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Abstract
In this paper we introduce new procedures, based on generating functions, for calculating
some power measures for weighted majority games. In particular, we present methods for
computing the Johnston index and the Colomer–Martínez measure. Besides, we introduce a
newpowermeasure that combines the principles underlying the Johnston index andColomer–
Martínez measure as well as a procedure for computing it using generating functions. Finally,
we introduce the new R package powerindexR and describe its capabilities to compute
some power measures by means of generating functions. We illustrate its performance with
a real example.

Keywords Weighted majority games · Power measure · Generating functions · Johnston
index · Colomer–Martínez measure

1 Introduction

In decision-making systems, the power index of each voter can be interpreted as a measure
of his influence on the outcome of the decision. To model such situations, simple games,
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and more specifically weighted majority games, are usually considered, where each voter
is a player. Such games are characterized by an existing quota that imposes a majority in
the decision and a collection of individual weights for the players. Thus, a set of players
is said to be a winner if the sum of their individual weights is greater than or equal to the
quota. In these settings, several power indices have been proposed in the literature, such as
the Shapley–Shubik index (Shapley & Shubik, 1954), the Banzhaf index (Banzhaf, 1965),
the Deegan–Packel index (Deegan & Packel, 1978), the Johnston index (Johnston, 1978), the
Public Good index (Holler, 1982) and the Colomer–Martínez measure (Colomer &Martínez,
1995), defined specifically for weighted majority games.

The exact determination of power measures on the class of weighted majority games is, in
general, a challenging computational task. A widely used tool to facilitate this computation
are the generating functions, which are in fact based on counting algorithms (Wilf, 1994). In
practice, generating functions can be used, for instance, in optimal allocation problems (Lev-
itin, 2003), in umbral calculus (Dattoli & Srivastava, 2008), or in obtaining power indices in
voting situations (Bolus, 2011). Following an idea of David G. Cantor, Mann and Shapley
(1962) firstly used generating functions to compute the Shapley–Shubik index for any
weighted majority game. Brams and Affuso (1976) also considered this tool to compute the
Banzhaf index. There are other contributions in Lucas (1983), that explored various indices
as measures of power from this perspective. Bilbao et al. (2000) studied the computational
complexity of procedures based on generating functions for calculating the Shapley–Shubik
and the Banzhaf indices. After, Alonso-Meijide and Bowles (2005) and Algaba et al. (2007)
obtained the Banzhaf index using generating functions and Alonso-Meijide et al. (2012) used
them to compute the Deegan–Packel and the Public Good indices. Chessa (2014) analysed
the efficient computation of the Public Good index by means of generating functions. The
use of such methods has also been extended to other families of weighted majority games.
For example, Algaba et al. (2003) proposed a procedure for their obtaining in the case of
weighted multiple majority games, and Alonso-Meijide et al. (2009) computed them under
the presence of a priori unions structures. Rodríguez-Veiga et al. (2016) used generating
functions to compute the Banzhaf-Coleman and the Owen indices for weighted majority
games under the presence of a coalition configuration, and Neto and Fonseca (2019) used
them in such a setting with incompatible players.

The aim of this paper is threefold. First, from a purely computational point of view,
specific procedures based on generating functions are presented for the exact computation of
the Johnston index and the Colomer–Martínez measure. Up to the authors’ knowledge, this
is a novel approach to compute both power measures in a reasonable computational time,
even for weighted majority games involving a large enough number of players. Second,
a new power measure is constructed by taking into account the principles that justify the
Johnston index and Colomer–Martínez measure. Again, a specific procedure for its exact
determination based on generating functions is provided. Third, we introduce the R package
powerindexR and describe its functionalities, which has been specifically designed for
the exact computation of these and other power measures taken from the literature. Finally,
we illustrate its usage on a real example taken from the Spanish Parliament.

The paper is structured as follows. Section2 presents some basic definitions of weighted
majority games. Section3 describes a new procedure based on generating functions to com-
pute the Johnston power index. Section4 analogously considers the computation of the
Colomer–Martínez measure by means of generating functions. Section5 introduces a new
approach of power measure, that combines the principles of the Johnston index and the
Colomer–Martínez measure as well as a specific procedure for its computation also based
on generating functions. Section6 analyses the computational complexity of the proposed
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methods. Section7 describes the R package powerindexR and includes the analysis of
power’s evolution of the political parties into the Spanish parliament during the period from
2015 to 2019. Section8 contains some concluding remarks.

2 Preliminaries

A simple game is a pair (N , W ), where N represents the set of players and W is a family of
coalitions of N satisfying that ∅ /∈ W , N ∈ W , and for each pair of coalitions S, T of N such
that S ⊆ T ⊆ N , that S ∈ W implies T ∈ W . We refer to W as the set of winning coalitions
of N . We denote by n the cardinality of N .

Let S ∈ W be a winning coalition. If there is at least one player i ∈ S such that S\{i} /∈ W ,
then S is a quasi-minimal winning coalition, and player i is a critical player of S. The set
of critical players of S is denoted by χ(S). The set of quasi-minimal winning coalitions in a
given simple game (N , W ) is denoted by Q, and for each i ∈ N , Qi = {S ∈ Q : i ∈ χ(S)}.
A coalition S ∈ W is a minimal winning coalition if there is no T ⊂ S such that T is a
winning coalition. The set of all minimal winning coalitions in (N , W ) is denoted by M , and
for each i ∈ N , Mi = {S ∈ M : i ∈ S}. Note that if χ(S) = S, then S ∈ M . Obviously, for
any simple game (N , W ), M ⊆ Q ⊆ W .

A power index g for simple games is a mapping that assigns a vector g(N , W ) ∈ R
N

to each simple game (N , W ), where gi (N , W ) quantifies the power of player i in (N , W ).
A well-known power index for simple games is the Johnston index (Johnston, 1978). It is
defined, for any simple game (N , W ) and for any i ∈ N , by

Ji (N , W ) = 1

| Q |
∑

S∈Qi

1

| χ(S) | . (1)

Its definition is based on the following principles: (i) only quasi-minimal winning coalitions
will emerge victorious, (ii) all quasi-minimal winning coalitions are equally likely, and (iii)
all critical players in the same quasi-minimal winning coalition play the same role.

A weighted majority game is a simple game (N , W ) that can be represented by (q;w)

or [q;w1, . . . , wn], such that q ∈ N (q > 0) is an imposed quota and w = (w1, . . . , wn)

represents the collection of non-negative integer voting weights of players of N . In this case,
S ∈ W if and only if w(S) ≥ q , being w(S) = ∑

i∈S wi for any given coalition S ⊆ N .
These games are usually used to represent voting systems where each player has a weight in
the decision. The goal of the cooperation of players is to form winning coalitions. A power
measure f for weighted majority games is a mapping that assigns a vector f (q;w) ∈ R

N to
each representation of a weighted majority game (q;w), where fi (q;w)measures the power
of player i in (q;w).

Note that a weighted majority game can be represented by different quota and weights
configurations. Nevertheless, power indices, such as the Johnston, the Shapley–Shubik and
the Banzhaf indices, do not depend on these representations. In general, a power index for a
weighted majority games is a power measure that provides the same power distribution for
all its representations.

