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Abstract

In this work, we propose a new variant of construct, merge, solve, and adapt (CMSA),
which is a recently introduced hybrid metaheuristic for combinatorial optimization. Our
newly proposed variant, named reinforcement learning CMSA (RL-CMSA), makes use of a
reinforcement learning (RL) mechanism trained online with data gathered during the search
process. In addition to generally outperforming standard CMSA, this new variant proves
to be more flexible as it does not require a greedy function for the evaluation of solution
components at each solution construction step. We present RL-CMSA as a general framework
for enhancing CMSA by leveraging a simple RL learning process. Moreover, we study arange
of specific designs for the employed learning mechanism. The advantages of the introduced
CMSA variant are demonstrated in the context of the far from most string and minimum
dominating set problems, showing the improvement in performance and simplicity with
respect to standard CMSA. In particular, the best performing RL-CMSA variant proposed
is statistically significantly better than the standard algorithm for both problems, obtaining
1.28% and 0.69% better results on average respectively.
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1 Introduction

CMSA is a recently introduced hybrid metaheuristic (Blum et al., 2016; Blum, 2024). At
each iteration, the algorithm deals with an initially empty sub-instance C’ of the considered
optimization problem. The first step of each iteration (the construct step) consists of the
generation of several feasible solutions to the original problem instance in a probabilistic way.
Subsequently, the solution components involved in these solutions are added to C’ (the merge
step) and an exact solver is applied to obtain a solution to sub-instance C’ (the solve step). The
last step (the adapt step) consists of removing those solution components from C’ that were
becoming too old with regard to an aging mechanism. In general, the CMSA metaheuristic
is applicable to any problem for which (1) valid solutions can be probabilistically generated
and (2) an exact solver can be devised.

Since its introduction in 2016, CMSA has been successfully applied to a range of different
combinatorial optimization problems. Some of the most recent applications include the ones
to the maximum disjoint dominating sets problem (Rosati et al., 2024), the electric vehicle
routing problem with time windows, simultaneous pickup and deliveries, and partial vehicle
charging (Akbay et al., 2022), a bus driver scheduling problem with complex break con-
straints (Rosati et al., 2022), and test data generation in software product lines (Ferrer et al.,
2021). Moreover, existing extensions of CMSA include, for example, Adapt-CMSA (Akbay
et al., 2022), which is a variant that reduces the parameter sensitivity of the original CMSA
observed in some applications.

The goal of the research presented in this paper is to successfully leverage ideas from
RL for improving CMSA. There are two main aspects which we aim to improve. The first
concerns performance, and the second concerns obtaining a simpler algorithm by eliminating
a problem-dependent component. The rest of the paper is organized as follows. The next two
subsections explain the contribution of this paper and deal with related work from the litera-
ture, respectively. Next, the standard CMSA is described. Following that, the general structure
of the new RL-CMSA variant is explained together with some particular implementations of
the newly proposed learning mechanism. The fourth section provides the experimental study
where the proposed RL-CMSA implementations are compared to the standard CMSA in the
context of the FFMS and MDS problems. Finally, the last section gives some conclusions
and ideas for future work.

1.1 Contribution of this paper

RL (Sutton & Barto, 2018) is an area of Machine Learning (ML) concerned with the actions
of an intelligent agent in a certain environment with the goal of maximizing its cumulative
reward. At each step, the agent is presented with a set of available actions and must discover
which ones result in the highest reward. Generally, actions may not only produce a reward
but can also influence the available actions and rewards for the following steps. In this work,
we introduce a new variant of CMSA, named RL-CMSA. This new algorithm variant makes
use of RL to improve the construct step of CMSA. As mentioned above, during the construct
step of CMSA a certain number of solutions to the problem at hand are constructed. This
is usually done by employing a problem-specific solution construction mechanism together
with a greedy function. Hereby, the solution construction mechanism determines for each
construction step the set of available options, while a greedy function gives a static or dynamic
greedy value to each option. Exactly one of the available options is probabilistically chosen
at each step—based on the greedy function values—until a complete solution is obtained.
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This procedure resembles the general RL setting and motivates employing an agent for
constructing solutions, which is exactly what is done in our novel RL-CMSA approach. In
particular, solution constructions are performed by selecting solution components depending
on associated quality measures, which are updated at each iteration through an RL strategy.
Forevery selection of a solution component, the agent receives a reward depending on whether
the selected solution component proves to be useful. Solution components’ usefulness is
hereby measured by their possible inclusion in solutions to sub-instances at each iteration of
RL-CMSA.

The proposed RL-CMSA approach is applied to two NP-hard combinatorial optimization
problems: (1) the FFEMS problem and (2) the MDS problem. In both cases, the experimental
results show the superiority of the new RL-CMSA variant over standard CMSA. In addition
to performing strongly in comparison to standard CMSA, RL-CMSA is more general and
sometimes even easier to implement. This is because, while still requiring a solution con-
struction mechanism, it does not need a greedy function for evaluating the set of options for
extending the current partial solution at each construction step.

1.2 Related work

In recent years, the field of ML has gained notorious popularity as it has brought significant
advancements in different domains. This has been in part enabled by the increase in compu-
tational power and the availability of large datasets. As a consequence, more attention has
been given to ML in the field of combinatorial optimization.

On the one hand, various ML end-to-end combinatorial optimization solvers have been
proposed, see e.g., (Bello et al., 2016; Kool et al., 2018; Kwon et al., 2020). While this
is an interesting and promising research direction, these solvers have not yet been able
to compete with traditional state-of-the-art techniques and are currently limited to small
problem instances. On the other hand, an alternative line of research consists of leveraging
ML to enhance classic combinatorial optimization techniques. Our work belongs to this
research area and more particularly consists of improving a general metaheuristic using the
RL paradigm (Sutton & Barto, 2018). One early application of RL within metaheuristics is
found in (Gambardella & Dorigo, 1995), where the authors make use of an RL technique
known as Q-learning within the ant system metaheuristic and apply the resulting algorithm to
the Travelling Salesman Problem (TSP). Some more recent work in the direction of merging
RL and metaheuristics consists of a method for learning the heuristic function of beam search
found in (Huber & Raidl, 2021), which is applied to the Longest Common Subsequence (LCS)
and Constrained Longest Common Subsequence (CLCS) problems. Furthermore, a Variable
Neighbourhood Search (VNS) based on Q-learning was devised for a machine scheduling
problem in (Alicastro et al., 2021). A last algorithm proposal, applied to the TSP, that we
mention here concerns the use of RL for adapting the parameters of a Biased Random
Key Genetic Algorithm (BRKGA) throughout its evolutionary process, found in (Chaves &
Lorena, 2021).

