in the following result.

Lemma 5.1 Regarding the equilibrium strategy, we have the following cases:

1. (0, 0) is equilibrium strategy if and only if S0(0, 0) ≤ 0.
2. (q∗

0 , 0) with q∗
0 ∈ (0, 1) is equilibrium strategy if and only if S0(q∗

0 , 0) = 0.
3. (1, 0) is equilibrium strategy if and only if S1(1, 0) ≤ 0 ≤ S0(1, 0).
4. (1, q∗

1 ) with q∗
1 ∈ (0, 1) is equilibrium strategy if and only if S1(1, q∗

1 ) = 0.
5. (1, 1) is equilibrium strategy if and only if S1(1, 1) ≥ 0.

Proof Denote by BR(q0, q1) the best response of a tagged customer against a given strategy
(q0, q1) of the population of customers. Since the best response of the customer depends on
the signs of the quantities Si (q0, q1) and inequality (5.1) holds, we have the following form
for the best response correspondence:

BR(q0, q1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(0, 0) if S0(q0, q1) < 0,
(q ′

0, 0) : q ′
0 ∈ [0, 1] if S0(q0, q1) = 0,

(1, 0) if S1(q0, q1) < 0 < S0(q0, q1),
(1, q ′

1) : q ′
1 ∈ [0, 1] if S1(q0, q1) = 0,

(1, 1) if S1(q0, q1) > 0.

(5.2)

The equilibrium strategies are best responses against themselves, therefore the only possible
forms of equilibrium strategies are the forms in (5.2).

Now, (0, 0) is equilibrium if and only if (0, 0) ∈ BR(0, 0), which is equivalent to
S0(0, 0) ≤ 0, because of (5.2). This yields Case 1 of the Lemma.

A strategy (q∗
0 , 0) is equilibrium if and only if (q∗

0 , 0) ∈ BR(q∗
0 , 0), which is equivalent

to S0(q∗
0 , 0) = 0, because of (5.2). This yields Case 2 of the Lemma.

The other cases are treated along the same lines. ��
It is illuminating to think of the various cases of Lemma 5.1 as follows: In case 1 all

customers balk. In case 2 a customer who joins is followed by at least one customer who
balks. In case 3 the customers alternate, one joins and the next balks. In case 4 a customer
who balks is followed by at least one customer who joins. In case 5 all customers join.
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Lemma 5.1 shows that the key for the computation of the equilibrium strategies for a
specific instance of the model (for given parameters λ, μ, R and C) is the calculation of the
quantities S0(0, 0), S0(1, 0), S1(1, 0), S1(1, 1) and the solution of the equations S0(x, 0) = 0
and S1(1, x) = 0 in (0, 1). To this endwe can use the formulas (4.38) and (4.39). Thenwe can
derive the following characterization of the equilibrium strategy, as the normalized service
value ν assumes values from 0 to ∞.

Theorem 5.1 An equilibrium customer strategy for the lcd model exists and is unique for any
values of the underlying parameters. If ρ < 1, then we have the following cases regarding

the equilibrium strategy
(
qlcd−e
0 , qlcd−e

1

)
:

1. ν ∈ [0, 1]. Then
(
qlcd−e
0 , qlcd−e

1

)
= (0, 0).

2. ν ∈
(
1, 2

1−2ρ+√
1+4ρ

)
. Then

(
qlcd−e
0 , qlcd−e

1

)
= (q∗

0 , 0) with

q∗
0 = 1

1
ν

+ ρ − 1
− 1

νρ
. (5.3)

3. ν ∈
[

2
1−2ρ+√

1+4ρ
,
5ρ+1−(ρ+1)

√
1+4ρ

3ρ−ρ
√
1+4ρ

]
. Then

(
qlcd−e
0 , qlcd−e

1

)
= (1, 0).

4. ν ∈
(
5ρ+1−(ρ+1)

√
1+4ρ

3ρ−ρ
√
1+4ρ

, 1
1−ρ

)
. Then

(
qlcd−e
0 , qlcd−e

1

)
= (1, q∗

1 ) with

q∗
1 =

3 − ρ − 2
ν−1 + (1 − ρ)

√
1 + 4

ρ(ν−1)

2
. (5.4)

5. ν ∈
[

1
1−ρ

,∞
)
. Then

(
qlcd−e
0 , qlcd−e

1

)
= (1, 1).