The Colomer–Martínez measure (Colomer & Martínez, 1995) is defined, for every
weighted majority game (q;w) and every i ∈ N , by

CMi (q;w) = 1

| M |
∑

S∈Mi

wi

w(S)
. (2)
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From its definition, we can state that this index considers only minimal winning coalitions.
Moreover, all minimal winning coalitions are equally likely to be selected. The power of
minimal winning coalitions is distributed proportionally with respect to the contribution of
the players (the individual weight) to the total weight of the coalition.

Note that the Colomer–Martínez measure may not assign the same distribution of power
for two different representations of the same weighted majority game. This is because the
index considers not only the minimal winning coalitions but also the weights of the players.

3 The generating functions-based computation of the Johnston index

In this section we propose a method to compute the Johnston index for weighted majority
games using generating functions. The method of generating functions is a combinatorial
analysis technique based on obtaining a polynomial enumeration of the set of all coalitions
with control over their weights. See, for example, Stanley (1986) for more details.

For this purpose, we consider an alternative formulation of the Johnston index in (1) based
on the cardinality of the set of quasi-minimal winning coalitions. Let (N , W ) be a weighted
majority game and take i ∈ N . Firstly, we consider the set Ci given by

Ci = {|χ(S)| : S ∈ Qi
}

(3)

for every i ∈ N . For each k ∈ Ci , we denote by ci
k the cardinality of the set of quasi-minimal

winning coalitions S ∈ Qi such that |χ(S)| = k.
Thus, the Johnston index for the weighted majority game (N , W ) can be also expressed,

for any player i ∈ N , by

Ji (N , W ) = 1

| Q |
∑

k∈Ci

ci
k

k
, (4)

with Ci being the set of sizes in (3).
Below, we propose a procedure to compute ci

k for each i ∈ N and each k ∈ Ci in a
weighted majority game (q;w).

Procedure 1 Let (N , W ) be a weightedmajority game given by (q;w). The steps to compute
ci

k , for each i ∈ N and each k ∈ Ci , are the following.

Step 1. For every i ∈ N , consider the function f i defined as:

f i (z1, . . . , zi−1, zi+1, . . . , zn, x) =
n∏

j=1: j �=i

(1 + xw j z j ).

Step 2. Obtain, for every i ∈ N , the function gi (z1, . . . , zn, hi ) defined as the sum of
those terms of the function f i with a degree of variable x between q − wi and q − 1,
and replacing the variable x and its degree by zi hi .
Step 3.Obtain the function G(z1, . . . , zn, h1, . . . , hn) defined as the sum of the functions
gi obtained in the previous step for all i ∈ N .
Step 4. Arrange the addends in G by grouping those ones with the same variables z.
Step 5. For each addend of G, eliminate the z’s and, in the summation of the h’s, add to
each hi involved a degree equal to the number of addend of this sum. So, we obtain the
generating function G J (h1, . . . , hn).
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Step 6. Obtain ci
k as the coefficient of the addend hk

i of G J for each i ∈ N and each
k ∈ Ci .

The next result ensures that Procedure 1 determines the values ci
k for each i ∈ N and each

k ∈ Ci specified in (4).

Theorem 3.1 Let (N , W ) be a weighted majority game. Procedure 1 provides ci
k for each

i ∈ N and each k ∈ Ci and thus, the Johnston index.

Proof Let (N , W ) be a weighted majority game. W.l.o.g assume that its representation is
given by (q;w), where w denotes the collection w1, w2, . . . , wn of individual weights of
players in N , and consider Procedure 1.

By using Step 1, consider function f i for each i ∈ N . Thus,

f i (z1, . . . , zi−1, zi+1, . . . , zn, x) = (1 + xw1 z1) · · · (1 + xwi−1 zi−1)(1 + xwi+1 zi+1) · · · (1 + xwn zn)

= 1 +
∑

S⊆N\{i}

∏

k∈S

xwk zk

= 1 +
n−1∑

j=1

w(N )−wi∑

l=1

xl
∑

S⊆N\{i}
|S|= j

w(S)=l

( ∏

k∈S

zk

)
,

for every i ∈ N .
Now, by Step 2, obtain the functions gi for each i ∈ N , that are obtained as the sum of

those addends of f i with a degree of x between q − wi and q − 1 and replacing the variable
x and its degree by zi hi . That is, for each i ∈ N , we have that

gi (z1, . . . , zn, hi ) = zi hi

n−1∑

j=1

q−1∑

l=q−wi

∑

S⊆N\{i}
|S|= j

w(S)=l

( ∏

k∈S

zk

)

=
∑

S∈Qi

hi

( ∏

k∈S

zk

)
.

Note that the expression above does not depend on the chosen representation for the
weighted majority game. Moreover, the set of coalitions in which a given player i is critical
can be identified by reorganising the polynomial G. According to Step 3, we obtain the
function G as follows:

G(z1, . . . , zn, h1, . . . , hn) =
∑

i∈N

gi (z1, . . . , zn, hi )

=
∑

i∈N

∑

S∈Qi

hi

( ∏

k∈S

zk

)
.

We rearrange the addends in G with respect to z’s variables, as indicated in Step 4:

G(z1, . . . , zn, h1, . . . , hn) =
∑

S∈Q

( (
∏

k∈S

zk

)
·
( ∑

i∈χ(S)

hi

))
.

From Step 5, for each addend of G (corresponding to each quasi-minimal winning coalition),
we remove the z variables and add to each hi a degree equal to the number of addends of the
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sum of h variables (corresponding to the cardinality of the set of critical players of the quasi-
minimal winning coalition under consideration). Then, we obtain the generating function
G J as

G J (h1, . . . , hn) =
∑

S∈Q

∑

i∈χ(S)

h|χ(S)|
i

=
∑

i∈N

n∑

k=1

∑

S∈Qi|χ(S)|=k

hk
i

=
∑

i∈N

∑

k∈Ci

ci
khk

i .

Finally, by Step 6, we obtain ci
k = |{S ∈ Qi : |χ(S)| = k}| for each k ∈ Ci . �	

The following corollary can be established as a direct consequence of Theorem 3.1.

Corollary 3.2 Let (N , W ) be a weighted majority game. The cardinality of the set of quasi-
minimal winning coalitions is given by the number of addends of the polynomial resulting
from Step 4 of Procedure 1.

Let us note that, as for the Shapley–Shubik and the Banzhaf indices, the power index
computed by this procedure does not depend on the representation used for the weighted
majority game.

The following example illustrates the obtaining of the Johnston index on the basis of the
application of Procedure 1.

Example 3.3 Take the weighted majority game (N , W ) with 4 players given by [16; 14, 13,
2, 1]. We follow the steps of Procedure 1 to obtain the Johnston index, as shown below.

