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Abstract
The research field of Attended Home Delivery (AHD) and Attended Home Service (AHS)
problems has experienced fast growing interest in the last two decades, with the rapid growth
of online platforms and e-commerce transactions. The radical changes in consumer lifestyles
and habits as well as the COVID-19 pandemic contingency have reinforced that interest,
raising further challenges and opportunities that need to be addressed by innovative method-
ologies and policies. The aim of this work is to provide an extensive literature review on the
state of the art forAHDandAHSproblems,with a particular focus on real-world applications.
A discussion of promising future research directions is also provided.

Keywords Attended home delivery · Attended home service · Demand management ·
Routing · Integrated demand management and routing

1 Introduction

Attended HomeDelivery (AHD) and Attended Home Service (AHS) are last-mile operations
where the customer must be present at home for the delivery of goods, the execution of a
service or, in some cases, both the delivery of goods and the execution of an additional
service (Agatz et al., 2008a; Ehmke, 2012). Examples of AHD and AHS are, among others,
the delivery of groceries directly at home, the delivery and installation of large furniture and
appliances, or the provision of home healthcare therapies. By definition, they differ from
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Unattended Home Delivery (UHD) and Unattended Home Service (UHS), which are last-
mile operations that always involve the delivery of goods or the execution of a service, but can
be fulfilled without the customer being present at home. Examples of UHD are the delivery of
parcels right in front of the door, inside a nearby parcel locker (Buzzega & Novellani, 2023),
or at a different pickup point (Galiullina et al., 2024); an example of AHS is the reading of a
meter installed outside a house. In this work, we limit the research area to those operations
that are attended by the customers and performed by a physical person. For a detailed review
on last-mile delivery concepts and recent trends, such as the use of drones and autonomous
delivery robots or crowdshipping, we refer the interested reader to Boysen et al. (2021). A
particularly recent trend that is worth mentioning is that of crowdkeeping (see, e.g., Wang et
al. 2024 for an introductory work), in which the so-called “crowd keepers” voluntarily attend
the delivery of parcels on behalf of the customers and then transfer them to the customers on
behalf of the delivery company. Another class of problems that shares some similarities with
AHD and AHS and which we only briefly mention in this work is that of Same-Day Delivery
(SDD). An overview of SDD problems, where the delivery of goods or the execution of a
service must be fulfilled within the day of service and the requests arrive dynamically during
the operational horizon, is given by Voccia et al. (2019).

AHD problems originated in the context of e-grocery (i.e., the collection of processes
lying behind the purchase of groceries online; see, e.g., Punakivi & Saranen 2001 and Lin &
Mahmassani 2002 for seminal ideas) and, more generally, e-fulfillment (i.e., the collection of
processes lying behind the purchase of physical goods online; see, e.g., Agatz et al. 2008b for
an in-depth introductory review). Since the first definition found in the work by Campbell and
Savelsbergh (2006), they have seen a continuous increase not only in terms of interest in the
research community, but also in termsof importance inmanybusiness sectors. TheCOVID-19
pandemic has just fostered the demand for AHD services, as confirmed by the OECD (2020).
In particular, during the first and second quarters of 2020 online retail sales have registered a
worldwide increase of 14.8 to 16% in the United States and 30% in the 27 member countries
of the European Union, with a similar trend in the Asia-Pacific countries. How long this
growth will last and whether we will ever return to the pre-pandemic levels is still matter for
debate (Wang et al., 2021). In themeantimeAHDhas already triggered irreversible changes in
the logistics of our cities (Subramanian, 2019), and new trends emerging in largemetropolitan
areas are posing further challenges (Kushner&Greg, 2021). Among these trends, wemention
the delivery of buildingmaterials to contractors directly on site and the recent phenomenon of
ultra-fast delivery of groceries in as little as 15min. A further indication that AHD and AHS
problems are drawing increasing attention is represented by an analysis that we performed
on Scopus and whose results are reported in Fig. 1. We looked at the number of documents
per year where the entries “attended home delivery”, “attended home service”, “attended
home deliveries”, or “attended home services” appeared between 2006 and 2023. The results
show a slightly yet constantly growing trend between 2006 and 2017, followed by a notable
increase between 2017 and 2023.

As mentioned before, AHD problems are directly linked to the growth of the e-grocery
businessmodel, where a fierce competition has arisen around the logistical challenges offered
by this particular sector, like the perishability of goods, the unpredictability of demand, the
narrow timewindowsmade available to customers for the delivery, and the lowprofitmargins.
Even more challenging is the practice of meal delivery, which has become increasingly
popular in the last years. Another sector that is commonly associated with AHD is the online
retail of so-called “dry” goods, where the perishability is not an issue, but the parcels may be
fragile and require a careful handling, the demand volume can be very high and unpredictable,
the goods need to bemoved rapidly along the supply chain, and, lastly, the customermight not
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Fig. 1 Documents per year on AHD and AHS published between 2006 and 2023

be at home during the delivery, thus causing additional routing costs and further congestion
in city road networks. More traditional sectors are those of large appliances and furniture,
which usually combine the delivery of goods with the additional installation service. In
this sense, we can situate them at the intersection of AHD and AHS problems. Typically,
these operations might require a careful handling due to the fragility of some appliances and
furniture, but they usually benefit from a larger planning horizon.

The field of AHS itself has received less attention from the research community compared
with AHD, but still includes some essential activities like home healthcare services, that are
important not only to efficientlymanage the capability of hospitals but especially to guarantee
high-quality therapies to patients who cannot move from home. In this context, we should
distinguish between ordinary and extraordinary care services. The first can be planned over a
larger planning horizon, while the latter deal with emergencies and must provide an immedi-
ate response. This leads to different problems from an operational research perspective. AHS
problems typically arise also in the context of utilities (e.g., electricity, gas and water distri-
bution companies, internet and telecommunications service providers, and so forth), where
companies might be required by local authorities (see, e.g., Bruck et al. 2018, 2020) to give
customers the opportunity to book their installation or maintenance services within publicly
available time slots. As for home care services, we should distinguish these ordinary booking
activities from extraordinary ones (e.g., a gas leakage) that require an immediate response.
So far, we have mentioned only business-to-consumer sectors, but many observations also
hold in a business-to-business environment. Indeed, on-site maintenance and repair services
present similar characteristics to many AHS operations, including the distinction between
ordinary and extraordinary services. We refer to the recent survey by Cordeau et al. (2023)
for a detailed review on AHD and AHS problems with a focus on applications, and to Vezzali
(2024) for the development of Decision Support Systems (DSS) for specific AHS real-world
applications.
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Addressing real-world AHD and AHS problems is challenging, as it typically implies
solving a multi-stage problem: firstly, a demand management problem, and consequently,
a routing problem, where the decisions taken in the previous stage can greatly affect the
feasibility as well as the economic profitability of the following decisions.

As described in the recent surveys by Nguyen et al. (2018) and Waßmuth et al. (2023),
on the demand side companies must be able to find effective ways to efficiently leverage
the demand of customers by putting into action Revenue Management (RM) principles.
Initially borrowed from the airline industry, the practice of RM has become increasingly
popular for AHD and AHS problems. Examples of RM decisions in the context of AHD
and AHS problems might regard the basic offering and pricing of time slots, their length,
the choice of overlapping versus non-overlapping time slots, or the capacity allocated to
each of them. These are typically static decisions. More complex decisions are required in a
dynamic environment, where a company might be willing to frequently adjust the offering
and pricing of time slots, or increase/decrease the capacity allocated based on the actual
demand of customers. The complexity of these decisions is also affected by the immediate
responsiveness they typically require.

On the supply side, companies seek to limit the operational costs by applying traditional
routing techniques, which have been widely studied in the Vehicle Routing Problem (VRP)
literature. The degree of complexity of these techniques is affected by the decisions taken at
the demand management stage, and by the possible inclusion of stochastic and dynamic rout-
ing aspects. In addition, AHD and AHS problems require considerable “back-end” activities
in terms of inventory management and order assembly, which are out of scope of this work.

Finally, a meet-in-the-middle approach that is worth considering is to integrate demand
management and vehicle routing, as discussed in the recent survey by Fleckenstein et al.
(2023). Such an integration requires the anticipation of some routing aspects at the demand
management stage, which is complex since the VRP is NP-hard.

AHD and AHS problems can also be classified according to the planning horizon of
the decisions that must be taken. Long-term decisions typically dealing with the setup of
business (i.e., with lasting effects from months to years), like the opening of new facilities or
the creation of demand clusters given an extended geographical area, are taken at a strategic
level. Medium-term decisions typically dealing with the sizing of business (i.e., with lasting
effects from weeks to months), like the design of basic model-weeks for each demand cluster
or the allocation of capacity to each single time slot, are taken at a tactical level. Finally,
short-term decisions typically dealing with the management of business (i.e., with lasting
effects of a few hours to a few days), like the dynamic adjustment of the basic time slot
offering and pricing or the definition of detailed routing plans for the delivery of goods or
the execution of services, are taken at an operational level.

Our work makes a number of contributions, namely:

• it extensively reviews the academic literature by distinguishing for the first time between
AHD and AHS problems;

• it identifies three classes of problems depending on the extent of the integration between
the demand management and the routing stages;

• it looks at these relevant classes of problems through the lens of real-world applications,
with the aim of highlighting the main managerial leverages to set up and maintain a
profitable business;

• it underlines themost significant future research directions in the AHD andAHS research
field.
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The remainder of the paper is organized as follows. Mathematical models and solution
methods for demand management, routing, and integrated demand management and routing
problems in AHD and AHS are reviewed in Sects. 2, 3 and 4, respectively. Then, in Sect. 5
we draw some conclusions on the state of the art of AHD and AHS problems and discuss
possible future research directions.

