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Abstract

In this paper we introduce new procedures, based on generating functions, for calculating
some power measures for weighted majority games. In particular, we present methods for
computing the Johnston index and the Colomer—Martinez measure. Besides, we introduce a
new power measure that combines the principles underlying the Johnston index and Colomer—
Martinez measure as well as a procedure for computing it using generating functions. Finally,
we introduce the new R package powerindexR and describe its capabilities to compute
some power measures by means of generating functions. We illustrate its performance with
a real example.

Keywords Weighted majority games - Power measure - Generating functions - Johnston
index - Colomer—Martinez measure
1 Introduction

In decision-making systems, the power index of each voter can be interpreted as a measure
of his influence on the outcome of the decision. To model such situations, simple games,
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and more specifically weighted majority games, are usually considered, where each voter
is a player. Such games are characterized by an existing quota that imposes a majority in
the decision and a collection of individual weights for the players. Thus, a set of players
is said to be a winner if the sum of their individual weights is greater than or equal to the
quota. In these settings, several power indices have been proposed in the literature, such as
the Shapley—Shubik index (Shapley & Shubik, 1954), the Banzhaf index (Banzhaf, 1965),
the Deegan—Packel index (Deegan & Packel, 1978), the Johnston index (Johnston, 1978), the
Public Good index (Holler, 1982) and the Colomer—Martinez measure (Colomer & Martinez,
1995), defined specifically for weighted majority games.

The exact determination of power measures on the class of weighted majority games is, in
general, a challenging computational task. A widely used tool to facilitate this computation
are the generating functions, which are in fact based on counting algorithms (Wilf, 1994). In
practice, generating functions can be used, for instance, in optimal allocation problems (Lev-
itin, 2003), in umbral calculus (Dattoli & Srivastava, 2008), or in obtaining power indices in
voting situations (Bolus, 2011). Following an idea of David G. Cantor, Mann and Shapley
(1962) firstly used generating functions to compute the Shapley—Shubik index for any
weighted majority game. Brams and Affuso (1976) also considered this tool to compute the
Banzhaf index. There are other contributions in Lucas (1983), that explored various indices
as measures of power from this perspective. Bilbao et al. (2000) studied the computational
complexity of procedures based on generating functions for calculating the Shapley—Shubik
and the Banzhaf indices. After, Alonso-Meijide and Bowles (2005) and Algaba et al. (2007)
obtained the Banzhaf index using generating functions and Alonso-Meijide et al. (2012) used
them to compute the Deegan—Packel and the Public Good indices. Chessa (2014) analysed
the efficient computation of the Public Good index by means of generating functions. The
use of such methods has also been extended to other families of weighted majority games.
For example, Algaba et al. (2003) proposed a procedure for their obtaining in the case of
weighted multiple majority games, and Alonso-Meijide et al. (2009) computed them under
the presence of a priori unions structures. Rodriguez-Veiga et al. (2016) used generating
functions to compute the Banzhaf-Coleman and the Owen indices for weighted majority
games under the presence of a coalition configuration, and Neto and Fonseca (2019) used
them in such a setting with incompatible players.

The aim of this paper is threefold. First, from a purely computational point of view,
specific procedures based on generating functions are presented for the exact computation of
the Johnston index and the Colomer—Martinez measure. Up to the authors’ knowledge, this
is a novel approach to compute both power measures in a reasonable computational time,
even for weighted majority games involving a large enough number of players. Second,
a new power measure is constructed by taking into account the principles that justify the
Johnston index and Colomer—Martinez measure. Again, a specific procedure for its exact
determination based on generating functions is provided. Third, we introduce the R package
powerindexR and describe its functionalities, which has been specifically designed for
the exact computation of these and other power measures taken from the literature. Finally,
we illustrate its usage on a real example taken from the Spanish Parliament.

The paper is structured as follows. Section?2 presents some basic definitions of weighted
majority games. Section 3 describes a new procedure based on generating functions to com-
pute the Johnston power index. Section4 analogously considers the computation of the
Colomer-Martinez measure by means of generating functions. Section5 introduces a new
approach of power measure, that combines the principles of the Johnston index and the
Colomer—Martinez measure as well as a specific procedure for its computation also based
on generating functions. Section 6 analyses the computational complexity of the proposed
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methods. Section7 describes the R package powerindexR and includes the analysis of
power’s evolution of the political parties into the Spanish parliament during the period from
2015 to 2019. Section 8 contains some concluding remarks.

2 Preliminaries

A simple game is a pair (N, W), where N represents the set of players and W is a family of
coalitions of N satisfying that ) ¢ W, N € W, and for each pair of coalitions S, T of N such
that S € T € N, that S € W implies T € W. We refer to W as the set of winning coalitions
of N. We denote by n the cardinality of N.