Two examples of recent work with a stronger relation to our contribution can be found
in (Almeida et al., 2020; Kalatzantonakis et al., 2023). Both works use the setting of a classic
RL problem known as the multi-armed bandit problem for selecting operators in the context
of metaheuristics. In the first case, the selection concerns mutation and crossover operators
in the context of a multi-objective evolutionary algorithm applied to the multi-objective
permutation flow shop problem. In the second case, RL is used for learning the selection of
local search operators in VNS applied to the Capacitated Vehicle Routing Problem (CVRP).
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Algorithm 1 High-level pseudo-code of standard CMSA

Input 1: Set C of solution components for the problem instance to be solved.
Input 2: Values for parameters n,, agemax and typ p.

1: Spsf = NULL, C' = ¢

2: while termination conditions not met do

3: for j=1,...,n,do

4: S := probabilistic_solution_construction()
5: forallc; € Sand ¢; ¢ C’ do

6: age,, =0

7: C':=C'U{c}

8: end for

9:  end for

10:  Sopt := apply_exact_solver(C’, t.p)

11:  if Sopy is better than Spgr then Spgf := Sopt end if
12:  adapt(C’, Sopt, agemax)

13: end while

14: return Spgr

Our work also makes use of existing work on the multi-armed bandit problem in the context of
CMSA, for selecting solution components during solution construction, instead of operators.

2 Standard CMSA

To apply CMSA to a combinatorial optimization problem, one first needs to define a set C
of solution components. In this way, each valid solution to the considered problem can be
represented as a subset of C. For the following description of CMSA, we assume a generic
set C = {c1,c2,...,cy}. Moreover, note that for every valid solution S to the problem at
hand, it holds that S C C.

Algorithm 1 illustrates the structure of standard CMSA.. First, sub-instance C’ is initialized
as empty and the best-so-far solution Spgr is initialized as NULL. Afterward, the main loop of
the algorithm starts, in which the construct, merge, solve, and adapt steps are sequentially
performed until a given time limit is reached. These four steps can be described as follows:

1. In the construct step, n, solutions to the problem at hand are probabilistically con-
structed.

2. The merge step consists of extending C’ with those solution components c¢; that appear
in at least one of the n, constructed solutions and for which it holds that ¢; ¢ C’.
Moreover, their ages are set to 0.

3. The solve step uses an exact solver with a time limit given by parameter frp to solve
problem instance C’, obtaining a solution Sqp to the problem at hand.

4. Finally, the adapt step consists of increasing (by one) the age of solution components
in C” \ Sopt, resetting the age of solution components in Sop to 0 and erasing those
solution components of C’ that have an age of at least agemax, which is a parameter of
the algorithm.

The construct and solve steps are the problem-dependent parts of the algorithm. Generally, a
solution construction mechanism together with a greedy function tailored to the problem at
hand is used in the first, and an exact method for the tackled problem is used in the second.
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Algorithm 2 High-level pseudo-code of RL-CMSA

Input 1: Set C of solution components for the problem instance to be solved.
Input 2: Values for parameters n4, ageyax, 1ILP> ¢flimit and breset-

1: Spsf = NULL, C' = ¢

2:qi =0fori=1,...,n > Initialization of the ¢ values
3: while termination conditions not met do

4 forj=1,...,n,do

5: S := probabilistic_solution_construction(q)

6 forallc; € Sand ¢; ¢ C' do

7 age,, =

8 C':=C'U{c)

9 end for

10:  end for

11: Sopt := apply_exact_solver(C’, fi.p)

12: if Sopt is better than Spst then Spet := Sopt end if
13:  adapt(C’, Sopt, agemax)

14:  update_q_values(q, C’, Sopt)

15:  ¢f = compute_convergence_factor(q) > Optional
16:  if ¢f > cfijimit then

17: gi =0fori=1,...,n > Re-initialization of the ¢ values
18: if breset = true then C’ = @ end if

19:  endif

20: end while
21: return Spgf

3 RL-CMSA

In contrast to standard CMSA, our new RL-CMSA approach keeps a quality measure ¢; for
every solution component ¢; € C, henceforth called the g-values. The set (or vector) of all
g-values will be denoted by q. The probabilistic construction of solutions in RL-CMSA is
performed depending on these g-values: solution components with higher values will have
a higher chance to be selected. Moreover, in every iteration of CMSA, after the application
of the exact solver, the g-values are updated. In particular, the values corresponding to those
solution components in C’ that form part of the solution Sy found by the exact solver at the
current iteration are increased. Conversely, the values of the solution components in C’ that
do not appear in Sqp are decreased.

Algorithm 2 illustrates the general structure of RL-CMSA. First, the stored sub-instance C’
is initialized as empty, the best-so-far solution Sper to NULL and the g-values are all initialized
to zero. Inside the main loop, the usual four CMSA steps are performed in addition to an extra
fifth step, which we denote by learn step. The four usual CMSA steps are left unchanged
except for the construct step. Similarly to standard CMSA, the construct step of RL-CMSA
consists of probabilistically constructing n, solutions. In RL-CMSA this is done, however, by
using the g-values. Solution components with higher values will—in probability—be chosen
more often. In the new learn step the g-values are updated and a convergence measure can
be calculated, leading to a restart of the learning procedure if deemed necessary. Such a
restart consists of (1) setting the g-values back to zero and (2) emptying the subinstance C’
depending on a parameter (as explained below).