Step 1. First, we obtain the function f i (z1, . . . , zi−1, zi+1, . . . , z4, x) for each i ∈ N .
So, we have that

f 1(z2, z3, z4, x) = (1 + x13z2)(1 + x2z3)(1 + xz4)

= 1 + x13z2 + x2z3 + xz4 + x15z2z3 + x14z2z4 + x3z3z4 + x16z2z3z4

f 2(z1, z3, z4, x) = (1 + x14z1)(1 + x2z3)(1 + xz4)

= 1 + x14z1 + x2z3 + xz4 + x16z1z3 + x15z1z4 + x3z3z4 + x17z1z3z4

f 3(z1, z2, z4, x) = (1 + x14z1)(1 + x13z2)(1 + xz4)

= 1 + x14z1 + x13z2 + xz4 + x27z1z2 + x15z1z4 + x14z2z4 + x28z1z2z4

f 4(z1, z2, z3, x) = (1 + x14z1)(1 + x13z2)(1 + x2z3)

= 1 + x14z1 + x13z2 + x2z3 + x27z1z2 + x16z1z3 + x15z2z3 + x29z1z2z3

Step 2. Now, for each i ∈ N , we sum those terms of each function f i with a degree of
the variable x between q − wi and q − 1, and replace the variable x and its degree by
zi hi . Thus, we obtain the the polynomials gi (z1, z2, z3, z4, hi ) and we have that

g1(z1, z2, z3, z4, h1) = z1h1 (z2 + z3 + z2z3 + z2z4 + z3z4)

= z1z2h1 + z1z3h1 + z1z2z3h1 + z1z2z4h1 + z1z3z4h1

g2(z1, z2, z3, z4, h2) = z2h2 (z1 + z1z4 + z3z4)

= z1z2h2 + z1z2z4h2 + z2z3z4h2

g3(z1, z2, z3, z4, h3) = z3h3 (z1 + z1z4 + z2z4)
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= z1z3h3 + z1z3z4h3 + z2z3z4h3

g4(z1, z2,z3, z4, h4) = z4h4 (z2z3) = z2z3z4h4

Step 3. This step implies the addition of the polynomials gi and thus we obtain

G(z1, z2, z3, z4, h1, h2, h3, h4) = z1z2h1 + z1z3h1 + z1z2z3h1 + z1z2z4h1 + z1z3z4h1

+ z1z2h2 + z1z2z4h2 + z2z3z4h2 + z1z3h3 + z1z3z4h3

+ z2z3z4h3 + z2z3z4h4

Step 4. In this step, we rearrange the terms in the polynomial G by grouping those terms
with the same variables z’s. This implies that we alternatively obtain that

G(z1, z2, z3, z4, h1, h2, h3, h4) = z1z2 (h1 + h2) + z1z3 (h1 + h3) + z1z2z3 (h1)

+ z1z2z4 (h1 + h2) + z1z3z4 (h1 + h3)

+ z2z3z4 (h2 + h3 + h4)

Besides, Corollary 3.2 directly ensures that | Q |= 6.
Step 5. In this step, we add to each hi a degree equal to the cardinality of elements z’s
with the same subindex that elements h’s in the corresponding term of the polynomial G
and we remove the variables z’s from G.
Then, we obtain the generating function G J (h1, h2, h3, h4) as follows:

G J (h1, h2, h3, h4) = (
h2
1 + h2

2

) + (
h2
1 + h2

3

) + (h1) + (
h2
1 + h2

2

) + (
h2
1 + h2

3

)

+ (
h3
2 + h3

3 + h3
4

) = h1 + 4h2
1 + 2h2

2 + h3
2 + 2h2

3 + h3
3 + h3

4

Step 6. In each term ci
khk

i of the polynomial G J , with i ∈ N and k ∈ Ci , ci
k is the

cardinality of the set of quasi-minimal winning coalitions S, such that S ∈ Qi and
| χ(S) |= k. Then we have

c11 = 1 and c12 = 4, for player 1;
c22 = 2 and c23 = 1, for player 2;
c32 = 2 and c33 = 1, for player 3, and
c43 = 1, for player 4.

Finally, we calculate the Johnston index, as

J1(N , W ) = 1
6

( 1
1 + 4

2

) = 0.500,
J2(N , W ) = 1

6

( 2
2 + 1

3

) ≈ 0.222,
J3(N , W ) = 1

6

( 2
2 + 1

3

) ≈ 0.222, and
J4(N , W ) = 1

6

( 1
3

) ≈ 0.056.

4 The generating functions-based computation of the
Colomer–Martínezmeasure

In this section we propose a procedure to compute the Colomer–Martínez measure for
weightedmajority games using generating functions. Recall that the Colomer–Martínezmea-
sure depends on the chosen representation of the weighted majority game. Then, from now
on we use the representation in reference to the weighted majority game.

Again, we consider an alternative formulation of the Colomer–Martínez measure, origi-
nally introduced in (2), now based on the cardinality of the set of minimal winning coalitions.

123



Annals of Operations Research

More specifically, we propose a procedure that counts the minimal winning coalitions involv-
ing each player i and where the sum of the individual weights of its members is k. Let (q;w)

be a weighted majority game such that w denotes the collection of individual weights of
players in N given by w1, w2, . . . , wn . For each (q;w) and for each i ∈ N , we consider the
set of weights Wi given by

Wi = {
w(S) : S ∈ Mi

}
. (5)

For each i ∈ N and each k ∈ Wi , we denote by cmi
k the cardinality of the set of minimal

winning coalitions S ∈ Mi such that w(S) = k.
Thus, the Colomer–Martínez measure for the weighted majority game (q;w) admits, for

each i ∈ N , the following formulation:

CMi (q;w) = wi

| M |
∑

k∈Wi

cmi
k

k
, (6)

with Wi being the set of weights given in (5).
Next, we propose a procedure to compute cmi

k for each i ∈ N and each k ∈ Wi and thus,
the Colomer–Martínez measure as in (6).

Procedure 2 Let (q;w) be a weighted majority game. The steps to compute cmi
k for each

i ∈ N and each k ∈ Wi are described below.1

Step 1. First, compute the function f defined by

f (z1, . . . , zn, x) =
n∏

j=1

(1 + xw j z j ).

Step 2. Select the terms in f (z1, . . . , zn, x) with a degree of x greater than or equal to
q . Thus we obtain the polynomial g(z1, . . . , zn, x).
Step 3. Remove the monomials that are divisible by another monomial of g. Then, we
obtain the polynomial GC M(z1, . . . , zn, x).
Step 4.Obtain the generating functions GC Mi (x) as the polynomial composed, for each
i ∈ N , of the terms ofGC M(z1, . . . , zn, x) that contain zi , after removing the z variables.
Step 5. Finally, cmi

k is the coefficient of each term of the polynomial GC Mi (x) where
the degree of x is k, for each k ∈ Wi .

Below, Theorem 4.1 ensures that Procedure 2 determines the values cmi
k , for each i ∈ N

and each k ∈ Wi , in (6).

Theorem 4.1 Let (q;w) be a weighted majority game. Procedure 2 provides cmi
k for each

i ∈ N and each k ∈ Wi and hence the Colomer–Martínez measure.

Proof Take (q;w) a weighted majority game and consider Procedure 2. Using Step 1, con-
sider the function f given by

1 An approach similar to Brams and Affuso (1976) and Chessa (2014) could also be employed.
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f (z1, . . . , zn, x) = (1 + xw1 z1) · · · (1 + xwn zn)

= 1 +
∑

S⊆N

∏

k∈S

xwk zk

= 1 +
n∑

j=1

w(N )∑

l=1

xl
( ∑

S⊆N
|S|= j

w(S)=l

( ∏

k∈S

zk

))
.

