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Abstract
This paper proposes a modeling and solution approach for the integrated planning of the
planting and harvesting of sucrose cane and energy-cane considering multiple harvesters. An
integer linear bi-objective optimization model is proposed, which seeks to find a trade-off
between the maximization of the production volumes of sucrose and fiber and the minimiza-
tion of the operational costs. The model considers the technical constraints of the mill, such
as the milling capacity and meeting the monthly demand. A MIP-heuristic based on relax-
and-fix and fix-and-optimize strategies with exact decomposition is appropriately proposed
to determine approximations to Pareto optimal solutions to this problem. These approxi-
mations are used as incumbents for a branch-and-bound tree to generate potentially Pareto
optimal solutions. The results reveal that the MIP-heuristic efficiently solves the problem
for real and semi-random instances, generating approximate solutions with a reduced error
and a reasonable computational effort. Moreover, the different solutions quantify the trade-
off between cost and production volume, opening up the possibility of increasing sucrose
and fiber content or decreasing the costs of solutions found. Thus, the proposed bi-objective
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approach, the solution technique and the different Pareto optimal solutions obtained can assist
mill managers in making better decisions in sugarcane production.

Keywords Multi-objective optimization · Sugarcane production · OR in agriculture ·
MIP-heuristic

1 Introduction

Sugarcane is extremely important as a commodity nowadays, mainly because of the by-
products it offers; sugar, biofuel (ethanol), bagasse, vinasse and organic fertilizers, among
others. Figures for the 2022/2023 world harvest indicate production of around 183 million
tons, an increase of 1.5% compared to the previous year (United States Department, 2023).
This demand for sugarcane by-products is expected to increase as various branches of human
activity, such as industry and agriculture, continue searching for cleaner andmore sustainable
energy sources.

According to the literature, such as Agarwal (2007); Chu andMajumdar (2012) and Farias
et al. (2021), most of the electricity consumed by humanity is obtained from fossil and other
non-renewable sources. This dependence has brought concerns about their depletion and the
pollution caused during their transformation and use. Currently, the economic development
and resumption of global industrial and logistical processes are at increasing levels. This has
accelerated industrialization even more and motivated the scientific community to research
renewable and clean sources of energy, especially those that reduce the emission of carbon
dioxide (CO2) into the atmosphere (Santos, 2022).Moreover, according to the study inUsman
and Balsalobre-Lorente (2022), the exploration and use of natural resources and renewable
energies significantly mitigate environmental pollution over time.

The study in Matsuoka et al. (2016) highlights that the generation of electricity using
sugarcane biomass allows sugar-energy mills to guarantee their self-sufficiency in electricity
during the harvest period and to sell the surplus. However, high concentrations of sucrose and
low fiber content prevail in the commercial varieties of sugarcane available on the market.
Therefore, a new type of cane is under development, called energy-cane, aiming at the energy
generation market. According to Matsuoka et al. (2017) and Matsuoka and Rubio (2019),
energy-cane has a higher percentage of fiber in its composition, resulting in a canewith greater
biomass production capacity. Moreover, it is more resistant to pests and easily adapted to the
soil. With the introduction of this new cane variety, the objective of production planning in
mills is to increase productivity in the cane fields, considering the sucrose content (for sugar
and ethanol production) and the fiber concentration (for energy production).

In the current scenario of the sugar-energy sector and the complexity of the operations
involved in the cultivation and processing of sugarcane, several studies have been proposed
using mathematical optimization techniques. Considering the previous work developed in
Florentino et al. (2020); Poltroniere et al. (2021); Aliano et al. (2022) and Aliano et al.
(2023), this study proposes a bi-objective model that integrates the planting and harvesting
decisions made about the different varieties of sucrose cane and energy-cane considering var-
ious harvest cycles. The model aims to maximize sucrose and fiber production volumes and,
simultaneously, to minimize operational costs. Thus, the main contributions and differences
in this paper, considering previous related work, are:

a. A newmodel deals with these aspects: (i) optimization of two conflicting objectives such
as production volumes and cost; (ii) dealing with multiple harvest cycles (cuts); (iii)
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choosing the varieties that, depending on the planting month, will have cycles of 12 or 18
months; and (iv) considering the production of sucrose and fiber from the two types of
cane, sucrose cane and energy-cane, generalizing and completing gaps left by previous
models. The model proposes new expressions to deal with sucrose cane and energy-cane
production, including new cuts (harvests) being considered for the harvesting of different
varieties in their respective plots.

b. A newMIP-heuristic is proposed based on relax-and-fix and fix-and-optimize (RF&FO)
principles with exact decomposition, coupled to an exact scalarization technique, capable
of determining excellent approximations to the Pareto optimal solutions (verified through
evaluation of the duality gap) in a reasonable computational effort.

This paper is organized as follows: Sect. 2 presents a brief literature review of some studies
ofmathematical programming applied to the sugarcane supply chain and recent developments
of MIP-heuristics in integer problems. Section3 describes the features of the problem and
the proposed mathematical formulation. Section4 describes the Tchebycheff metric to find
different Pareto optimal solutions to this problem. In Sect. 5, a MIP-heuristic approach is
proposed. The computational results are presented in Sect. 6, divided into two subsections.
Subsection 6.1 shows, discusses and compares the different efficient solutions, providing a
schedule for planting and harvesting for instances based on real data practiced in the sugar
mills. Subsection 6.2 performs a series of additional computational tests to certify the quality
and effectiveness of the proposed MIP-heuristic on semi-random instances. Finally, Sect. 7
presents the conclusions of this paper and directions for further research.

2 Literature review

Our literature review includes two distinct subsections. Subsection 2.1 focuses on papers
aimed at applyingmathematical programming tomodeling problems in the sugarcane produc-
tion supply chain. Subsection 2.2 highlights some studies dealing with integer programming
models solved with MIP-heuristics.

2.1 Optimization in sugarcane supply chain planning

The sugarcane supply chain has received much attention in operations research in the last 25
years due to its complexity, size and importance to the world economy. Complex decisions
involving all the sectors in this chain must be taken at the operational, tactical and strategic
levels. The operations involve planting, cropmaintenance, harvesting, machine and harvester
operation, transportation and milling/refining. From this perspective, models and mathemat-
ical optimization methods to support decisions have been developed, especially in countries
like Brazil, India, Thailand, and Australia, the world’s largest producers of this crop.

The article in Muchow et al. (1998) proposed an approach using an optimization model
applied to a mill in the Mossman region (Australia). The objective was to maximize the
sugar yield and net income and the decision was to choose the harvest period. The work in
Calija et al. (2001) optimized the system of selecting cane varieties to be grown using clones
employing stochastic simulation models combined with dynamic programming. The study
in Higgins and Muchow (2003) applied operations research techniques taking advantage of
geographical and climatic differences for improved sucrose yields inAustralia. Froma tactical
and strategic planning perspective, the authors in Higgins et al. (2004) reduced production
costs in the sugarcane production chain by enhancing efficiency and integrating the harvest
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and transport phases of this chain. The study in Higgins and Postma (2004) again addressed
transportation in different models (rail and road) to reduce costs. In addition, other socio-
economic issues of this production chain were considered, including human labor. Another
case study in Australia (in Higgins (2006)) proposed a mixed integer linear programming
(MILP). The decisions were to reduce queue times at mills, downtime and the number of
transport vehicles to optimize capital and costs. The work in Milan et al. (2006) proposed an
operational-level MILP to solve a cost-minimization problem for sugarcane harvesting and
transportation.

The paper in Kaewtrakulpong et al. (2008) was one of the first to use multi-objective
optimization to allocate the harvest machines and trucks to reduce costs. The case study was
conducted in Thailand, looking at the different objectives of the stakeholders: farmers, truck
and machine owners and the mills. Authors in Pathumnakul and Nakrachata-Amon (2015)
focused on operations research techniques for optimizing cane harvest in the same country.
The work was concerned with the routing of harvesting machines, the joining of fields and
labor force integration. The paper in Lamsal et al. (2017) coordinated the arrival of cut cane
at the mills through a logistic coordination model. The objective was to minimize the loss
of sucrose content using a MILP. Moreover, valid inequalities and constructive heuristics to
obtain feasible initial solutions were proposed. Authors in Kaab et al. (2019) used a multi-
objective genetic algorithm and data envelopment analysis to reduce environmental impact
and energy use in sugarcane plantations in Iran. The main scope of the study in Pornprakun et
al. (2019) was to determine optimal harvesting policies for two sugarcane types in Thailand
(fresh and burned – based on sugar content) to maximize revenue and minimize harvesting
costs. Sugarcane bagasse was treated economically and environmentally in Varshney et al.
(2019) and applied in India. The material was used to produce electricity, ethanol and pallets.
The decisions involved using the different forms of bagasse collected from farms with three
objective functions: maximizing Net Present Value, minimizing greenhouse gas emissions
and minimizing water use. Others recent studies applying a multi-objective approach in
the sugarcane supply chain as are Qiu et al. (2023) (sucrose extraction for evaluating the
performance and energy efficiency) and Pongpat et al. (2023) (utilization of sugarcane-based
products considering several sustainability indices).