2 Demandmanagement problems in AHD and AHS

The practice of Demand Management (DM) refers to those structural, price and quantity
decisions that need to be taken in a business context. Similarly with the previously mentioned
RM,DMhas its origin in the early 1980s,whenRobertCrandall, thenAmericanAirline’s vice
president of marketing, introduced the first principles of DM in the airline industry (Talluri
& Van Ryzin, 2004). Since then, other industries adopted (and adapted) DM techniques, in
sectors such as hospitality, transportation, and energy. As explained by Talluri and Van Ryzin
(2004), all of these industries share similar conditions that motivate the adoption of DM:
customer heterogeneity, demand variability and uncertainty, production inflexibility, data
and information system infrastructure, and management culture. Many of these conditions
may well be found in AHD and AHS systems, which probably explains why in recent years
the practice of DM has become common in this industry.

A widely accepted classification of demand management decisions in AHD and AHS is
the one proposed by Agatz et al. (2013). On one dimension, the authors distinguish between
slotting and pricing decisions, that deal with the proposal of time slots to customers and the
definition of prices for each time slot, respectively. On the other dimension, they distinguish
between differentiated (or static) and dynamic decisions, where the former are taken off-line
and are usually based on forecasts, while the latter are taken in real time.

The main difference between DM in traditional industries, where costs are generally
supposed to be fixed, and DM in AHD and AHS, is that decisions taken at this level greatly
affect the resulting routing costs. Therefore, even at an early stage, it is necessary to seek a
trade-off between revenue maximization and cost balance, which is not trivial.

In this section, we review several demand management models proposed in the literature
on AHD and AHS problems, where a routing part may be considered but is not the core of
the research. An overview of the main characteristics of the reviewed articles is provided in
Table 1. A particular emphasis is put on real-world applications. In addition, we highlight
that column “Cost Estimation” includes both rather simple methods, used to compute the
additional routing costwhile accepting an incoming request, andmore sophisticatedmethods,
used to estimate the opportunity cost of accepting an incoming request and foregoing a
potentially more profitable future request.

For a more detailed study on DM/RM, we refer the interested reader to the reviews
by Strauss et al. (2018) and Klein et al. (2020), where in the latter a specific section is
dedicated to innovative applications of RM in AHD.

2.1 Slotting problems

Following the research avenue opened by Asdemir et al. (2009), Yang et al. (2016), Yang
and Strauss (2017), and Klein et al. (2018), which is discussed in the subsequent sections on
pricing and integrated demand management and routing problems, Mackert (2019) proposed
a new approach for the dynamic Time Slot Management Problem (TMSP), a tactical problem
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in AHD aimed at determining an efficient set of time slots for each region within a deliv-
ery area with the objective of minimizing the delivery costs while satisfying given service
requirements. In particular, the author was the first to introduce a customer-choice model
in the context of slotting problems; namely, he used a General Attraction Model (GAM)
(see, e.g., Gallego et al. 2015), of which the Multinomial Logit (MNL), largely found in
the stream of literature on pricing problems, is a special case. The advantage of using the
GAM, instead of the MNL, is to avoid a potential overestimation of the choice probabilities
in particular settings. Another noteworthy contribution of this work is the definition of a
novel Mixed Integer Linear Programming (MILP) model to approximate the value function,
hence the opportunity costs, of the Dynamic Programming (DP) framework underlying the
slotting problem. In doing so, the author built upon the work of Klein et al. (2018), combining
insertion heuristics, for the computation of the routing costs associated to already accepted
orders, and a dynamic seed-based scheme, to estimate the delivery costs of expected future
orders. The resulting online slotting problem is solved through a Linear Programming (LP)
formulation derived from a Non-Linear Binary Program. In the computational experiments
performed using relaxed versions of the proposed MILP model to favor real-time decisions,
the results show a potential increase of 4 to 7% in terms of average profit compared to
benchmark policies.

The idea of adding flexibility to the slotting problemwas introduced in the work of Köhler
et al. (2020), where the authors presented four alternative algorithmic approaches to derive
the time slot offering for each incoming customer request. Their main contribution was to
investigate the effect of proposing both long time windows (i.e., of 4h), to preserve a certain
flexibility in building the tentative routing plan during the booking horizon (especially in
the early phases), and short time windows (i.e., of 30min), which are commonly used in the
e-grocery business sector. The results obtained on different demand scenarios (one derived
from a German e-grocer) were greatly affected by the customers’ willingness to accept long
time windows, but they showed a clear potential in terms of increased number of accepted
orders compared to the benchmark approach in which only short time windows are offered.

In the first of a series of papers on dynamic slotting, Lang et al. (2021a) studied incre-
mental modular approaches that rely on the idea of anticipating, through simulation during
an offline phase preceding the booking horizon, the information on delivery schedules and
opportunity cost. In particular, the authors solve a Team Orienteering Problem with Multiple
Time Windows to build anticipatory schedule patterns, while they apply an Approximate
Dynamic Programming (ADP) to estimate the opportunity cost (taking inspiration from the
work of Yang and Strauss (2017) on dynamic pricing that is reviewed in the following sec-
tion). During the online booking phase, an Assortment Optimization Problem is solved to
derive the set of time slots proposed for each incoming request, adding a Theft-based mech-
anism to dynamically adjust delivery capacity by “stealing” extra capacity from neighboring
areas of the previously determined schedule patterns.

In their following work, Lang et al. (2021b) were the first to introduce the Multi-Criteria
Dynamic Slotting Problem, where they seek to (i) maximize revenue, (ii) maximize the
visibility of branded trucks, and (iii) maximize the social influence produced by the most
influencing groups of customers, using a scalarized objective function. The last two objectives
are in line with marketing principles, but the proposed approach is flexible and adaptable to
other sets of criteria.

Building upon thework of Köhler et al. (2020), Burian et al. (2024) further investigated the
idea of proposing flexible time windows for attended home deliveries in urban as well as rural
areas. Considering two different delivery areas (i.e., the densely populated city of Vienna
and the sparsely populated Upper Austria), the authors compared six algorithmic approaches
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(three of which were proposed in the original work, while the others are new) to derive the
time slot offering for customer requests under two alternative demand scenarios (i.e., in case
of equal preference between time slots and in case of strong preference for the most popular
time slots). The results confirm the increase in the number of accepted orders, both in urban
and rural areas, when flexible time windows are used, also providing meaningful insights for
e-grocery retailers (and others) interested in setting up/sizing their business in rural areas.

2.2 Pricing problems

Asdemir et al. (2009) developed a dynamic pricing model that dynamically adjusts the deliv-
ery prices of multiple delivery options over a discrete booking horizon according to the
remaining time, the residual capacity, and the affinity of customers with a particular class
(which characterizes their arrival probability, expected profit, predictable utility for each
delivery option and price sensitivity). The authors adopt a Logit-based model to reproduce
the customer-choice behavior and a discrete-time, discrete-state Markov Decision Process
(MDP) to set the pricing decisions of the e-grocer. Using simple examples, they demon-
strate how optimal prices may change over time and how an increase or decrease in terms
of capacity can influence them, even in the case when more than one class of customers is
considered.

Klein et al. (2018) presented a novel MILP formulation to approximate the opportunity
costs in dynamic pricing problems. In the proposed approach, which is repeated in an itera-
tive way for each customer request received within a discrete booking horizon, the authors
combine insertion heuristics (to compute the delivery cost for already accepted orders), an
MNL model (to anticipate expected customers’ reactions to future pricing decisions and,
consequently, estimate future revenues), a dynamic seed-based approximation (to estimate
the delivery costs of expected future orders), and the MILP formulation (to approximate
the value function of a customer request in a DP framework). The results show an average
increase in terms of total profits compared to common policies (e.g., fixed price and order
value-based), as well as the “Foresight Policy” by Yang et al. (2016), which is considered as
a benchmark policy. The so-obtained total profit is on average 5.5% higher in the first case,
and 2.3% higher in the latter case. In addition, they find that a regular recalculation of the
opportunity costs is preferable rather than a periodic, less frequent recalculation.

Klein et al. (2019) were the first to address the problem of pricing from a tactical perspec-
tive, proposing different variants of an exact MILP formulation for the Differentiated Time
Slot Pricing Problem (DTSPP). In their work, motivated by an industrial partnership with a
German e-grocer, the customer-choice behavior is modeled using a general nonparametric
rank-based approach where the preferences of customers (assuming that all customers in a
particular segment share the same preferences) are expressed through simple preference lists
of slot-price tuples. The restrictions imposed by theDMproblem are embedded into theMILP
formulation in a first group of constraints, while the restrictions imposed by the routing prob-
lem (namely, route construction, demand and capacity, and timewindows) are embedded into
a second group of constraints. Given theNP-hardness of theDTSPP, the authors proposed two
alternative model-based approximations for the routing constraints, one seed-based (Fisher
& Jaikumar, 1981) while the other adapting and extending the approach found in Agatz et al.
(2011). After an extensive computational study, the authors show that at a tactical level it is
preferable to adopt model-based approaches that embed routing constraints. In fact, an early
approximation of the delivery costs results in higher profits compared to diffused practical
pricing approaches. In this sense, a trade-off between more accurate formulations, where the
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delivery cost approximation is more elaborate at the expense of an increase in the integrality
gap, and less accurate formulations, where the delivery cost approximation is particularly
rough but optimality can be reached, needs to be found.

Vinsensius et al. (2020) developed an Incentive-Routing Optimization framework for
solving the dynamic pricing problem in AHD, where the pricing problem itself is formulated
as a Quadratic Programming (QP) model with the objective of maximizing the total expected
profits. As in Campbell and Savelsbergh (2006), the authors adopt a simplemodel to shape the
customer-choice behavior, based on selection probabilities and a linear response to incentives.
The QP formulation receives as an input the marginal fulfillment cost of each incoming
order, which is computed through an ADP mechanism. The boundary condition for the
ADP is obtained by solving an independent VRP with Service Choice for each time slot;
to reduce the computational time, this particular sub-problem is solved using a minimum-
regret construction heuristic (Pisinger & Ropke, 2007). Compared to a “Free Choice” policy,
where the customers are free to choose their preferred time slot, and a “Myopic Incentive”
policy, where the incentives are set based only on the QPmodel (with a myopic marginal cost
anticipation), the “ADP Incentive” approach proposed by the authors shows better results in
terms of total costs and fulfilled orders. The results are confirmed by a sensitivity analysis
on some parameters (e.g., order density, arrival probability, and number of vehicles).