Different designs were considered for the new solution construction mechanism and the
update of the g-values. These designs have in part been inspired by existing work on the
multi-armed bandit problem, which is a classic RL problem (Kuleshov & Precup, 2014).
Multi-armed bandit problems were introduced by Robbins in 1952 (Robbins, 1952). In their
simplest form, they consist of a set of k probability distributions { D1, ..., D¢}. The objective
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is to come up with a sampling strategy for an agent for whom the distributions are unknown.
This agent iteratively samples from the distributions obtaining a reward in each iteration. In
technical terms, the goal is to design a sampling strategy that maximizes the obtained sum
of rewards. The distributions are generally interpreted as k arms in a slot machine and the
agent is viewed as a gambler whose goal is to collect as much money as possible.

As one can notice, the RL strategy we implement into CMSA 1in this work results in
a scenario closely resembling a multi-armed bandit problem. In the case of RL-CMSA,
sampling consists of selecting one of the available solution components. However, a key
difference is the following one: instead of assigning rewards after every sample, or after every
solution construction, in RL-CMSA rewards are assigned after the solve step, depending on
the result of the exact solver when solving the current sub-instance.

3.1 Update of the g-values

In the learn step, the g-values corresponding to solution components in C’ are updated
depending on whether they form part of the solution Sy computed by the exact solver
during the solve step. In this way, the quality of a solution component is not measured by a
myopic measure of the quality of adding that solution component to a partial solution under
construction. Neither is the quality related to the objective function value of the final solution
to which a component was added during its construction. The quality of a component is
rather measured in comparison to all other solution components in the sub-instance C’ in the
following way: the value g; of a solution component ¢; is increased if it forms part of S,
and decreased otherwise. This is done by giving a reward R > 0 in the first case, and —R in
the latter. The following three designs for performing the g-value update were considered:

1. The first design consists of simply summing the obtained rewards over time. At each
iteration, once the reward r; € {R, — R} for a solution component ¢; € C’ is determined,
its g-value is updated as follows:

qi *=qi i )]

2. The second design is based on averaging the received rewards over time. For this pur-
pose, a variable n; stores the number of times the g-value g; of a solution component
¢; was updated since the start of the algorithm. At each iteration, once the reward
r; € {R, —R} for a solution component ¢; € C’ is determined, its g-value is updated as
follows:

1
qi :==qi + —i —qi). ()
n;

3. The last design generalizes the previous one by replacing 1/n; with a constant step-size
parameter & > 0. The corresponding update of the g-value ¢; of a solution component
¢; € C'is, therefore, as follows:

qi = qi +alri —qi). 3

The first design option from above might introduce a bias toward solution components
frequently selected. For example, with this method a solution component that gets reward
R obtains the same g-value as one that was awarded rewards R, —R and R. On the other
hand, this does not happen for the second design. By setting the g-values to the average of the
rewards, the amount of times a solution component has been selected does not produce a bias.
The second and third designs are popular strategies for updating the g-values in multi-armed
bandit problems (Sutton & Barto, 2018). Note that, due to having a constant step-size «, the
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third design gives more weight to recent rewards than to older ones. This could be beneficial
in the context of RL-CMSA as the rewards given may change over time.

3.2 Solution construction in RL-CMSA

The new construct step uses the g-values for probabilistically generating solutions. The
construction process begins with an empty solution S = ¢, to which—at each step—one of
those solution components that can be used to feasibly extend the current partial solution is
added until the solution is complete. In the following, we will denote by Cgeas © C\ S the set
of feasible solution components with respect to a partial solution S. Moreover, remember that
qi denotes the g-value associated to solution component ¢; € C. We propose two different
designs for selecting a solution component from Cpegs.

3.2.1 Softmax selection

The first proposed design uses a real parameter dr € [0, 1] called the determinism rate. At
each step of the construction process, a solution component is selected in the following way:

1. With a probability dr, a random solution component between the ones from Creys With
the highest g-value is chosen.

2. Otherwise, with a probability 1 — dr, the selection is done in a roulette-based manner
with the probability p; of selecting solution component ¢; € Cre,s given by

eBai
Pi= 5~ Ba
Gk
ch €Cfeas e

Hereby, § > 0 is a parameter that, together with dr, governs the balance between
exploration and exploitation.

“

Note that this first selection design might lead to a convergence of the algorithm. This is
because the ¢-values of some solution components may become considerably larger than the
rest, leading to the same solution being constructed all the time, further enlarging their g-
values. To remediate this issue we propose to measure the level of convergence as described
below. This measurement is conducted once per iteration in the learn step after updating
the g-values. In case high convergence is detected, the algorithm is reset by re-initializing
the g-values to zero and emptying C’ depending on a parameter. This mechanism depends
on a convergence factor and a convergence factor limit. Whenever the convergence factor is
greater than the convergence factor limit, the algorithm is re-initialized.

In the following, the calculation of the convergence factor is described. For every solution
component ¢; of the last constructed solution S, the probability z; of preferring c; to all
solution components that do not form part of S is calculated. The convergence factor is then
defined as the minimum of these values for all ¢; € S. Note that with this definition, the
closer the convergence factor is to value one, the closer the algorithm is to convergence. In
this context, note that the probability of choosing a particular solution component depends on
the values of parameters dr and 8. More specifically, the probability z; of choosing solution
component ¢; can be written as follows:

ePai

zi ::dr~Xi+(1—dV)'W

(&)
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where x; is defined as:

1 .
MoecsUeTa=ay fai = max{gr | cx € C\ SU{ci}}

Xi = ©

0 otherwise

The expression for z; is derived from how solution components are chosen in the construct
step. With a probability dr a solution component is chosen uniformly at random from the
solution components that achieve the highest g-value, and with a probability 1 — dr the
selection is performed in a roulette-wheel-based manner with probabilities given by the
softmax expression. After having calculated probabilities z; for every solution component
c¢; € S, the convergence factor is computed as cf := min{z; | ¢; € S}.

Once the convergence factor cf is calculated, the algorithm checks whether it is greater
than the conference factor limit defined by parameter ¢ fiimit € [0, 1]. If this is the case then
the algorithm is re-initialized:

1. The g-values are re-initialized to zero.
2. Sub-instance C’ is emptied depending on a Boolean parameter bregeq. If breser = truce,
C’ is set to . Otherwise, if breser = false, C’ is not modified.

Emptying C” when re-initializing the algorithm completely erases the previous information
gathered by the RL agent. Conversely, if C’ is not emptied, some of the so-far gathered
information is kept.