Proof We characterize each possible form of an equilibrium strategy.
Case 1 Equilibrium strategy (0, 0).

(0, 0) is equilibrium strategy if and only if S0(0, 0) ≤ 0. However, under population
strategy (0, 0), the system is continuously empty, so S0(0, 0) = R − C

μ
. Hence, (0, 0) is

equilibrium strategy, if an only if R ≤ C
μ
, which is equivalent to ν ≤ 1.

Case 2 Equilibrium strategy (q∗
0 , 0), with q∗

0 ∈ (0, 1).
For q∗

0 ∈ (0, 1), (q∗
0 , 0) is equilibrium strategy if and only if S0(q∗

0 , 0) = 0. By (4.38),
we have that

S0(q
∗
0 , 0) = R − C

μ
· 1

1 − σ(q∗
0 )

, (5.5)

where σ(q0) = ρ2(q0, 0). Using (4.10) and after some algebraic simplifications, we derive
that

σ(q0) = ρq0 + ρ + 1 − √
(ρq0 − ρ + 1)2 + 4ρ

2
. (5.6)

Therefore, we should have

R − C

μ
· 1

1 − σ(q∗
0 )

= 0 and q∗
0 ∈ (0, 1).

Differentiating (5.6) with respect to q0 yields

d

dq0
σ(q0) = ρ

2

⎛

⎝1 − ρq∗
0 − ρ + 1

√
(ρq∗

0 − ρ + 1)2 + 4ρ

⎞

⎠ > 0.
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which shows that σ(q0) is strictly increasing. Therefore,

q∗
0 ∈ (0, 1) ⇔ σ(q∗

0 ) ∈ (σ (0), σ (1)) =
(
0,

2ρ + 1 − √
1 + 4ρ

2

)
.

Moreover, R − C
μ(1−σ)

is clearly strictly decreasing in σ . Hence

q∗
0 ∈ (0, 1)

⇔ R − C

μ(1 − σ(1))
< R − C

μ(1 − σ(q∗
0 ))

< R − C

μ(1 − σ(0))

⇔ R − C

μ(1 − (2ρ + 1 − √
1 + 4ρ)/2)

< 0 < R − C

μ

⇔ C

μ
< R <

C

μ(1 − (2ρ + 1 − √
1 + 4ρ)/2)

⇔ 1 <
Rμ

C
<

2

1 − 2ρ + √
1 + 4ρ

which yields the interval for ν in Case 2.
Moreover, q∗

0 can be found in closed form in this case. Indeed, the defining equation for
q∗
0 , R − C

μ(1−σ(q∗
0 ))

= 0, can be written as 1 − σ(q∗
0 ) = C

Rμ
= 1

ν
. Using (5.6), we arrive,

after some algebraic manipulations, at

(ρq∗
0 − ρ + 1)2 + 4ρ =

(
2

ν
+ ρ + ρq∗

0 − 1

)2

. (5.7)

Therefore, factorizing the difference of the two squares, we obtain
(
2

ν
+ 2ρq∗

0

) (
2

ν
+ 2ρ − 2

)
= 4ρ

and, solving for q∗
0 , we obtain (5.3), which concludes Case 2.

Case 3 Equilibrium strategy (1, 0).
(1, 0) is equilibrium strategy if and only if S1(1, 0) ≤ 0 ≤ S0(1, 0). When (q0, q1) =

(1, 0), equations (4.38) and (4.39) assume the form:

S0(1, 0) = R − C

μ
· 1

(1 − τ)
, (5.8)

S1(1, 0) = R − C

μ

(
ρ(ρ − τ) − τ

ρ(ρ − τ)
+ 1

1 − τ

)
, (5.9)

where τ = ρ2(1, 0). Using (4.10), we derive that

τ = 2ρ + 1 − √
1 + 4ρ

2
. (5.10)

Therefore, (1, 0) is equilibrium if and only if

R − C

μ

(
ρ(ρ − τ) − τ

ρ(ρ − τ)
+ 1

1 − τ

)
≤ 0 ≤ R − C

μ
· 1

(1 − τ)
.