Yıldız and Savelsbergh (2020) studied the Pricing for Delivery Flexibility Problemwhere,
unlike in other reviewed articles, they seek to minimize the total expected cost (which com-
prises both the delivery costs and the discounts offered to customers for changing the delivery
day). The idea is to increase the delivery flexibility by proposing a discount to those customers
that accept a different delivery day than the preferred one, with the objective to reduce the
delivery costs. To solve the problem, the authors implemented an exact DP algorithm where
the customer-choice behavior is modeled through acceptance probabilities. Several computa-
tional experiments were performed to evaluate the potential of cost reduction in the presence
of different properties. The results show an expected cost reduction of more than 30% in the
best cases, albeit a similar approach may be applicable only to those cases where the level
of detail is the delivery day and the demand volume is not too high (e.g., large appliances).

The opportunity of proposing flexible time slots (either adjacent or non-adjacent) com-
pared to single standard time slots is investigated in the work by Strauss et al. (2021), where
a dynamic pricing approach based on an LP formulation is developed. The authors show how
the offering of flexible time slots to customers may be beneficial for companies in reduc-
ing delivery costs, as it gives them more flexibility to build their routes. An additional and
interesting insight regards the composition of the proposed flexible time slots. Indeed, a com-
bination of more popular and less popular non-adjacent time slots is able to generate higher
total profits compared to adjacent time slots, especially when the capacity is tight relative to
the demand.

A promising work that is worth mentioning and might open new directions for dynamic
pricing implementations is the one by Lebedev et al. (2021), where the authors studied several
mathematical properties of the pricing problem, in the context of AHD, that can be used to
find closer approximations of the value function in DP algorithms.

Motivated by the real-world case of a German online supermarket operating in Berlin and
following up on the work by Köhler et al. (2020) on slotting, Köhler et al. (2023) presented
an interesting study on pricing strategies for AHD. As a novel contribution to the literature,
the authors introduced a Nested Logit model to reproduce the customer-choice behavior
and compared four different pricing strategies (i.e., static one-price strategy, static multi-
price strategy, dynamic one-price strategy, and dynamic multi-price strategy) to gain useful
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managerial insights. The results show that dynamic pricing strategies outperform commonly
used static pricing strategies, although they are more difficult to implement in practice.

3 Routing problems in AHD and AHS

In the broad sense, the VRP consists in determining a set of minimum-cost routes to serve a
set of customer requests, given a starting depot, a fleet of vehicles, and specific constraints
depending on the application at hand. A rich body of literature on the family of VRPs is
available, as these problems have been widely studied for more than 60 years and represent
one of the main application areas in combinatorial optimization. We refer to Toth and Vigo
(2014) for an extensive review on the VRP and its main variants, and to Wang and Wasil
(2021) and Mor and Speranza (2022) for recent surveys.

Given that they are associated with last-mile delivery operations, AHD andAHS problems
are strongly related to city logistics, as the majority of deliveries is naturally condensed in
populated urban areas. A detailed overview of VRPs arising in city logistics is provided
by Cattaruzza et al. (2017). In recent years, we have also seen the emergence of new VRP
variants in line with the increasing complexity and variety of real-world applications; a brief
overview of this topic can be found in the survey of Vidal et al. (2020), where the authors
focus on emerging metrics to evaluate VRP solutions (which may give several hints for novel
multi-criteria formulations), integrated approaches where the VRP is linked to upstream
decisions and sometimes conceived as an evaluation tool for these decisions (which, to some
extent, can be the case of AHD and AHS applications), and refinements of existing models.

When we consider the routing stage of AHD andAHS problems, we are interested in solv-
ing a Vehicle Routing Problemwith TimeWindows (VRPTW), in which capacity constraints
are typically not binding if compared to time window constraints. For state-of-the-art works
on the VRPTWwe refer to Bräysy and Gendreau (2005a) for route construction methods and
local search algorithmic techniques, Bräysy and Gendreau (2005b) for metaheuristic algo-
rithms,Kallehauge (2008) andBaldacci et al. (2012) for exact solution approaches,Vidal et al.
(2013) for an efficient hybrid genetic algorithm, and Desaulniers et al. (2014) for mathemat-
ical formulations, as well as exact and heuristic methods. Recently, new VRPTW extensions
have emerged, by considering stochastic service times (Errico et al., 2018), multiple trips per
vehicle and time-dependent travel times (Pan et al., 2021), as well as synchronized visits (see,
e.g., Liu et al. 2019 and Polnik et al. 2021). In addition, the Electric VRPTW has received
much attention for its practical implications (see, e.g., Schneider et al. 2014; Desaulniers
et al. 2016; Hiermann et al. 2016; Keskin & Çatay 2016, 2018; Keskin et al. 2019, 2021;
Duman et al. 2022; Lam et al. 2022).

Inmulti-stageAHD andAHS problems, theVRPTWmay be used as a boundary condition
in a DP framework, where the selected customer-choice model most of the times is an MNL
model and a VRPTW must be solved for each state to update such boundary condition.
However, this makes the AHD/AHS problem intractable due to the NP-hardness of the
VRPTW (see, e.g., Savelsbergh 1985). This drawback can be partially overcome, at the
expense of optimality, by applying approximate techniques.

The anticipation of the routing costs during the demand management stage is another
critical aspect in AHD and AHS problems. As described in more detail in Sect. 4.1, an
early approximation of the routing cost leads to higher profits compared to pure revenue
management approaches that are still diffused in practice. This idea was also investigated
by Bühler et al. (2016), who proposed four MILP models, all based on the Set Covering
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formulation for the VRP. The four models are conceived to be integrated into more developed
DMmodels as “plug-in” modules to anticipate the estimation of the routing costs. The results
show that the proposed models, decremental in terms of decision variables and constraints,
approximate well the routing costs (i.e., the overestimation is no more than 10% compared
to benchmark exact models, and slightly less than 3% compared to benchmark heuristics)
in an acceptable computational time, thus being promising for real-world applications and
suitable for decision support at a tactical level. In the aforementioned work by Klein et al.
(2019), the authors built on these preparatory findings by introducing a routing module into
their MILP formulation for the DTSPP.

Since a detailed review of routing problems would be too ambitious, we limit the scope of
this section to the main routing models developed to solve specific AHD and AHS problems.
An overview of the main characteristics of the reviewed articles is provided in Table 2. We
remark that a particular emphasis is put on real-world applications.

3.1 Routing problems in AHD

In the first work of a series of articles on VRPTW variants for AHD problems, Azi et al.
(2007) defined the Single-Vehicle Routing Problemwith TimeWindows andMultiple Routes
(S-VRPMTW), where during a typical workday a single vehicle performs multiple routes
of short duration for the delivery of perishable goods. Given the impossibility of serving
all customers within the required time window, the multiple objectives are to maximize the
number of customers served and to minimize the total distance (for the same number of
customers served). The problem is solved using a two-phase solution approach based on the
exact algorithm for the Elementary Shortest Path Problem (ESPP) proposed by Feillet et al.
(2004).

In their second paper, Azi et al. (2010) defined a multiple-vehicle generalization of the
S-VRPMTW, named the Vehicle Routing Problem with TimeWindows and Multiple Routes
(VRPMTW). Here, the multiple objectives are to maximize the total revenue and to mini-
mize the total distance, and the problem is solved via Branch-and-Price (BP). In particular,
the primary problem is a Set Partitioning Problem (SPP) formulation solved through col-
umn generation, while the pricing subproblem is an ESPP solved using the aforementioned
algorithm by Feillet et al. (2004).

A few years later, Azi et al. (2014) solved the VRPMTW by means of an Adaptive
Large Neighborhood Search (ALNS) algorithm. Interestingly, the authors demonstrate the
advantage of applying destruction and insertion operators at different levels (customer, route,
and workday) instead of using only customer-based operators.

Building upon their previous results, Azi et al. (2012) solved the dynamic VRPMTW,
where the source of dynamicity is given by the arrival of new customer requests during
the operational horizon. Note that such requests are inserted in future routes, as the current
ones are fixed. Compared to the previously mentioned ALNS, a dynamic environment (in
which the acceptance rule is slightly modified to take care of dynamicity) and an event
management mechanism (to handle different types of events) were added. The results show
that the proposed non-myopic approach (where future requests are considered) outperforms
the myopic approach (where future requests are not considered) in terms of profit (computed
as the total revenue associatedwith the served customersminus the total distance), percentage
of served customers, number of routes per day, and number of customers per route, at the
expense of considerably higher computational times (however acceptable and compatible
with the response time required by an offline real-world application).
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An interesting characteristic introduced by Jabali et al. (2015) is the use of self-imposed
endogenous timewindows rather than the exogenous ones typically considered in theVRPTW
literature. Those self-imposed time windows are assigned to the customers by the company
which, in turn, is committed to respecting them. A similar approach may be applicable to
sectors like online retail, large appliances and furniture, as well as utilities. Another important
feature included in this work is the presence of stochastic travel times that are dependent on
a random variable representing a non-negative delay. Such delay is added to the base travel
time. To solve the problem, the authors proposed a collaborative two-stage hybrid algorithm.
First, the routing part is solved via Tabu Search (TS) using three alternative criteria for
choosing a move. Second, the scheduling part, which takes as an input the solution found at
the previous stage, is solved through an LP formulation that includes buffer times to handle
the uncertainty given by the adoption of stochastic travel times. From a practical perspective,
the use of self-imposed time windows may represent an unconventional policy (compared to
the common practice of letting customers select their favorite time windows) to lighten the
time window constraints, thus reducing the operating costs while keeping a certain service
level.