By Step 2 of the procedure, we identify those terms of f where the degree of x is equal
to or greater than q . Thus, we directly have the polynomial g given by

g(z1, . . . , zn, x) =
n∑

j=1

w(N )∑

l=q

xl
( ∑

S⊆N
|S|= j

w(S)=l

( ∏

k∈S

zk

))

=
∑

S∈W

xw(S)

( ∏

k∈S

zk

)
.

Using Step 3, we remove those monomials that are divisible by another monomial of the
function g(z1, . . . , zn, x). Then we obtain the polynomial GC M(z1, . . . , zn, x) given by

GC M(z1, . . . , zn, x) =
∑

S∈M

xw(S)

( ∏

k∈S

zk

)
.

We obtain the values of cmi
k from the generating functions GC Mi in Step 4 of the pro-

cedure. Thus, for each i ∈ N and each k ∈ Wi , these values are the number of terms of the
above polynomial with degree k in which zi is present. That is,

GC Mi (x) =
∑

S∈Mi

xw(S)

=
∑

k∈Wi

cmi
k xk .

So, by Step 5 we have cmi
k = |{S ∈ Mi : w(S) = k}| for each k ∈ Wi . �	

From Theorem 4.1 we can directly state some results on the identification of winning
coalitions and minimal winning coalitions.

Corollary 4.2 Let (q;w) be a weighted majority game. The cardinality of the set of win-
ning coalitions and the cardinality of the set of minimal winning coalitions are determined
respectively by Step 2 and Step 3 of Procedure 2.

The following example illustrates the proposed procedure for calculating the Colomer–
Martínez measure.

Example 4.3 Take again the weighted majority game with 4 players considered in Example
3.3 and that is given by [16; 14, 13, 2, 1]. We follow the steps of Procedure 2 to obtain the
Colomer–Martínez measure, as shown below.
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Step 1. First, we calculate the function f as

f (z1, z2, z3, z4, x) = (1 + x14z1)(1 + x13z2)(1 + x2z3)(1 + xz4)

= 1 + x14z1 + x13z2 + x2z3 + xz4 + x27z1z2 + x16z1z3 + x15z1z4

+x15z2z3 + x14z2z4 + x3z3z4 + x29z1z2z3 + x28z1z2z4

+x17z1z3z4 + x16z2z3z4 + x30z1z2z3z4.

Step 2. Then, we select the terms of f with a degree of variable x greater or equal than
q = 16. So,

g(z1, z2, z3, z4, x) = x27z1z2 + x16z1z3 + x29z1z2z3

+x28z1z2z4 + x17z1z3z4 + x16z2z3z4 + x30z1z2z3z4.

By Corollary 4.2, the total number of addends of this polynomial coincides with the
cardinality of the set of winning coalitions, i.e., |W | = 7.
Step 3. In the third step,we delete thosemonomials that are divisible by anothermonomial
of the considered function to obtain the polynomial GC M .

GC M(z1, z2, z3, z4, x) = x27z1z2 + x16z1z3 + x16z2z3z4.

Again, Corollary 4.2 ensures that the cardinality of the set of minimal winning coalitions
is |M | = 3.
Step 4. In the fourth step, we obtain GC Mi , for each i ∈ N .

GC M1(x) = x27 + x16.
GC M2(x) = x27 + x16.
GC M3(x) = 2x16.
GC M4(x) = x16.

Step 5. Finally, we obtain ci
k , for each i ∈ N and k ∈ Wi , as follows.

For player 1, cm1
27 = 1 and cm1

16 = 1.
For player 2, cm2

27 = 1 and cm2
16 = 1.

For player 3, cm3
16 = 2.

For player 4, cm4
16 = 1.

Once these values are obtained, we calculate the Colomer–Martínez measure. This gives
us

CM1(q;w) = 14
3

( 1
16 + 1

27

) ≈ 0.465,
CM2(q;w) = 13

3

( 1
16 + 1

27

) ≈ 0.431,
CM3(q;w) = 2

3

( 2
16

) ≈ 0.083, and
CM4(q;w) = 1

3

( 1
16

) ≈ 0.021.

5 The Johnston–Colomer–Martínezmeasure

In this section we present a new measure for weighted majority games. To formalize it, we
combine those principles underlying the Johnston index and the Colomer–Martínez measure
and that are summarized below.

• Among all possible coalitions that can be formed in N , only quasi-minimal winning
coalitions are considered.
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• Furthermore, it is also assumed that all quasi-minimal winning coalitions are equally
likely, i.e. they have the same probability of forming.

• The power of a critical player in any quasi-minimalwinning coalition is the fraction of that
player’s individual weight over the total weight of the critical players in the considered
coalition.

The Johnston index and the Colomer–Martinez measure satisfy interesting properties
and have several applications (see Freixas et al., 2012 and Armijos-Toro et al., 2024a). For
example, the Colomer–Martinez measure satisfies weighted symmetry in the representations
of weighted majority games with a single minimal winning coalition. Barua et al. (2005)
introduced a similar measure that satisfies a similar weighted symmetry property, using all
winning coalitions instead ofminimal winning coalitions. Then, it is interesting to introduce a
new measure, using arguments from the Johnston index and the Colomer–Martinez measure
to assess power in different representations of a weighted majority game. This new mea-
sure employs quasi-minimal winning coalitions as the Johnston index and satisfies weighted
symmetry as the Colomer–Martinez measure.

The new proposed powermeasure takes into account, like the Colomer–Martínezmeasure,
the internal distribution of power in the coalition based on the information provided by its
weights. While the Colomer–Martínez measure only considers minimal winning coalitions,
the newmeasure uses more information, since those coalitions containing at least one critical
player are included in its calculation, as the Johnston index.

One argument to justify the use of this new measure is that it takes into account not only
that a player can destroy a winning coalition, but also that it serves to make comparisons
between the set of players that have this ability to destroy the same set of winning coalitions.
Then, we formalize the new measure for weighted majority games below.

Definition 5.1 Let (q;w) be a weighted majority game. The Johnston–Colomer–Martínez
measure for (q;w) is, for each player i ∈ N , defined by

JCMi (q;w) = 1

| Q |
∑

S∈Qi

wi

w(χ(S))
. (7)

As a remark, we mention that the Johnston index for weighted majority games can be seen
as a particular case of this new measure proposal for the case of those weighted majority
games in which all critical players have the same individual weight in any quasi-minimal
coalition.

5.1 The generating functions-based computation of the
Johnston–Colomer–Martínez measure

In this section we analyse the task of computing the Johnston–Colomer–Martínez measure.
Specifically, we provide a procedure for calculating it using generating functions. First,
we rewrite the expression for the Johnston–Colomer–Martínez measure given in (7) and
introduce some required notation.

Let (q;w) be a weighted majority game and take i ∈ N . Now, we consider the set of
weights WQi , for each i ∈ N , given by

WQi = {
w(χ(S)) : S ∈ Qi

}
, (8)

and Qi being the set of quasi-minimal winning coalitions containing a given player i . Fixed
i ∈ N and k ∈ WQi , jcmi

k denotes the cardinality of the set of coalitions S ∈ Qi such that
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w(χ(S)) = k. Thus, the Johnston–Colomer–Martínez measure for the weighted majority
game (q;w) can alternatively be expressed, for each player i ∈ N , as

JCMi (q;w) = wi

| Q |
∑

k∈WQi

jcmi
k

k
, (9)

where WQi is the set of weights in (8).
Now we propose a procedure to compute the amounts jcmi

k specified for each i ∈ N and
each k ∈ WQi in (9).