After some rearrangement of terms and simplifications, this is shown to be equivalent to

C

μ
· 2

1 − 2ρ + √
1 + 4ρ

≤ R ≤ C

μ
· 5ρ + 1 − (ρ + 1)

√
1 + 4ρ

3ρ − ρ
√
1 + 4ρ

,
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and multiplying by μ
C and substituting ν = Rμ

C concludes with Case 3.
Case 4 Equilibrium strategy (1, q∗

1 ), with q∗
1 ∈ (0, 1).

For q∗
1 ∈ (0, 1), (1, q∗

1 ) is equilibrium strategy if and only if S1(1, q∗
1 ) = 0. By (4.39),

we have that

S1(1, q
∗
1 ) = R − C

μ

(
ρ(ρ − υ(q∗

1 )) + ρq∗
1 − υ(q∗

1 )

ρ(ρ − υ(q∗
1 )) + ρq∗

1

+ 1

1 − υ(q∗
1 )

)
, (5.11)

where υ(q1) = ρ2(1, q1). Using (4.10) and after some algebraic simplifications, we derive
that

υ(q1) = 2ρ + 1 − √
1 + 4ρ(1 − q1)

2
. (5.12)

Note, now, that υ(q∗
1 ) is a root of (4.17) for q0 = 1 and q1 = q∗

1 , hence

ρq∗
1 = (2ρ + 1)υ(q∗

1 ) − (υ(q∗
1 ))2 − ρ2. (5.13)

Using (5.13), we can easily see that ρ(ρ−υ(q∗
1 ))+ρq∗

1 = (ρ+1−υ(q∗
1 ))υ(q∗

1 ). Therefore,
(5.11) is written equivalently as

S1(1, q
∗
1 ) = R − C

μ

(
1 − 1

ρ + 1 − υ(q∗
1 )

+ 1

1 − υ(q∗
1 )

)

= R − C

μ
− Cρ

μ
· 1

(ρ + 1 − υ(q∗
1 ))(1 − υ(q∗

1 ))
(5.14)

Therefore, (1, q∗
1 ) is equilibrium if and only if

R − C

μ
− Cρ

μ
· 1

(ρ + 1 − υ(q∗
1 ))(1 − υ(q∗

1 ))
= 0 and q∗

1 ∈ (0, 1).

Note, now, that the function

g(υ) = R − C

μ

(
1 − 1

ρ + 1 − υ
+ 1

1 − υ

)
= R − C

μ
− Cρ

μ
· 1

(ρ + 1 − υ)(1 − υ)

(5.15)

is strictly decreasing in υ, whereas υ(q1) given by (5.12) is clearly strictly increasing in q1.
Therefore,

q∗
1 ∈ (0, 1) ⇔ υ(q∗

1 ) ∈ (υ(0), υ(1)) = (τ, ρ).

Hence, (1, q∗
1 ) with q∗

1 ∈ (0, 1) is equilibrium if and only if

τ < υ(q∗
1 ) < ρ

⇔ S1(1, 1) < S1(1, q
∗
1 ) < S1(1, 0)

⇔ R − C

μ(1 − ρ)
< 0 < R − C

μ

(
1 − 1

ρ + 1 − τ
+ 1

1 − τ

)

⇔ 1 − 1

ρ + 1 − τ
+ 1

1 − τ
<

Rμ

C
<

1

(1 − ρ)
. (5.16)
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Substituting τ given by (5.10) and using ν = Rμ
C shows that this is equivalent to

5ρ + 1 − (ρ + 1)
√
1 + 4ρ

3ρ − ρ
√
1 + 4ρ

< ν <
1

1 − ρ

which yields the interval for ν in Case 4.
Moreover, q∗

1 can be found explicitly in this case. Indeed, the defining equation for q∗
1 is

S1(1, q∗
1 ) = 0, which can be written equivalently as

R − C

μ
− Cρ

μ
· 1

(ρ − 1)υ(q∗
1 ) − ρ2 + ρ + 1 − ρq∗

1
= 0, (5.17)

because of (5.14) and (5.13). Solving for υ(q∗
1 ) yields

υ(q∗
1 ) = 1

1 − ρ

(
1 + ρ − ρ2 − ρq∗

1 − Cρ

Rμ − C

)
. (5.18)

Equating the two expressions for υ(q∗
1 ) given by (5.12) and (5.18) yields a quadratic equation

for q∗
1 . Solving this equation and choosing the root that belongs to (0, 1) yields (5.4), which

concludes Case 4.
Case 5 Equilibrium strategy (1, 1).