Resuming the idea originally proposed by Pan et al. (2017) of using customer-related data
to improve the effectiveness ofAHDsystems,Özarık et al. (2021) defined theVehicleRouting
and Scheduling Problem with Time-Dependent Costs (VRSPTDC). The problem is a variant
of theVRPTW, as it adds a time-dependent penalty cost to the objective function. Such penalty
cost is directly linked to the so-called “customer availability profiles” (introduced for the first
time by Florio et al. 2018) that identify, for each customer, the probability of being present at
home when the delivery is performed. In case the customer is absent during the first attempt
of delivery, the authors assume that the next attempt is outsourced to an external courier, thus
causing additional costs. From a practical perspective, the issue of low hit rates (i.e., frequent
unsuccessful deliveries due to the absence of customers) is still one of the most significant
problems in last-mile delivery. The VRSPTDC is solved using an ALNS-based metaheuristic
algorithm with several removal and insertion operators. The results indicate the existence of
a trade-off between the minimization of travel costs and the increase of hit rates. However,
by taking advantage of customer-related data, it is possible to reach relevant cost savings.
In particular, introducing the information on customer availability, in combination with the
practice of waiting before serving a customer, may generate up to 40% in cost savings. Last
but not least, the ALNS-based algorithm produced good results in comparisonwith a state-of-
the-art MILP solver, and showed short computational times, which is desirable for a potential
real-world application. In their following work, Özarık et al. (2023) focused on the impact of
possible second visits to absent customers on the same delivery day by defining the Vehicle
Routing and Scheduling Problem with Time-Dependent Costs and Multiple Customer Visits
and solving it using a parallelized version of an ALNS algorithm. Interestingly, the results
show an average cost reduction of 8% (which in some cases can be as high as 32%) if second
visits on the same delivery day are allowed.

3.1.1 A focus on the meal delivery routing problem

Given the outstanding expansion of the food delivery sector in the last few years, a necessary
exception from themain scope of ourwork is required for theMealDelivery Routing Problem
(MDRP). This problem is part of AHD (in the sense that the customer must be present at
home for the delivery of food), but it also comprises typical elements of SDD (with new
requests coming during the operational horizon) as well as the use of innovative practices
arising in last-mile logistics, like crowdshipping and bundle generation. For an overview on
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last-mile delivery challenges and, in particular, routing problemswith crowdshippingwe refer
to Archetti and Bertazzi (2021), while for a recent work on routing with bundle generation
and occasional drivers we refer to Mancini and Gansterer (2022).

Among the first to study the MDRP, Yıldız and Savelsbergh (2019) introduced a mathe-
matical formulation which is adaptable to different objectives that may be worth considering
for an online food ordering and delivery platform (e.g., courier compensation, click-to-door
time, ready-to-door time, click-to-door overage, namely the difference between the drop-off
time of an order and its placement time plus the target click-to-door time, and ready-to-
pickup time). Interestingly, their work is based on the concept of work package, which is a
possible way to serve a bundle of orders. To solve the problem, the authors implemented a
column- and row-generation algorithm, enhanced by a selective column inclusion scheme,
that proved to be effective on theMDRPLIB instance set publicly made available by Grubhub
(an American online ordering and delivery platform and a subsidiary of Just Eat Takeaway).
In addition, a noteworthy analysis reported by the authors demonstrates that guaranteeing a
minimum-pay to couriers does not cause a dramatic increase in terms of total cost (i.e., 9%
in the worst case); to the contrary, it ensures a large availability of couriers. In our opinion,
such an analysis may well contribute to the wide debate on policies for platform workers.

The Restaurant Meal Delivery Problem (RMDP) was addressed by Ulmer et al. (2021).
Inspired by the previous work of Ulmer et al. (2020), the authors defined the RMDP as
a route-based MDP, solving it by means of an Anticipatory Customer Assignment (ACA)
heuristic algorithm. Such an approach was strengthened by the use of time buffering and
postponement to soften the effects of stochasticity and dynamicity. The proposed policy was
tested in an extensive computational study on real-world data from Iowa City. In comparison
with the common-sense benchmark policy of assigning an incoming order to the driver
that is able to deliver it as fast as possible, which is typically used in current practice, the
results show that the ACA, relying on both time buffering and postponement, achieves strong
improvements in terms of total delay. In particular, the use of time buffering itself produces
significant improvements, as it decreases the effects of uncertain events. With the addition
of postponement, it is also possible to take advantage of newly collected information which
favor the assignment, as well as the bundling, of orders. From a practical perspective, the
proposed algorithm proved to be robust in the presence of variability and suitable to solve
real-world problems.

3.2 Routing problems in AHS

In this section, we are interested in reviewing some recent articles on routing problems for
AHS.

A particularly interesting problem at the intersection between AHD and AHS is the Deliv-
ery Installation and Routing Problem (DIRP) investigated by Ali et al. (2021). The DIRP is
inspired by a real-world application encountered in the sector of large appliances and furni-
ture, where the deliveries and the installations are performed by two heterogeneous fleet of
deliverymen and installers, respectively. This particular application requires the synchroniza-
tion of worker skills and is characterized by the presence of temporal precedence constraints
(i.e., an installer must wait for a deliveryman to complete the delivery service before reaching
the location of a customer and starting the installation service). In some cases, the installa-
tion may be directly performed by the deliveryman (with a lower efficiency as such figure
is less specialized than an installer). The authors defined the DIRP using a flexible MILP
formulation, from which specific variants of the VRP can be easily derived (i.e., in case all
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the installations are performed only by deliverymen we refer to the VRP with time windows
and driver-specific times, while in case all the installations are performed only by installers
we refer to the VRP with multiple synchronization constraints). In addition, a variant of the
DIRP was discussed in which the deliveryman and the installer can perform an installation
together (instead of assuming that only one worker can perform the installation, as in the
previous case). To solve the problem, the authors implemented an ALNS algorithm and com-
pared its performance with that of the MILP formulation solved by a commercial solver.
The results show that the ALNS algorithm is able to find good-quality solutions in short
computing times both for test instances, as well as for real-world instances obtained from an
industrial partner. Two noticeable insights emerged from the sensitivity analysis performed
by the authors. The first is that using two heterogeneous fleets of deliverymen and installers
has a positive impact in terms of total routing cost reduction. The second demonstrates the
existence of a correlation between the efficiency of the deliverymen and the percentage of
installations performed by the installers.

In a very recent work, Biswas et al. (2024) addressed home services from a broader per-
spective by defining the Home Services Assignment and Routing Problem with the Triple
Bottom Line (HSARP-TBL). In particular, the authors focused on on-demand home ser-
vices (e.g., cleaning, plumbing, electrical work, furniture repair) provided to customers by
independent providers found through online service platforms, and proposed anMILP formu-
lation for the HSARP-TBL. The problem is solved using a Hybrid Genetic Search algorithm.
What is worth mentioning here is the integration of the three pillars of the triple bottom line
(i.e., economic, social, and environmental) in the form of additional constraints of the MILP
formulation.

3.2.1 A focus on the home healthcare routing and scheduling problem

Given their practical implications, we cannot forget to mention relevant works, in the context
of home care services, on service planning and patient-to-nurse assignment. Among these,
we refer to Eveborn et al. (2006, 2009), where the authors described a DSS developed for
the Swedish healthcare system, which is based on an SPP formulation and a repeated match-
ing algorithm for optimizing the generation of attended home visiting schedules. Another
noticeable work is that of Duque et al. (2015), where the case of Landelijke Thuiszorg,
a Belgian home care service provider, is described. For what concerns the assignment of
patients to traveling nurses, Hertz and Lahrichi (2009) developed an assignment algorithm
to solve a real-world problem arising in a small area of Montréal (Québec), while Carello
and Lanzarone (2014) and Lanzarone andMatta (2014) addressed the robust nurse-to-patient
assignment problem by focusing on structural policies to guarantee the continuity of care
(which means that a patient must be visited by a restricted group of caregivers). For more
references on routing and scheduling problems in home healthcare we refer the interested
reader to the surveys by Fikar and Hirsch (2017) and by Euchi et al. (2022).

Starting from the real-world application described by Eveborn et al. (2006, 2009), Bred-
ström and Rönnqvist (2008) defined a novel MILP formulation for the Vehicle Routing
and Scheduling Problem with Time Windows (VRSPTW). The peculiarity of the VRSPTW
is given by the presence of pairwise temporal precedence constraints and pairwise syn-
chronization constraints. As discussed by the authors, similar constraints may be found in
homecare staffing and scheduling problems, where different staff members are required to
visit a patient one after the other or simultaneously. The problem was solved using a local
branching heuristic inspired by Fischetti et al. (2004). This solution method was tested by
considering alternative objective functions (i.e., minimization of preferences, minimization
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of traveling time, minimization of maximal difference in workload among staff members, or
minimization of a weighted sum of multiple objectives).

Cappanera and Scutellà (2015) addressed the Palliative Home Care Problem (PHCP), an
important problem arising in home healthcare that refers to the provision of palliative ther-
apies to terminal patients. The authors modeled the PHCP through an MILP formulation
where assignment, scheduling and routing decisions are taken in an integrated fashion. Two
alternative objective functions, maxmin (which balances the operator workload by maximiz-
ing the minimum utilization factor) and minmax (which balances the operator workload by
minimizing the maximum utilization factor), were defined and used to guide the solution
process. The MILP formulation was strengthened with the addition of symmetry breaking
constraints and valid inequalities. To solve the PHCP, the authors implemented three alterna-
tive pattern generation policies (a greedy heuristic procedure, a realistic procedure based on
current practice, and a flow-based model), where patterns are alternative schedules of visits
that are generated a priori for each patient. The generated patterns are given as input to the
MILP formulation that solves the original PHCP. This approach proved to be effective on
different sets of realistic instances. From a practical perspective, it is worth highlighting that
the selection of maxmin as the objective function of the MILP formulation produces more
balanced solutions in terms of workload among operators. On the contrary, the selection of
minmax produces less costly solutions, as the total travel time for the operators is minimized.