Procedure 3 Let (q;w) be a weighted majority game. The steps to compute jcmi
k for each

i ∈ N and each k ∈ WQi are described below.

Step 1. For each i ∈ N , consider the function f i , which is defined as follows for each
i ∈ N :

f i (z1, . . . , zi−1, zi+1, . . . , zn, x) =
n∏

j=1
j �=i

(1 + xw j z j )

Step 2. Now, obtain the function j i (z1, . . . , zn, hi ) defined, for each i ∈ N , as the sum
of those terms of the function f i with a degree of variable x is between q −wi and q −1,
and replacing the variable x and its degree by zi hi .
Step 3. Next, calculate the function J , defined as the sum of the functions j i obtained,
for all i ∈ N , in the previous step.
Step 4. Arrange the addends in J by grouping those ones with the same variables z.
Step 5. After, each product of the variables z in each addend is replaced by a variable
t . Its degree is equal to the sum of the individual weights of the critical players, that are
indicated by the sub-indices of the variables h in the addend. Then, obtain the generating
function

G JC M(h1, . . . , hn, t).

Step 6. Finally, obtain jcmi
k corresponds to the coefficient of each term tkhi in the

resulting polynomial G JC M for each i ∈ N and each k ∈ WQi .

Note that the first four steps of Procedure 3 are exactly the same as the first four steps of
Procedure 1 to compute the Johnston index by means of generating functions.

Below, we prove that Procedure 3 returns the values jcmi
k for each i ∈ N and each

k ∈ WQi specified in (9).

Theorem 5.2 Let (q;w) be a weighted majority game. Procedure 3 provides jcmi
k for each

i ∈ N and each k ∈ WQi and hence the Johnston–Colomer–Martínez measure.

Proof Let (q;w) be a weighted majority game, where w denotes the collection w1, w2, . . . ,

wn of individual weights of players in N , and consider Procedure 3.
Using Step 1, consider the polynomial f i defined for each i ∈ N as follows.

f i (z1, . . . , zi−1, zi+1, . . . , zn, x) = (1 + xw1 z1) · · · (1 + xwi−1 zi−1)(1 + xwi+1 zi+1) · · ·
·(1 + xwn zn)
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= 1 +
∑

S⊆N\{i}

∏

k∈S

xwk z j

= 1 +
n−1∑

j=1

w(N )−wi∑

l=1

xl
∑

S⊆N\{i}
|S|= j

w(S)=l

( ∏

k∈S

zk

)
.

Using Step 2, compute the function j i for each i ∈ N as the sum of those terms of the
function f i with a degree of variable x between q − wi and q − 1 and replacing the variable
x and its degree by zi hi . So for each i ∈ N we obtain

j i (z1, . . . , zn, hi ) = zi hi

n−1∑

j=1

q−1∑

l=q

∑

S⊆N\{i}
|S|= j

w(S)=l

( ∏

k∈S

zk

)

=
∑

S∈Qi

hi

( ∏

k∈S

zk

)
.

Thus, by adding, we obtain the function J by considering Step 3.

J (z1, . . . , zn, h1, .., hn) =
n∑

i=1

j i (z1, . . . , zn, hi )

=
∑

i∈N

∑

S∈Qi

hi

( ∏

k∈S

zk

)
.

Step 4 gives the grouping of the addends with respect to the variables z. By Corollary 3.2,
each addend corresponds to a quasi-minimal winning coalition.

J (z1, . . . , zn, h1, .., hn) =
∑

i∈N

∑

S∈Qi

hi

( ∏

k∈S

zk

)

=
∑

S∈Q

( (
∏

k∈S

zk

)
·
( ∑

i∈χ(S)

hi

))
.

In Step 5 we replace the product of variables z by t . The degree of t is the sum of the
weights of the critical variables in each quasi-minimal winning coalition. Thus,

G JC M(h1, .., hn, t) =
∑

S∈Q

tw(χ(S))

⎛

⎝
∑

i∈χ(S)

hi

⎞

⎠

=
∑

i∈N

hi

⎛

⎝
∑

k∈WQi

jcmi
k · tk

⎞

⎠ .

Finally, by Step 6, we have that jcmi
k = |{S ∈ Qi : w(χ(S)) = k}| for each i ∈ N and each

k ∈ WQi . Hence, we compute the Johnston–Colomer–Martínez measure. �	
We revisit Examples 3.3 and 4.3 to illustrate the computation of the Johnston–Colomer–

Martínez measure.

123



Annals of Operations Research

Example 5.3 Take again the weighted majority game [16; 14, 13, 2, 1]. We follow the steps
of Procedure 3 for obtaining the Johnston–Colomer–Martínez measure.

Step 1. First, the function f i is computed, for each i ∈ N , by

f 1(z2, z3, z4, x) = [
(1 + x13z2)(1 + x2z3)(1 + xz4)

]

= 1 + x13z2 + x2z3 + xz4 + x15z2z3 + x14z2z4

+x3z3z4 + x16z2z3z4

f 2(z1, z3, z4, x) = [
(1 + x14z1)(1 + x2z3)(1 + xz4)

]

= 1 + x14z1 + x2z3 + xz4 + x16z1z3 + x15z1z4

+x3z3z4 + x17z1z3z4

f 3(z1, z2, z4, x) = [
(1 + x14z1)(1 + x13z2)(1 + xz4)

]

= 1 + x14z1 + x13z2 + xz4 + x27z1z2 + x15z1z4

+x14z2z4 + x28z1z2z4

f 4(z1, z2, z3, x) = [
(1 + x14z1)(1 + x13z2)(1 + x2z3)

]

= 1 + x14z1 + x13z2 + x2z3 + x27z1z2 + x16z1z3

+x15z2z3 + x29z1z2z3

Step 2. Now, we compute the polynomials j i (z1, z2, z3, z4, hi ), for each i ∈ N , as
follows:

j1(z1, z2, z3, z4, h1) = z1h1 (z2 + z3 + z2z3 + z2z4 + z3z4) = z1z2h1 + z1z3h1
+z1z2z3h1 + z1z2z4h1 + z1z3z4h1

j2(z1, z2, z3, z4, h2) = z2h2 (z1 + z1z4 + z3z4) = z1z2h2 + z1z2z4h2 + z2z3z4h2
j3(z1, z2, z3, z4, h3) = z3h3 (z1 + z1z4 + z2z4) = z1z3h3 + z1z3z4h3 + z2z3z4h3
j4(z1, z2, z3, z4, h4) = z4h4 (z2z3) = z2z3z4h4

Step 3. In the third step, we sum these polynomials j i for all i ∈ N , and thus

J (z1, z2, z3, z4, h1, h2, h3, h4) = z1z2h1 + z1z3h1 + z1z2z3h1 + z1z2z4h1 + z1z3z4h1
+z1z2h2 + z1z2z4h2 + z2z3z4h2 + z1z3h3 + z1z3z4h3
+z2z3z4h3 + z2z3z4h4.

Step 4. Below we group the addends of J with respect to the variables z. We get

J (z1, z2, z3, z4, h1, h2, h3, h4) = z1z2 (h1 + h2) + z1z3 (h1 + h3) + z1z2z3 (h1)

+z1z2z4 (h1 + h2) + z1z3z4 (h1 + h3)

+z2z3z4 (h2 + h3 + h4) .