Let S € W be a winning coalition. If there is at least one playeri € S such that S\{i} ¢ W,
then S is a quasi-minimal winning coalition, and player i is a critical player of S. The set
of critical players of S is denoted by x (5). The set of quasi-minimal winning coalitions in a
given simple game (N, W) is denoted by Q, and foreachi e N, Q; ={Se€ Q0 :i € x(5)}.
A coalition § € W is a minimal winning coalition if there is no T C S such that 7 is a
winning coalition. The set of all minimal winning coalitions in (N, W) is denoted by M, and
foreachi € N, M; = {S € M :i € S}. Note that if x(S) = S, then S € M. Obviously, for
any simple game (N, W), M € Q C W.

A power index g for simple games is a mapping that assigns a vector g(N, W) € RV
to each simple game (N, W), where g; (N, W) quantifies the power of player i in (N, W).
A well-known power index for simple games is the Johnston index (Johnston, 1978). It is
defined, for any simple game (N, W) and for any i € N, by

1 1
(N, W) = —— . 1
= IgQ:ilx(S)l v

Its definition is based on the following principles: (i) only quasi-minimal winning coalitions
will emerge victorious, (ii) all quasi-minimal winning coalitions are equally likely, and (iii)
all critical players in the same quasi-minimal winning coalition play the same role.

A weighted majority game is a simple game (N, W) that can be represented by (g; w)
or [q; wy, ..., wy], such that ¢ € N (¢ > 0) is an imposed quota and w = (wy, ..., wy)
represents the collection of non-negative integer voting weights of players of N. In this case,
S € W if and only if w(S) > g, being w(S) = ), w; for any given coalition S C N.
These games are usually used to represent voting systems where each player has a weight in
the decision. The goal of the cooperation of players is to form winning coalitions. A power
measure f for weighted majority games is a mapping that assigns a vector f(q; w) € RV to
each representation of a weighted majority game (g; w), where f; (¢; w) measures the power
of player i in (g; w).

Note that a weighted majority game can be represented by different quota and weights
configurations. Nevertheless, power indices, such as the Johnston, the Shapley—Shubik and
the Banzhaf indices, do not depend on these representations. In general, a power index for a
weighted majority games is a power measure that provides the same power distribution for
all its representations.

The Colomer—-Martinez measure (Colomer & Martinez, 1995) is defined, for every
weighted majority game (¢; w) and every i € N, by

1 wj
CM;(g;: w) = —— ) 2
(giw) = |S§4,~ e )
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From its definition, we can state that this index considers only minimal winning coalitions.
Moreover, all minimal winning coalitions are equally likely to be selected. The power of
minimal winning coalitions is distributed proportionally with respect to the contribution of
the players (the individual weight) to the total weight of the coalition.

Note that the Colomer—Martinez measure may not assign the same distribution of power
for two different representations of the same weighted majority game. This is because the
index considers not only the minimal winning coalitions but also the weights of the players.

3 The generating functions-based computation of the Johnston index

In this section we propose a method to compute the Johnston index for weighted majority
games using generating functions. The method of generating functions is a combinatorial
analysis technique based on obtaining a polynomial enumeration of the set of all coalitions
with control over their weights. See, for example, Stanley (1986) for more details.

For this purpose, we consider an alternative formulation of the Johnston index in (1) based
on the cardinality of the set of quasi-minimal winning coalitions. Let (N, W) be a weighted
majority game and take i € N. Firstly, we consider the set C; given by

G ={Ix(®:5 €0 3)

forevery i € N.Foreach k € C;, we denote by cf{ the cardinality of the set of quasi-minimal
winning coalitions S € Q; such that |x (S)| = k.

Thus, the Johnston index for the weighted majority game (N, W) can be also expressed,
for any playeri € N, by

1 c;;
Ji(N, W)= —— e 4
(N. W) |Q|Zk “

keC;

with C; being the set of sizes in (3). ‘
Below, we propose a procedure to compute c; for each i € N and each k € C; in a
weighted majority game (q; w).

Procedure 1 Let (N, W) be a weighted majority game given by (¢; w). The steps to compute
c}(, for each i € N and each k € C;, are the following.

Step 1. For every i € N, consider the function f! defined as:

n
@ zion g ) = [ A +xiz)).
=l

Step 2. Obtain, for every i € N, the function gi(zl, ..., 2Zn, h;) defined as the sum of
those terms of the function f? with a degree of variable x between ¢ — w; and ¢ — 1,
and replacing the variable x and its degree by z;A;.

Step 3. Obtain the function G(z1, ..., zZu, h1, .. ., h,) defined as the sum of the functions
g' obtained in the previous step forall i € N.

Step 4. Arrange the addends in G by grouping those ones with the same variables z.
Step 5. For each addend of G, eliminate the z’s and, in the summation of the 4’s, add to
each h; involved a degree equal to the number of addend of this sum. So, we obtain the
generating function GJ (hy, ..., hy).
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Step 6. Obtain c;'C as the coefficient of the addend hi‘ of GJ for eachi € N and each
k €C;.

The next result ensures that Procedure 1 determines the values cf{ foreachi € N and each
k € C; specified in (4).

Theorem 3.1 Let (N, W) be a weighted majority game. Procedure 1 provides cf{ for each
i € N and each k € C; and thus, the Johnston index.

Proof Let (N, W) be a weighted majority game. W.l.0.g assume that its representation is
given by (¢; w), where w denotes the collection wy, wo, ..., w, of individual weights of
players in N, and consider Procedure 1.