Extending the previous work by Cappanera and Scutellà (2015), Cappanera et al. (2018)
generalized the Home Care Problem (HCP) by taking into account demand uncertainty. In
particular, the authors adopted the cardinality-constrained framework proposed by Bertsimas
and Sim (2004) to define the sequence-preserving �-Robust Home Care Problem (sRHC�).
In this robust version of the HCP, uncertainty is handled by considering additional uncertain
requests; among these, at most � requests must be inserted into each solution tour (where �

is a given parameter). The decisions of the sRHC� are guided by the aforementioned min-
max objective function. The proposed approach turned out to produce more robust solutions
compared to the nominal formulation, showing a high degree of fairness in terms of care-
giver utilization factor and a low approximation error. The authors also experimented with
a decomposition approach by fixing the scheduling decisions. This approach proved to be
suitable for solving larger instances.

Zhan and Wan (2018) defined the Routing and Appointment Scheduling with Team
Assignment (RASTA) problem, which arises in the context of home healthcare and inte-
grates decisions on team assignment, routing and scheduling. The authors formulated the
RASTA as an MILP model and solved it by implementing a TS algorithm, where the initial
feasible routing schedule is built using a modified parallel savings algorithm. This initial
solution is then improved by invoking classical local search operators (e.g., 2-opt, relocate,
and Or-opt) until a termination criterion is reached, while the customers’ appointment times
are determined by solving a scenario-based LP formulation (which considers the routing
schedule as an input). The stochastic information on service times was estimated based on
the results found by Lanzarone et al. (2010). The proposed methodology proved to be effec-
tive on small sets of randomly generated instances, leaving room for potential extensions. In
their following work, Zhan et al. (2021) focused on the Routing and Appointment Schedul-
ing problem by defining a novel MILP formulation and solving it via the L-shaped method.
Additionally, a heuristic algorithm to handle large-size instances was also developed.

Motivated by a collaboration with Alayacare, a Canadian start-up based in Montréal
(Québec), Grenouilleau et al. (2019) studied the Home Health Care Routing and Schedul-
ing Problem (HHCRSP). In particular, the authors defined the problem as an SPP with the
objective of selecting the best daily routes for each caregiver. Such routes are built by taking
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into account the patients’ mandatory requirements, the caregivers’ skills, and the required
time windows. Several objectives, such as the number of missing optional requirements, the
travel time, the continuity of care, and a penalty for non-compliance with minimum and
maximum working hours, are inserted into the weighted sum cost function that is computed
for each route. The weekly overtime and idle time for each caregiver, and the number of
unscheduled visits are then added in the overall objective function of the SPP formulation
as additional objectives. A Large Neighborhood Search (LNS) algorithm is used to find the
set of feasible routes that are given as input to a relaxed version of the SPP, after which a
constructive heuristic algorithm is called to rebuild the integrality of solutions. Interestingly,
the proposed approach outperformed Alayacare’s current solution by 37% in terms of total
travel time and 16% in terms of continuity of care, thus proving to be effective in solving
real-world instances. The HHCRSP with temporal dependencies under uncertainty was later
addressed in the work of Shahnejat-Bushehri et al. (2021), where the authors defined the
problem using a robust optimization model and solved it by implementing three alternative
metaheuristic algorithms.

Naderi et al. (2023) studied the multi-period Home Healthcare Planning and Scheduling
Problem (HHCPS), in which the decisions on the assignment, scheduling and routing of
caregivers are taken in an integrated fashion. For tractability reasons, a priori generated
patterns are given as input to the proposed MILP formulation. To solve the problem, the
authors implemented an exact algorithm relying on a logic-based Benders decomposition. A
robust version of the HHCPS that accounts for uncertainty in travel and service times was
also developed.

Another important problem arising in home healthcare that refers to the administration of
chemotherapy to cancer patients, named Home Chemotherapy Delivery Problem (HCDP),
was addressed in the work of Arda et al. (2024). The HCDP consists of two interdepen-
dent subproblems, (i) drug production scheduling and (ii) drug administration routing and
scheduling, and is characterized by hard stability and time window constraints. The authors
solved it by implementing an LNS algorithm, which relies on an LP model to reoptimize
the schedules and guarantee the feasibility of solutions. The performance of the proposed
method was compared with a compact MILP formulation for the HCDP also proposed by
the authors.

Building upon the work of Cappanera and Scutellà (2015), Parreño-Torres et al. (2024)
modeled the Palliative HomeHealth Care Routing and Scheduling Problem through anMILP
formulation with five alternative objective functions (i.e., minimization of total workload,
maxmin, minmax, minimization of total workload and maxmin, and minimization of total
workload andminmax). Interestingly, the results show that the formulation using a scalarized
objective function that minimizes the total workload andmaximizes theminimum percentage
workload (i.e.,maxmin) is able to find a better trade-off between total workload andworkload
distribution among caregivers (which is important in the context of palliative home care).

3.2.2 A Focus on the technician routing and scheduling problem

Starting from the problem formulation given by Cordeau et al. (2010) and motivated by a
collaborationwith an infrastructure service provider,Kovacs et al. (2012)were among the first
to address the Service Technician Routing and Scheduling Problem (STRSP). In particular,
the authors presented an MILP formulation for the STRSP and implemented two alternative
versions of an ALNS algorithm, one without team building and the other with team building.
Both ALNS algorithms rely on several destroy and repair operators from the literature. The
proposed algorithms were tested on benchmark instances as well as on real-world instances,

123



Annals of Operations Research

showing a significant average cost reduction of almost 11% compared to the manual plans
adopted by the company. Other pioneering works on the Technician Routing and Scheduling
Problem (TRSP) and the Technician Dispatching Problem (TDP) that are worth mentioning
are those by Pillac et al. (2013) and Cortés et al. (2014), respectively.

Later, Chen et al. (2016) studied a novel problem variant, named Technician Routing and
Scheduling Problem with Experienced-based Service Times (TRSP-EST). Here, the authors
formally described the problem as anMDP, and developed a myopic solution approach based
on a daily routing problem solved with a metaheuristic algorithm. The noteworthy contribu-
tion of this work is to consider, for the first time in the routing literature, different learning
curves and heterogeneity of technicians and to derive some “rules of thumb” that can be
used from a managerial perspective. In particular, the results demonstrate the advantage of
considering learning curves and heterogeneity of technicians instead of static productivity.
In addition, the authors emphasize the idea that the routing aspect should be favored in the
presence of fast-learning and experienced technicians, while the scheduling aspect should be
favored in the presence of slow-learning and inexperienced technicians. In their following
works, Chen et al. (2017, 2018) addressed the multi-period Technician Routing and Schedul-
ing Problem with Experienced-based Service Times and Stochastic Customers by focusing
on the problem of assigning tasks to technicians and omitting the routing component. In
particular, the authors proposed an ADP-based solution approach, in which the so-called
“cost-to-go” is computed by looking ahead both one period and over the entire planning
horizon. Recently, Chen et al. (2024) solved the multi-period TRSP-EST by considering
both learning curves of technicians and future information over the entire planning horizon.
In particular, the authors introduced an implicit cross-training mechanism that assigns unfa-
miliar tasks and customer types to technicians, with the aim of increasing their experience
level and, consequently, the overall workforce flexibility.

Motivated by the real-world case of an external maintenance provider specialized in elec-
tric forklifts, Zamorano and Stolletz (2017) defined theMulti-period Technician Routing and
Scheduling Problem (MPTRSP) and solved it using two alternative BP algorithms based on
different decomposition schemes (i.e., a day decomposition and a team-day decomposition).
Compared to the literature on Workforce Scheduling and Routing, of which the MPTRSP is
a generalization, the novel contribution of this work is to consider multiple periods and team
building simultaneously. The numerical experiments conducted on test instances show that
the BP algorithm based on the team-day decomposition scheme, which results in more but
easier-to-solve subproblems, performs better in terms of computing times and gap to optimal-
ity. The same experiments are repeated on real-world as well as larger instances, confirming
the effectiveness of the proposed solution approach. Additional experiments conducted on
other test instances indicate a negative correlation between time window length and overall
costs, which is noticeable from a practical perspective, and a positive correlation between
time window length and computing times.

In the first of a series of papers on technician routing and scheduling, Mathlouthi et
al. (2018) presented a novel MILP formulation for a Multi-attribute Technician Routing
and Scheduling Problem (MATRSP) solving it using a commercial solver. This work is
motivated by a real-world application arising at a company providing maintenance and repair
services for electronic transaction equipment. The noteworthy contribution of this work is to
accurately define a complex problemby combining a number of heterogeneous characteristics
(required skills, precedence constraints for special parts, inventory levels for spare parts,
maximum traveled distance, breaks, and time windows). Several computational experiments
are performed to assess the effect of certain parameter variations, such as the percentage of
special parts, technician skills, the impact of service times, and the number of technicians.
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In their following work, Mathlouthi et al. (2021a) implemented a BP algorithm to solve
the MATRSP. As in Azi et al. (2010), the primary problem is formulated as an SPP, while
the pricing subproblem is an Elementary Shortest Path Problem with Resource Constraints
(ESPPRC) which is solved using both the algorithm by Feillet et al. (2004) and the Decre-
mental State-Space Relaxation (DSSR) algorithm by Righini and Salani (2008). Also, two
alternative branching strategies are presented here. The results demonstrate that the DSSR
implementation with the ternary branching strategy obtains the best results. In addition, the
BP algorithm proved to solve to optimality larger instances (with up to 45 tasks) as compared
to the MILP formulation presented in Mathlouthi et al. (2018) and solved with a commercial
solver.