Specifically in Brazil, a variety of studies have been undertaken. The tactical and oper-
ational planning of sugarcane harvesting to maximize the sugar production volume using a
MILP were proposed in Jena and Poggi (2013). The study in Florentino and Pato (2014)
addressed the bi-objective problem of selecting sugarcane varieties, seeking to minimize the
costs of residue collection and maximize the energy potential of this biomass. A goal pro-
gramming model that deals with uncertainty for harvest scheduling in the sugar and ethanol
industries, considering land conditions, cane-cutting decisions and agricultural logistics was
developed in Silva et al. (2015). A methodology for optimal cultivation and planting with
a 5-year planning horizon was investigated in Ramos et al. (2016). The decisions included
choosing varieties to maximize sucrose yield. A new solution approach to the multi-objective
model proposed in Florentino and Pato (2014) was presented in Lima et al. (2017). A hybrid
method was proposed, combining the predictor-corrector primal-dual interior-point and the
branch-and-bound methods. The authors in Santoro et al. (2017) were concerned with the
costs of mechanized harvesting. Thus, a mathematical model of harvest route planning aimed
at minimizing the machine relocating time was proposed. A multi-objective goal program-
ming model to optimize harvesting decisions was proposed in Florentino et al. (2018). The
model considers the age of the sugarcane planted in each plot. The first objective aimed to
minimize harvest deviations from maturation peak and the second one was the displacement
of the harvesting machinery. Harvest fronts were also addressed in Junqueira and Morabito
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(2019) butwith a single objective. The authors proposedMIP-heuristics for determining com-
petitive solutions in practice. In Aliano et al. (2021), exact methods for solving a bi-objective
integer linear optimization problemwere tested and implemented.Thedecisionswere focused
on harvesting and transporting operations, whose objectives were the minimization of total
cost and time for harvesting each plot.

The authors in Florentino et al. (2020) proposed a mathematical model for obtaining a
multi-period schedule for the planting and harvesting of sugarcane based on hybrid meta-
heuristics. In this same perspective, the paper in Poltroniere et al. (2021) developed a new
mixed integer linear optimization model for planning the planting and harvesting of sugar-
cane with the concept of energy-cane (destined to produce only dry mass). A heuristic based
on the relax-and-fix and fix-and-optimize techniques was proposed for solving large-scale
problems. Other relevant research developed an integrated tri-objective model with single
harvest in Aliano et al. (2022). The model also dealt with sucrose cane and energy-cane vari-
eties. The objectives were to maximize production volumes, minimize the harvesting fronts
and minimize the transportation costs of harvesting machines. In their model, operational
and tactical decisions that chose the type of harvester and the number of hours worked were
made. Recently, the authors in Aliano et al. (2023) proposed a three-objective optimization
model focused only on the cane harvest (single cut). The model used the concept of degree-
days to measure cane maturation, not as a function of cultivation time, as in previous studies.
The objectives were: to harvest the cane as close as possible to its accumulated degree-days;
reduce the number of harvest fronts; and minimize costs associated to the transporting of the
harvesting equipment.

Table 1 summarizes the main studies that use mathematical programming in sugarcane,
referenced in this subsection. The columns in this table consider the country of application,
if the model is single or multi-objective, the planning dimension regarding the number of
periods, the by-products of interest (when this is the case), themain decisions and the solution
methodology for eachmodel. The gaps left by these 25 papers in this area can be seen, both in
terms of modeling and resolution methodology. Out of the 12 studies that consider multiple
objectives, only four are multi-period (cuts). None of them consider sucrose cane and energy-
cane varieties for fiber and sucrose production. On the other hand, studies considering the two
by-products do not consider multiple objectives, multiple cuts and decisions on the planting
and harvesting simultaneously. Therefore, this study presents an original solution approach
adapted to address these questions.

2.2 MIP-heuristics in somemixed-integer linear problems

MIP-heuristics and, more precisely the relax-and-fix and fix-and-optimize (RF&FO) proce-
dure, have been applied to problems with integer variables. The better commercial solvers
have difficulty in solving some NP-hard problems for large instances. From this perspec-
tive, RF&FO procedures have been widely used to deal with complex large-size problems. In
the proposed approach, the use of mathematical modeling and commercial integer program-
ming solvers to optimize smaller integer subproblems effectively is explored. The result is
approximate solutions of good quality and moderate computational effort. Studies applied
to scheduling and lot sizing problems such as Beraldi et al. (2008), Ferreira et al. (2009),
Toso et al. (2009), Akartunali and Miller (2009), Helber and Sahling (2010) and James and
Almada-Lobo (2011) demonstrated the validity of this strategy.

Specifically, Beraldi et al. (2008) developed rolling-horizon and fix-and-relax heuristics
for the parallel machine lot-sizing and scheduling problem, sequence-dependent and with
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setup costs. Their computational results showed that the maximum gap between the best
heuristic solution and the lower bound provided by the truncated branch-and-bound was 3%.
A multi-level capacitated lot sizing problem was solved in Helber and Sahling (2010). The
authors proposed an easy-to-implement algorithm, fast, flexible and accurate. Its solution
quality outperformed those reported in the literature so far. The technique in a model that
integrated production lot sizing decisions in beverage manufacturing plants with sequence-
dependent costs and setup times were used in Ferreira et al. (2009). Solutions were obtained
and proved to be better than those executed in practice. Lot sizing and multi-level production
planning problems were solved by RF&FO in Akartunali andMiller (2009). Amixedmethod
combining metaheuristics with RF&FO for lot sizing and production sequencing problem
were introduced in James and Almada-Lobo (2011). The authors developed a constructive
and improvement procedure to produce competitive solutions in real dimensional instances
where solvers failed. A MIP-heuristic to solve an energy-saving planning problem, aware of
manufacturing process demands was used in Bruzzone et al. (2012). The paper in Shirvani
et al. (2014) dealt with cyclic scheduling problems in the food industry environment. An
algorithm based on a MIP-heuristic with an iterated greedy algorithm was developed to
generate good and feasible solutions. The wholesale facility locations in food supply chain
systems were studied in Etemadnia et al. (2015) on a national scale to transfer food from
production regions to consumption locations. A MIP-heuristic based on the relaxation of the
problem, eliminating constraints and fixing variables was used to solve large real instances.
The problem of determining a purchasing plan was considered in Cárdenas-Barrón et al.
(2021) to satisfy the requirements of multiple items over a planning horizon, with multiple
suppliers available for purchasing. The authors developed valid inequalities for formulating
this problem coupled with a MIP-heuristic that outperforms other algorithms developed for
this problem. A capacitated three-level lot-sizing and replenishment problem was studied in
Cunha et al. (2022). A hybrid procedure based on relax-and-fix to generate an initial feasible
solution followed by a fix-and-optimize improvement procedure was implemented to obtain
high-quality solutions.

In the sugarcane context, the research published in Junqueira and Morabito (2019) pro-
posed aMIP-heuristic to deal with the scheduling of harvesting fronts for amill. The solutions
produced were validated and confirmed by consulting experts. The application of RF&FO
principles in the study Poltroniere et al. (2021), with a single objective and single harvest,
showed high-quality solutions. The results revealed close-to-optimal solutions (gap less than
1%) in real-dimension instances with short computational times. These results motivated the
adaptation and implementation of RF&FO in the multi-period and multi-objective problem
proposed in this paper.

3 Problem description andmathematical modeling

In this section, we first present key-concepts in Subsection relating to the sugarcane supply
chain. Subsequently, Subsection 3.2 illustrates mechanisms for calculating the approxi-
mate productivity of sucrose and fiber from sucrose cane and energy-cane. Finally, the
mathematical model is discussed in Subsection 3.3.
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3.1 Definitions and assumptions

The cane is cultivated in a minimum cultivation unit called a plot, which receives a single
variety of sugarcane. In the center-south region of Brazil, the life cycle of sugarcane is,
approximately, 18 months (called year-and-a-half cane) or 12 months (called year cane).
This cycle duration depends on the planting time. The year-and-a-half cane is ready for the
first cut 18 months later if planting occurs from January to April. The year cane system is
ready for the first cut if planting occurs in September and October. After the first cut, without
the need for new planting, the regrowth cane can be cut again after 12 months, regardless
of its planting season or the cycle duration cycle into the first cut (Matsuoka et al., 2016;
Matsuoka et al., 2017). According to Cheavegatti-Gianotto et al. (2011), Brazilian sugarcane
fields are harvested on average four times.

Each variety of sucrose cane and energy cane has a certain yield of sucrose and fiber.
The period in which the higher sucrose productivity occurs is called maturation peak. The
difference between the harvest period and the period of maximum sucrose is defined as
deviation frommaturation peak (d). For sucrose cane varieties, the ideal period for harvesting
is when d = 0. On the other hand, the level of fiber for energy cane varieties tends to increase
gradually after the maturation peak (when d > 0) up to a certain limit.

The planning of sugarcane planting and harvesting also needs to meet practical constraints
imposed by the mill, such as: (i) a given variety must be cultivated in a limited number of
plots and (ii) produce a minimum amount of sucrose and fiber in each month. Considering
these conditions, the cane harvested in each field may not necessarily occur in the ideal
period, leading to nontrivial decisions at both the planting and harvesting times. Based on
the previous description, the sugarcane supply chain problem addressed in this study has two
main decisions:

(i) to choose which varieties, when, and in which plots they will be planted;
(ii) to decide with what deviation d from the ideal month each plot will be harvested in each

season (cut).

The objectives of the planning consist ofmaximizing sucrose andfiber production volumes
and, simultaneously, minimizing the operational cost of planting, cultivation, harvesting
(including the displacement of machines) and transportation during the planning period.

3.2 Functions to estimate sucrose and fiber productivity

As previously described, in our model, sucrose and fiber are both obtained from sucrose
cane and energy-cane. To facilitate the distinction between these parameters, we use the
superscripts s and e for the parameters associated with sucrose cane and energy-cane,
respectively.

Define as αs the annual rate of decrease in sucrose cane variety production. Let αe be the
annual increase rate production of energy-cane variety. Therefore, sucrose cane and energy-
cane have productivity correction factors given by (1−αs) and (1+αe), respectively, updated
at each new cut c. In addition, the sucrose productivity (both in sucrose cane and energy-cane
varieties) depends on the deviation d from the maturation peak. Authors in Nervis (2015)
proposed a productivity quadratic correction factor given by −0.0243d2 + 1. Inspired in
Poltroniere et al. (2021), to estimate fiber productivity, a linear correction factor as a function
of d is given by 0.0041d + 1 (for both sucrose cane and energy-cane varieties).