Then, we have that | Q |= 6.
Step 5. In the previous expression, we change the variables z by t with a degree equal
to the sum of the weights of the critical players in each quasi-minimal winning coalition
given by the sub-index of variables hi . Thus,

G JC M(h1, h2, h3, h4, t) = t27 (h1 + h2) + t16 (h1 + h3) + t14 (h1) + t27 (h1 + h2)

+t16 (h1 + h3) + t16 (h2 + h3 + h4)

= h1
(
2t27 + 2t16 + t14

) + h2
(
2t27 + t16

) + h3
(
3t16

)

+h4
(
t16

)
.
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Step 6. For each i ∈ N and each k ∈ WQi , we identify jcmi
k as the coefficient of the

term tkhi in G JC M . So we have

For player 1, jcm1
27 = 2, jcm1

16 = 2, and jcm1
14 = 1.

For player 2, jcm2
27 = 2 and jcm2

16 = 1.
For player 3, jcm3

16 = 3.
For player 4, jcm4

16 = 1.

Finally, we calculate the Johnston–Colomer–Martínez measure. Thus, we have that

JCM1(q;w) = 14
6

( 1
14 + 2

16 + 2
27

) ≈ 0.631,
JCM2(q;w) = 13

6

( 1
16 + 2

27

) ≈ 0.296,
JCM3(q;w) = 2

6

( 3
16

) ≈ 0.063, and
JCM4(q;w) = 1

6

( 1
16

) ≈ 0.010.

6 A brief note on computational complexity

In this section we do an analysis of the computational complexity of the proposed algorithms
for the obtaining of the Johnston index, the Colomer–Martínez measure and the Johnston–
Colomer–Martínez measure. Note that the calculation of power measures is generally based
on counting the total number of coalitions. Thus, in the worst case, the computation of most
power measures has an execution time of O(2n).

In the following, we evaluate the computational complexity of the proposed algorithms in
Procedures 1, 2, and 3. For this purpose, we follow the lines in Bilbao et al. (2000), that anal-
ysed the computational complexity of computing the Shapley–Shubik index and the Banzhaf
index by means of generating functions, and in Chessa (2014), that evaluated the compu-
tational complexity of such tools for the Public Good index calculation. Both approaches
assumed a logarithmic cost model. Following Gács and Lovász (1999), a procedure is said
to be polynomial if we perform only a polynomial number of operations on numbers with at
most a polynomial number of digits.2

There are results in the literature on the computational complexity of the procedures
for obtaining other power indices for weighted majority games using generating functions.
Among others, we mention Bilbao et al. (2000) and Chessa (2014), that respectively proved
that the time complexity of computing the Banzhaf and the Shapley–Shubik indices and the
Good Public index for a weightedmajority game is of orderO(n2 ·A), whereA is the number
of non-zero coefficients in their respective generating functions.

Thus, we also assume the logarithmic cost model and we state the following collection of
results, in a similar way to the one of Bilbao et al. (2000) and of Chessa (2014). First, we
study the computational complexity of obtaining the Johnston index by means of generating
functions.

Theorem 6.1 Let (q;w) be a weighted majority game. If Ai is the number of non-zero
coefficients of f i (z1, . . . , zn, x) for every i ∈ N and A = maxi∈N {Ai }, then the time
complexity of the generating algorithm for the Johnston index is O(n2 · A).

2 We use the following notation. Let f : Z+ −→ Z+ be a function, with Z+ being the set of non-negative
integer numbers. We denote by O( f (n)) the set of all functions g such that f (n) ≤ cg(n) for n ≥ n0. Then,
a polynomial

∑d
i=0 ai ni is in O(nd ). This fact implies that only the asymptotic behavior of the function is

considered as n → ∞.
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Proof Let i be a player of N and consider the function G Ji (h1, . . . , hn) = ∑
k∈Ci

ci
khk

i ,
specified by the addend of the generating function G J (h1, . . . , hn) associated with player i .
It is obtained by the following loops:

1. Take i ∈ N . Thus, the function f i (z1, . . . , zn, x) = ∏n
j=1: j �=i (1 + xw j z j ), associated

with player i , is obtained as
f i (z1, . . . , zn, x) ← 1
for j ∈ {1, . . . , n} with j �= i do

f i (z1, . . . , zn, x) ← f i (z1, . . . , zn, x) + f i (z1, . . . , zn, x) · xw j · z j

endfor
The time to compute the line in the loop isO(Ai ), then the time to compute the function
f i (z1, . . . , zn, x) isO(n ·Ai ) for every player i ∈ N . Thus, if we takeA = maxi∈N {Ai },
the total time to compute such functions for N is O(n2 · A) for all players.

2. By using Step 3 in Procedure 1, we obtain the function G(z1, . . . , zn, h1, . . . , hn)

= ∑
i∈N

∑
k∈Ci

hi

( ∏
k∈S zk

)
. To this aim, we will denote by gi

k(z1, . . . , zn) the kth

monomial of f i with degree of x between q − wi and q − 1, and do the following:
G(z1, . . . , zn, h1, . . . , hn) ← 0
for i ∈ {1, . . . , n} do

for k ∈ Ci do
gi

k(z1, . . . , zn) ← f i (z1, . . . , zn, x)

G(z1, . . . , zn, h1, . . . , hn) ← G(z1, . . . , zn, h1, . . . , hn)+gi
k(z1, . . . , zn)·zi ·hi

endfor
endfor
The time to compute the inner loop isO(|Ci |) for each i ∈ N . Then, the time to compute
this function is O(n · maxi∈N |Ci |). Since maxi∈N |Ci | < A, we have ensured a time
complexity O(n · A).

3. Finally, we analyse the case of determining the function G Ji (h1, . . . , hn) = ∑
k∈Ci

ci
khk

i
for each i ∈ N from the function G(z1, . . . , zn, h1, . . . , hn).
s ← 0
for k ∈ Ci do

s ← s + ci
k

endfor
The time to compute the loop is O(|Ci |) for each i ∈ N . Again, as maxi∈N |Ci | < A, we
have ensured a time complexity of O(A).

Thus, we can conclude that the generating algorithm for computing the Johnston index in
Procedure 1 has associated a total time complexity O(n2 · A). �	

Below, we analyse the computational complexity of obtaining of the Colomer–Martínez
measure by using generating functions.

Theorem 6.2 Let (q;w) be a weighted majority game. If A is the number of non-zero coef-
ficients of f (z1, . . . , zn, x), then the time complexity of the generating algorithm for the
Colomer–Martínez measure is O(n · A).

Proof Let i be a player of N and consider the function GC Mi (x) = ∑
k∈Wi

cmi
k xk , specified

by those addends of the generating function GC M(z1, . . . , zn, x) in which zi is present. It
is obtained by the following loops:

1. The function f (z1, . . . , zn, x) = ∏n
j=1(1 + xw j z j ) is obtained as
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f (z1, . . . , zn, x) ← 1
for j ∈ {1, . . . , n} do

f (z1, . . . , zn, x) ← f (z1, . . . , zn, x) + f (z1, . . . , zn, x) · xw j · z j

endfor
The time to compute the line in the loop is O(A), then the time to compute the function
f (z1, . . . , zn, x) is O(n · A).