Mathlouthi et al. (2021b) developed a TS metaheuristic algorithm with adaptive memory
for the MATRSP. Interestingly, the algorithm found the same optimal values as the exact
method by Mathlouthi et al. (2021a) for instances with up to 45 tasks and solved instances
with up to 200 tasks within 2h, which is compatible with practical implementations.

A specific variant of the TRSP for monitoring water distribution networks was studied in
the work of Atefi et al. (2023). The problem is characterized by maximum route duration,
precedence constraints, and multiple visits to so-called key centers due to the presence of
some special nodes that require a key (to be picked up at a particular key center) to perform
the service. To solve the problem, the authors proposed an MILP model and an Iterated
Local Search (ILS) algorithm. These methods were tested on randomly created instances as
well as on the benchmark instances for the Asymmetric Distance-Constrained VRP proposed
by Almoustafa et al. (2013). The ILS was also used to solve realistic instances derived from
the water distribution network of the city of Mashhad (Iran). Interestingly, the ILS proved to
find good-quality solutions in short computing times for instances with up to 200 nodes.

Nielsen and Pisinger (2023) approached the TRSP from a tactical perspective by defining
the problem as a Two-stage Stochastic Programming (2-SP) model. The first stage aims
at partitioning the plane (which is identified by the depots and the locations of customers
to be serviced) into slices and assigning the slices to working days, and is solved with a
balanced sweep algorithm; the second stage is a TRSP, which is modeled through an MILP
formulation and solved with an ALNS algorithm. The problem originated from a real TRSP
at TDC-NET, the Danish wired telecommunication infrastructure owner, in which we have
both static (i.e., installations) and dynamic (i.e., maintenance services) tasks; the former are
known in advance and have long service windows, while the latter arrive dynamically and
have short service windows. The results of the computational experiments show an average
10% reduction in driving distance when the proposed tactical planning is used. A sensitivity
analysis on the percentage of technicians to be dedicated to dynamic tasks is also performed.

The considerable interest in the research field of TRSP is confirmed by the number of
articles recently published. In particular, Delavernhe et al. (2024) addressed a maintenance
and routing optimization problem, of which the TRSP is only one part. It is worth noting
that the authors integrated in the problem formulation several aspects typically considered
independently, like probabilistic models for assessing the machine states, decisions on main-
tenance operations based on machine states, and experience levels of technicians. Gamst and
Pisinger (2024) solved the same problem found inNielsen and Pisinger (2023) by considering
investment decisions (i.e., minimization of capital expenditures, CAPEX, and minimization
of operational costs, OPEX). Nowak and Szufel (2024) focused on the specific TRSP for
the sharing economy, where a heterogeneous team of independent technicians with different
experience levels is managed by a centralized service provider.
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4 Integrated demandmanagement and routing problems in AHD and
AHS

Many authors have been approaching the field of integrated demandmanagement and routing
from their methodological backgrounds since the mid-2000s. In Sect. 4.1, we review the
most relevant articles in the literature on AHD and AHS and give an overview of their main
characteristics in Table 3. In Sect. 4.2, we then focus on the Time Window Assignment
Vehicle Routing Problem (TWAVRP).

4.1 Integrated problems

Although the authors do not refer directly to the problem of integrating demand management
and routing, the paper of Bent and Van Hentenryck (2004) may be considered a pioneering
work in this area, as it anticipates the idea of using stochastic information in the decision to
accept or reject a request. Indeed, the Scenario Based Planning Approach (SBPA) to dynamic
stochastic VRPTW they proposed fits well with the ordering phase of AHD problems that
precedes the cutoff time, when the order requests arrive and must be accepted or rejected.
Also, the SBPA may be applied for practical implementations of maintenance and repair
services, where it is not known a priori when the next call will arrive. The basic principle of
SBPA is to keep in memory a set of routing plans that are updated at each execution step.
These routing plans are generated by considering information on already known requests as
well as possible future requests. The plan to be implemented is then selected by means of a
so-called consensus function. The experimental results show that the SBPA performs well
compared to less sophisticated methodologies in terms of number of customers served and
number of vehicles used.

Among the first to see a potential in the integration between order promise and order deliv-
ery phases, Campbell and Savelsbergh (2005) proposed several insertion-based heuristics for
AHD problems. In particular, the authors developed a number of probability-based heuristics
where the information on potential future orders is considered in the decision to either accept
or reject an order. Compared to the common practice of accepting a fixed number of orders
per time slot and using simple dynamic insertion heuristics, the proposed probability-based
heuristics are constantly more efficient in capturing the economic profitability of incoming
requests. The authors extensively tested such heuristics by varying some experimental char-
acteristics. Inmany cases, the probability-based heuristics were able to come very close to the
results obtained in the presence of perfect information and, except in one case, they showed
computational times that are compatible with practical implementations.

Building upon their previous work (i.e., Campbell and Savelsbergh 2005), Campbell and
Savelsbergh (2006) addressed the use of incentive schemes to steer customer behavior in
AHD services. In particular, the authors propose two alternative LP formulations to solve
the Home Delivery Problem with Time Slot Incentives and the Home Delivery Problem
with Wider Slot Incentives, respectively, that do not incorporate a proper customer-choice
model but use, instead, simple selection probabilities. In both formulations, an estimation of
the delivery costs of accepted orders, performed using a combination of insertion heuristics
and randomization, is inserted in the objective function. In addition, the feasibility of the
routes under construction is checked. Interestingly, the results show that companies could
take advantage from the use of incentive schemes to reduce delivery costs and, consequently,
increase profits even in the early stages of the decision process. The authors also demonstrate
that developing incentives schemes for wider time slots is easier and has the potential to
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produce an increase in profits as well (additionally determining a benefit in terms of flexibility
in building efficient routes).

A milestone in the field of AHD is the work of Agatz et al. (2011), where the TMSP
in AHD was defined for the first time. The authors studied the particular TMSP arising at
Albert Heijn, the leading Dutch e-grocer at the time, and proposed two alternative formula-
tions for the problem, in which the expected delivery costs are minimized. The first extends
the Continuous Approximation (CA) approach found in Daganzo (1987); in particular, the
authors start from a base schedule (e.g., the one adopted by the company) and iteratively
improve it until the expected routing costs do not decrease anymore or a maximum number
of iterations is reached. In this formulation, a “cluster-first, route-second” strategy is used to
approximate the delivery costs. The second formulation is an Integer Linear Programming
(ILP) model that relies on the seed-based scheme originally proposed by Fisher and Jaiku-
mar (1981) to approximate the routing costs. As shown by the computational experiments
both formulations produce high-quality schedules, resulting in a slight reduction of delivery
costs compared to the schedule used by the company. But the greatest potential generated
by the two formulations is that of automating the schedule design process; in this sense,
the CA approach is better than the ILP model as it requires shorter computational times.
Further remarkable findings are presented in the what-if analyses conducted by the authors,
where the effects of potential changes (increase of demand, increase or decrease of vehicle
capacity, increase or reduction of service level, and use of alternative time slot templates)
are investigated. Among them, they remark the existence of a trade-off between the time slot
length and the routing efficiency (with an increase of up to 25% in delivery costs going from
an entire shift length to a two-hour length). Also, they highlight the idea that introducing a
demand clustering may have a beneficial effect of approximately 10% reduction in terms of
delivery costs.

Building upon the work of Campbell and Savelsbergh (2005) as well as the results previ-
ously found byEhmke et al. (2012a, b), Ehmke andCampbell (2014) developed and compared
novel customer acceptance mechanisms for AHD applications in metropolitan areas. The
innovative idea behind their work is represented by the introduction of time-dependent and
stochastic travel time information in the decision-making process of accepting or rejecting an
incoming order request. In particular, to take care of possible lateness, due to variable travel
times in rush hours, and the so-called “lateness propagation” effect, which depends on accu-
mulated travel time variations during the execution of delivery routes, the authors included a
thorough computation of individual buffer times. Such computation was integrated in a time-
dependent variant of the I1 insertion heuristic algorithm originally developed by Solomon
(1987). The results obtained from several rounds of simulation show that the proposed accep-
tance mechanism generally outperforms alternative approaches, both static and dynamic, in
terms of the number of accepted requests and potential to avoid lateness. The authors also
investigated the effect of changes in some input parameters (e.g., distribution of customer
locations between downtown and suburban areas, service times, time window length, late-
ness avoidance, and confluence of requests in popular time slots) and provided meaningful
practical insights.

Yang et al. (2016) defined a DP framework for the dynamic pricing of delivery time slots
based on a thorough demand model, where the arrival of customers for a single delivery day
is estimated using a time-dependent Poisson process, while the selection of time slots within
a given delivery day is modeled through an MNL model. The dynamic program is defined
to gain insights for the development of good pricing policies, as it is not solvable in short
computing times due to the curse of dimensionality and the VRPTW that must be solved at
each stage. To overcome this problem, during the online booking phase an approximation of
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the routing costs is computed based on the insertion heuristics by Campbell and Savelsbergh
(2006) and an online pricing problem is solved. As a valuable result, the authors show that a
dynamic pricing policy that includes an estimation of the delivery costs for expected future
orders, instead of focusing only on already accepted orders, is preferable. Moreover, they
show how a similar policy produces a remarkable increase in terms of total profits (i.e., 3.8%
on average) compared to the common industrial practices of using static prices or order-based
prices for time slots. This effect is even more evident when capacity is scarce. The work was
motivated by an industrial partnership with a major e-grocer in the United Kingdom that
provided anonymized booking data that were used to train the models and perform different
runs of simulation. Building upon their previous work and using the same sample data
provided by a major e-grocer operating in the Greater London area, Yang and Strauss (2017)
developed an APD procedure. In particular, the proposed approach adopts a dynamic pricing
policy that incorporates both approximated delivery costs (obtained by applying the “cluster-
first, route-second” approach originally proposed by Daganzo 1987) and estimated revenues
to compute the opportunity costs fromexpected future orders.Remarkably, the results showan
average total profit increase of more than 2% compared to base policies where no opportunity
cost is considered, and a computational time compatible with real-world applications.