By using Step 1, consider function f’ for each i € N. Thus,

Fr@u e zict Zigte ez ) = (LA x"z) - (LA X" oD+ X" zi40) - (14 x""2,)
=1+ Z l_[)kaZk
SCN\{i} keS
n—1w(N)—w;
ESMD IS IN( | B
j=1 I=1 SCN\{i} “keS

IS|=Jj
w(S)=I

foreveryi € N.

Now, by Step 2, obtain the functions gi for each i € N, that are obtained as the sum of
those addends of £ with a degree of x between ¢ — w; and ¢ — 1 and replacing the variable
x and its degree by z;h;. That is, for each i € N, we have that

n—1

q—1
gi(Zl,---,Zn»hi)=ZihiZ Z Z (HZ">

j=1l=qg—w; SCN\{i} “keS
[S|=Jj
w(S)=l
= > (=)
SeQ; keS

Note that the expression above does not depend on the chosen representation for the
weighted majority game. Moreover, the set of coalitions in which a given player i is critical
can be identified by reorganising the polynomial G. According to Step 3, we obtain the
function G as follows:

G@lyoszn bty h) = ) @ @1z i)

ieN
=X w(IT=).
ieN SeQ; keS

We rearrange the addends in G with respect to z’s variables, as indicated in Step 4:

G@iveeszm by hy) = Z((]‘[zk)-( > h,))

SeQ keS iex(S)

From Step 5, for each addend of G (corresponding to each quasi-minimal winning coalition),
we remove the z variables and add to each /; a degree equal to the number of addends of the
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sum of & variables (corresponding to the cardinality of the set of critical players of the quasi-
minimal winning coalition under consideration). Then, we obtain the generating function

GJ as
Gl ....h) =Y Y ¥

SeQiex(S)

n
=22 2
ieN k=1 SeQ;

[x (S)|=k

= Z Z cih?.

ieN keC;
Finally, by Step 6, we obtain c}; ={S € Qi : |x(S)| = k}| for each k € C;. O
The following corollary can be established as a direct consequence of Theorem 3.1.

Corollary 3.2 Let (N, W) be a weighted majority game. The cardinality of the set of quasi-
minimal winning coalitions is given by the number of addends of the polynomial resulting
from Step 4 of Procedure 1.

Let us note that, as for the Shapley—Shubik and the Banzhaf indices, the power index
computed by this procedure does not depend on the representation used for the weighted
majority game.

The following example illustrates the obtaining of the Johnston index on the basis of the
application of Procedure 1.

Example 3.3 Take the weighted majority game (N, W) with 4 players given by [16; 14, 13,
2, 1]. We follow the steps of Procedure 1 to obtain the Johnston index, as shown below.

Step 1. First, we obtain the function fi(zl, eeesZi—1sZi+1s---,24,x) foreachi € N.
So, we have that

(14 xB22) (1 + x%23)(1 + x24)

13 2 15 14 3 16
I+x"720+x723 +x24 + X 72223 + X 72024 + X72324 + X 7222324
(1 +x"2) (1 + x%23) (1 + x24)

14 2 16 15 3 17
I+x7z1 +x723 +x24 + X °2123 + X 72124 + X72324 + X '212324
1+ x4z +xP22) (1 + x24)
1 +x1421 + x13zz + xz4 + x27Z1zz + x1511Z4 + Xl4ZzZ4 + ngz1zzz4
122,23, %) = L+ x"2) (1 +xB20) (1 + x%23)

=1 +x14z1 +x13zz +xzz3 +x2721zz +x'62123 +x15zzz3 +x29Z12223

1
f(z2, 23, 24, %)

2
f(z1, 23, 24, x)

3122, 24, %)

Step 2. Now, for each i € N, we sum those terms of each function f’ with a degree of
the variable x between ¢ — w; and ¢ — 1, and replace the variable x and its degree by
zihi. Thus, we obtain the the polynomials g’ (z1, 22, 23, z4, h;) and we have that

§' (21,22, 23, 24, ) = 21h1 (22 + 23 + 2223 + 2224 + 2324)
ziz2ht + z1z3h1 + 21222301 + 21222401 + Z12324h1

2
87 (21,22, 23, 24, h2) = 22h2 (21 + 2124 + 2324)

2122h2 4 2120242 + 22232402

23h3 (21 + 2124 + 2224)

3
g7(z1, 22, 23, 24, 13)
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= 212303 + 21232403 + 22232403

84 (21, 22,23, 24, ha) = zaha (2223) = 222324h4
Step 3. This step implies the addition of the polynomials g’ and thus we obtain

G (21,22, 23, 24, h1, ho, h3, he) = z1z22hy + 21230 + 21222301 + 21222401 + 21232401
+z120h2 + 21202400 + 22232400 + z12303 + 21232413
+ 20232403 + 222324h4

Step 4. In this step, we rearrange the terms in the polynomial G by grouping those terms
with the same variables z’s. This implies that we alternatively obtain that