3.2.2 Upper-confidence-bound (UCB) selection

As an alternative to Softmax selection, we consider UCB selection (Sutton & Barto, 2018).
This is a method designed for the multi-armed bandit problem which aims at sampling the
distribution set according to their potential to be optimal. We consider it as an alternative
way of dealing with convergence, as this selection mechanism simply assures sufficient
eventual exploration. Similarly to Softmax selection, we have implemented this method in
the following way:

1. With a probability dr, a random solution component between the ones with the highest
g-value is chosen.

2. Otherwise, with a probability 1 —dr, UCB selection is employed, consisting of selecting
randomly between the solution components whose ¢-values maximize the following
expression:

log(n)

nj

qi +p- @)
Hereby p > 0 is a parameter, n denotes the current iteration number, log(n) denotes
the natural logarithm of n, and n; the number of times solution component c; has been
selected so far.

The square-root term in the UCB expression is a measure of the uncertainty in the estimate of
gi . Each time a solution component is selected, its corresponding square-root term decreases,
hence lowering the estimated uncertainty in its g-value. Conversely, if an iteration passes and
a solution component is not chosen the square-root term increases.

Note that in case the g-values are unbounded, this method is not usable as the square-root
term becomes useless once the g-values become large enough. This may happen with the
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first and third designs we proposed for the update of the g-values. For this reason, we will use
this method together with the second design proposed above for the g-value update, which
sets the g-values to the average of the rewards seen so far.

4 Experimental study

To experimentally evaluate RL-CMSA, we consider the following four algorithm variants
which make use of the different designs for the update of the g-values and for the selection of
solution components during solution construction. The four considered RL-CMSA variants
can be described as follows:

1. RL-CMSA-1: this variant is characterized by the first design for the update of the g-
values (summation of the rewards), and the use of Softmax selection. The reward (R)
is set to one.

2. RL-CMSA-2: second design for the g-value update (average rewards) and Softmax
selection. The value of the reward (R) is considered a parameter of the algorithm.

3. RL-CMSA-3: the same as RL-CMSA-2, just that the third design (average rewards +
step-size) is used for the ¢-value udpate.

4. RL-CMSA-4: second design for the g-value update, in combination with the UCB
selection for solution construction as an alternative way of avoiding convergence. The
reward (R) is set to one.

These four RL-CMSA variants will be compared to standard CMSA. In particular, this
comparison will be conducted in the context of two combinatorial optimization problems
from the literature: the FFMS and the MDS problems.

All the algorithms were run in a single-threaded mode in a cluster of machines with 10-
core Intel Xeon processors at 2.2 GHz with 8 GB of RAM. Moreover, they all employed the
commercial solver CPLEX as the exact method used in the solve step.

4.1 Algorithm parameters

The first three RL-CMSA variants, which use Softmax selection, make use of parameters 3,
¢ fiimit, and byeser. Hereby, B is a parameter in the Softmax equation, ¢ fijimi is the limit for the
convergence factor, and the Boolean parameter byese( indicates whether to empty C” in the case
of re-initializing the g-values. In addition, the second and third RL-CMSA variants consider
the reward R as a parameter. The third RL-CMSA variant also uses parameter «, which
determines the value of the step-size parameter in the g-value update expression. The fourth
RL-CMSA variant makes use of parameter p from the UCB selection expression. On top
of these, all four algorithm variants utilize parameter dr, which determines the determinism
rate used when selecting solution components.

In addition to the above-mentioned parameters, all algorithms also use the standard CMSA
parameters ty p, 1,4, and agemax. These determine the time limit given to the exact solver
in the solve step, the number of solutions constructed in the construct step, and the age
limit used in the adapt step respectively. In addition, they all use the CPLEX parameters
CpleXyamstarts CPI€Xemphasis and cpleXpq. These are Boolean parameters that modify the
behavior of CPLEX. The first one controls whether the algorithm provides an initial solution
to CPLEX. In case cpleX,,,msiart = {71€, the best-so-far solution will be provided to CPLEX
for warm-starting the solving process. The second parameter balances between the speed
of proving optimality and the speed of improving the best solution found during a CPLEX
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execution. If cpleXgpphqgis = frue, then CPLEX uses its highest heuristic emphasis value.
Otherwise, the default setting is used. Finally, the third parameter determines whether a
CPLEX execution is stopped when a solution that improves the best-so-far solution is found.
This can be beneficial due to CPLEX sometimes spending a lot of resources on bound
computations important for proving optimality.

4.2 Application to the far from most string (FFMS) problem

The FEMS problem is a combinatorial optimization problem arising in bioinformatics and
forms part of the sequence consensus problems family. These problems find applications in
different fields, such as molecular biology (Mousavi, 2010). The FEMS problem is known
to be NP-hard, meaning that it can not be solved in polynomial time unless P = NP (Lanctot
et al., 2003). Given a set of equal-length input strings over an alphabet ¥ and a threshold
t > 0, the problem aims at finding a string of the same length that maximizes the number of
input strings with which its Hamming distance is at least t. Hereby, given two strings s and
s’ of length m, their Hamming distance dy (s, s’) is defined as the number of positions where
their corresponding characters differ. That is:

du(s, s’y = |{k e {1,...,m} | s[k] # s'[k]}| (8)

An instance of the FFMS problem is denoted by (S, X, ¢), where S is a set of n input strings
{s;}7_, of length m over alphabet % and O < ¢ < m is the threshold. Every string of length
m over alphabet X is then a feasible solution to the problem. The goal is to find a feasible
string s that maximizes the following objective function:

fi(s) = |{s" € S| du(s.s') > 1} )

In practice, our CMSA and RL-CMSA implementations make additional use of a sec-
ondary objective function to differentiate between two solutions having the same primary
objective function value (Eq.9). This secondary objective function can be stated as follows:

Hly:= Y duG,s)+  max  {du(s,s)) (10)

s'e{teS|dy (t,s)<t
s'e{teS|dy (t,s)>t} s'eltesldy (ts)<t)

As the reader may notice, a higher value for f>(s) makes a small change in s less probable
to lead to a decrease in the main objective function f(s). Therefore, a solution s is deemed
better than a solution s’ (that is, f(s) > f(s")) if and only if (1) fi(s) > fi(s') or (2)
(fi1(s) = f1(s") and fo(s) > f2(s")). This lexicographic function was proposed in (Blum &
Pinacho-Davidson, 2023) to remedy the negative effect of large plateaus in the search space
of the FFMS problem.