2. By using Step 3 in Procedure 2, we obtain GC M(z1, . . . , zn, x)

= ∑
S∈M xw(S)

( ∏
k∈S zk

)
. Recall that we denote by g(z1, . . . , zn, x) that polynomial

specified by the monomials of f (z1, . . . , zn, x) with a degree of x ≥ q . Thus, we have
to do:
GC M(z1, . . . , zn, x) ← 0
for j ∈ M do

g(z1, . . . , zn, x) ← monomial of f (z1, . . . , zn, x) with degree of x ≥ q
GC M(z1, . . . , zn, x) ← GC M(z1, . . . , zn, x) + g(z1, . . . , zn, x)

endfor
Thus, the time to compute GC M(z1, . . . , zn, x) is O(|M |). Note that, as |M | ≤ A, it
satisfies that the time complexity is O(A).

3. Finally, we analyse the case of determining the function GC Mi (x) = ∑
k∈Wi

cmi
k xk ,

that is obtained as the polynomial resulting from the addends of GC M(z1, . . . , zn, x)

that contain zi after excluding z variables for each i ∈ N .
s ← 0
for k ∈ Wi do

s ← s + cmi
k

endfor
Clearly, the time to compute the previous loop is O(|Wi |) fore every i ∈ N . As
maxi∈N |Wi | ≤ |M | < A, the total time complexity is O(A).

Thus, we can conclude that the generating algorithm for computing the Colomer–Martínez
measure in Procedure 2 has associated a total time complexity O(n · A). �	

Finally, we formalize an analogous result on the complexity of computing the Johnston–
Colomer–Martínez measure for weighted majority games through generating functions. Due
to the nature of this measure, the outline of its proof is quite similar to those of the results
already presented in Theorem 6.1. For simplicity, we omit it from the paper.

Theorem 6.3 Let (q;w) be a weighted majority game. If Ai is the number of non-zero
coefficients of f i (z1, . . . , zi−1, zi+1, . . . , zn, x) for every i ∈ N and A = maxi∈N {Ai },
then the time complexity of the generating algorithm for the Johnston–Colomer–Martínez
measure is O(n2 · A).

7 powerindexR: a tool for measuring the power

This section illustrates the usage of generating functions for computing, among others,
the Johnston index, the Colomer–Martínez measure, and the Johnston–Colomer–Martínez
measure in voting situations. Specifically, we analyse the evolution of power in the most
representative political parties in different compositions of the parliament of Spain in the
period from 2015 to 2019.

For this purpose, we have implemented several power indices in R software (RCore Team,
2024), a fact that enabled the development of the R package powerindexR (Armijos-Toro
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Table 1 Arguments of the functions in powerindexR package

Function Quota Weights Partition Normalized Swing Minimal Quasiminimal

pi.banzhaf � � � � �
pi.colomer
martinez

� � �

pi.
johnston

� � �

pi.
johnston
colomer
martinez

� �

pi.shapley � � �
powerindex � � � � � � �
MWC � �
QMWC � �

et al., 2024b) for the computation of several power measures. For instance, it additionally
considers the computation of other well-known power measures, such as the Shapley–Shubik
index or the Banzhaf index.

Below, we briefly describe its capabilities for determining power measures of players
in weighted majority games. Following basic instructions, powerindexR in R software
allows the computation of several power measures by introducing the quota q (quota)
and the vector of weights w1, w2, . . . , wn (weights) for the set of players of any voting
situation. The remaining arguments are summarized in Table 1, that describes the functions
in powerindexR and their options.

The package is also implemented for other families of weighted majority games. For
instance, if a coalitional structure is considered on N , the extension of the Shapley–Shubik
and the Banzhaf indices is obtained by doing partition=TRUE. In the case of the
Banzhaf index, the parameter normalized=TRUE provides its normalized version, and
swing=TRUE computes the cardinality of the set of coalitions for which each player is
critical. The logical arguments minimal=TRUE and quasiminimal=TRUE respectively
provide the minimal and the quasi-minimal winning coalitions of a weighted majority game.
Besides, powerindex() function requires an extra parameter to indicate the power index
to be computed. Let us note that, although such functions were implemented for a general
number of players, the features of the computer in which power measures are performed
will determine the computational capacity in practice. For example, on a standard personal
computer with an Intel(R) Core(TM) i9-11900KF, 3.50GHz and 16GB RAM, if we consider
a weighted majority game without symmetries, such as the one described in Example 5 of
Freixas and Pons (2023), the Johnston index can be calculated for 25 players in just over
1min and for 28 players in about 10min.More information is available on the website https://
cran.r-project.org/package=powerindexR.

7.1 An application of powerindexR: the power in the Spanish parliament

The Spanish parliament, namely Congreso de los Diputados, is composed of 350 seats who
are elected through a proportional representation system every four years (as maximum).
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Table 2 Seats by political party in the Spanish parliament in the period 2015–2019

2015 2016 Apr, 2019 Nov, 2019
Party Seats Party Seats Party Seats Party Seats

PP 123 PP 137 PSOE 123 PSOE 120

PSOE 90 PSOE 85 PP 66 PP 89

PODEMOS 69 UP 71 Cs 57 VOX 52

Cs 40 Cs 32 UP 42 UP 35

ERC 9 ERC 9 VOX 24 ERC 13

DL 8 CDC 8 ERC 15 Cs 10

PNV 6 PNV 5 JxCAT-JTS 7 JxCAT-JTS 8

UP-IU 2 EH Bildu 2 PNV 6 PNV 6

EH Bildu 2 CCa-PNC 1 EH Bildu 4 EH Bildu 5

CCa-PNC 1 Cca-PNC 2 MP-EQ 3

NA+ 2 CUP-PR 2

COMP 2019 1 CCa-PNC-NC 2

PRC 1 NA+ 2

BNG 1

PRC 1

TE 1

This parliament is responsible for representing their constituencies, proposing and passing
legislation, and acting as a control of the different areas of government (such as education,
foreign affairs, or justice, among others).

The current composition of the parliament reflects the results of the last Spanish General
election, held in November 2019. In that moment, the Partido Socialista Obrero Español
(PSOE) holds the largest number of seats with 120, the Partido Popular (PP) obtained 89
seats, the merge of far-left parties Unidas Podemos (UP), 35 seats, the center-right party
Ciudadanos (Cs), 10 seats, the far-right partido VOX, 52 seats, and other smaller parties the
remaining seats. Table 2 completes the distribution of seats by political party in the last four
General elections in Spain until 2022. Prior to 2015, it was common for the PP and PSOE to
alternate in government, either on their own or with the support of some minority parties.

The task of measuring power in the Congreso de los Diputados can be approached from
the perspective of cooperative game theory, as in any other voting situation. Thus, each party
can be considered as a player in a weighted majority game with a quota of 176, being the
individualweights the number of seats of each party. In this scenario, powermeasures indicate
the capabilities of influence of each party in passing laws. Along this section, we focus on
analysing the power evolution of the most representative political parties in Spain after each
election. For this purpose, we use powerindexR in R software and the data in Table 2.