(1, 1) is equilibrium strategy if and only if S1(1, 1) ≥ 0. Under strategy (1, 1), the system
behaves as an M/M/1 queue with arrival rate λ and service rate μ; hence S1(1, 1) = R −

C
μ(1−ρ)

. Therefore, (1, 1) is equilibrium if and only if R − C
μ(1−ρ)

≥ 0, which is equivalent

to ν = Rμ
C ≥ 1

1−ρ
, which concludes Case 5. ��

When ρ ≥ 1, Theorem 5.1 continues to be valid with appropriate adaptations. More
concretely, some cases cease to exist. Indeed, from the stability condition (4.7), we see
that strategies of the form (1, q1), with q1 ∈ [0, 1], cannot be equilibrium strategies when
ρ ≥ 2. Moreover, the strategy (1, 1) cannot be equilibrium strategy for ρ ≥ 1. Therefore,
for ρ ∈ [1, 2), the cases 1–3 of the Theorem are still valid and the case 4 holds for ν ∈(
5ρ+1−(ρ+1)

√
1+4ρ

3ρ−ρ
√
1+4ρ

,∞
)
. For ρ ∈ [2,∞), the case 1 of the Theorem is valid and the case 2

holds for ν ∈ (1,∞).
Now, we can use the formulas (4.40) and (4.41) to obtain the equilibrium throughput and

the equilibrium social welfare as ν increases from 0 to ∞.

Corollary 5.1 Regarding the equilibrium throughput, T Hlcd−e, and the equilibrium social
welfare per time unit, SWlcd−e, we have the following cases, when ρ < 1:

1. ν ∈ [0, 1]. Then
T Hlcd−e = 0 (5.19)

and

SWlcd−e = 0. (5.20)

2. ν ∈
(
1, 2

1−2ρ+√
1+4ρ

)
. Then

T Hlcd−e = λq∗
0

1 + λq∗
0
, (5.21)

where q∗
0 is given by (5.3) and

SWlcd−e = 0. (5.22)
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3. ν ∈
[

2
1−2ρ+√

1+4ρ
,
5ρ+1−(ρ+1)

√
1+4ρ

3ρ−ρ
√
1+4ρ

]
. Then

T Hlcd−e = λ

2
(5.23)

and

SWlcd−e = C

(
ρ

2
ν − ρ

1 − 2ρ + √
1 + 4ρ

)
. (5.24)

4. ν ∈
(
5ρ+1−(ρ+1)

√
1+4ρ

3ρ−ρ
√
1+4ρ

, 1
1−ρ

)
. Then

T Hlcd−e = λ

2 − q∗
1
, (5.25)

where q∗
1 is given by (5.4) and

SWlcd−e = Cρ
1 − q∗

1

2 − q∗
1

(
ν − ρ + (1 − v(q∗

1 ))2q∗
1

[ρ + (1 − v(q∗
1 ))q∗

1 ](1 − v(q∗
1 ))

)
, (5.26)

where q∗
1 is given by (5.4) and

v(q∗
1 ) = 2ρ + 1 − √

1 + 4ρ − 4ρq∗
1

2
. (5.27)

5. ν ∈
[

1
1−ρ

,∞
)
. Then

T Hlcd−e = λ (5.28)

and

SWlcd−e = Cρ

(
ν − 1

1 − ρ

)
. (5.29)

Proof We substitute the equilibrium probabilities q0 and q1 in the formulas (4.40) and (4.41),
according to the various cases of Theorem 5.1. After some algebraic simplificationswe derive
the various formulas of the Corollary. ��

6 Comparisons with other information structures

In this section we present some results concerning the comparison of the lcd model with the
un (Edelson &Hildebrand, 1975) and obs (Naor, 1969) models. Let qun−e be the equilibrium
probability of the un model which is given as

qun−e =

⎧
⎪⎪⎨

⎪⎪⎩

0 if ν ∈ [0, 1],
ν−1
νρ

ν ∈
(
1, 1

1−ρ

)
,

1 if ν ∈
[

1
1−ρ

,∞
)

,

(6.1)

(see e.g., Hassin & Haviv, 2003 Table 3.1) and T Hun−e, SWun−e be the corresponding
equilibrium throughput, equilibrium social welfare. Moreover, we denote by T Hobs−e and
SWobs−e the throughput and the social welfare of the obs model when customers enter

according to Naor’s individually optimal threshold
⌊
Rμ
C

⌋
= ν�.
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To present several numerical results concerning the comparison of the various models, we
will consider a numerical experiment with parameters λ = 0.8,μ = 1,C = 1 and R ∈ [0, 6],
which we will refer to as the ‘standard numerical scenario’. Note that in this scenario we have
that ρ = 0.8, and ν ∈ [0, 6]. This numerical scenario is typical. Indeed, we have considered
a large number of other parameter values and the numerical results are similar, in the sense
that the various figures have similar shapes leading to the same findings and interpretations.

We articulate the presentation of the analytical and the numerical results in three subsec-
tions, for the equilibrium probabilities, the equilibrium throughput and the equilibrium social
welfare.

6.1 Comparison of the equilibrium probabilities

The equilibrium joining probabilities for the lcd and the unmodels satisfy a universal inequal-
ity. The inequality states that the join probability of the un model is always between the two
join probabilities of the lcd model. In addition, the equilibrium join probability for customers
who follow balking (respectively joining) customers in the lcd model is greater than or equal
(respectively less than or equal) to the equilibrium join probability of the un model.

Theorem 6.1 Let
(
qlcd−e
0 , qlcd−e

1

)
be the equilibrium strategy for an lcd model, given

according to the various cases of Theorem 5.1, and qun−e the equilibrium strategy for the
corresponding un model, given by (6.1). Then

qlcd−e
0 ≥ qun−e ≥ qlcd−e

1 . (6.2)

Proof Let S(q0, q1) be the net benefit of a tagged customer who joins given that the strategy
of the population is (q0, q1). Then, conditioning on the last decision before her arrival and
using (4.1) we have that

S(q0, q1) = 1 − q1
1 − q1 + q0

S0(q0, q1) + q0
1 − q1 + q0

S1(q0, q1). (6.3)

Moreover, the functions S0(q0, q1), S1(q0, q1) and S(q0, q1) are all decreasing in q0 and q1.
We now consider the various cases of Theorem 5.1 separately.

Case 1 (ν ∈ [0, 1]):
In this case, we have qlcd−e

0 = qlcd−e
1 = qun−e = 0 and the inequality (6.2) is valid.

Case 2
(
ν ∈

(
1, 2

1−2ρ+√
1+4ρ

))
:

In this case, the equilibrium qlcd−e
0 is characterized by the equation S0

(
qlcd−e
0 , 0

)
= 0,

whereas qun−e is characterized by the equation S
(
qun−e, qun−e

) = 0. Using (6.3), we have
that

0 = S
(
qun−e, qun−e) = (

1 − qun−e) S0
(
qun−e, qun−e) + qun−eS1

(
qun−e, qun−e) .

But S0
(
qun−e, qun−e

)
> S1

(
qun−e, qun−e

)
(because of (5.1)), so necessarily S0(

qun−e, qun−e
)

> 0. Now, S0(q0, q1) is decreasing in q0 and q1; hence S0(qun−e, 0) ≥
S0

(
qun−e, qun−e

)
> 0. However, note that S0(q

lcd−e
0 , 0) = 0 (by the defining equation

of qlcd−e
0 ) and we conclude that S0(qun−e, 0) > S0(q

lcd−e
0 , 0). Using the monotonicity of

S0(q0, q1), we conclude that qun−e < qlcd−e
0 . On the other hand, we have that for this case

qlcd−e
1 = 0 ≤ qun−e and the inequality (6.2) is valid.