In the following, we explain the definition of solution components for the application
of CMSA and the RL-CMSA variants. In addition, it will be described how sub-instances
are solved by making use of CPLEX. Finally, we will introduce the method for generating
solutions used in the construct step of standard CMSA.

4.2.1 Solution components

A natural way of defining the set C of solution components in the case of the FFMS problem

is the following one. For every combination of a position k = 1, ..., m of a solution string
and a character a € X set C contains the corresponding solution component ci 5, that is
C:={ckalk=1...,m andaec X} . (11)
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Therefore, at every step j = 1, ..., m of the solution construction process the set of feasible
solution components is Creas 1= {cj a | @ € X}.

4.2.2 Probabilistic solution construction

In the following, we describe how solutions are generated in standard CMSA and the RL-
CMSA variants. All algorithms make use of the same solution construction mechanism in
which a letter for each position j € {1, ..., m} is determined sequentially from j = 1 to
Jj = m. In other words, at the j-th construction step exactly one solution component from
Cteas = {cj,a | @ € X} is chosen. How this is done is different in CMSA and the RL-CMSA
variants. Standard CMSA makes a probabilistic use of the following greedy function for this
purpose. Given a position 1 < j < m and a character a € Z, the corresponding frequency
fj,a 1s defined by:

l{s € S|sjl=al
S|

fj,a =

For choosing a letter for position j the following is done:

1. With a probability 0 < drcmsa < 1, the solution component (letter-position assign-
ment) with the lowest frequency value is selected, breaking ties randomly.

2. Otherwise, with probability 1 — drcmsa, a solution component is chosen from Creys
utilizing letter probabilities proportional to the inverse of their frequencies. That is, the
probability for choosing solution component c; 5 is set to:

]/fja
Y wes 1/ fja

Hereby, drcmsa € [0, 1] is a parameter called the determinism rate of CMSA.

In contrast, the RL-CMSA variants choose a letter for each position j of a solution s by
means of the g-values. In particular, in the case of the FFMS, we make use of a g-value q; 4
for every solution component ¢; 5 € C. At the j-th solution construction step, one of the
solution components is chosen from Creys = {cj o | @ € X} by Softmax, respectively UCB,
selection.

12)

4.2.3 Integer linear programming (ILP) model and sub-instance solving

In CMSA algorithms, sub-instances are—if possible—modeled in terms of ILP models which
are then solved, at each iteration, using an ILP solver. As mentioned before, in this work
we use the commercial solver CPLEX for this purpose. The standard ILP model of the
FFMS problem uses two sets of binary variables. The first contains a variable x; 5 for every

j=1,...,mand a € X, while the second contains a variable y; forevery j =1, ..., m.
n
max 3y, (13)
i=1
subject to Zx‘,-,a =1, forj=1,...,m (14)
aex
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m
ij,si[jjfm_t')’iv fori=1,...,n
j=I
Xja i €1{0,1} (15)

Notably, variable x ; 5 takes value one if character a is chosen for position j of the solution
string and takes value zero otherwise. Constraint (14) makes sure that only one character is
chosen for each position. Additionally, constraint (15) together with the maximization goal
make y; take value 1 if and only if the Hamming distance between the solution string and
input string s; is at least 7.

To solve a sub-instance C’ C C, for all ¢; o € C\C’ the constraint x; 5 = 0 is added
to this ILP model. In other words, the values of those variables that correspond to solution
components not forming part of sub-instance C’ are fixed to zero.

4.2.4 Experimental evaluation

For evaluating RL-CMSA in the context of the FFMS problem, we generated the following set
of benchmark instances. Each instance is a collection of n strings of size m with characters
from an alphabet ¥ of size |X|. Additionally, every instance has a threshold associated,
denoted as ¢, indicated in terms of a proportion of m. The benchmark set contains 720
instances for every value of |X| € {4, 12, 20}. These are further divided into 30 instances
for every combination of n € {100, 200, 300, 400} and m € {100, 500, 1000}. Moreover,
two threshold values depending on || are considered for all instances: (0.8m, 0.85m) for
instances with |X| = 4, (0.97m, 1.0m) for |X| = 12, and (0.99m, 1.0m) for |X| = 20.
Parameter tuning. In addition to the instances described above, the benchmark set contains 72
tuning instances, one for every combination of n, m, | 2|, and ¢. We tuned all five algorithms
twice, once for all instances when considering the lower threshold ¢ of each threshold pair,
and once concerning the higher threshold. This was done because from earlier work it is
known that the change of the threshold value changes the nature of the problem more than a
change in n or m. However, in an attempt to reduce the number of tuning instances, instances
with m = 500 were excluded. Hence, both tuning runs used 24 tuning instances. Moreover, a
budget of 3000 algorithm runs was given to both tuning runs, and every algorithm execution
was allowed a time limit of 600 CPU seconds, for both the tuning and evaluation runs.

Table 1 provides the parameter values obtained after conducting the two tuning runs for
every algorithm. There are two columns per algorithm, which contain the parameter values
obtained for the lower (left column) and higher thresholds (right column) respectively.
Results. Each algorithm variant was applied exactly once to each problem instance, with a
computation time limit of 600 CPU seconds. The results obtained by standard CMSA and
the four different RL-CMSA versions are reported in Tables 2, 3, 4. For each combination
of m, |X| and ¢, and each algorithm, we present the average length of the best solutions
found and the average execution time that was needed for obtaining these best solutions.
Columns |s| and 7p.,,[s] contain the two respective values. The three tables offer the results
for the instances with |X| = 4, || = 12 and |X| = 20, respectively. There are 30 different
benchmark instances for every combination of n, m, and ¢. Hence, the presented values are
averages over these 30 instances. The obtained results show the following:

e The four RL-CMSA implementations obtain, on average, better results than CMSA (see
last table rows).

e The only exception are the instances of alphabet size |X| = 20, for which RL-CMSA-2
and RL-CMSA-3 obtain slightly worse average results than CMSA.
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Fig. 1 Time spent by the algorithms for obtaining their best solutions to the FFMS problem instances

e RL-CMSA-1 obtains the best results except for the instances with |X| = 20. For these,
RL-CMSA-4 is the algorithm that obtains the best average results.

e Concerning computation time, the first three RL-CMSA variants seem to require a similar
amount of time to the one required by the standard CMSA.

e In contrast, RL-CMSA-4 finds its best solutions later, employing a larger part of the
600-second time limit.