G(z1, 22,23, 24, h1, ha, h3, ha) = z1zo (A1 + ho) + 2123 (1 + h3) + 212223 (A1)
+ 212224 (hy + h2) + 212324 (hy + h3)
+ 222324 (h2 + h3 + hy)
Besides, Corollary 3.2 directly ensures that | Q |= 6.
Step 5. In this step, we add to each h; a degree equal to the cardinality of elements z’s
with the same subindex that elements %’s in the corresponding term of the polynomial G
and we remove the variables z’s from G.
Then, we obtain the generating function G J (hy, ho, h3, hq) as follows:
GJ(hy, hy, h3, ha) = (h} + h3) + (hT + h3) + (hy) + (] + h3) + (h] + h3)
+ (B3 + B3 + h3) = hy + 4h? + 203 + b3 + 203 + 13 +
Step 6. In each term c};hf of the polynomial GJ, withi € N and k € C;, cf{ is the

cardinality of the set of quasi-minimal winning coalitions S, such that § € Q; and
| x(S) |= k. Then we have

ci =1land ¢! = 4, for player 1;
c% = 2 and ¢35 = 1, for player 2;
c; =2 and cg = 1, for player 3, and
¢3 = 1, for player 4.
Finally, we calculate the Johnston index, as

JI(N, W) =1 (1+3%) =0.500,

L(N,W)=1(3+1)~0222,
J3(N, W) =1 (3 +4%)~0.222,and
J4(N, W) = L (%) ~0.056.

4 The generating functions-based computation of the
Colomer-Martinez measure

In this section we propose a procedure to compute the Colomer—-Martinez measure for
weighted majority games using generating functions. Recall that the Colomer—Martinez mea-
sure depends on the chosen representation of the weighted majority game. Then, from now
on we use the representation in reference to the weighted majority game.

Again, we consider an alternative formulation of the Colomer—Martinez measure, origi-
nally introduced in (2), now based on the cardinality of the set of minimal winning coalitions.
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More specifically, we propose a procedure that counts the minimal winning coalitions involv-
ing each player i and where the sum of the individual weights of its members is k. Let (g; w)
be a weighted majority game such that w denotes the collection of individual weights of
players in N given by wy, wo, ..., w,. Foreach (¢; w) and for eachi € N, we consider the
set of weights W; given by

Wi ={w(S) : S € M;}. ©)

For each i € N and each k € W;, we denote by cm;{ the cardinality of the set of minimal
winning coalitions S € M; such that w(S) = k.

Thus, the Colomer—Martinez measure for the weighted majority game (¢; w) admits, for
each i € N, the following formulation:

wy cm;{
CMi(q; w) = - (©)
T 2

with W being the set of weights given in (5).
Next, we propose a procedure to compute cm, for eachi € N and each k € W; and thus,
the Colomer-Martinez measure as in (6).

Procedure 2 Let (¢; w) be a weighted majority game. The steps to compute cmf{ for each
i € N and each k € W are described below.!

Step 1. First, compute the function f defined by

f@r sz = [ +x"z)).

j=1
Step 2. Select the terms in f(zy, ..., z,, x) with a degree of x greater than or equal to
q. Thus we obtain the polynomial g(z1, ..., z,, X).

Step 3. Remove the monomials that are divisible by another monomial of g. Then, we
obtain the polynomial GCM (z1, ..., zn, X).

Step 4. Obtain the generating functions GC M* (x) as the polynomial composed, for each
i € N,ofthetermsof GCM (z1, .. ., zn, x) thatcontain z;, after removing the z variables.
Step 5. Finally, cmf{ is the coefficient of each term of the polynomial GC M I(x) where
the degree of x is k, for each k € W;.

Below, Theorem 4.1 ensures that Procedure 2 determines the values cmf(, foreachi e N
and each k € W;, in (6).

Theorem 4.1 Let (q; w) be a weighted majority game. Procedure 2 provides cmf( for each
i € N and each k € W; and hence the Colomer—Martinez measure.

Proof Take (g; w) a weighted majority game and consider Procedure 2. Using Step 1, con-
sider the function f given by

I An approach similar to Brams and Affuso (1976) and Chessa (2014) could also be employed.
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fG@i, ooz, x) = A+ xz1) - (T +xYz,)

=1+ Z wakzk

SCN keS
n w(N)

1+ Y > (HZk))

j=1i=1

[S|=Jj
w(S)=l

By Step 2 of the procedure, we identify those terms of f where the degree of x is equal
to or greater than g. Thus, we directly have the polynomial g given by

n w(N)
gz, oy zZn,X) = Z Z x’( Z <sz>>
j=1 I=q SCN “keS
IST=J
w(S)=I
= Z xw(S)(l_[Zk>.
Sew keS

Using Step 3, we remove those monomials that are divisible by another monomial of the

function g(z1, ..., Z, x). Then we obtain the polynomial GCM(z1, ..., z,, X) given by
GCM(z1, ..., 20, X) = Z xw(5)<l_[zk).
SeM keS

We obtain the values of cmf( from the generating functions GCM' in Step 4 of the pro-
cedure. Thus, for each i € N and each k € W, these values are the number of terms of the
above polynomial with degree k in which z; is present. That is,

GCM!(x) = Z PaaCy
SeM;

— ik
—Zcmkx.

keW;

So, by Step 5 we have cm}; =|{S € M; : w(S) = k}| foreach k € W;. O

From Theorem 4.1 we can directly state some results on the identification of winning
coalitions and minimal winning coalitions.