The expression in (1) provides an estimate for the sucrose production (γ s
i jcd , in tons) of

the sucrose cane variety i , planted in plot j and harvested in cut c with deviation d from its
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ideal month.

γ s
i jcd = (−0.0243d2 + 1) · (1 − αs)(c−1) · ζ s

i · ρs
i · � j , (1)

where ζ s
i is the sucrose percentage, ρs

i is the productivity (ton h
−1), and � j is the area of plot

(in ha).
The sucrose production (γ e

i jcd , in tons) of the energy-cane variety is given by Eq. (2).

γ e
i jcd = (−0.0243d2 + 1) · (1 + αe)(c−1) · ζ e

i · ρe
i · � j , (2)

where ζ e
i is the sucrose percentage in energy-cane variety and ρe

i represents the productivity
(ton h−1).

To estimate fiber production (θ si jcd , in tons) of the sucrose cane, Eq. (3) is used:

θ si jcd = (0.0041d + 1) · (1 − αs)(c−1) · ωs
i · ρs

i · � j , (3)

where ωs
i represents the fiber percentage.

Finally, the fiber production (θei jcd , in tons) of the energy-cane variety is calculated by Eq.
(4).

θei jcd = (0.0041d + 1) · (1 + αe)(c−1) · ωe
i · ρe

i · � j , (4)

where ωs
i is the fiber percentage in energy-cane variety.

3.3 A bi-objective binary formulation

To describe the model, we present the indices, parameters, sets and variables used in the
proposed mathematical model. The sets and parameters associated with sucrose cane and
energy-cane are defined separately, as both are cultivated in previously dedicated plots. That
is, the sets of varieties and plots dedicated to planting are exclusive to each one.

Indices
i associated with sucrose cane and energy-cane varieties;
j associated with the plots;
p associated with the planting month;
h associated with the harvest month;
c associated with the cuts;
d associated with deviations from the ideal harvesting month.

Parameters
� j area of plot j (ha);
κs number of plots intended for sucrose cane planting;
κe number of plots intended for energy-cane planting;
ns number of sucrose cane varieties;
ne number of energy-cane varieties;
η maximum percentage of cultivated plots with the same variety;
αs rate of decrease in sucrose cane productivity at each new cut;
αe rate of increase in energy-cane productivity with each new cut;
ρs
i productivity of sucrose cane variety i (ton ha−1);

ρe
i productivity of energy-cane variety i (ton ha−1);

ζ s
i sucrose percentage contained in sucrose cane variety i ;
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ζ e
i sucrose percentage contained in energy-cane variety i ;

ωs
i fiber percentage contained in sucrose cane variety i ;

ωe
i fiber percentage contained in energy-cane variety i ;

γ s
i jcd production (in tons) of sucrose from the sucrose cane, considering variety i in plot

j in cut c and with deviation d;
γ e
i jcd production (in tons) of sucrose from the energy-cane, considering variety i in plot

j in cut c and with deviation d;
θ si jcd production (in tons) of fiber from the sucrose cane, considering variety i in plot j

in cut c and with deviation d;
θei jcd production (in tons) of fiber from the energy-cane, considering variety i in plot j in

cut c and with deviation d;
βs
jc cultivation, harvesting and transportation operational cost of sucrose cane planted

in plot j in each cut c (the first cut also includes the cost of planting the sucrose
cane variety) (R$ · ton−1);

βe
jc cultivation, harvesting and transportation operational cost of energy-cane planted in

plot j in each cut c (the first cut also includes the cost of planting the energy-cane
variety) (R$ · ton−1);

τ si jc where τ si jc = βs
jc · (1 − αs)(c−1) · ρs

i · � j is the cost (in R$) for the planting (only
for the first cut), cultivation and harvesting of variety i of sucrose cane in plot j in
cut c;

τ ei jc where τ ei jc = βe
jc · (1 + αe)(c−1) · ρe

i · � j is the cost (in R$) for the planting (only
for the first cut), cultivation and harvesting of variety i of energy-cane in plot j in
cut c;

π s
i jc whereπ s

i jc = (1−αs)(c−1) ·ρs
i ·� j is themilling production (in tons) for the planting

(only for the first cut), cultivation and harvesting of variety i of sucrose cane in plot
j in cut c;

πe
i jc whereπe

i jc = (1+αe)(c−1) ·ρe
i ·� j is themilling production (in tons) for the planting

(only for the first cut), cultivation and harvesting of variety i of energy-cane in plot
j in cut c;

σ s
mc sucrose demand in month h of the cut c (tons);

σ e
mc fiber demand in month h of the cut c (tons);

δmc milling capacity in month h of the cut c (tons).

Sets
V s set of sucrose cane varieties, where V s = {1, . . . , ns};
V e set of energy-cane varieties, where V e = {ns + 1, . . . , ns + ne};
J s set of plots for sucrose cane planting, where J s = {1, . . . , κs};
J e set of plots intended for energy-cane planting, where J e = {κs + 1, . . . , κs + κe};
V set of all varieties available (V = V s ∪ V e);
J set of all plots available (J = J s ∪ J e);
TP set of the feasible planting month;
TH set of the feasible harvest month;
C set of the cane cut periods;
D set of possible deviations from the ideal month of sucrose cane and energy-cane.

Decision and auxiliary variables

The model has two groups of decision variables defined below: those related to planting
(xi jp) and those related to harvesting (ti jchd ). The y j variables are auxiliary and used in the
first cut. Once the planting is done in a given month in the plot j , the duration of the cane
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life cycle in this plot is already defined: 12 months (year cane) or 18 months (year-and-a-half
cane).

xi jp =

{
1, if variety i will be planted in plot j in month p,
0, otherwise,

for all i ∈ V , j ∈ J and p ∈ TP .

y j =

{
1, if plot j is cultivated with a year cane,
0, if plot j is cultivated with a year-and-half-cane,

for all j ∈ J .

ti jchd =

⎧⎨
⎩
1, if variety i planted in plot j will be harvested in month h of the

cut period c, with deviation d from the ideal month,
0, otherwise,

for all i ∈ V , j ∈ J , c ∈ C, h ∈ TH and d ∈ D.

Bi-objective mathematical model:

max v1 =
∑
j∈J s

∑
i∈V s

∑
c∈C

∑
h∈TH

∑
d∈D

γ s
i jcd · ti jchd +

∑
j∈J e

∑
i∈V e

∑
c∈C

∑
h∈TH

∑
d∈D

θei jcd · ti jchd+
∑
j∈J s

∑
i∈V s

∑
c∈C

∑
h∈TH

∑
d∈D

θ si jcd · ti jchd +
∑
j∈J e

∑
i∈V e

∑
c∈C

∑
h∈TH

∑
d∈D

γ e
i jcd · ti jchd (5)

min v2 =
∑
j∈J s

∑
i∈V s

∑
c∈C

∑
h∈TH

∑
d∈D

τ si jc · ti jchd +
∑
j∈J e

∑
i∈V e

∑
c∈C

∑
h∈TH

∑
d∈D

τ ei jc · ti jchd (6)

subject to∑
i∈V

∑
p∈TP

xi jp = 1, j ∈ J (7)

∑
j∈J s

∑
p∈TP

xi jp ≤ η · κs, i ∈ V s (8)

∑
j∈J e

∑
p∈TP

xi jp ≤ η · κe, i ∈ V e (9)

∑
i∈V

∑
p∈TP

p · xi jp ≤ 4 + 6 · y j , j ∈ J (10)

∑
i∈V

∑
p∈TP

p · xi jp ≥ 9 · y j , j ∈ J (11)

∑
i∈V

∑
p∈TP

i · xi jp =
∑
i∈V

∑
h∈TH

∑
d∈D

i · ti jchd , c ∈ C, j ∈ J

(12)∑
i∈V

∑
h∈TH

∑
d∈D

ti jchd = 1, c ∈ C, j ∈ J

(13)∑
i∈V

∑
p∈TP

p · xi jp =
∑
i∈V

∑
h∈TH

∑
d∈D

(h − d) · ti j1hd , j ∈ J (14)

∑
i∈V

∑
h∈TH

∑
d∈D

(h − d) · ti jchd
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=
∑
i∈V

∑
h∈TH

∑
d∈D

(h − d) · ti j(c−1)hd , c ∈ C \ {1}, j ∈ J

(15)∑
j∈J s

∑
i∈V s

∑
d∈D

γ s
i jcd · ti jchd

+
∑
j∈J e

∑
i∈V e

∑
d∈D

γ e
i jcd · ti jchd ≥ σ s

mc, c ∈ C, h ∈ TH

(16)∑
j∈J s

∑
i∈V s

∑
d∈D

θ si jcd · ti jchd

+
∑
j∈J e

∑
i∈V e

∑
d∈D

θei jcd · ti jchd ≥ σ e
mc, c ∈ C, h ∈ TH

(17)∑
j∈J s

∑
i∈V s

∑
d∈D

π s
i jc · ti jchd

+
∑
j∈J e

∑
i∈V e

∑
d∈D

πe
i jc · ti jchd ≤ δmc, c ∈ C, h ∈ TH

(18)

xi jp ∈ {0, 1}, i ∈ V , j ∈ J , p ∈ TP (19)

y j ∈ {0, 1}, j ∈ J (20)

ti jchd ∈ {0, 1}, i ∈ V , j ∈ J , c ∈ C, h ∈ TH , d ∈ D. (21)

The objective in (5) aims to maximize sucrose and fiber production volumes obtained by
adding the sucrose and fiber production of the varieties of sucrose cane and energy-cane in
all harvests. The second objective, given in (6), minimizes the operational cost of planting,
cultivation, harvesting and transportation during the planning period. The costs of planting,
cultivation, harvesting, and transportation are considered for the first harvest. After that, only
the costs of cultivation, harvesting and transport are considered for other harvests.