A different interpretation of the Tactical Time Slot Management Problem (TTSMP) was
given in the work of Hernandez et al. (2017), where the authors defined the TTSMP through
anMILP formulation and solved it heuristically. In particular, two alternative heuristics were
proposed. The first heuristic relies on a three-phase decomposition, that initially solves a Peri-
odic Vehicle Routing Problem (PVRP), in which the time slots in the TTSMP correspond to
the periods in the PVRP, subsequentlymerges the routes obtained fromPhase 1 over each day,
and, finally, solves a VRPTW for each day in the planning horizon (i.e., optimizes the routes
merged during Phase 2). The second heuristic interprets the TTSMP as a Periodic Vehicle
Routing Problem with Time Windows (PVRPTW), in which the days in the TTSMP corre-
spond to the periods in the PVRPTW while the time slots correspond to the time windows.
Both problems were solved using a TS algorithm that has proven to be efficient for these
problems (see, e.g., Cordeau et al. 1997, 2001). Although the first heuristic is competitive
for being more generic and tractable with state-of-the-art techniques and available software,
it is generally outperformed by the second heuristic both in terms of computational times
and solution quality.

Inspired by the work of Schmid and Doerner (2014), Han et al. (2017) developed an
integrative approach for solving the appointment scheduling and routing problem in the
context of AHD. What characterizes this work is the inclusion of random customer behavior
in the proposed model by considering no-show probabilities and random response times
during the delivery phase. Such randomness typically represents a remarkable issue in real-
world applications, frequently causing inefficient re-routing, potential disruptions, and extra
costs. To solve the problem, the authors implemented a hybrid heuristic algorithm, which
iteratively combines a TS metaheuristic, for solving the routing part, and an approximate DP
algorithm, for solving the scheduling part. The results show how the proposed integrative
approach outperforms a traditional hierarchical approach. However, the computational times
obtained on large instances warn against a potentially low compatibility with real-world
cases, as the developed algorithm took almost 20h to solve instances with up to 5 vehicles
and 50 customers.

In their work at the border between AHD and SDD, Restrepo et al. (2019) introduced for
the first time the Integrated Shift Scheduling and Load Assignment Problem. The problem,
originating from a real-world start-up company offering last-mile delivery services in many
cities of France, is formulated as a 2-SP model. In particular, the first stage aims at designing
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tactical schedules for couriers, which are allocated to a restricted number of geographic
areas, while the second stage defines the assignment of customer orders to couriers. In this
work, we have a co-presence of stochasticity (given a portion of stochastic orders generated
using a Poisson distribution) and dynamicity (given a portion of orders that must be fulfilled
according to a same-day delivery policy). To solve the problem, the authors implemented a
multicut L-shaped method with some additional algorithmic refinements to generate initial
cuts and derive valid inequalities. The main idea underlying this work is represented by the
opportunity of using the tactical model to compare alternative policy offerings and to evaluate
their impact on total cost and solution quality. In addition, the results show the advantage of
including uncertainty when generating tactical solutions.

A very interesting real-world application of differentiated slotting in the context of utilities
was studied in theworkofBruck et al. (2018).Here, the authors addressed aparticular problem
arising from an Italian gas distribution company, named IRETI, in which the required Quality
of Service (QoS) level is exogenously fixed by the public authority that regulates the market,
so there is no opportunity to influence the demand of customers using RM principles. As a
consequence, the design of good quality time slot tables is fundamental to limit the routing
costs generated after the actual demand is revealed. For doing so, the authors developed a
three-step approach having at its core an LNS algorithm that iteratively improves an initial set
of time slot tables bymeans of destroy and repair methods. Interestingly, the customer-choice
behavior in the process of booking the preferred time slot for the execution of a service was
reproduced using four alternative simulation strategies. The cost of the solutions computed by
the LNS algorithm is evaluated through a Multidepot multiple Traveling Salesman Problem
(MmTSP), which relies on a time-extended network. Note that a different MmTSP is solved
for each day in the booking horizon. The results obtained on real-case instances showed an
expected reduction of routing costs in the order of 5% to 15% compared to the company’s
solution.

Addressing the same real-world application described by Bruck et al. (2018), Bruck et
al. (2020) developed a DSS to solve the practical problem of defining the organizational
model for a so-called “minimum territorial area” (ATEM), given the QoS levels imposed by
the public authority regulating the gas distribution market. The DSS is intended to support
IRETI in solving a three-stage problem, in which the decisions are sequential. In the first
stage, a number of municipalities are clustered by solving a p-Median Facility Location
Problem; in the second stage, an initial model-week is generated for each cluster by using an
improved ILP formulation compared to the one in Bruck et al. (2018) and an LNS algorithm;
in the third stage detailed technician routing plans are created by solving anMmTSP for each
day in the simulating horizon and several key performance indicators are provided in output
to the decision makers. Interestingly, dynamic changes are made to the model-weeks during
the simulation, thus reproducing a common practice to address demand fluctuations. Also,
it is worth noting that the DSS has integrated a machine learning submodule that gives the
opportunity to design solutions in the presence of missing information (i.e., by predicting the
demand of partially known or totally unknown ATEMs).

Extending previousworks and combining themwith ideas from recent streams of literature
on the VRP, Koch and Klein (2020) proposed a route-based ADP approach for dynamic
pricing, where the opportunity cost due to the displacement of potential future orders is
carefully estimated through a route-based formulation borrowed from theStochasticDynamic
VRP literature (see, e.g., Ulmer et al. 2020). In particular, the authors used artificial routes
to improve the estimation of future routing costs and introduced a time window budget
approach to better evaluate the idle time of vehicles within the time windows. These features
serve as an input for the online pricing problem, which is solved using an efficient heuristic
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algorithm. Computational experiments show that the performance of the route-based ADP
approach with time window budget is superior compared not only to another ADP approach
with waiting time (proposed by the same authors), but also to other policies adapted from the
literature (among which the one by Yang and Strauss 2017). Such superiority is expressed
both in terms of average profit and number of served customers. Another valuable change
that the authors introduced in this work, compared to the previous literature, is represented
by the use of a finite-mixture MNL model as the customer-choice model.

Following up on theworks byYang et al. (2016) andYang and Strauss (2017), Abdollahi et
al. (2023) presented a new dynamic pricing approach inwhich the opportunity cost estimation
is based on a combination of actual orders with time windows and forecast orders without
time windows. Interestingly, each time an incoming requests is accepted and inserted in a
route, a forecast order is removed from that route and the underlying dynamic VRPTW is
re-optimized to adjust the pricing offer for future requests. Compared to commonly used
static pricing policies, the proposed approach performed better in terms of total profits, with
an increase between 13.57% and 21.43%.

Motivated by the real-world application of a waste collection company operating in the
United Kingdom, Keskin et al. (2023) presented a very interesting work on the dynamic
multi-period VRP, in which the demand of customers is leveraged by the practice of touting
(i.e., contacting customers who are expected to place an order soon and offering to anticipate
it). The problem is defined as a dynamic program and solvedwith a rolling horizon algorithm,
where touting decisions are taken based on specifically developed touting heuristics, while
routing decisions are taken based on an LNS algorithm. The results obtained on real instances
provided by the waste collection company show how the practice of touting (accompanied
by efficient routing algorithms) can reduce the total distance traveled and the overall number
of routes, while improving the utilization of available capacity.

4.2 The time window assignment vehicle routing problem

In this section, we survey a particular class of integrated demand management and rout-
ing problems, the TWAVRP, in which time windows must be assigned to customers before
demand is known, followed by the creation of routing schedules that minimize the expected
routing costs.

The TWAVRP was introduced for the first time in the paper of Spliet and Gabor (2015),
where the authors presented a compactMILP formulationwhich considersmultiple scenarios
corresponding to different realizations of demand. In particular, they distinguished between
exogenous and endogenous time windows to identify, respectively, time windows imposed
by an external stakeholder and time windows agreed upon by the customer and supplier.
To solve the problem, the authors proposed a Branch-Price-and-Cut (BPC) algorithm, in
which the restricted primary problem is solved via column generation while the secondary
pricing problem, an ESPPRC in which vehicle capacity and time windows are the resource
constraints, is decomposed by scenario and solved using basic route relaxation techniques
(i.e., allowing all cyclic routes but eliminating 2-cycle routes). An acceleration strategy and
some valid inequalities were also proposed. The computational experiments proved that the
proposed BPC algorithm can solve to optimality instances with up to 25 customers and 3
demand scenarios. Interestingly, the authors compared the results found by theBPCalgorithm
for the TWAVRP with those obtained by a heuristic procedure to solve the VRPTW with
average demand (i.e., which corresponds to a one-scenario TWAVRP), showing that the
routing costs of VRPTW solutions with average demand are on average 1.85% higher.
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In a follow-up work, Spliet and Desaulniers (2015) defined the Discrete Time Window
Assignment Vehicle Routing Problem (DTWAVRP), which differs from the TWAVRP in
that a finite set of candidate time windows is given for each customer. Building upon their
previous approach, the authors proposed an exact BPC algorithm, in which the secondary
pricing problem is solved using the ng-route relaxation technique by Baldacci et al. (2011),
with �ng ∈ {1, 5, n}. Also, five column generation heuristics (i.e., one restricted master
heuristic, two diving heuristics, and two rounding heuristics) were developed. When solving
theDTWAVRPusing the exactBPCalgorithm, the authors demonstrate how the configuration
with �ng = 5 represents a good compromise between short computing times and solution
quality if compared to the configurations allowing all cyclic routes (i.e., when �ng = 1)
and elementary paths only (i.e., when �ng = n). The five column generation heuristics, in
turn, proved to find solutions with relatively small gap to optimality (i.e., between 0.29% and
4.30%) for instances with up to 25 customers and 5 demand scenarios, while theywere able to
solve instances with up to 60 customers, although without proving optimality. Among them,
the so-called TWDiving-Tabu heuristic produced the best results. Additional experiments
were performed to compare a multiple-scenario TWDiving-Tabu heuristic with a single-
scenario average demand based TWAVRP. These experiments confirmed the potential of the
TWDiving-Tabu heuristic in generating solutions with lower expected routing costs as well
as the advantage of considering multiple scenarios.