Corollary 4.2 Let (q; w) be a weighted majority game. The cardinality of the set of win-
ning coalitions and the cardinality of the set of minimal winning coalitions are determined
respectively by Step 2 and Step 3 of Procedure 2.

The following example illustrates the proposed procedure for calculating the Colomer—
Martinez measure.

Example 4.3 Take again the weighted majority game with 4 players considered in Example

3.3 and that is given by [16; 14, 13, 2, 1]. We follow the steps of Procedure 2 to obtain the
Colomer—Martinez measure, as shown below.
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Step 1. First, we calculate the function f as

fz1, 22, 23, 24, %) = (1 4+ x"2) (1 4+ xP20) (1 + x%23) (1 + x24)
=1 +x14Z1 +x13zz +x223 + xz4 +x2721zz +x162123 +x1521z4
+xlszzz3 + x141214 + x31324 + x291112Z3 + x28212224
+x172113Z4 + xl6Z2Z3Z4 + X30Z12223Z4.

Step 2. Then, we select the terms of f with a degree of variable x greater or equal than
q = 16. So,

8(z1,22, 23, 24, %) = X7 2120 + 1102123 + xP 212023
28 17 16 30
+x°°212224 + X '212324 + X 7222324 + X~ 721222324

By Corollary 4.2, the total number of addends of this polynomial coincides with the
cardinality of the set of winning coalitions, i.e., |W| = 7.

Step 3. In the third step, we delete those monomials that are divisible by another monomial
of the considered function to obtain the polynomial GCM.

GCM(z1, 22,23, 24, X) = x2 2120 + x 02123 + x1%222324.

Again, Corollary 4.2 ensures that the cardinality of the set of minimal winning coalitions
is |M| = 3.
Step 4. In the fourth step, we obtain GCM i foreachi € N.

GCM! ' (x) = x?7 4+ x16,
GCM?(x) = x¥T 4 x1°,
GCM3(x) = 2x16,
GCM*(x) = x'0.

Step 5. Finally, we obtain c};, foreachi € N and k € W, as follows.

For player 1, cmé7 =1and cmi6 =1.

For player 2, cm5; = 1 and cm{ = 1.
For player 3, cmi, = 2.
For player 4, cm{g = 1.

Once these values are obtained, we calculate the Colomer—Martinez measure. This gives

us
CM(g; w) = & (£ + 55) ~ 0.465,
CMa(q; w) = B (£ + &) ~ 0.431,
CM3(q; w) = 3 (&) ~ 0.083, and
CMy4(q; w) = % (f5) ~ 0.021.

5 The Johnston-Colomer-Martinez measure

In this section we present a new measure for weighted majority games. To formalize it, we
combine those principles underlying the Johnston index and the Colomer—Martinez measure
and that are summarized below.

e Among all possible coalitions that can be formed in N, only quasi-minimal winning
coalitions are considered.
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e Furthermore, it is also assumed that all quasi-minimal winning coalitions are equally
likely, i.e. they have the same probability of forming.

e The power of a critical player in any quasi-minimal winning coalition is the fraction of that
player’s individual weight over the total weight of the critical players in the considered
coalition.

The Johnston index and the Colomer—Martinez measure satisfy interesting properties
and have several applications (see Freixas et al., 2012 and Armijos-Toro et al., 2024a). For
example, the Colomer—Martinez measure satisfies weighted symmetry in the representations
of weighted majority games with a single minimal winning coalition. Barua et al. (2005)
introduced a similar measure that satisfies a similar weighted symmetry property, using all
winning coalitions instead of minimal winning coalitions. Then, it is interesting to introduce a
new measure, using arguments from the Johnston index and the Colomer—Martinez measure
to assess power in different representations of a weighted majority game. This new mea-
sure employs quasi-minimal winning coalitions as the Johnston index and satisfies weighted
symmetry as the Colomer—Martinez measure.

The new proposed power measure takes into account, like the Colomer—Martinez measure,
the internal distribution of power in the coalition based on the information provided by its
weights. While the Colomer—Martinez measure only considers minimal winning coalitions,
the new measure uses more information, since those coalitions containing at least one critical
player are included in its calculation, as the Johnston index.

One argument to justify the use of this new measure is that it takes into account not only
that a player can destroy a winning coalition, but also that it serves to make comparisons
between the set of players that have this ability to destroy the same set of winning coalitions.
Then, we formalize the new measure for weighted majority games below.

Definition 5.1 Let (¢; w) be a weighted majority game. The Johnston—Colomer—Martinez
measure for (q; w) is, for each player i € N, defined by
Wi

w(x($)’

JCM; (¢; w) = | ;| > @)

SeQ;

As aremark, we mention that the Johnston index for weighted majority games can be seen
as a particular case of this new measure proposal for the case of those weighted majority
games in which all critical players have the same individual weight in any quasi-minimal
coalition.