Constraints (7) guarantee planting a single variety in each plot. Constraints (8) and (9)
ensure that a maximum of η% of the plots are reserved for each sucrose cane variety and
energy-cane, respectively. This practical constraint allows multiple varieties to be grown on
the farm, making the entire crop less susceptible to diseases, pests and weeds (Liebman and
Dyck, 1993). Constraints (10) and (11) identify, for each plot j , whether the cane variety i
must be planted in the annual or year-and-a-half system (only for the first cut). For example,
if y j = 0, then (11) is redundant and (10) forces that the planting month is between January
and April (1 ≤ p ≤ 4); if y j = 1, the same constraints force the planting month p to be
between September and October (9 ≤ p ≤ 10). Constraints (12) ensure that, in each cut, the
variety harvested in each plot is the same as that which was planted. Constraints (13) ensure
that each cut will have a single harvest in each plot. Equations (14) determine the harvesting
month in each plot for the first cut. Similarly, Eq. (15) determine the harvesting month in
each plot from the second cut. The last two sets constraints assume that each plot is harvested
in a maximum of one month (we assume that there are enough machines for this). Other
practical constraints considered in our formulation are due to previously signed contracts
and the milling capacity of the two types of cane. In this sense, Constraints (16) guarantee
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the fulfilment of the monthly demand for sucrose in each cut, obtained from sucrose cane and
energy-cane. In similar way, Constraints (17) ensure the fulfilment of the monthly demand
for fiber from sucrose cane and energy-cane for each cut. Finally, Constraints (18) aim to
respect the maximum monthly milling capacity of the mill in each harvest. As previously
described, the plots intended for planting sucrose cane and energy-cane are pre-defined,which
is considered in the model. However, planning the planting and harvesting of both types of
cane must be balanced and carried out separately since both meet the demands for sucrose
and fiber. In addition, the milling capacity is shared in each harvest, which integrates the two
types of cane. Thus, the mills are specific to the type of cane (sucrose cane or energy-cane)
and must be prepared to receive each one. It is not possible to mix the varieties and grind
them together. Finally, Constraints (19), (20) and (21) define the domains of the decision
variables.

To improve the understanding of the proposed model, especially the relationship between
the variables that define planting, harvesting and deviations from maturation, a didactic
example with a diagram is presented in the Supplementary Material.

The multi-objective model proposed determines solutions that establish a trade-off
between planting, harvesting, transportation costs and sucrose and fiber production volumes
by selecting sucrose cane and energy-cane varieties. This trade-off can vary depending on the
priority between the minimum and maximum of each objective, where the decision-maker
can choose the alternative that best meets his interests. For cane mills, it is very important
to balance these objectives and that solutions that prioritize only one objective are avoided.
If the production volume is maximized, the costs of planting, harvesting and transportation
should also be high since the decisions that lead to this goal are not necessarily the same ones
that minimize costs. A variety of high-productivity cane is not expected to have the lowest
costs and vice-versa.

Model (5)–(21) presents difficulties and complexities to be solved due to several factors.
Among them, the large number of binary decision variables, even for small instances, is high-
lighted. In addition, the model is bi-objective, requiring more elaborate solution approaches
when compared to those used for mono-objective models. Sections4 and 5 describe the
solution procedure proposed in this study to solve instances based on real data.

4 Amethod to obtain Pareto optimal solutions

4.1 Basic definitions

In a bi-objective optimization problem, the objective functions are conflicting. A unique
solution optimizing all objectives concomitantly is impossible (or utopic, as it is known
in the literature). In the bi-objective model (5)–(21), when maximizing sucrose and fiber
production, the operating cost increases, while minimizing the operational cost means the
production volumes of sucrose and fiber decreases because the model seeks only to produce
to meet demand, not exploiting the most productive varieties and consequently increasing
costs.

According to the classical references inmulti-objective optimization like (Miettinen, 1999)
and Ehrgott and Wiecek (2005), some definitions need to be introduced in this field. Firstly,
the optimal solution concept is generalized to efficient or Pareto optimal. An efficient or
Pareto optimal solution s∗ is defined as a feasible solution such that there exists no other
feasible solution ŝ that is equal or better for each objective, with at least one strictly better
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objective. In an efficient solution, any improvement in one objectiveworsens at least one other
objective involved. The image of an efficient solution for the objective functions is called the
non-dominated vector. The set of all non-dominated vectors constitutes the Pareto frontier
of the problem. The vector whose components are the optimal values of each objective
function restricted to the feasible original set is called the ideal. Note that the pre-image
of this vector is an infeasible solution to the problem defined by the model (5)–(21). The
end-points of the Pareto frontier are called lexicographic points and the pre-image of these
points are solutions called lexicographic solutions. Lexicographic solutions are determined
when vi + ε · v j is optimized, restricted to the original feasible solution space, with i �= j
and ε > 0 a sufficiently small number. A non-dominated point is called supported when it
is in the convex boundary of the Pareto frontier. Otherwise, it is unsupported. In problems
with integer variables, the Pareto frontier may contain many unsupported points. Finally, the
compromise solution is defined as the efficient solution that establishes an equal balance (in
some metric) between the objectives involved. This study uses the Tchebycheff metric to
determine the compromise solution.

Multi-objective optimization methods must identify different efficient solutions and pro-
vide a full insight into the trade-off between the objectives. The efficient solutions for the
bi-objective model (5)–(21) proposed in this study were determined using the Augmented
Tchebycheff Method. This technique transforms the bi-objective optimization problem into
a set of mono-objective subproblems, optimizing one of the objective functions. At the same
time, the other is inserted in the set of constraints through predefined lower and upper bounds,
enabling the investigation of their optimal solution.

4.2 The Tchebycheff scalarizationmethod

Several studies in the literature have been motivated by the Tchebycheff Metric to determine
compromise solutions for an integer multi-objective problem, such as Aliano et al. (2022);
Nikulin et al. (2012); Giagkiozis and Fleming (2015); García-Segura et al. (2018), andAliano
et al. (2021). In simplified form, this scalarization determines Pareto optimal solutions as
close as possible to the ideal point. The distance to the ideal point is the largest weighted
deviation from its coordinates and the weights are assigned by the user according to his
preferences. There are other theoretical advantages to its use. The Augmented Tchebycheff
subproblem, when optimized, can determine any efficient solution, no matter whether its
image is a supported or unsupported non-dominated point.

Another reason for its choice is related to the proposedMIP-heuristic, presented in Sect. 5.
The Tchebycheff problem does not need to modify the original feasible set of the problem
(5)–(21) to determine different compromise solutions, unlike the methods inspired by ε-
constrained methods. Instead, the method deals with the variation of the weights λ of the
objective functions from the coordinates of the ideal vector that, when minimized, determine
efficient solutions. Naturally, these weighted deviations are taken as additional constraints
in the subproblem but do not cut or alter the original admissible set. The proposed MIP-
heuristic uses this advantage because it does not have to deal with constraints imposing
upper and lower bounds on the values of the objective functions. This would certainly take
away the efficiency of the proposed approach. The strategy of not modifying the original
feasible set is also taken advantage of in mipstart because the heuristic solution, provided by
the MIP-heuristic, must always serve as the incumbent for the Tchebycheff subproblem, as
will be seen in Sect. 5. Therefore, these factors were enough to indicate this method as the
viable and adequate alternative for this study.
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To apply this method, first determine the lexicographic solutions of the bi-objective prob-
lem. Let s be the feasible set for the original bi-objective problem (cf. (7)–(21)) where s ∈ S
contains all the decision variables for the problem. The first step is to determine the solutions
s∗1 and s∗2 of Problems (22) and (23) whose values are optimal for each objective v1 and v2
individually:

s∗1 = argmax{v1(s) − ε · v2(s)}
subject to

s ∈ S,

(22)

and

s∗2 = argmin{v2(s) − ε · v1(s)}
subject to

s ∈ S.

(23)

where ε > 0 is an appropriate positive constant to eliminate alternative solutions. Define

v∗
1 = (

v1(s∗1), v2(s∗1)
)� = (

v+
1 , v+

2

)�
and v∗

2 = (
v1(s∗2), v2(s∗2)

)� = (
v−
1 , v−

2

)�
from

Problems (22) and (23), respectively. With these problems, the minimum and maximum
values for sucrose and fiber yield for Problem (22) and the minimum and maximum values
for total production cost for Problem (23) are determined. Consequently, the ideal point
components for the criterion space involving both problems and defined in (24) have been
determined.

Next, the Weighted Augmented Tchebycheff problem is defined. Given the weight 0 <

λ < 1, the scalar subproblemwhose optimal solution, s∗c , is Pareto optimal for the bi-objective
original problem, is defined as follows:

s∗λ = argmin

{
max

{
λ · v+

1 − v1(s)

v+
1 − v−

1

, (1 − λ) · v2(s) − v−
2

v+
2 − v−

2

}
+ ε · [−v1(s) + v2(s)]

}

subject to
s ∈ S.

(24)

The objective is to determine a solution s ∈ S whose maximum weighted deviation from
the ideal point is minimized. Since the functions v1 and v2 have different orders ofmagnitude,
theymust be normalized by dividing themby the constants v+

1 −v−
1 and v+

2 −v−
2 , respectively.

For each choice of λ, an efficient solution is determined. As λ → 0, efficient solutions with
lower production volumes and cost levels are determined. On the other hand, if λ → 1,
efficient solutions with maximum outputs and costs are achieved. In particular, the weight
λ = 1

2 assigns the same weight to the two objectives, being, in most cases, like the model
proposed in this study. The additional term ε · [v1(s) + v2(s)] is only to prevent weakly
efficient solutions.

The subproblem (24) can be rewritten in linear form as follows:
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s∗c = argmin {u + ε · [−v1(s) + v2(s)]}
subject to

s ∈ S
λ · v+

1 − v1(s)

v+
1 − v−

1

≤ u

(1 − λ) · v2(s) − v−
2

v+
2 − v−

2

≤ u

u ≥ 0.