Case 3
(
ν ∈

[
2

1−2ρ+√
1+4ρ

,
5ρ+1−(ρ+1)

√
1+4ρ

3ρ−ρ
√
1+4ρ

])
:

123



Annals of Operations Research

Fig. 2 Equilibrium joining probabilities for ρ = 0.8, ν ∈ [0, 6]

In this case, we have that qlcd−e
0 = 1, qlcd−e

1 = 0, whereas qun−e ∈ (0, 1). Hence, the
inequality (6.2) is valid.

Case 4
(
ν ∈

(
5ρ+1−(ρ+1)

√
1+4ρ

3ρ−ρ
√
1+4ρ

, 1
1−ρ

))
:

In this case, the equilibrium qlcd−e
1 is characterized by the equation S1

(
1, qlcd−e

1

)
= 0,

whereas qun−e is characterized by the equation S
(
qun−e, qun−e

) = 0. Using (6.3), we have
that

0 = S
(
qun−e, qun−e) = (

1 − qun−e) S0
(
qun−e, qun−e) + qun−eS1

(
qun−e, qun−e) .

But S0
(
qun−e, qun−e

)
> S1

(
qun−e, qun−e

)
(because of (5.1)), so necessarily S1(

qun−e, qun−e
)

< 0. Now, S1(q0, q1) is decreasing in q0 and q1; hence S1(1, qun−e) ≤
S1

(
qun−e, qun−e

)
< 0. However, note that S1(1, q

lcd−e
1 ) = 0 (by the defining equation of

qlcd−e
1 ) and we conclude that S1(1, qun−e) < S1(1, q

lcd−e
1 , 0). Using the monotonicity of

S1(q0, q1), we conclude that qun−e > qlcd−e
1 . On the other hand, we have that for this case

qlcd−e
0 = 1 ≥ qun−e and the inequality (6.2) is valid.

Case 5
(
ν ∈

[
1

1−ρ
,∞

))
:

In this case, we have qlcd−e
0 = qlcd−e

1 = qun−e = 1 and the inequality (6.2) is valid. ��
To illustrate the result we consider the standard numerical scenario that we described in

the beginning of the Section and plot the equilibrium joining probabilities as functions of the
service value. The graphs are shown in Fig. 2.

6.2 Comparison of the equilibrium social welfare functions

An analytical comparison result shows that the lcd model outperforms the un model with
respect to the equilibrium social welfare functions.
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Theorem 6.2 Let SWlcd−e be the equilibrium social welfare for an lcd model, given accord-
ing to the various cases of Corollary 5.1, and SWun−e the equilibrium strategy for the
corresponding un model. Then we have the following cases:

1. ν ∈
[
0, 2

1−2ρ+√
1+4ρ

]
. Then

SWlcd−e = SWun−e = 0. (6.4)

2. ν ∈
(

2
1−2ρ+√

1+4ρ
, 1
1−ρ

)
. Then

SWlcd−e > SWun−e = 0. (6.5)

3. ν ∈ [ 1
1−ρ

,∞). Then

SWlcd−e = SWun−e = Cρ

(
ν − 1

1 − ρ

)
> 0. (6.6)

Consider amodelwith fixedλ,μandC and let R vary.Denote by SWlcd−e(ν)and SWun−e(ν)

the equilibrium social welfare of the lcd and the unobservable model as functions of the
normalized service value ν = Rμ

C . Then, the difference SWlcd−e(ν) − SWun−e(ν) is a

unimodal function of ν which attains its maximum at 5ρ+1−(ρ+1)
√
1+4ρ

3ρ−ρ
√
1+4ρ

.

Proof When ν ∈
[
0, 2

1−2ρ+√
1+4ρ

]
, we have that SWlcd−e = 0 (Cases 1 and 2 of Corollary

5.1). Moreover qun−e is either 0 or such that it leaves zero net benefit to a customer who
joins (see formula (6.1)). Hence SWun−e = 0 and we conclude with Case 1 of the Theorem.

