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Abstract

Any utility function that is unbounded either from below or from above implies paradoxical
behavior. However, these paradoxes may be regarded as irrelevant if they involve wealth
levels that are realistically meaningless. Employing real-world constraints on wealth reveals
that CRRA utility with relative risk aversion outside of the range 0.75-1.15 yields paradoxical
choices that very few individuals, if any, would ever make. Thus, relative risk aversion must
be close to 1, the value corresponding to log preferences. These results shed new light on the
longstanding debate about the geometric-mean criterion and the argument of stocks for the
long-run.
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1 Introduction

In the same year that Harry Markowitz revolutionized portfolio theory (Markowitz, 1952a), he
also planted the seed of what decades later would become behavioral economics (Markowitz,
1952b). He also played a key role in the debate over stocks for the long-run and the geometric-
mean criterion (Markowitz, 1976, 2006). This paper hopes to shed new light on this long-
standing debate.

The investment with the maximal geometric mean yields a terminal wealth which is
higher than that obtained by any other investment, with a probability that approaches 1 as
the investment horizon increases. This leads to a strong intuition favoring the maximization
of the geometric mean by the long-run investors (Kelly, 1956, Latane, 1959, Breiman, 1960,
Elton & Gruber, 1974, Thorp, 1975, Markowitz, 1976, Bernstein, 1976, 2006, Vander Weide
et al., 1977, Vander Weide, 2010, Levy, 2016, and Lo et al., 2018). As stocks have higher
geometric means than bonds, this result leads to the popular prescription of “stocks for the
long run” (Siegel, 2021). Maximizing the geometric-mean conforms with expected utility
maximization for investors with log preferences, i.e. Constant relative risk aversion (CRRA)
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with a relative risk aversion coefficient of 1. On the other hand, Merton and Samuelson (1974)
and Samuelson (1994) object to the geometric-mean criterion and argue that a CRRA investor
with relative risk aversion different than 1 will generally choose an investment other than
the one with the maximal geometric mean, and this choice holds regardless of the horizon.
While this statement is no-doubt mathematically correct, many find its implications hard to
swallow. In this paper we show that CRRA preferences imply paradoxical behavior unless
the relative risk aversion coefficient is close to 1. Thus, while Merton and Samuelson’s
argument is correct, it may be economically irrelevant, reinforcing Markowitz’s intuition
about geometric-mean maximization.

CRRA preferences play a central role in the economic theory of decision-making. These
preferences seem to provide the best existing model for decisions involving a substantial
part of the individual’s wealth. Evidence supporting CRRA preferences has been found
both empirically (for example, see Friend & Blume, 1975; Szpiro, 1986a, 1986b; Szpiro &
Outreville, 1988; Meyer & Meyer, 2005; Brunnermeier & Nagel, 2008; Chiappori & Paiella,
2011) and experimentally (Agnew et al., 2008; Andreoni & Sprenger, 2012; Heinemann,
2008; Levy, 1994; Levy & Levy, 2021; Levy & Nir, 2012). Accordingly, most economic
models of individual decision-making assume CRRA preferences.'

When smaller stakes are involved, such as in incentivized laboratory experiments, many
studies find that Prospect Theory, or alternative behavioral models provide a better description
of choice (Kahneman & Tversky, 1979; Machina, 1987; Thaler, 2016; Tversky & Kahneman,
1992). Thus, it has been suggested that different models apply to decisions “in the large”
and to decisions “in the small” (Rabin, 2000; Levy & Levy, 2021). In this study we focus on
decision “in the large”, i.e. decisions with substantial implications for the individual’s total
wealth, such as decisions about portfolio allocations and lifelong savings.