Figure 1 illustrates the differences in computation time further. It contains five box plots
for the two threshold groups, representing the time required by each algorithm variant. All
algorithms use more time to find their best solutions for the low threshold instances in
comparison to the high threshold ones. This is because the latter instances are much harder,
which causes the algorithms sometimes to get stuck in local optima.

Figure 2 contains Critical Difference (CD) plots for the FFMS problem results, generated
using the R package scmamp (Calvo & Santafé Rodrigo, 2016). Each plot shows the average
rank of every algorithm on the x-axis, with a horizontal bar between algorithms denoting
non-significant differences. The Friedman rank-sum test indicated, with high significance,
that at least one algorithm performs differently than the rest. Thus, we employed Finner’s
procedure (Garcfia et al., 2010) as the post-hoc method for pairwise comparison. The CD
plots show the results obtained regarding this method, using a significance level of 0.05.
The one from Fig. 2a considers all instances together. We can observe that standard CMSA
obtains the worst average rank and that the differences between CMSA and the RL-CMSA
variants are statistically significant. Moreover, RL-CMSA-1 and RL-CMSA-4 are the best-
performing algorithms, being better than the rest with statistical significance. Figures 2b and
¢ show CD plots for the lower and higher threshold instances respectively. For the lower
threshold instances, CMSA also obtains the worst average rank and is the worst algorithm
with statistical significance. In the case of the higher threshold instances, the differences
between the algorithms in terms of average rank are much smaller. In this case, CMSA
obtains the best average rank but the differences with RL-CMSA-1 and RL-CMSA-3 are non-
statistically significant. Interestingly, the best-performing algorithm for the lower threshold
instances, RL-CMSA-4, obtains the worst average rank for the higher threshold ones.

With the intention of better understanding the behavioral differences between CMSA and
the proposed RL-CMSA variants we generated the graphics in Figs.3 and 4. They contain
a plot for 12 exemplary FFMS problem instances with m = 500 for every combination of
n € {100,400} and |X| € {4, 12, 20}. In particular, the plots in Fig.3 show the fraction
of solution constructions (y-axis) for which each solution component (x-axis) was selected.
Note that in all these plots the solution components are ordered from the most selected one
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Fig.2 CD plots concerning the FFMS results
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Fig.3 Exploration plots for the FFMS problem. The x-axis represents the solution components and the y-axis
the percentage of times each one was chosen

(left) to the least selected one (right). Hereby, the y-axis is plotted in a logarithmic scale, to
be able to see differences in a better way.

The most important aspect shown in these graphics is that CMSA—in comparison to the
RL-CMSA variants—generally selects to a lesser extent the highly chosen solution com-
ponents, while it generally shows a higher fraction of selection for less chosen solution
components. This can simply be explained by the presence of RL in the RL-CMSA vari-
ants, which leads to higher exploitation of seemingly good solution components. However,
there are also differences between the RL-CMSA variants. Algorithm variants RL-CMSA-3
and RL-CMSA-4, for example, generally show a lesser degree of exploration than the other
RL-CMSA variants.
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Fig.4 Evolution of the objective function values of the constructed solutions over time for the FFMS problem

Figure 4 contains 12 plots, concerning the problem instances already considered in Fig. 3.
These graphics show, for all five algorithm variants, the quality of the solutions constructed
over time. Run time is represented on the x-axis in terms of seconds. The y-axis shows the
objective function values of the constructed solutions. To improve the visualization, only the
value of the best solution constructed at each iteration is used for plotting.

These graphics clearly show one of the benefits of implementing RL into CMSA. Due to
employing learning, the RL-CMSA variants construct solutions of higher quality than the
latter. Observe, for example, that the quality of the solutions constructed by the RL-CMSA
variants grows over time. Conversely, in the case of CMSA, the quality of the solutions
constructed stays more or less constant as there is no form of learning involved. Notably, the
solutions constructed by CMSA are of really low quality as their objective function values
often are close to 0.

In addition, these graphics show the differences in the behavior of the learning processes
of the different RL-CMSA variants. In the context of RL-CMSA-1 and RL-CMSA-3, for
example, important drops in solution quality can be noted over time. These correspond to
algorithm restarts. Hereby, RL-CMSA-1 conducts most restarts, most notably for the high
threshold instances for which it restarts multiple times. On the other hand, RL-CMSA-3
restarts once for every high threshold instance, except for the instance withn = 400, || = 20
and t = 1.00m.

4.3 Application to the minimum dominating set (MDS) problem

The MDS problem is another well-known NP-hard combinatorial optimization problem from
the literature. Given a graph, the MDS problem aims at finding a smallest subset of nodes
such that every node of the graph is either part of this subset or has at least one neighbor in it.
More formally, let G = (V, E) be an undirected graph. The MDS problem aims at finding a
smallest V C V such that for every v € V at least one of the following two conditions holds:

l.veV
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2. v € V for some v/ € N(v)

Hereby, N (v) denotes the set of neighbors of vin G. Thatis, N (v) := {v € V | (v, v) € E }.
A subset of nodes that fulfills the previous two conditions is called a dominating set of G.
Hence, the MDS problem aims at finding a minimum dominating set, as the name of the
problem suggests. The MDS problem has applications in different fields, such as in wireless
sensor networks (Pino et al., 2018) and natural language processing (Shen & Li, 2010).

The following subsections introduce the definition of solution components, the way of
solving sub-instances, and the way of constructing valid solutions.