In a first step, we analysed the number of coalitions, winning coalitions, quasi-minimal
winning coalitions andminimal winning coalitions for each post-election scenario. It is worth
mentioning that the fragmentation of a parliament makes their exact computation a challenge
task because of, among others, the number of minimal winning coalitions enlarges as the
representativeness of parties in parliament also increases. See, for instance, the case of the
results of the elections of 2019. Table 3 depicts these amounts that were obtained by using
powerindexR package on the different compositions of seats of the Spanish parliament.
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Table 3 Summary of the Spanish parliament in the period 2015–2019

2015 2016 Apr, 2019 Nov, 2019

Parties 10 9 13 16

Coalitions 1024 512 8192 65, 536

Winning coalitions 509 255 4078 32, 632

Quasi-minimal winning coalitions 419 218 3575 27, 521

Minimal winning coalitions 14 8 54 321

Table 4 Power distribution in the Spanish parliament resulting from elections in the period 2015–2019

Political party Election SS BZ JH CM JCM

PP 2015 0.40238 0.37729 0.50632 0.33465 0.58746

2016 0.44246 0.43614 0.58486 0.44973 0.67902

Apr, 2019 0.16667 0.15094 0.11521 0.18600 0.10706

Nov, 2019 0.20609 0.18350 0.15926 0.23271 0.18083

VOX Apr, 2019 0.02854 0.03037 0.01401 0.07019 0.00763

Nov, 2019 0.18423 0.18240 0.15698 0.15150 0.11498

PSOE 2015 0.21984 0.20986 0.18946 0.28143 0.20234

2016 0.19127 0.18072 0.14457 0.22444 0.14628

Apr, 2019 0.46180 0.45283 0.63701 0.35929 0.72624

Nov, 2019 0.40037 0.39700 0.55471 0.36835 0.64672

Cs 2015 0.06904 0.08372 0.05684 0.09489 0.03753

2016 0.10913 0.12771 0.08945 0.08907 0.04310

Apr, 2019 0.16667 0.15094 0.11521 0.16092 0.09466

Nov, 2019 0.02008 0.02409 0.01077 0.02935 0.00287

PODEMOS-UP 2015 0.21984 0.20986 0.18946 0.21830 0.16299

2016 0.19127 0.18072 0.14457 0.19016 0.12594

Apr, 2019 0.09993 0.12058 0.08189 0.11390 0.05612

Nov, 2019 0.08890 0.10785 0.07693 0.09709 0.04552

ERC 2015 0.03016 0.04014 0.02116 0.02179 0.00427

2016 0.02460 0.02651 0.01384 0.01903 0.00256

Apr, 2019 0.02854 0.03037 0.01401 0.04402 0.00489

Nov, 2019 0.02783 0.03182 0.01611 0.03677 0.00498

PNV 2015 0.01984 0.02638 0.01265 0.01699 0.00187

2016 0.00913 0.01205 0.00505 0.00706 0.00065

Apr, 2019 0.01219 0.01621 0.00598 0.01887 0.00105

Nov, 2019 0.01375 0.01442 0.00544 0.01666 0.00102

Table 4 shows the evolution of the influence of those parties with the largest representation
in the Spanish parliament in the period from 2015 to 2019, by using power measures as
criterion. For their obtaining, we use powerindexR package. By notational convenience,
we denote the Shapley–Shubik index by SS, the Banzhaf index, by BZ, the Johnston index, by
JH, the Colomer–Martínez measure, by CM, and the Johnston–Colomer–Martínez measure,
by JCM.
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From the numerical results, we point out below some significant issues on the evolution
of the power of the different political parties. PP is a political party considered on the
right/centre-right of the Spanish political spectrum. This political party led the government
in the periods 1996–2004 and 2011–2018. This party achieved an absolute majority, with
186 seats, from the Spanish General elections of 2011. Table 4 indicates that PP obtained the
largest power of the parliament (for any power index considered) for the results of 2015 and
2016. Meanwhile, this political party was displaced to the second place within the Spanish
parliament after the general elections of 2019. Its decline favoured the political party VOX,
that takes a conservative and Spanish-nationalist ideology and that emerged in the Spanish
parliament from the elections of 2019. In view of the results in Table 4, we check that the
JCM measure is more sensitive to changes, since it is not only influenced by the cardinality
of the set of quasi-minimal winning coalitions but also by the seats obtained by each party.
Table 4 also shows that VOX considerably increased its power in the Spanish parliament in
just seven months (fromApril to November 2019). In this case, power measures for weighted
majority games such as CM and JCM are the ones that assign the least power to this political
party. Besides, we mention the case of Cs, that is a Spanish center-liberal political party. It
was one of the political parties that has reduced its power after the elections of 2019 for the
Spanish parliament. Clearly, the JCM measure penalizes its power the most, since that this
political party went from having 57 seats in April 2019 to 10 in November of the same year.

On the other hand, PSOE is usually recognized as a center-left party. Table 4 evidences
that this political party went on to lead the Spanish parliament after the 2019 elections.
PSOE presented the same power as the other left-wing political party UP (after, its partner
in government) when using SS, B, and JH indices over the compositions of the Spanish
parliament resulting from the elections of 2015 and 2016. However, the power calculatedwith
CMand JCMmeasures evidences differences between these two political parties according to
the number of seats obtained in both elections. PSOE increased its power, while UP decreased
it. Table 4 shows a clear decline in power for UP despite this cooperation.

As concluding comments, we have checked the Spanish Parliament has shifted its majority
from a centre-right to a centre-left position, althoughwe highlight the consolidation of parties
with extreme positions in the 2019 elections. Moreover, in the case of the parties that lead
governments, we can easily see that JH and JCM prescribe a power larger than 50% for
PP after the 2015 and 2016 elections, but also for PSOE after the two elections in 2019. A
specialmentionmust bemade for the case of two nationalist parties,Esquerra Republicana de
Catalunya (ERC) and of Partido Nacionalista Vasco (PNV), which have played an important
role in crucial events in Spanish democracy. Table 4 also indicates that the power of both
political parties has been maintained over time with the exception of the elections of 2016,
where they slightly reduce their influence.

8 Conclusions and further research

The analysis of powermeasures tends to focus on defining and characterising newmeasures of
voter’s influence in voting situations. However, a common task is often the efficient computa-
tion of such measures by means of generating functions, as is the case of the Shapley–Shubik
and the Banzhaf power indices. In this paper we describe specific procedures to compute the
Johnston index and the Colomer–Martínez measure based on generating functions. Using
the principles underpinning both, we propose a new measure of the power in this setting, the
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Johnston–Colomer–Martínez measure. The task of computing this new power measure by
means of generating functions is also analysed from a computational complexity perspective.

Besides, we have implemented the generating functions for the three power measures
mentioned above in the powerindexR package of R software, jointly with other analogous
functions for calculating the Shapley–Shubik or the Banzhaf indices. This has already been
used in the practical application of this work and can easily be extended in the future to
include other power indices or measures from the literature.

Finally, we mention several relevant issues for further research. Firstly, a comprehensive
analysis, from a purely theoretical point of view, of the Johnston–Colomer–Martínezmeasure
should be undertaken. In addition, it would be interesting to propose methods to compute
different indices resulting (or not) from variations of the Johnston index and the Colomer–
Martínez measure for more complex models, such as games with a priori unions (Owen,
1977) or games with restricted communication (Myerson, 1977).
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