This paper scrutinizes CRRA preferences, and shows that unless the relative risk aversion
coefficient is in a rather narrow range around 1, they imply paradoxical choices that very
few, if any, individuals would ever make. It is well-known that any utility function that is
either unbounded from above, or converges to —oo at some wealth level, leads to paradoxical
choices (see, for example, Menger, 1934; Arrow, 1974; Aumann, 1977). If the utility function
is unbounded from above, then for any arbitrarily large value M and any arbitrarily small
probability p, there exists a value N (N > M) such that a gamble yielding N with probability
p is preferred over M for sure. This implies paradoxical choices: very few individuals would
be willing to forgo $100 million (M) for sure for a 1-in-a-million (p) chance of getting a
blank check (in which they can fill in the value N). This paradox has not stopped economists
from taking unbounded utility functions seriously, as evident by the popularity of CRRA
preferences as a modelling choice. A possible reason for this is that the value N required to
ensure the preference of the risky gamble over M may be so large as to make the gamble
meaningless. According to recent estimates,” the total wealth in the world is in the order
of $1,000 trillion, i.e. $10'3. If the N required for the individual to paradoxically prefer
the lottery is, say, $10'% then the lottery is meaningless—it involves an outcome which
is billions of times larger than the total wealth in the world. This may explain why most
economists are not too troubled by this kind of paradox.

I Some examples of this vast literature are Ramsey 1928, Phelps 1962, Mossin 1968, 1977, Samuelson 1969,
Merton 1969, Levhari and Srinivasan 1969, Kydland and Prsecott 1982, Long and Plosser 1983, Mehra and
Prescott 1985, Zeldes 1989, Gomes et al., 2008, Dybvig and Liu 2010, and Nakamura et al., 2013. An alternative
popular modelling choice is that of negative exponential preferences, implying constant absolute risk aversion.
While the exponential utility function has appealing analytical properties, it is well-acknowledged that constant
absolute risk aversion implies very unrealistic behavior (Arrow 1971; Markowitz et al., 1994).

2 See, for example, https:/finance.yahoo.com/news/25-wealthiest-countries-world-assets.

@ Springer


https://finance.yahoo.com/news/25-wealthiest-countries-world-assets

Annals of Operations Research

Similarly, utility functions that converge to —oo at some wealth level also imply para-
doxical behavior. For example, consider utility functions converging to —oo at wealth zero,
such as any CRRA utility function with relative risk aversion exceeding (or equal to) 1. For
any arbitrarily large value M, there exists a value m close to 0, such that the decision-maker
prefers having 1¢ for sure over a 50-50 chance gamble yielding either M or m. Clearly, very
few individuals would prefer 1¢ for sure over a 50-50 chance gamble yielding either $100
million (M) or, say, $110. Again, this sort of gamble may be considered as meaningless, and
hence the paradox mute, because there is a minimal quantum of wealth, e.g. 1¢, and there is
no real-world meaning to a wealth of $1~19,

This paper imposes realistic constraints on the maximal possible wealth and the minimal
unit of wealth, and derives the values of relative risk aversion that yield paradoxical behavior
under these conditions. We find that CRRA preferences with relative risk aversion outside of
the range (0.75-1.15) lead to paradoxical choices that very few, if any, individuals would ever
make. Thus, the relative risk aversion coefficient must be in a rather narrow range around 1,
the value corresponding to the Bernoulli log preferences.

2 A lower bound on relative risk aversion

CRRA preferences are given by the utility function U(W) = ﬁwl—“, where W denotes

wealth and & > 0 is the relative risk aversion coefficient. The logarithmic utility function is
obtained as a special case of the CRRA family, with a relative risk aversion of 1.

Consider a gamble yielding a terminal wealth of $10'> (roughly the entire wealth in the
world) with a probability of 1%, or a wealth of $1 with probability 99%. What is the certain
amount of wealth X that would make you indifferent between it and the gamble? It seems
reasonable to expect that the vast majority of individuals would prefer having $10 million for
sure over the above gamble. Yet, CRRA individuals with « < 0.75 prefer the gamble over a
sure $10 million, as shown below.