5.1 The generating functions-based computation of the
Johnston-Colomer-Martinez measure

In this section we analyse the task of computing the Johnston—Colomer—Martinez measure.
Specifically, we provide a procedure for calculating it using generating functions. First,
we rewrite the expression for the Johnston—Colomer—Martinez measure given in (7) and
introduce some required notation.

Let (¢; w) be a weighted majority game and take i € N. Now, we consider the set of
weights Wo,, for eachi € N, given by

Wo, = {w(x($)) : S € 0i}, (®)

and Q; being the set of quasi-minimal winning coalitions containing a given player i. Fixed
i € Nandk € Wp,, jem; denotes the cardinality of the set of coalitions S € Q; such that
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w(x(S)) = k. Thus, the Johnston—Colomer—Martinez measure for the weighted majority
game (q; w) can alternatively be expressed, for each playeri € N, as

w; J cm!
ICMi(gzw) = —— > =%, ©)
1o, 5 &
Qi
where Wp, is the set of weights in (8). '
Now we propose a procedure to compute the amounts jcm;, specified for eachi € N and
each k € Wp, in (9).

Procedure 3 Let (¢; w) be a weighted majority game. The steps to compute jcm;; for each
i € N and each k € Wy, are described below.

Step 1. For each i € N, consider the function f i which is defined as follows for each
i €N:

n
FU@L ooy il Tidls -+ » T X) = 1_[(1 +ijzj')

j=1

J#
Step 2. Now, obtain the function ji (z1, ..., 2n, hi) defined, for eachi € N, as the sum
of those terms of the function f with a degree of variable x is between ¢ —w; and ¢ — 1,
and replacing the variable x and its degree by z;h;.
Step 3. Next, calculate the function J, defined as the sum of the functions j i obtained,
for all i € N, in the previous step.
Step 4. Arrange the addends in J by grouping those ones with the same variables z.
Step 5. After, each product of the variables z in each addend is replaced by a variable
t. Its degree is equal to the sum of the individual weights of the critical players, that are
indicated by the sub-indices of the variables % in the addend. Then, obtain the generating
function

GJICM(hy, ..., hy,t).

Step 6. Finally, obtain j cmf{ corresponds to the coefficient of each term r%h; in the
resulting polynomial GJCM for eachi € N and each k € Wy, .

Note that the first four steps of Procedure 3 are exactly the same as the first four steps of
Procedure 1 to compute the Johnston index by means of generating functions.

Below, we prove that Procedure 3 returns the values jcmj; for each i € N and each
k € Wo, specified in (9).

Theorem 5.2 Let (q; w) be a weighted majority game. Procedure 3 provides jcm}; for each
i € N and each k € Wy, and hence the Johnston—Colomer—Martinez measure.

Proof Let (q; w) be a weighted majority game, where w denotes the collection wy, wo, ...,
w, of individual weights of players in N, and consider Procedure 3.
Using Step 1, consider the polynomial f* defined for each i € N as follows.

Pt 2ty Zig s ooy 2y X) = (LA Xz - (L X ) (L 2 zi40q) - -
(143" 2,)
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1+ Z wakzj

SCN\{i} keS
n—1 w(N)—w;
=+L X ¢ ¥ ([1=)
j=1 =1 SCN\[i} “keS
[S]=/

Using Step 2, compute the function j i for each i € N as the sum of those terms of the

function f' with a degree of variable x between ¢ — w; and ¢ — | and replacing the variable
x and its degree by z;h;. So for each i € N we obtain

n—1g—1

J @) = zihi Y Y Y (H )

j=11=q SCN\{i} “keS
IS|=j
w(S)=l

Zhi(nZk).

SeQ; keS
Thus, by adding, we obtain the function J by considering Step 3

n
TGz bty h) =Y @1z hi)

i=1
-> ¥ u([T=)
ieN SeQ; keS

Step 4 gives the grouping of the addends with respect to the variables z. By Corollary 3.2
each addend corresponds to a quasi-minimal winning coalition

J@izm by, h) =Y h,(]_[zk)

ieN SeQ; keS

-2 (1) (2 )

iex(S)
In Step 5 we replace the product of variables z by ¢. The degree of ¢ is the sum of the
weights of the critical variables in each quasi-minimal winning coalition. Thus

GICM(hy, ooy, 1) = 3 "0 [ 3™ g,

SeQ iex(S)

- X e

ieN keWg;,
Finally, by Step 6, we have that jcm}'< =1|{S € Q; : w(x(S)) = k}| foreachi € N and each
k € Wo,. Hence, we compute the Johnston—Colomer—Martinez measure

O
We revisit Examples 3.3 and 4.3 to illustrate the computation of the Johnston—Colomer—
Martinez measure.
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Example 5.3 Take again the weighted majority game [16; 14, 13, 2, 1]. We follow the steps
of Procedure 3 for obtaining the Johnston—Colomer—Martinez measure.