(25)

Note that any s ∈ S solution is also feasible for the Problem (25). This aspect will be
crucial for obtaining efficient solutions to the bi-objective problem in a reasonable CPU
time. Section5 proposes a MIP-heuristic approach for determining feasible integer solutions
for problems related to the original model (5)–(21) and how these solutions can assist in
obtaining exact solutions for these problems.

5 AMIP-heuristic approach

This section proposes a MIP-heuristic approach for solving the bi-objective model. Inspired
by previous studies, its success in various applications and the good performance of the
RF&FO in combinatorial problems (especially inPoltroniere et al. (2021)), an adapted version
of this approach is used to deal with the multi-period sugarcane planting and harvesting
scheduling problem. Furthermore, the problem deals with conflicting objectives and, since
scalarization techniques are used to solve it, there is a demand to optimize mono-objective
subproblems multiple times. This further justifies the use of this heuristic approach in the
present case.

As presented in the computational results section, the original model cannot be solved by
exact methods using real instances in a reasonable CPU time. More specifically, preliminary
computational experiments showed that obtaining a feasible planting and harvesting schedule
for the |C | cycles was impossible. This is due to model characteristics such as weak linear
relaxation and the high number of binary variables involved. Therefore, the proposition of the
MIP-heuristic has two goals: (i) to provide approximations for the different Pareto optimal
solutions to the original problem and (ii) to use these approximate solutions as incumbents for
applying exact methods (such as branch-and-bound) using the Gurobi software. The result
is a combined approach that can generate approximate and exact Pareto optimal solutions
for the problem under consideration. The advantage of this procedure is that it can generate
good quality approximations in a reasonable CPU time while, at the same time, the quality
of these approximations is evaluated.

The core of the MIP-heuristic is to decompose the original problem over harvest cycles
and sequentially determine the harvest schedule using fixed harvest variables determined in
the previous year. The MIP-heuristic has its distinct operation for each of the two types of
solutions in determining: the lexicographic solutions (s∗1 and s∗2) and the efficient ones (s∗λ)
as λ is chosen.

The procedure described in this section is combined with an exact optimization strategy to
find a way to evaluate the quality of the approximate solutions. Moreover, the exact method
uses the approximate (incumbent) solutions to refine and search formore promising solutions.
The incumbent solutions generated by the proposed approach accelerate the convergence
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process to optimal solution because all the computational effort is devoted to pruning the
branches of the search tree. Preliminary computational tests illustrated that branch-and-bound
could not find feasible integer solutions to this problem after many hours of execution.

The stages of the MIP-heuristic for determining approximate solutions (Steps 1 to 2) and
exact solution (Step 3) for the lexicographic solutions to Problem (5)–(21) are defined as
follows:

1. Step 1. Determining the first-year planting and harvesting for the approximate
lexicographic solutions. The variables 0 ≤ ti jchd ≤ 1 for all i ∈ V , j ∈ J for all
c ∈ C \ {1}, h ∈ TH , d ∈ D are relaxed and the variables ti j1hd are kept as binary, i.e.,
the interest is in determining a planting and harvesting schedule only for the first year
(c = 1). Consider for the year c = 1, the following demands for sucrose σ s

m and fiber
σ e
m are determined as follows:

σ s
m = max

c∈C {σ s
mc for each h ∈ TH }, (26)

and

σ e
m = max

c∈C {σ e
mc for each h ∈ TH }. (27)

This is done to guarantee planting that meets the demands for the remaining years. Then,
consider the following constraints:

Constraints (7) − (11) and (14)∑
i∈V

∑
p∈TP

i · xi jp =
∑
i∈V

∑
h∈TH

∑
d∈D

i · ti j1hd , j ∈ J

∑
i∈V

∑
h∈TH

∑
d∈D

i · ti j1hd = 1, j ∈ J

Constraints (16) for c = 1,RHS equal to σ s
m

Constraints (17) for c = 1,RHS equal to σ e
m

Constraints (18) for c = 1
xi jp ∈ {0, 1}, i ∈ V , j ∈ J , p ∈ TP
y j ∈ {0, 1}, j ∈ J
ti j1hd ∈ {0, 1}, i ∈ V , j ∈ J , h ∈ TH , d ∈ D.

(28)

Constraints (28) define the same conditions as constraints (7)–(21) particularized for
c̄ = 1, except for constraints (15) that connect one cycle to the other. Define as S1 the
space of variables xi jp , y j and ti j1hd generated by the constraints (28) and s1 ∈ S1.
(a) Step 1a: Determination of the approximate maximum production for the first

cut. To maximize the production of the first cut, solving the Problem (29):

s∗1,1 = argmax {v1(s1) − ε · v2(s1)}
subject to

s1 ∈ S1.
(29)

The optimal vector s∗1,1 contains all the variables x∗
i j p , y

∗
j and t∗i j1hd that optimize

production for the first cut.
(b) Step 1b: Determination of the approximate minimum cost for the first cut. To

minimize the harvesting cost in the first cut, Problem (30) is solved:

s∗1,2 = argmin {v2(s1) − ε · v1(s1)}
subject to

s1 ∈ S1.
(30)
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The optimal vector s∗1,2 contains all the variables x∗
i j p , y

∗
j and t∗i j1hd that minimize

the cost for the first cut.

2. Step 2: Determination of an approximate harvesting for subsequent years. For each
c̄ ∈ {2, 3, . . . , |C |}, fix the harvesting variables of the year c̄−1 (ti j(c̄−1)hd at t∗i j(c̄−1)hd ),
to determine the harvesting for the year c̄ by optimizing only the variables ti j c̄hd . In
particular, for c̄ = 2, t∗i j(c̄−1)hd are optimal variables provided by either Problem (29) or
(30) from the first year harvest. The subproblem to be resolved, for each c̄ ∈ C\{1}, will
have the following sets of constraints:

ti j(c̄−1) = t∗i j(c̄−1)hd , i ∈ V , j ∈ J , h ∈ TH , d ∈ D (31)

Constraints (13) − (18) for c = c̄ (32)
ti j c̄hd ∈ {0, 1}, i ∈ V , j ∈ J , h ∈ TH , d ∈ D. (33)

Constraints (31) fix the harvest cycle variables for the year c̄ − 1. The conditions (32)
impose a unique harvest for each plot j , forcing the same variety harvested in year c̄− 1
to be harvested in year c̄, establishing the relationship between the harvesting month of
the previous year and the following one, satisfying the sucrose and fiber demand for the
current year and imposing the milling capacity limit. Finally, (33) defines the decision
variables’ domain. Define as Sc̄ the space of variables ti j i c̄hd generated by the constraints
(31)–(33) and sc̄ ∈ Sc̄ for each c̄ ∈ {2, 3, . . . , |C |}. Note that the planting variables (xi jp)
and that choosing the life cycle (y j ) are not considered in this set of constraints because
they have already been determined in Step 1. The procedure is done sequentially; that is,
the optimization in cycle c̄ = 1 provides the variables to form the constraint set S2, the
optimization in cycle c̄ = 2 provides the variables to form the constraint set of S3 and
so on.

(a) Step 2a: Determining the maximum production approximation for subsequent
cuts. To maximize the production from the first cut, Problem (34) is solved:

s∗̄c,1 = argmax {v1(sc̄) − ε · v2(sc̄)}
subject to

sc̄ ∈ Sc̄.
(34)

The optimal vector s∗̄c,1 contains the optimal variables t∗i j c̄hd that determine the harvest
schedule in year c̄ for maximum production volumes.

(b) Step 2b:Determination of theminimumcost approximation for subsequent cuts.
To minimize the cost from the first cut, Problem (35) is solved:

s∗̄c,2 = argmin {v2(sc̄) − ε · v1(sc̄)}
subject to

sc̄ ∈ Sc̄.
(35)

Note that Problems (29) and (35) are easier to solve than the original problem with
all the cuts, as well as the problems in Step 1. The optimal vector s∗̄c,1 contains the
optimal variables t∗i j c̄hd that determine the minimum cost for year c̄.

Although the solutions s∗c,1 and s∗c,2 are optimal for each c ∈ C , they are approxi-
mations to the solution of the original problem where planting is done concerning
all |C | harvest cycles. After applying Step 1 and Step 2, the approximations to the
lexicographic solutions of the bi-objective problem have been determined. Define the
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approximation for s∗1 (of maximum production volumes) as sA1 =
C⋃
c=1

{
s∗c,1

}
and the

approximation for the minimum cost of the solution is defined by sA2 =
C⋃
c=1

{
s∗c,2

}
.

The approximations for the lexicographic points of the Pareto frontier are given by

vA1 = (
v1(sA1 ), v2(sA1 )

)� = (
vA
1 , vA

2

)�
and vA2 = (

v1(sA2 ), v2(sA2 )
)� = (

vA
1 , vA

2

)�
.

3. Step 3: determining exact lexicographic solutions (Mipstart). This step involves
solving the mono-objective Problems (22) and (23) using the exact branch-and-bound
algorithm for all |C | cuts. The approximate lexicographic solutions, sA1 and sA2 , obtained
in Step 1 and 2 are used as incumbents for the branch-and-bound tree to determine s∗1 and
s∗2, respectively. Immediately, the components of the ideal vector I = (

v+
1 , v−

2

)�
have

been determined. Define the optimal values for the harvest variables of the two exact
lexicographic solutions (maximum production and minimum cost, respectively) as t∗,1

i jchd

and t∗,2
i jchd . Furthermore, let the objective values of v1 and v2 of these solutions for each

cycle be calculated as follows:

v∗
c,1,1 = v1(t

∗,1
i jchd), for each c ∈ C

v∗
c,2,1 = v2(t

∗,1
i jchd), for each c ∈ C

(36)

and

v∗
c,1,2 = v1(t

∗,2
i jchd), for each c ∈ C

v∗
c,2,2 = v2(t

∗,2
i jchd), for each c ∈ C .

(37)

These values will be the reference points for the application of the MIP-heuristic for
calculating approximate solutions (Steps 4 and 5) and an exact solution (Step 6) for the
efficient solutions, made for each harvest c̄, are considered in the next steps.