For a given value of «, the indifference value X is given as the solution to:

X'7*=0.01-10°179 4099 1!~ )

Figure 1 depicts the value of X as a function of the relative risk aversion, «. We can gain
insight to the solution of Eq. (1) by noticing that the second term, 0.99, is typically negligible
relative to the first term involving 10'3. If we neglect the 0.99 term, we have:

(1—-—a)log(X) =-2+151 — ) 2)

(where log denotes base-10 logarithm), or:

x = 1015 7) 3)

Thus, for a CRRA investor with o = 0.5, for example, the indifference sure value X is
$10'!. A person with this relative risk aversion coefficient is willing to forgo $100 billion
for sure for a 1% chance of having all the wealth in the world and a 99% chance of having
only $1. This seems as a paradoxical choice. For « = 0.75 Eq. (3) implies an indifference
value of X = $107 or $10 million. Again, it seems that very few individuals would make
such choices. As Fig. 1 shows, for values of « in excess of 0.75, X sharply decreases to more
reasonable values. For example, for @ = 0.8 the value of X drops to $100,000, which seems
to be a much more reasonable value (for even higher values of « the approximation in (3)
breaks down, and one should employ the exact Eq. (1); Fig. 1 depicts this exact solution).
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Fig. 1 The Certainty equivalent of a gamble yielding a 1% chance of having all the wealth in the world
($10'%)and a 99% probability of having $1 (the exact solution to Eq. 1). The vertical axis depicts X, in $, on a

logarithmic scale. CRRA individuals with relative risk aversion & < 0.75 prefer this gamble over having $10
million with certainty

Running an experiment with real payoffs to elicit individuals’ indifference values X is
obviously impossible. However, introspection leads to the conclusion that some values can
be considered as “unreasonable” or “paradoxical”. It is hard to imagine anyone preferring
a gamble with a 99% chance of ending up with only $1 and a 1% chance of having all the
wealth in world over a sure wealth of $10 million. Thus, we conclude that the real-world
upper bound on wealth of $10" implies that relative risk aversion should be higher than 0.75.

3 An upper bound on relative risk aversion

Consider the choice between two wealth gambles, as shown in Table 1. Gamble A yields a
wealth of $1 with certainty. Gamble B yields a 50-50 chance of either 1¢ or X. 1¢ is taken as

Table 1 xxx
Prospect A Prospect B
Probability Return Probability Return
1 $1 1 $0.01
2
1 X
3 $
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Fig. 2 The value X yielding indifference between gambles A and B in Table 1 (i.e. the solution to Eq. 5). The
vertical axis depicts X, in $, on a logarithmic scale. CRRA individuals with relative risk aversion & > 1.15
prefer $1 for sure over a 50-50 gamble yielding either 1¢ or all the wealth in the world

the real-world minimal unit of wealth. What is the value of X that would make you indifferent

between the two gambles?

It seems that most people would determine the indifference value X somewhere in the
range between $2 and $100. Yet, CRRA investors with « > 1.15 prefer the sure $1 of
Prospect A even if X is the entire wealth in the world. To see this, note that X satisfies:

1““:%@0ﬂ”+x“% )

Rearranging yields:

x'=¢=2_0.01"* )

Figure 2 shows the solution to Eq. (5). For @ = 0 (risk-neutrality) we have X = 1.99. X
increases with o, as expected. The interesting point is that at o = 1.15 the expression on the
right hand side converges to 0, and X “explodes” to infinity.> In other words, investors with
a > 1.15 prefer the sure $1 even if the risky gamble offers a 50% chance for all the wealth
in the world. As very few, if any, individuals would make such choices, we conclude that
relative risk aversion must be less than 1.15.

Of course, gambles with real-world payoffs other than those considered here may imply
even tighter bounds on «. But even the simple gambles analyzed here suffice to lead to the
conclusion that relative risk aversion must be close to 1.