When ν ∈
(

2
1−2ρ+√

1+4ρ
, 1
1−ρ

)
, then we have Cases 3 and 4 of Theorem 5.1. In Case

3, we have that the equilibrium strategy is (1, 0) and S0(1, 0) > 0 > S1(1, 0), so for the
equilibrium social welfare (see (4.41)) we have:

SWlcd−e = SWlcd(1, 0) = λS0(1, 0) > 0.

In Case 4, we have that the equilibrium strategy is (1, q∗
1 ) and S0(1, q∗

1 ) > 0 = S1(1, q∗
1 ),

so for the equilibrium social welfare (see (4.41)) we have:

SWlcd−e = SWlcd(1, q∗
1 ) = pI (0)λS0(1, q

∗
1 ) + pI (1)λq

∗
1 S1(1, q

∗
1 ) > 0.

Moreover qun−e is such that it leaves zero net benefit to a customer who joins (see formula
(6.1)). Hence SWun−e = 0 and we conclude with Case 2 of the Theorem.

When ν ∈
[

1
1−ρ

,∞
)
, all customers join in equilibrium under both the lcd and the un

models so the two social welfare functions coincide and are given by formula (5.29). This
implies Case 3 of the Theorem.

Now, we have immediately that the difference SWlcd−e(ν) − SWun−e(ν) is 0 when ν ∈[
0, 2

1−2ρ+√
1+4ρ

]
or ν ∈

[
1

1−ρ
,∞

)
(Cases 1 and 3 of the present Theorem). In the remaining

case where ν ∈
(

2
1−2ρ+√

1+4ρ
, 1
1−ρ

)
, we consider two subcases that correspond to Cases

3 and 4 of Theorem 5.1. In the first subcase, where ν ∈
(

2
1−2ρ+√

1+4ρ
,
5ρ+1−(ρ+1)

√
1+4ρ

3ρ−ρ
√
1+4ρ

]
,

we have that SWlcd−e(ν) − SWun−e(ν) = SWlcd−e(ν) which is given by (5.24) which
is a linear function of ν with positive rate Cρ

2 . Therefore, SWlcd−e(ν) − SWun−e(ν) is

increasing for ν ∈
(

2
1−2ρ+√

1+4ρ
,
5ρ+1−(ρ+1)

√
1+4ρ

3ρ−ρ
√
1+4ρ

]
. In the second subcase, where ν ∈
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[
5ρ+1−(ρ+1)

√
1+4ρ

3ρ−ρ
√
1+4ρ

, 1
1−ρ

)
, we have that the equilbrium strategy is (1, q∗

1 (ν)). Using (4.41),

we have

SWlcd−e(ν) − SWun−e(ν) = SWlcd−e(ν) = SWlcd(1, q∗
1 (ν))

= λ(1 − q∗
1 (ν))S0(1, q∗

1 (ν)) + λq∗
1 (ν)S1(1, q∗

1 (ν))

2 − q∗
1 (ν)

= λ · 1 − q∗
1 (ν)

2 − q∗
1 (ν)

· S0(1, q∗
1 (ν)), (6.7)

since S1(1, q∗
1 (ν)) = 0. Now, the functions 1−q1

2−q1
and S0(1, q1) are both decreasing and

positive so λ
1−q1
2−q1

S0(1, q1) is decreasing. Moreover, q∗
1 (ν) is increasing in ν. Therefore,

we conclude that SWlcd−e(ν) − SWun−e is decreasing for ν ∈
[
5ρ+1−(ρ+1)

√
1+4ρ

3ρ−ρ
√
1+4ρ

, 1
1−ρ

)
.