4. Step 4: determining the approximate efficient solution for the first year for the
planting and harvesting. For each 0 < λ < 1 assigned, a planting and harvesting
schedule for the first year (c = 1) can be determined by establishing a efficient between
production volumes and cost via theAugmentedTchebycheff subproblem. The aspiration

point to be approximated is I1 =
(
v∗
1,1,1, v

∗
1,2,2

)�
obtained using (36) and (37), i.e., the

highest production and the lowest cost values for year c = 1. Then this is solved by the
Augmented Tchebycheff problem (presented in its linearized form):

s∗1,λ = argmin {u + ε · [−v1(s1) + v2(s1)]}
subject to

s1 ∈ S1
λ · v∗

1,1,1 − v1(s1)

v∗
1,1,1 − v∗

1,1,2
≤ u

(1 − λ) · v2(s1) − v∗
1,2,2

v∗
1,2,1 − v∗

1,2,2
≤ u

u ≥ 0.

(38)

Note that, the feasible space of Problems (29), (30) and (38) (cf. Step 1a) are the same.
The solution s∗1,λ contains the harvesting variables t A,λ

i j1hd of the approximate efficient
solution for the first cut.
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5. Step 5: determining approximations for efficient solutions to be harvested in subse-
quent years. The remaining harvests are determined sequentially from the scheduling of
the first cut, as was done in Step 2. However, the Augmented Tchebycheff subproblem

for each cycle needs to be solved, regarding the optimal point Ic̄ =
(
v∗̄
c,1,1, v

∗̄
c,2,2

)�
(cf.

(36) and (37)), that is, solve Problem (39) for c̄ ∈ {2, 3, . . . , |C |}:
s∗̄c,λ = argmin {u + ε · [−v1(sc̄) + v2(sc̄)]}

subject to
sc̄ ∈ Sc̄
λ · v∗

1,1,1 − v1(sc̄)

v∗̄
c,1,1 − v∗̄

c,1,2
≤ u

(1 − λ) · v2(sc̄) − v∗̄
c,2,2

v∗̄
c,2,1 − v∗̄

c,2,2
≤ u

u ≥ 0.

(39)

Note that the feasible space for this subproblem is the same as for the subproblems
(34) and (35) (cf. Steps 2a and 2b). After determining the |C | harvest cycles, a feasible
efficient and approximate solution to the original problem, sAλ =

C⋃
c=1

{
s∗c,λ

}
, is obtained.

It is important to highlight that the added constraints (that weigh and limit the deviations
of the objective functions from the components of the ideal vector) do not eliminate any
integer solutions considering the original problem.Minimizing u+ε(−v1+v2) forces the
model to find approximations to the efficient solutions whose image is in the intermediate
portions of the Pareto frontier. Furthermore, the feasibility of these subproblems is always
guaranteed, since conditions (26) and (27) imposed in the first cut prevent infeasibility
in the subsequent years.

6. Step 6: determining exact efficient solutions (Mipstart). Efficient solutions for the |C |
cuts, using an exact method, are determined by introducing the solution sAc̄,λ (obtained
heuristically) in the branch-and-bound tree. Problem (24) is then solved. The branch-
and-bound tree starts from an incumbent solution, and all computational effort is devoted
to obtaining the optimal solution s∗λ of this problem.

This combined technique generates 2(n + 2) subproblems, where n is the number of effi-
cient solutions that vary according to the choice of 0 < λ < 1, the information provided
a priori by the manager. Half of these solutions are approximate solutions, which are used
by the exact methods to produce the remaining solutions. The Flowchart presented in Fig. 1
illustrates the different steps of the MIP-heuristic, highlighting the alternation between the
heuristic and exact approaches and the dependence of one on the other. This diagram differen-
tiates the exactmethods implemented by the commercial solvers used to improve the heuristic
solutions using “ExactL” and “ExactC”, emphasizing that they produce the Lexicographical
and Compromise exact solutions.

The following section presents the computational experiments to validate the proposed
mathematical model and its solution approach.

6 Computational experiments

The mathematical model and solution approach proposed in this study were tested in two
phases. In the first, presented in Sect. 6.1, the parameters considered are inspired by practical
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Fig. 1 Flowchart of MIP-heuristic approach combined with exact method

data provided by sugarcane mills in the state of São Paulo, Brazil. Five different problems
involving instances reflecting the different sizes ofmills are solved. The focus is on evaluating
the efficient solutions found and somemetrics are employed to compare the strategic planning
obtained. Then, in Sect. 6.2, computational tests with instances generated semi-randomly
were performed to evaluate the potential of the proposed approach.

6.1 Instances inspired by real-life cases

This section presents and discusses the computational results using the proposed solution
heuristic with real case data from sugarcane mills in the state of São Paulo, Brazil. The opti-
mization model was solved using the Gurobi software (Gurobi Optimization, 2022), whose
solver implements the exact method for branch-and-bound and branch-and-cut algorithms.
The implementation of the model, as well as the proposed MIP-heuristic, were developed in
the Julia programming environment, version 1.0.4 (Bezanson et al., 2017), using the JuMP
modeling language version v0.20 (Dunning et al., 2017). The seed for the random gener-
ator of the uniform distribution was set to “2022”. All codes and data are available in the
repository whose address is https://github.com/angeloaliano/multiperiod_sugarcane. For the
stopping criteria for the solver, a maximum time of two hours was set to optimize the scalar
subproblems in all six steps or when the Gap was less than 0.50%. Although some solutions
were not solved optimally (Gap = 0.0%) because the maximum Gap allowed for solving
was attained, the terms “Efficient Solution” or “Pareto optimal” are used for the determined
schedules. The computational tests were done on a computer with an Intel Core i7-2450M
processor, 2.50GHz and 8.0 GB of RAM, and a 64-bit operating system. In all experiments,
ε = 10−5 was adopted.

The computational tests were carried out for four cuts (harvests) (C = {1, 2, 3, 4}, index
c) in a sugar-energy mill that obtains sucrose and fiber from energy-cane and sucrose cane
farms located in the state of São Paulo (south-central region) in Brazil. Five different semi-
random instances inspired by the reality of the mills with |J | equal to 30, 65, 150, 300 and
500 plots were considered (index j). The total number of plots for each these instances is an
attempt to reflect the reality of the different sizes, capacities and economic power of mills in
this region. A maximum number of 500 plots was used because this is an approximate full
size at which a larger mill can manage its cane fields simultaneously. Furthermore, the more
concentrated planning facilitates the targeting of resources on the formation of harvesting
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fronts in a limited coverage area. In fact, the mills can cultivate more than 2000 plots but,
in such cases, the strategic planning of planting and harvesting is carried out in a sectorized
manner, subdividing it into a few macro-regions and involving groups of nearby farms.
It is important to emphasize that the operational costs of planting, cultivation, harvesting
(including displacement of machines) and transportation βe

jc and βs
jc (inspired by Bigaton et

al. (2017)) are integrated values. The costs consider an average distance of 25km between
the plot (cultivated area) and the mill for their calculations. The other data necessary for these
experiments are detailed in Tables located in Supplementary Material of this paper.

Steps 1–6 determine, in total, six solutions for each instance, three being approximate
(sA1 , s

A
2 and sA0.5) and three exact (s∗1, s∗2 and s∗0.5). The solutions with index 1 maximize the

production volumes and thosewith index 2minimize the cost. The discussionwill analyze the
quality of heuristic solutions compared to exact ones and the trade-off between the objectives.

Preliminary tests showed that generating integer feasible solutions for this problem using
only exact methods (without introducing auxiliary methods to generate incumbent solutions)
was impossible considering a limit of two hours ofCPU time even for instances from |J | = 65
plots, regardless of the objective to be optimized. Table 2 shows in columns 3 and 4, respec-
tively, the CPU time elapsed with the application of branch-and-bound and the associated gap
(when an integer solution is found). The only instance where it was possible to obtain Pareto
optimal solutions was with |J | = 30. In the other instances, two hours was insufficient for
the solver to calculate any feasible integer solution. This illustrates the combinatorial nature
of this problem and the limited application of exact methods. This aspect was fundamental
for the proposition of the method developed in this study. As shown in the following results,
the use of the exact approach was only possible because the MIP-heuristic determines good-
quality solutions that are inserted into the root node of the main problem tree. With this in
mind, in the following tables and figures, all results related to the exact method refer to the
application of the branch-and-bound method with the introduction of the integer incumbent
solution generated by the MIP-heuristic. In Table 2, the results are represented in columns 4
to 7. The results of the exact method without incumbent solutions are shown in columns 3
and 4.

To analyze the degree of conflict between the objectives v1 and v2 involved and the inter-
ference between one and the other, three efficient solutions to this problem in each instance
were determined using the approximate and exact approaches. Two of these solutions are the
lexicographic ones (Steps 1–3, which optimize production volumes and cost individually)
and a third solution establishing an equal compromise between these two goals is obtained.
This solution is determined between Steps 4–6 by setting λ = 0.5. An efficient solution
will be determined whose image in the criterion space is a non-dominated point as close
as possible to the ideal point in terms of the Tchebycheff Metric. This solution, previously
defined, is called a compromise solution. These three solutions can be analyzed in detail
and compared. The procedure can determine other efficient solutions by assigning different
values to λ. However, this would extend this text, adding little to the analysis.