3 The right hand side becomes zero when « satisfies 1 — o = % ~ —0.15,i.e. when ¢ = 1.15.
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4 Generalization to power utility with a minimum subsistence level

Some researchers have suggested a generalization of CRRA preferences reflecting a min-
imum subsistence level that should be attained before any other considerations (see, for
example, Roy, 1952, Samuelson, 1989, Merton, 1971, and Brocas et al., 2019). This is typ-
ically captured by a utility function of the form U (W) = ﬁ(W — 5)!7%, where S is the

minimum subsistence level. In this case relative risk aversion is no longer constant, but the
same bounds on the power o apply. Namely, in the prospects discussed in Sect. 2, which
place a lower bound on «, replace the outcome of $1 by $S + 1, and define the certainty
equivalent value by S + X, rather than X. In this case the solution to X is exactly the same as
in Eq. (1) (note that S is negligible compared to $10'). Thus, the same lower bound of 0.75
applies to «.

Similarly, the same upper bound of 1.15 on « also applies. To see this, replace the outcome
of $1 in Prospect A of Table 1 by $S + 1, and replace the outcomes in Prospect B by $S +
0.01 and $S + X, respectively. X is again the solution to Eq. (5), which is depicted in Fig. 2.
Thus, the same lower and upper bounds on the value of the power « hold is the case of a
generalized power utility function with a minimum subsistence level.

5 Discussion

Many economists consider CRRA preferences as the best existing model of behavior when
major decisions involving individuals’ total wealth are involved. Evidence supporting this
preference class has been found in many empirical and experimental studies. Accordingly,
CRRA preferences are a very common assumption in economic modelling. This study shows
that unless the relative risk aversion coefficient is close to 1, the value corresponding to log
preferences, CRRA preferences imply paradoxical choices, that very few, if any, real-world
decision-makers would ever make. This result imposes structure on modelling choice: if one
considers CRRA as a reasonable model of choice, this should be limited only to the case
relative risk aversion close to 1.* Most of the estimates of the relative risk aversion coefficient
are indeed in the range 0-2.5 It is interesting to observe that the very first utility function
ever suggested, almost three centuries ago (Bernoulli, 1738), is probably still the best model
of choice for decisions “in the large”.

CRRA preferences are central to the longstanding debate about investment for the long-
run. It is well-known that Relative risk aversion of 1 corresponds to log utility, and thus

4 Alternatively, one may abandon the idea of CRRA altogether, as some authors have suggested. Decisions may
be affected by factors other than the terminal wealth, such as regret (Bell 1982; Diecidue and Somasundaram
2017; Fishburn 1982; Loomes and Sugden 1982; Somasundaram and Diecidue 2017), past consumption
(Pollak 1970), status relative to peers (Gali 1994), and the perceptions of others (Ben Porath et al., 2018).

5 Arrow 1971 argues for a relative risk aversion of 1. Friend and Blume 1975 estimate a relative risk aversion
value of 2. Hansen and Singleton 1982 estimate relative risk aversion to be in the range 0—1. Szpiro 1986a
estimates relative risk aversion in the U.S. to be between 1.2 and 1.8, while in an international study he estimates
values in the range of 1-2 (Szpiro 1986a, 1986b). De Mel et al., (2008) experimentally estimate an average
relative risk aversion of 0.14, with a standard deviation of 1.6. Barro and Jin (2011) estimate a relative risk
aversion of 3, based on the distribution of macroeconomic disasters. Other studies such as Mehra and Prescott
1985, 2003 Ferson and Constantinides 1991 and Cochrane and Hansen 1992 argue that a relative risk aversion
of 1 is much too low to reconcile macroeconomic data with standard models. Gabaix and Laibson (2001)
suggest that these seemingly paradoxical results can be explained by delayed adjustments to consumption.
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conforms with the maximization of the geometric mean.® Hence, the goal of maximizing
the geometric mean for the long-run seems to be well-grounded: the CRRA preferences
employed to justify behavior to the contrary (Merton & Samuelson, 1974) lead to behavior
that not only Professor Markowitz, but even Professors Merton and Samuelson, I presume,
would consider to be paradoxical.
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