4.3.1 Solution components

A natural way of defining the solution components in the case of the MDS problem consists
of introducing a solution component for every node of the input graph. The set of solution
components is then C = V. Therefore, we henceforth employ the v-notation instead of the c-
notation for solution components, thatis, C := {vy, ..., v,}, where each solution component
v; is anode of the input graph G. At each step of the construction process of a solution § C C,
the set of available solution components consists of all the nodes except for those that are
already covered by a node in S and have no uncovered neighbors.

4.3.2 Probabilistic solution construction

Both CMSA and the RL-CMSA variants utilize the following solution construction mecha-
nism. It starts with an empty solution S := §J. At each step of the process exactly one node
(that is, a solution component) is added until a valid solution—being a dominating set—is
obtained. Hereby, let Creas © C denotes—as before—the set of feasible solution components
at the current step, which—in the case of the MDS problem—is defined as the set of nodes
that can cover one or more nodes not already covered by the current partial solution S.

CMSA makes use of the following greedy function for choosing, at each construction
step, a node from Creys. For the introduction of this greedy function, let N[v] := N (v) U {v}
denote the closed neighborhood of v and N[v | S] € N[v] denote the set of uncovered
neighbors of v concerning partial solution S. For the choice of a node to be added to S, the
following is done in CMSA:

1. With a probability 0 < drcmsa < 1, anode v € Creys is chosen as follows:

V= argmax{’N[v/ | S]|} (16)
V' €Cfeas
2. Otherwise, with a probability 1 —drcmsa, a number of min{léiﬁ’s A
Cfeas are stored in L C Cyeys such that:

Creas ‘} nodes from

|N[v | S]] < |N['| S]] forallve L, v € Creas \ L (17)

A node v € L is then chosen uniformly at random and added to S.

Hereby, drcmsa and léiﬁ,‘f‘s A are parameters of the CMSA algorithm.

The RL-CMSA variants avoid using this greedy function. They make use of a set of g-
values containing a value ¢; for each node (solution component) v; € C. The choice of a
node at each construction step is made via Softmax selection, UCB selection respectively.
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4.3.3 ILP model and sub-instance solving

Similarly to the FFMS problem, our algorithms utilize the commercial solver CPLEX in their
solve step. The following ILP model for the MDS problem is employed by CPLEX.

min Z X; (18)

v;ieV
subject to Z xXj+x > 1, forv; e V
UjEN(U,‘)
x; € {0, 1}, forv; e V (19)

As one can see, binary variable x; takes value one if solution component v; € V forms part
of the solution and value zero otherwise. Constraints (19) cause solutions to be dominating
sets as, for every node, it is required that either the node itself and/or one of its neighbors
belong to the solution. Finally, the minimization goal causes the size of the final solution to
be minimum.

To solve a sub-instance C’ C C, for all v; € C\C’ the constraint x; = 0 is added to
this ILP model. In other words, the values of those variables that correspond to solution
components (nodes) not forming part of sub-instance C’ are fixed to zero.

4.3.4 Experimental evaluation

For evaluating standard CMSA and the RL-CMSA variants for the MDS problem, we used
a benchmark set consisting of graphs of different sizes and densities generated by using the
following three graph models: Erdos-Rényi (Erdos & Rényi, 1959), Watts-Strogatz (Watts
& Strogatz, 1998) and Barabasi-Albert (Barabasi & Albert, 1999). The first is one of the
best-known random graph models for generating graphs using two parameters: the number
of nodes and the probability of the existence of an edge between any pair of nodes. The
second is used for generating small-world networks, which have a short average shortest
path length between nodes and maintain a high level of local clustering. Finally, the latter
produces graphs with a majority of low-degree nodes and a few significantly higher-degree
ones.

We generated 30 graphs of every graph type and for every combination of |V| €

{500, 1000, 1500, 2000} and four different graph densities. Densities are controlled by param-
eters p, k, and m for the three graph models, respectively. The four densities considered are
p € {0.00416381, 0.0062414, 0.0103881, 0.020705} and k, m € {2, 3, 5, 10}.! Henceforth,
these will be called 1st, 2nd, 3rd, and 4th density level respectively. The benchmark set
therefore consists of 480 graphs for every model, totalling 1440 instances. Additionally, it
contains one tuning instance for every graph type, density level, and size.
Parameter tuning. The five CMSA variants were tuned using the tuning instances of the lowest
and highest density levels, that is, the instances concerning the 2nd and 3rd density levels
were disregarded to speed up the procedure. This amounts to 24 tuning instances in total. As
in the case of the FFMS problem, tuning was conducted using the R tool irace (Lépez-
Ibafiez et al., 2016) with a budget of 3000 experiments per tuning run. For both tuning and
evaluation, every algorithm execution was given a time limit of 150, 300, 450, and 600 CPU
seconds for instances of sizes |V| € {500, 1000, 1500, 2000} respectively.

! Note that the edge probabilities (p) in the Erdos-Rényi model were selected such that the densities of the
produced graphs matches the ones of the other models.
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Table 5 presents the parameter values obtained after tuning, together with their allowed

ranges. The only change in comparison to the FFMS problem is the additional CMSA-
parameter léifffs A and the allowance of a smaller range of values for #p p. Parameter léiﬁs A 1S
used together with drcmsa in the standard CMSA solution construction procedure and the
allowed range for parameter #1pp was shortened due to the ILP solver requiring less time for
solving MDS sub-instances, compared to FFMS sub-instances.
Results. Tables 6, 7, 8, 9 present the obtained results for the MDS problem instances. The
same structure is used as in the case of the FFMS problem, just that each table in the case of
the MDS problem presents the results for problem instances of a specific graph size. Each
result is an average over the 30 problem instances for a specific combination of graph type,
|V, and density level. The results allow us to observe the following:

e RL-CMSA-1 generally performs best, followed by the standard CMSA.

e The differences between the algorithms grow with growing graph size.

e RL-CMSA-1 improves over CMSA to a larger extent in the context of Erdos-Rényi and
Watts-Strogatz graphs than for Barabasi-Albert graphs.

o Interestingly, algorithm variants RL-CMSA-2, RL-CMSA-3, and RL-CMSA-4 generally
perform slightly worse than standard CMSA, except RL-CMSA-3 for smaller problem
instances.

e These results together with the ones of the FFMS problem show that RL-CMSA-1 seems
to be the best RL-CMSA variant.