Step 1. First, the function f' is computed, for each i € N, by

223,24, x) = [(L+xP2) (1 + x%23) (1 + x24)]
=1+ x13zz + x223 +Xxz4 + xlszzz3 + x14zzz4
+x32324 + x'%202324
fAzr 23,24, %) = [(L+ x2) (1 + x%23) (1 4 x24)]
=1+ x"z +x%23 +xza + 202123 + 12124
+x3z324 + x 212324
22, 2a,%) = [T+ x"2) 0+ xP22) (1 + x24)]
=1+ x14z1 + x13zz + xz4 + x27z122 + xlszlz4
+x2024 + x8212024
i z2.z3.0) = [T+ xM2) (1 +xP2) (1 +x723)]
=14+x"z +xB0 + 2+ 130120 + x93
+xB223 + x%z12023
Step 2. Now, we compute the polynomials ji(11,z2, 73, 24, h;), for each i € N, as
follows:
J' @12, 23 24 k) = 2ihy (2 + 23 + 2223 + 2224 + 2324) = 21220 + 21230
+z12223h1 + 21222401 + 2123240
731,22, 23, 24, h2) = 20k (21 + 2124 + 2324) = 21220 + 2120240 + 222328h2
J3(21, 22, 23, 24, h3) = z3h3 (21 + 2124 + 2224) = 212303 + 212324h3 + 222324h3
7421, 22, 23, 240 ha) = 244 (2223) = 222324h4
Step 3. In the third step, we sum these polynomials j’ for alli € N, and thus
J(z21, 22,23, 24, h1, ha, b3, hy) = z122hy + 212300 + 2122230 + 212224 R + 21232410
+z120h) + z12024h2 + 22232400 + 212303 + 21232453
+202324h3 + 222324 h4.
Step 4. Below we group the addends of J with respect to the variables z. We get

J(z1, 22,23, 24, b1, hoy h3, ha) = 2122 (hy + ho) + 2123 (hy + h3) + 212223 (M)
+z12224 (h1 + h2) + 212324 (h1 + h3)
+222324 (ha + h3 + ha) .
Then, we have that | Q |= 6.
Step 5. In the previous expression, we change the variables z by ¢ with a degree equal

to the sum of the weights of the critical players in each quasi-minimal winning coalition
given by the sub-index of variables /;. Thus,

GJCM(hy, ha, h3, hy, 1) = 127 (hy + hy) + 1'% (hy + h3) + 1'% (hy) + 127 (hy + ho)
110 (hy 4 h3) +1° (hy + h3 + ha)
=hy (2077 +26"0 +11%) 4 by (2677 +£19) + b3 (3¢1°)
+hy (119).
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Step 6. For each i € N and each k € Wy,, we identify j cmj; as the coefficient of the
term Xh; in GJC M. So we have

For player 1, j:Cmé7 =2, jcm.{6 = 2,and jem}, = 1.
For player 2, j.cm ;=2and jemijs = 1.
For player 3, jcm 6= =3.
For player 4, jem{s = 1.
Finally, we calculate the Johnston—Colomer—Martinez measure. Thus, we have that

ICMi(q: w) = ¥ (4 + & + %) ~ 0.631,

6
JICMa(q; w) = 2 (& + &) ~ 0.296,
JCM3(q; w) = 2 () ~ 0.063, and
JICM4(g: w) = § (1£) ~ 0.010.

6 A brief note on computational complexity

In this section we do an analysis of the computational complexity of the proposed algorithms
for the obtaining of the Johnston index, the Colomer—Martinez measure and the Johnston—
Colomer—Martinez measure. Note that the calculation of power measures is generally based
on counting the total number of coalitions. Thus, in the worst case, the computation of most
power measures has an execution time of O(2").

In the following, we evaluate the computational complexity of the proposed algorithms in
Procedures 1, 2, and 3. For this purpose, we follow the lines in Bilbao et al. (2000), that anal-
ysed the computational complexity of computing the Shapley—Shubik index and the Banzhaf
index by means of generating functions, and in Chessa (2014), that evaluated the compu-
tational complexity of such tools for the Public Good index calculation. Both approaches
assumed a logarithmic cost model. Following Gécs and Lovész (1999), a procedure is said
to be polynomial if we perform only a polynomial number of operations on numbers with at
most a polynomial number of digits.2

There are results in the literature on the computational complexity of the procedures
for obtaining other power indices for weighted majority games using generating functions.
Among others, we mention Bilbao et al. (2000) and Chessa (2014), that respectively proved
that the time complexity of computing the Banzhaf and the Shapley—Shubik indices and the
Good Public index for a weighted majority game is of order O(n? - A), where A is the number
of non-zero coefficients in their respective generating functions.

Thus, we also assume the logarithmic cost model and we state the following collection of
results, in a similar way to the one of Bilbao et al. (2000) and of Chessa (2014). First, we
study the computational complexity of obtaining the Johnston index by means of generating
functions.

Theorem 6.1 Let (q; w) be a weighted majority game. If A; is the number of non-zero
coefficients of f'(z1,...,2n,x) for every i € N and A = max;en{A;}, then the time
complexity of the generating algorithm for the Johnston index is O(n* - A).