Table 2 also illustrates the computational time (in seconds) for obtaining the different
(potentially) Pareto optimal solutions by the exact method (with the incumbent solution),
considering the four years of harvest (column 5), the %Gap of the determined solutions
(column 6). These two columns are associated only with Step 3 (for k = 1, 2) or Step 6
(for k = 0.5) of the procedure illustrated in Fig. 1 associated with the branch-and-bound
(ExactL or ExactC ) method implemented by Gurobi. This step starts the branching from
the incumbent solution, previously determined by the heuristic (Mipstart). Then, the exact
method is applied to obtain the optimal solution of the problem.
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The CPU time of the MIP-heuristic for determining each feasible and integer solution is
shown in column5 fromTable 2, associated onlywith theSteps 1 and 2 (for k = 1, 2) or Steps
4 and 5 (for k = 0.5) of flowchart presented in Fig. 1. Note that the lexicographic solutions s∗1
are more easily determined than s∗2 and s∗0.5. This fact is supported by the imposed maximum
Gap (less than the required tolerance of 0.50%) achieved with a CPU time of 5878s for
the largest instance. In contrast, the compromise solution is the most computationally costly
because it optimizes both objectives with equal weight.

Evidently, as the number of plots increases, the difficulty in obtaining Pareto optimal
solutions for the solved problems also increases. Up to the instance with 150 plots, the
solutions determined by the exact method are within a maximum error of 0.50% considering
the optimal value, with a CPU time of fewer than 10min. For the two larger instances, the
error gradually increases. This can be seen in the least-cost and compromise solution, where
the highest values for %Gap and CPU time were observed. This means that the solutions
determined for these instances are just over 4% error from the optimal value. Given the
complexity of the model and the size of the instances solved, this is a highly satisfactory
value. For example, the instance with 500 plots has more than 2.8 million binary variables
(cf. in the Supplementary Material). The excellent quality of these solutions is mainly due
to the use of Mipstart in this approach. A moderate increase in the computational effort
was observed in the MIP-heuristic, mainly in the determination of the sA2 solution. Most
of the computational time (about 90%) was spent on deciding the planting and harvesting
for the first cycle (Steps 1 and 4). However, the computational time is much less than that
of the exact method. This shows the potential of the developed MIP-heuristic, which fixes
variables and decomposes the problem for each cycle (cut), solving smaller subproblems in
the branch-and-bound tree, with almost 1/4 of the number of variables used in the original
problem.

In order to study the effect of other MIP-heuristics on this problem, such as Relaxation
Induced Neighborhood Search (RINS, see Danna et al. (2005)) and Local Branching (see
Fischetti andLodi (2003)), was determined s∗0.5 by solving Subproblem (24) andmeasured the
lower and upper bound (LB and UB) for the instance with |J | = 65 plots. A maximum time
limit of 12h was given to Gurobi, without the insertion of any initial solution. The heuristics
are implemented internally by the solver. The Heuristics parameter controls the fraction
of runtime spent on these heuristics. For example, if Heuristics = 0.05 (the default
value) it means that 5% of runtime is devoted to heuristics1. Fig. 2 illustrates progress of
the bounds for three values for this parameter: 0.05, 0.30 and 0.60. In the solver default
configuration, an integer solution is determined only after 4h of processing. As expected,
increasing the focus on heuristics has a positive effect because as this parameter increases, an
integer solution is obtained in a shorter time. Optimality is not proven in any simulation and
there is little progress in these bounds after a solution is found. It took about 2h to obtain a
feasible solution with a Gap equal to 8%when Heuristics = 0.6. After more than 10h
of processing, the Gap is reduced to 3.85% with an objective value of 0.42477. Calculations
with data in Table 3 illustrate that the objective value of Subproblem (24) determined by the
MIP-heuristic is 0.42473. This experiment suggests that the application of these heuristics
incorporated into the solver, which do not consider the special characteristics of the problem,
does not have the same effect when compared to the proposed MIP-heuristic. In a much
shorter time (10s), a feasible solution of better quality is possible.

1 More details, see the Gurobi manual at https://www.gurobi.com/documentation/current/refman/heuristics.
html.
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Fig. 2 Evolution of the bounds in the Tchebycheff Subproblem (24) for λ = 0.5 in the exact method when a
limit time of 12h is given

Table 3 presents the objective values for each of the three solutions determined in each
instance, comparing the exact and heuristic approaches. The lexicographic solutions obtained
with the exact and heuristic methods have the same objective values for all the instances
tested. Thismeans the branch-and-bound technique failed to improve the incumbent solutions
initially provided within two hours. This result indicates that the proposed MIP-heuristic
provides solutions of surprising quality in a short computational time for smaller instances
and the maximum of 2h (7200s) for larger instances. More specifically, all the approximate
solutions with maximum production volumes have an error of only 0.5% from the optimal
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Table 3 Comparative of objective values determined per instance and efficient solution using the exact and
approximate approaches

|J | sk Exact MIP-heuristic

k v1
(
s∗k

)
v2

(
s∗k

)
v1

(
sAk

)
v2

(
sAk

)
(tons) (R$) (tons) (R$)

30 1 1.52666 · 105 3.69299 · 107 1.52666 · 105 3.69299 · 107
2 1.17513 · 105 2.82316 · 107 1.17513 · 105 2.82316 · 107
0.5 1.38162 · 105 3.18171 · 107 1.38107 · 105 3.18171 · 107

65 1 2.97037 · 105 7.43126 · 107 2.97037 · 105 7.43126 · 107
2 2.40591 · 105 5.91753 · 107 2.40591 · 105 5.91753 · 107
0.5 2.73680 · 105 6.54402 · 107 2.74235 · 105 6.56047 · 107

150 1 6.47682 · 105 1.65652 · 108 6.47682 · 105 1.65652 · 108
2 4.65288 · 105 1.20009 · 108 4.65288 · 105 1.20009 · 108
0.5 5.71446 · 105 1.39090 · 108 5.72128 · 105 1.39381 · 108

300 1 1.30487 · 106 3.32929 · 108 1.30487 · 106 3.32929 · 108
2 9.21265 · 105 2.39830 · 108 9.21265 · 105 2.39830 · 108
0.5 1.14416 · 106 2.78767 · 108 1.14294 · 106 2.78639 · 108

500 1 2.24312 · 106 5.66383 · 108 2.24312 · 106 5.66383 · 108
2 1.62835 · 106 4.14681 · 108 1.62835 · 106 4.14681 · 108
0.5 1.98042 · 106 4.80180 · 108 1.98592 · 106 4.81188 · 108

value. For the solutions with the minimum cost, this error is just over 3%. The lexicographic
solutions offer extreme alternatives to the bi-objective problem, where one objective reaches
its best value while the other reaches its worst value considering only solutions from an
efficient set, i.e., the more unbalanced alternatives in the objectives. The range of these
objectives illustrates the total conflict between v1 and v2. Considering the largest instance,
while the production volume is around 614 thousand tons, the cost is around R$ 151 million.
In relative terms and considering all instances, the relative difference between the best- and
worst-case scenarios in production volumes and cost represent 25% and 34%, respectively.
The manager can choose between these to prioritize one objective (production volumes or
cost) and know how much the other will lose.

The exact and heuristic algorithms produce solutions that differ from each other for the
compromise solutions. Starting from the initial solution sA0.5, the exact method always pro-
duces a solution s∗0.5 using Problem (24) whose value of the cost (output) is less (greater)
than or equal to the cost (output) of the approximate solution. Except for the 30-plot instance,
although it cannot be guaranteed that sA0.5 is Pareto optimal, one does not dominate the other
(in the Pareto sense), so they are incomparable in the multi-objective sense and can constitute
alternative solutions to lexicographic solutions.

Figure3 illustrates an important managerial insight corresponding to the three solutions
determined: the value of the cost per volume produced (R$·ton−1). Considering the objective
values presented in Table 3, the alternative solutions determine different costs vs. benefits
when v1 and v2 vary. While in the three larger instances the solution s2 has a higher cost, in
the first two instances the highest cost belongs to s1. Although the compromise solution does
not determine the highest production volume or the lowest cost, it is the alternative that best
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Fig. 3 Cost per ton produced in each efficient solution determined

Fig. 4 Percentage of deviations regarding production volumes of s∗0.5 and sA0.5 relative to the best level of each
objective

combines/balances the objectives. It provides the lowest cost per unit produced in all cases.
This metric is an important tool in helping to choose a strategic plan for this problem.

Figure4 illustrate differences in the production volumes and cost values for these two effi-
cient solutions. The reference for calculating the relative deviations from the objectives is the

exact ideal point, I∗ = (
v+
1 , v−

2

)�
. The approximate solutions have a deviation slightly less

than the maximum production volumes of the exact solutions. An overall average gives only
10%, i.e. the compromise solutions have an average error of approximately 10% compared
to the maximum production volumes. In contrast, the approximate solutions have slightly
larger deviations from the exact ones. On average, the approximate compromise solutions
have a 14% higher cost than the minimum cost. Considering the range between the objec-
tives, these results show that the compromise solutions have objective values relatively close
to the ideal values. Therefore, they constitute alternative, viable and balanced options to the
lexicographic solutions, whose objective values are extremes. The weight factor of λ = 0.5
assigned to each objective deviation in the Tchebycheff Problem is adequate to produce
solutions whose objective vector is relatively close to the ideal point.

In practice at the sugarcanemills, themanagerswant a balanced solution that compromises
production volume and costs. With this balanced solution, the mill managers can predict and
size the contracting of labor, the ideal moment to rent machines and equipment necessary for
the planting and harvesting operations, which are distinct and sign contracts with outsourced
companies. This planning is crucial to the search for alternative sources of these resources in
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Fig. 5 Percentages of planted area with each variety of the instance with 500 plots along the three Pareto
optimal solutions

the market and exploit their competition, indispensable in making savings on costs, meeting
its production demand.