Figure 6 provides four box plot graphics, one for each value of | V|, showing the time taken
by each algorithm to encounter the best solution in each run. These graphics show that the
four RL-CMSA variants spent a similar amount of time in finding the best solutions in their
respective runs. Remember that for the MDS problem, the time limit was set to 150, 300,
450, and 600 CPU seconds for the four considered graph sizes, respectively. RL-CMSA-1
is the algorithm that employs the most time for instances with |V| = 1500 and |V | = 2000
which coincides with it being the best-performing algorithm for these large instances.

To check for statistical significance, the CD plots shown in Fig.5 were produced. These
were again generated using the R package scmamp utilizing the same statistical testing
procedure as in the case of the FFMS problem. The CD plot in Fig. 5a considers all problem
instances together, while the CD plots in Figs. 5b—d are restricted to problem instances of a
specific graph type. It can be observed that RL-CMSA-1 is the algorithm that obtains the best
average rank and that the difference with the rest of the algorithms is statistically significant.
Studying the CD plots for instance subsets, it can be seen that for Barabdsi-Albert instances,
the resulting average ranks are similar, with RL-CMSA-1 and RL-CMSA-2 being slightly
better than standard CMSA, without statistical significance. However, for Erdos-Rényi and
Watts-Strogatz instances, RL-CMSA-1 is the best-performing algorithm and the differences
are, this time, statistically significant.

To gain a deeper understanding of the algorithm behavior, Figs.7 and 8 show—as in the
case of the FFMS problem—the exploration behavior of the algorithms, respectively the
evolution of the quality of the constructed solutions over time. For this purpose, one instance
was considered for every graph type and size (] V), totaling 12 instances. All of the selected
instances are from the 3rd density level. As in the case of the FFMS problem, Fig. 7 plots for
every algorithm and problem instance the fraction of solution constructions in which solution
components were selected. The x-axis represents the solution components, ordered from the
most to the least selected one for each algorithm.

The exploration plots show some differences to the FFMS case. First, the behavior of
standard CMSA is considerably different from the one displayed for the FFMS problem. In
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Fig.5 CD plots concerning the MDS results
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Fig.8 Evolution of the objective function values of the constructed solutions over time for the MDS problem

particular, the exploration of few-chosen solution components drops drastically (in steps) at
some point. We conjecture that this is because of the use of the é‘ﬁs A Parameter that limits
the number of selectable solution components (nodes) at each construction step. While its
use is beneficial for the global performance of CMSA, apparently it reduces the exploration
capability of the algorithm. In addition to this observation, we can also detect differences in the
relative behavior of the RL-CMSA variants. While, in the context of the FFMS problem, RL-
CMSA-1 and RL-CMSA-2 showed a higher exploration of few-chosen solution components
than RL-CMSA-3 and RL-CMSA-4, this is generally the other way around for the MDS
problem. This is except for smaller Barabési-Albert and Erdos-Rényi graphs.

Finally, Fig. 8 plots the quality (in terms of the objective function values) of the solution
constructions performed over the run-time of the algorithms. Note that, in the case of the
MBDS problem, higher-quality solutions correspond to lower objective function values (which
was the opposite for the FEMS problem).

Again, these graphics show the learning process of the RL-CMSA versions. In this case,
CMSA performs better solution constructions compared to the RL-CMSA versions than it did
for the FFMS problem. For most instances, RL-CMSA-1 constructs the best quality solutions,
which coincides with the fact that this is the best-performing algorithm for this problem. The
other three RL-CMSA versions perform worse solution constructions in general, except for
RL-CMSA-4 which is the best at constructing solutions for the Barabasi instances.

A last interesting observation is that RL-CMSA-1 is the only algorithm that performs
restarts for the MDS problem. As seen before, every restart produces a spike in the graphs
showing the evolution of solution quality. This is because a restart causes the information
gathered so far to be erased.

5 Conclusions and future work

The use of ML techniques for supporting and improving metaheuristics is a successful current
trend in the literature. Following this trend, this work has introduced a new version of the
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hybrid metaheuristic CMSA by adding a RL component for constructing solutions at each
iteration. This new CMSA variant, called RL-CMSA, improves over the standard CMSA in
two aspects. First of all, its application is not dependent on a tailored greedy function for
evaluating solution components at each solution construction step. Therefore, RL-CMSA
can be seen as a more general algorithm than standard CMSA, which often is also easier to
implement. The goodness/usefulness of solution components is learned online in RL-CMSA
by means of the g-value sampling and update. Moreover, RL-CMSA was shown to improve
over standard CMSA in terms of empirical performance both in the context of the FFMS and
the MDS problem. The main conclusion of this research is that equipping CMSA with the
proposed simple learning mechanism is highly successful. Therefore, this new variant should
be tested for problems in which CMSA excels as it could potentially perform even better.
Specifically, the best-performing variant is RL-CMSA-1, which is statistically significantly
better than the standard algorithm for both problems. As our experimental evaluation shows,
this variant successfully learns to construct solutions in the construct step, learning to generate
better solutions than the ones constructed by the greedy probabilistic method employed by
CMSA for both problems.

We introduced RL-CMSA as a general framework, leaving room for alternative particular
implementations of the g-value update and solution component sampling. While we proposed
four different designs, we believe that an avenue for future work could consist of devising even
better designs, further improving the performance obtained by our proposal. It would also be
interesting to compare both standard CMSA and RL-CMSA variants for other combinatorial
optimization problems, with the goal of obtaining further confirmation of the improvements
brought by the RL component. Moreover, it would also be of great interest to explore if
the proposed learning mechanism can harm performance for some problems. This might
happen for so-called deceptive problems, for which the learning process might introduce a
bias towards areas of the search space that do not contain the best solutions that can be found.

Finally, one limitation of the proposed learning mechanism is that the partial solution
under construction is not taken into consideration for evaluating the goodness of a solution
component. In general, the partial solution under construction plays arole in deciding whether
a solution component is suitable for extension. Another path for future work could consist of
extending the learning mechanism so that this contextual information is taken into account
for deciding the quality of solution components. Doing this would change the employed RL
process from being state-less to having a concept of state, which would be the partial solution
under construction.
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