A novel formulation of the TWAVRP with time-dependent travel times was presented
in the work of Spliet et al. (2018), where the authors developed an innovative labeling
algorithm to solve the secondary pricing problem based on the contributions of Ioachim
et al. (1998) and Feillet et al. (2004), and built upon the TS column generator originally
proposed by Spliet and Desaulniers (2015). Also, new arc-synchronization inequalities were
formulated to strengthen the BPC algorithm used to solve the problem.

In their paper, Dalmeijer and Spliet (2018) defined an alternative MILP formulation for
the TWAVRP based on the two-commodity network flow approach for the Capacitated VRP
by Baldacci et al. (2004) and the well-knownMTZ-inequalities. The authors solved the prob-
lem via Branch-and-Cut (BC) with the addition of a tailored class of valid inequalities for the
TWAVRP (i.e., the precedence inequalities) and the introduction of a new branching rule. The
results show that the proposed BC algorithm clearly outperforms the BPC algorithm of Spliet
and Gabor (2015) in terms of computing times and gap to optimality. More interestingly, the
BC algorithm is able to solve to optimality larger instances with up to 35 customers and 3
scenarios, while showing small optimality gap for instances with up to 40 customers.

Starting from a real-world application and data provided by a large European food retailer,
an extended version of the TWAVRP with product dependent time windows was studied
by Neves-Moreira et al. (2018). The impact of realistic features like multi-product deliveries
and fleet requirements (e.g., temperature at which products are kept during transportation and
compatibility between vehicle and retail site capacities) were also investigated by the authors.
To solve the problem, a three-phase approach consisting of (i) route generation, (ii) initial
solution construction, and (iii) improvement matheuristic (see, e.g., Boschetti & Maniezzo
2022 for an overviewof this topic)was developed. The benefit fromconsideringmulti-product
deliveries, instead of single-product deliveries only, was confirmed by the computational
experiments in which an average saving of 6.44% in terms of total routing costs was achieved
thanks to the additional flexibility of multi-product deliveries. Furthermore, in line with
the results obtained by Spliet and Gabor (2015), the authors demonstrate that a stochastic
multiple-scenario approach is preferable to a deterministic single-scenario approach with
average demand (with the former that outperforms the latter by 5.3% on average). Some
useful managerial insights were also derived from a sensitivity analysis. In particular, the
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authors proved that further savings can be achieved by increasing the time window length
and product flexibility (in terms of the minimum quantity of the main product that must be
delivered in multi-product deliveries).

In their work, Subramanyam et al. (2018) took advantage from the similarities between
the TWAVRP and the Consistent VRP (see, e.g., Kovacs et al. 2014 for an overview of this
problem) to adapt the decomposition algorithm previously proposed by Subramanyam and
Gounaris (2018) for the Consistent TSP. Such an algorithm turned out to outperform state-
of-the-art solution methods both for the TWAVRP and the DTWAVRP, thus demonstrating a
good efficiency and versatility in solving problem of this class.

In Vareias et al. (2019), a TWAVRP with stochastic travel times is solved with the goal
of designing routes having minimum traveling distance and minimum earliness and late-
ness penalty costs due to time windows violation. The problem is solved by means of two
mathematical models and an ALNS.

Building upon the work of Dalmeijer and Spliet (2018), Dalmeijer and Desaulniers (2021)
introduced an edge-based branching method to eliminate orientation symmetry from the
search tree of a BPC, and they presented enhancements to make this method efficient in
practice. They consistently reduced the number of explored nodes and solved 25 TWAVRP
benchmark instances to proven optimality for the first time.

A robust formulation of the TWAVRP for solving problems in which the probability
distribution of travel and service times is partially unknown was presented in Hoogeboom
et al. (2021). Their formulation is based on a time window violation index that measures the
risk associated with the violation of the time windows assigned to destination nodes. This
index is inspired by the Requirements Violation Index originally proposed by Jaillet et al.
(2016). The problem was solved via BC and the results were compared with those obtained
by a stochastic variant of the TWAVRP in which the probability distribution of travel times
is known.

Starting from a real-world application and data provided by Ford Motor Company and
comparing with the work of Vareias et al. (2019), Yu et al. (2023) addressed a particu-
lar TWAVRP under multiple sources of uncertainty (travel and service times, continuous
time windows of variable length, and possible service cancellations by the customers). The
problem is formulated as a 2-SP model and solved using “Assignment-Routing-Scheduling”
heuristics.

Multiple sources of uncertainty (number of customers, customer location, customer
demand, and service times) are also considered in the recent work of Côté et al. (2024),
where the authors address a multi-period stochastic variant of the TWAVRP. The work is
motivated by a real-world application arising at a Canadian retailer that sells and delivers
large appliances and furniture in Edmonton and Calgary, and their respective surrounding
areas. The problem is modeled through a 2-SP formulation and solved using a heuristic
approach. In particular, the first-stage solution is obtained by applying the “sample average
approximation method” found in Kleywegt et al. (2002), while the second-stage solution is
obtained by means of an ALNS algorithm. Some speed-up techniques for the ALNS are also
proposed. Interestingly, the proposed method was able to improve the company’s solution,
still manually computed, and provide meaningful insights from a practical perspective.

Extending the previous work by Ulmer and Thomas (2019), in which the focus was on
predicting mean arrival times to customers, Ulmer et al. (2024) proposed a heuristic algo-
rithm for determining narrow and reliable time windows to be communicated to customers
when they request a service. Unlike many other works on the TWAVRP, the authors assume
that routing and scheduling decisions are exogenous to the algorithm and only induce the
distributions of possible arrival times to customers. With this information, they prove that it
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is possible to infer the expected time window size of an incoming request. The problem is
formulated as a Non-Linear Stochastic Program, and a “Time Window” heuristic is devel-
oped to solve it. Particularly interesting managerial insights are derived from an extensive
computational study.

5 Conclusions and future research directions

This work has provided a detailed literature review on the state of the art for Attended
Home Delivery (AHD) and Attended Home Service (AHS) problems, a research field that
is experiencing increasing attention, as confirmed by the fast-growing number of documents
published each year on this class of problems. Given its strong practical relevance, a particular
focus has been put on real-world applications with the purpose of gaining useful managerial
insights. Indeed, AHD and AHS problems owe their popularity to the rapid diffusion of
online platforms, where a particularly high demand is registered for e-grocery and online
retail transactions.

Since the seminal works in this topic, an increased awareness of the multi-stage nature
of AHD and AHS problems, where the decisions taken at the first level greatly affect the
feasibility as well as the economic profitability of the decisions taken at the second level, has
emerged. Demand management and routing are well-established research fields per se, but
the integration of demand management and routing decisions represents the complex part of
solving real-world AHD and AHS problems, as these decisions are affected by uncertainty.

Many authors have proposed several sophisticated methods to solve alternately demand
management problems (where the information related to the routing subproblem is estimated
or forecast) or routing problems (where the information related to the demand management
subproblem is oversimplified and used as an input or, once again, forecast), but the search
for a more effective integration of these two stages may represent one of the most significant
future research directions in AHD and AHS.

In this sense, a promising approach may be that of using Dynamic Programming as the
main framework, but great efforts are needed to overcome the issues of dimensionality and
complexity of solving a Vehicle Routing Problem with Time Windows as the boundary
condition for each state. An alternative approach may be that of borrowing some ideas
from the Stochastic Dynamic Vehicle Routing Problem literature to roughly solve the online
demand management problem by anticipating some routing aspects that must be fine-tuned
offline.

The sustainability of AHD and AHS systems is another relevant topic having received lit-
tle attention as compared to the wide literature on AHD and AHS problems. The recent work
of Agatz et al. (2021) presents an interesting discussion on the effectiveness of using “green”
incentives to steer customer choices, along with traditional price incentives, while Zhang
et al. (2023) investigate the opportunity of integrating “green labels” with the practice of
order consolidation (i.e., postponing some deliveries and consolidating the deliveries for the
same customer). As sustainability may represent for AHD and AHS problems an additional
objective, which may be conflicting with profit maximization or cost minimization, the ben-
efit from introducing multi-criteria problem formulations is worth exploring. Also, further
objectives may emerge and be considered in the future. For this reason, the introduction of
Multi-Criteria Decision Analysis for solving AHD andAHS problemsmay represent another
future research directions in this field.
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Other interesting research directions may include the use of machine learning techniques
to support online time slot decisions (see, e.g., van der Hagen et al. 2024), the extensive
adoption of data science approaches to analyze large amounts of historical order data and,
consequently, better understand the preferences of customers (see, e.g., Köhler et al. 2024),
and the exploitation of opportunity sales to generate additional profits (see, e.g., Ötken et al.
2023).

Finally, we have seen that real-world AHD and AHS applications may be encountered
in heterogeneous business sectors, although the problem at its core maintains a similar
structure (with some exceptions). In upcoming years, we expect a denser transfer of ideas
and technologies among different sectors as well as the emergence of innovative areas of
application.
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