This shows the unimodality of SWlcd−e(ν) − SWun−e and its maximum is attained for

ν = 5ρ+1−(ρ+1)
√
1+4ρ

3ρ−ρ
√
1+4ρ

. ��

Theorem 6.2 shows that for low and high values of the service value, the social welfare
functions coincide and consequently providing information about the last customer decision
for this range of ν does not improve the economic performance of a system. However, for
intermediate values of ν, there is some difference which is maximized for the normalized
service value ν = 5ρ+1−(ρ+1)

√
1+4ρ

3ρ−ρ
√
1+4ρ

. This value constitutes the boundary between Cases 3

and 4 of Theorem 5.1, that is it is the value where the equilibrium strategy changes from (1, 0)
to (1, q∗

1 )with q∗
1 . Therefore, we see that providing the information about the last customer’s

decision is particularly valuable for normalized service values near to this boundary point.
Unfortunately, due to the nature of the social welfare function of the observable model

(see e.g. Economou, 2021 p.148), an analytical comparison between the equilibrium social
welfare between the observable and the lcd models does not seem possible. Nevertheless, in
all numerical experiments, the observable model outperforms the lcd model. In Fig. 3, we
show the graphs of the equilibrium social welfare functions, as the service value varies, for
the standard numerical scenario.

6.3 Comparison of the equilibrium throughput functions

The analytical comparison of the throughput functions for the lcd, the un and the obs models
seems particularly difficult (if not impossible) due to the corresponding involved formulas
(see Corollary 5.1 for the lcd model - Cases 2 and 4 and the corresponding formulas for the
obs and un models). Extensive numerical experiments have consistently shown the following
findings as the normalized service value, ν, varies (assuming that the parameters λ, μ and C ,
are kept fixed):

1. T Hobs−e(ν) > T Hlcd−e(ν) > T Hun−e(ν), for low values of ν (but greater than 1).
2. T Hobs−e(ν) < T Hlcd−e(ν) < T Hun−e(ν), for high values of ν (but smaller than 1

1−ρ
).

3. T Hobs−e(ν) < T Hlcd−e(ν) = T Hun−e(ν), for ν ≥ 1
1−ρ

.

4. The functions T Hlcd−e(ν) and T Hun−e(ν) cross only once in
(
1, 1

1−ρ

)
. More con-

cretely, there exists ν∗ such that T Hlcd−e(ν) > T Hun−e(ν), for ν ∈ (1, ν∗), whereas
T Hlcd−e(ν) < T Hun−e(ν), for ν ∈

(
ν∗, 1

1−ρ

)
.
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Fig. 3 Equilibrium social welfare functions for ρ = 0.8, ν ∈ [0, 6]

Fig. 4 Equilibrium throughput functions for ρ = 0.8, ν ∈ [0, 6]

These findings are illustrated in Fig. 4, wherewe see the graphs of the equilibrium through-
put functions for the standard numerical scenario.
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7 Conclusions and extensions

In this paper we studied the effect of providing information about last customer’s decision
on strategic customers who face the dilemma of whether to join or balk at the arrival instants
of an M/M/1 queue. This kind of information smooths the effective arrival process and has
been shown to be beneficial for the social welfare in comparison to the unobservable model,
in particular for intermediate values of the service reward. Therefore, in systems where the
information about the queue length cannot be communicated to the customers (as it is the
case of several models that we discussed in the introduction), the provision of information
about the last customer’s decision is advantageous.

The present study constitutes the first step towards a more complete understanding of the
pros and cons of communicating the decisions of other customers to the strategic customers
of a service system. There are a number of directions for the generalization and extension of
this idea.

In the framework of the join-or-balk dilemma for the arrivals at anM/M/1 queue, the most
natural extension is to consider the situation where the customers are informed upon arrival
about the decisions of more than one recent arrivals. There is a whole family of models in this
area that are currently under investigation (see e.g. Economou, 2024). For example, each arriv-
ing customer may be informed about the join-or-balk decisions of the N more recent arrivals.
Then, in this ‘generalized Bernoulli’ model, the information I (t) is an N -vector of 0 s and
1s and a customer’s strategy is a vector q = (qi1,i2,...,in : (i1, i2, . . . , in) ∈ {0, 1}N ). Another
possibility is that arriving customers are informed about the number of joining customers
since the last customer who balked. In this ‘geometric’ model the information I (t) is a non-
negative integer and a customer’s strategy is an infinite sequence q = (q(0), q(1), q(2), . . .).
The performance evaluation of the underlying queueing models under an arbitrary strategy
and the characterization and computation of equilibrium customer strategies seem challeng-
ing problems in the area of Rational Queueing.
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