Figure5 analyzes the proportion of the areas cultivated with each variety i for the instance
of 500plots, considering the three solutions determinedby the exactmethod.Note that sucrose
cane varieties 11, 16 and 6 are planted at 29%, 24%and 20% in the total area in the s∗1 solution,
respectively, occupying almost 75% of the cultivated area. These varieties are the most
productive (see the Supplementary Material) for sucrose and fiber. On the other hand, almost
75% of the cultivated area comprises varieties 4, 9 and 10, respectively, being the least costly
and consequently the least productive. Choosing planting varieties from efficient solutions
establishes significant differences in harvest planning from the lexicographic solutions. The
compromise solution mixes high (i = 16) and low (i = 9) productive varieties, representing
almost 45% of the planted area. The other varieties, such as 1, 14 and 18, have median
production and cost values. For the energy-cane varieties, the same trend is repeated. Varieties
21, 22 and 23 are used more in s∗1, while varieties 24 and 25 are used more in s∗2 because of
differences between cost and productivity and the priority of each solution. In the compromise
solution, varieties 21, 23 (more productive) and 25 (less productive) are used the most. These
results show that the conflict between objectives is mainly related to the choice of varieties
to be planted since this choice interferes with the harvest yield in the following four years.
When an objective (cost or production volumes) is optimized, the varieties that contribute to
this are chosen when solving a problem that is 25% the size of the original problem (only
one cut). This justifies the success of the decomposition and RF&FO used for solving this
problem, providing solutions of excellent quality in a reasonable computational effort.

To finish the first subsection of the computational results, Fig. 6 illustrates 11 non-
dominated points for the instance with |J | = 150 plots produced by the exact and heuristic
algorithms. These points, associated with 11 solutions in the decision space, were deter-
mined by varying the λ weights uniformly in the interval [0, 1] in 0.1 steps. Highlighted in
red, green and blue are the ideal, non-dominated points determined by the exact and heuristic
approaches, respectively. The computational experiments up to this point have only deter-
mined three efficient solutions: two lexicographical and one with equal compromise to the
objectives obtained using λ = 0.5. However, it should be emphasized that the scalarization
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Fig. 6 Generation of 11 points generated by exact and MIP-heuristic proposed approach using Tchebycheff
problem with λ ∈ {0, 0.1, . . . , 1} for instance with |J | = 150 plots

method, coupled with the proposed heuristics can determine as many efficient solutions as
desired by varying the λ weight of the deviations of the objective values related to the coor-
dinates of the ideal vector I∗. For example, a decision-maker more concerned with higher
production volumes will adopt λ → 1 (for instance, λ ∈ [0.75, 0.9]). On the other hand,
a decision-maker focused on decreasing cost should use λ → 0 (i.e., λ ∈ [0.1, 0.25]) and
if they want a more balanced efficient solution, they should use λ ∈ [0.4, 0.6]. Note also
that the non-dominated points have a good distribution along the Pareto frontier. The figure
also shows the good quality of the efficient solutions, indicated by the points connected by
the continuous line very close to the exact Pareto frontier for this problem (the dashed line).
Moreover, while the exact method required 6545s to determine these 11 points, the heuristic
got them in 1420s.

To illustrate the result of the model after the optimization process, the complete calendar
defined by the compromise solution s∗0.5 with |J | = 30 plots is given in the Supplementary
Material. It shows which variety was grown in each plot, along with the scheduling of harvest
months and their respective deviations from the maturation peak in each of the |C | = 4 cuts.

6.2 Computational tests with semi-random instances

To validate the proposedMIP-heuristic, a larger number of problems were solved, generating
some parameters in a semi-random way, within a range that sought to reproduce the values
practiced by the mills. This allows us to certify the quality of the MIP-heuristic, making it
more reliable for solving this problem. The same five instances used previously for these tests
were adopted, with |J | = 30, 65, 150, 300 and 500 plots. For each instance, 20 examples
were generated whose parameters were obtained by using a uniform distribution (according
to Tables presented in the Supplementary Material). In total, 100 problems were solved.

In these experiments, the two lexicographic solutions were determined for each example
by the two approaches (s∗1, s∗2, sA1 and sA2 ). First, the lexicographic approximate solutions were
determined (sA1 and sA2 , Steps 1 and 2, see Fig. 1). Next, the exact method was implemented in
the Gurobi software, providing as incumbent the approximate solutions (Step 3, see Fig. 1).
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As stopping criteria, a maximum of 1h was imposed for Gurobi to solve each problem or
stop when the Gap was less than 1%.

Table 4 presents the numerical results obtained by comparing the heuristic solutions with
those produced by the exact method. In each instance, the following values were calculated
among the solutions of the 20 solved problems: average relative variation (in%) in production
volumes and cost, �v1 and �v2, respectively. The relative variations are given in Eq. (40):

�vk =
[

vk(s∗k ) − vk(sAk )

vk(s∗k )

]
× 100, k ∈ {1, 2}. (40)

If �v1 > 0, then the exact solution is better than the heuristic solution for objective v1.
On the other hand, if �v2 < 0, the exact solution is better than the heuristic for objective
v2. With the intention of evaluating the worst performance of the heuristic, the maximum
relative variations (in %) in production and cost (max�v1 and max�v2, respectively) were
calculated. Also, the proportion was determined in which the variations in production volume
and cost were equal to zero (% of �v1 = 0 and % of �v2 = 0, respectively). Computational
performance measures were determined such as average CPU time of the heuristic and the
exact method (sec.) and the average %Gap of the solutions obtained by Gurobi.

As expected, the exact method improves the heuristic solutions in both objectives. How-
ever, this improvement is very modest when the computational effort of the solver is taken
into account. For example, for |J | = 500, considering the lexicographic solution with maxi-
mum production, s∗1, it is only 0.02% better for objective v1 than sA1 (on average). However,
for objective v2, this is 0.02% worse (on average). This observation is valid for the other
instances. Similar results are obtained when objective v2 on the minimum cost solutions for
the heuristic and exact methods are compared„ with even less perceptible variations (less
than 0.12% in the cost).

The maximum values of the errors indicate slightly better performance in the maximum
production solutions whose maximum error is only 0.52% when |J | = 30 and decreases to
0.08%when |J | = 500. This decrease in error is due to the solver having greater difficulty in
improving the incumbent solution due to the larger number of binary variables and constraints.
These statements are verified when the rate at which the solver failed to improve the heuristic
solutions is analyzed. In the largest instance and when maximizing the objective v1, in 75%
of the examples, the solver failed to progress on both objectives in 1h; this proportion is even
higher in the least-cost solution (85% of the instances). This little progress is explained by
the optimality gaps provided by the Gurobi, an average of 1.26%. This means that at a high
rate of solved problems, the heuristic solutions are less than 1.26% away from the optimal
solutions consuming around a tenth of the computational time.

These findings corroborate the results of Subection 6.1 and provide a certificate of qual-
ity and computational effectiveness for the developed MIP-heuristic. With a reasonable
computational effort, the proposed algorithm can produce excellent quality solutions for
a combinatorial problem, difficult to solve by the best commercial optimization solvers.

7 Conclusions

This study presents a bi-objective model for the problem of planting and harvesting sucrose
cane and energy-cane, aiming to maximize the production of sucrose and fiber while mini-
mizing the operational cost of the chain from amulti-objective perspective.With the selection
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of sucrose cane and energy-cane varieties, the model determines a planting and harvesting
schedule, taking into account the operational constraints and the monthly demands at the
mill.

Due to the combinatorial nature and the high number of binary variables, the proposed
bi-objective model is challenging to solve using exact optimization methods. Even in small
instances, tests have revealed that the solver can take up to 4h to determine an integer solution.
Simulations with other heuristics (implemented internally by the solver) were also unable to
solve this problem in an acceptable time, not even with an imposed upper limit of 12h. To
overcome these drawbacks and solve the mathematical model in real-world applications, a
MIP-heuristic was proposed using the RF&FO principles. This approach has been adapted
for the bi-objective problem to obtain approximations to the efficient solutions.

Computational tests were divided into two parts to validate the proposed mathematical
model and the solution approach. The first one explored the trade-off of five instances based
on the parameters practiced by sugarcanemills in the Southeast region of Brazil. The analysis
revealed that the problem has an intense conflict between the cost and volume production
objectives, justifying theneed for amulti-objective approach.Onaverage,while themaximum
and minimum possible production volumes vary by 25%, the associated costs between the
worst and best scenarios vary by nearly 34%. In order to balance the disparities in the
objective values of the lexicographic solutions, the study compares, for different instances,
the compromise solutions whose weight of deviations from the ideal point is equal to both
objectives. These results present an alternative that balances the objectives and the decision-
maker can measure howmuch one objective is made worse as the other is improved and vice-
versa, according to the interests of the mill. This alternative, in terms of cost per production
volume, provides the better cost vs. benefit along the solutions determined. The proposed
approach can generate as many efficient solutions as desired, including the compromise
solution, by simply varying a single parameter according to the preference of the decision
maker.

The second part of the computational tests evaluated the proposed approach using one
hundred instances generated semi-randomly. The results revealed the good quality of theMIP-
heuristic, both in computational performance and proximity to the solutions determined by
the exact method. The instances with 500 plots have more than 3 million binary variables,
which could be solved with the proposed procedure in less than 10min per efficient solution
(on average). Moreover, there was no need for the exact method to improve the solution
obtained by the heuristic method in more than 75% of the problems solved, demonstrating
the good performance of this method. When there was a small improvement obtained by the
exact method, the difference was always close to or slightly greater than 1%, according to the
results shown by the duality gaps. For such solutions, Gurobi has provided a maximum error
gap of 1.43% to the optimal values (worst case). This indicates that all the problems solved
can have their (potentially) Pareto optimal solutions efficiently determined by the proposed
technique.

7.1 Future research directions

Directions for future research include developing metaheuristics (e.g. evolutionary algo-
rithms) or alternative MIP-heuristics to obtain approximate solutions to this problem in
instances with more plots (> 2000). Another option would be to consider stochasticity in
some of the parameters of this model, including demand and productivity. This model can
be extended to include equipment scheduling and harvesting fronts, such as the routing of
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harvesters between farms. The inclusion of others practical constraints such as capacity of
harvestingmachines andmechanized devices on the farm are also possible. Finally, it is inter-
esting to consider a more comprehensive model, where a percentage of plots have already
been cultivated and it is only necessary to schedule the harvest during the years.
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