2 We use the following notation. Let f : Z4 —> Z be a function, with Z being the set of non-negative
integer numbers. We denote by O(f (n)) the set of all functions g such that f(n) < cg(n) for n > nq. Then,

a polynomial Z?:o ain' is in On?). This fact implies that only the asymptotic behavior of the function is
considered as n — oo.
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Proof Let i be a player of N and consider the function GJ;(hy, ..., h,) = Zkeci cf{hé‘,
specified by the addend of the generating function GJ (h1, ..., h,) associated with player i.
It is obtained by the following loops:

1. Take i € N. Thus, the function fi(zy,...,zn, x) = I—[f}:]:j#l-(l + x%iz;), associated
with player i, is obtained as

fi@i iz x) < 1
forjg{l,...,n}withj;éido '

i@z x) < ff@n oz x) + @ zne X)Xz
endfor

The time to compute the line in the loop is O(A4;), then the time to compute the function
Fizi, ...\ 20, x)isOm-A) for every playeri € N. Thus, if we take A = max;en{A;},
the total time to compute such functions for N is O(n” - A) for all players.

2. By using Step 3 in Procedure 1, we obtain the function G(zy, ..., 2n, A1, ..., hpn)

= Y ien Drec, hi (nkes zk>. To this aim, we will denote by gi(z1, ..., z,) the k'

monomial of f! with degree of x between ¢ — w; and ¢ — 1, and do the following:
G(Zl,...,Zn,hl,...,hn) ~0
fori e {l,...,n}do

for k € C; do
8@t zn) < f1G@ 20 X)
Gty 2 My e ) < Gty ez B o )8 ey Z0) 20 b
endfor
endfor

The time to compute the inner loop is O(|C;|) for each i € N. Then, the time to compute
this function is O(n - max;en |C;|). Since max;cy |C;| < A, we have ensured a time
complexity O(n - A).

3. Finally, we analyse the case of determining the function G J; (hy, ..., h,) = Zkec,- c}{hf‘
for each i € N from the function G(z1, ..., zu, A1, ..., hy).
s <0
for k € C; do
s <— s+ cf(
endfor

The time to compute the loop is O(|C;|) for eachi € N. Again, as max;en |Ci| < A, we
have ensured a time complexity of O(A).

Thus, we can conclude that the generating algorithm for computing the Johnston index in
Procedure 1 has associated a total time complexity O(n? - A). O

Below, we analyse the computational complexity of obtaining of the Colomer—Martinez
measure by using generating functions.

Theorem 6.2 Let (q; w) be a weighted majority game. If A is the number of non-zero coef-
ficients of f(z1,...,2n, X), then the time complexity of the generating algorithm for the
Colomer—Martinez measure is O(n - A).

Proof Leti bea player of N and consider the function GCM' (x) = Dk ew; cmf{xk , specified
by those addends of the generating function GCM(zy, ..., z,, X) in which z; is present. It
is obtained by the following loops:

1. The function f(z1, ..., Zn, X) = ]_[_';:1(1 + x"iz;) is obtained as
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.f(zla"~7zn7x) (_1

for j € {1,...,n}do
f(zl""’zn’x)(_f(zla~-~aZn’x)+f(Zl,...,Zn,X)'ij'Zj

endfor

The time to compute the line in the loop is O(A), then the time to compute the function
f(le ey Zn, X) is O - A)
2. By wusing Step 3 in Procedure 2, we obtain GCM(z1,..., 2, X)

=Ygy XV ( [Ties zk>. Recall that we denote by g(z1, ..., zx, X) that polynomial

specified by the monomials of f(zy, ..., z,, x) with a degree of x > ¢. Thus, we have
to do:
GCM(z1,...,2n,x) < 0
for j € M do
g(z1, ..., 20, x) < monomial of f(zy, ..., z,,x) with degree of x > ¢
GCM(z1,...,2p,x) <~ GCM(z1, ..., 20, %) + 821, -, 20> X)
endfor

Thus, the time to compute GCM(z1, ..., Zn, x) is O(|M]). Note that, as |[M| < A, it
satisfies that the time complexity is O(A).

3. Finally, we analyse the case of determining the function GCM'(x) = ) kW, cm}'{xk,
that is obtained as the polynomial resulting from the addends of GCM(z1, ..., Z5, X)
that contain z; after excluding z variables for eachi € N.

s <0

for k € W; do

s <85+ cmj;

endfor

Clearly, the time to compute the previous loop is O(|W;|) fore every i € N. As
max;eny Wil < |M| < A, the total time complexity is O(A).
Thus, we can conclude that the generating algorithm for computing the Colomer—Martinez

measure in Procedure 2 has associated a total time complexity O(n - .A). O

Finally, we formalize an analogous result on the complexity of computing the Johnston—
Colomer-Martinez measure for weighted majority games through generating functions. Due
to the nature of this measure, the outline of its proof is quite similar to those of the results
already presented in Theorem 6.1. For simplicity, we omit it from the paper.

Theorem 6.3 Let (q; w) be a weighted majority game. If A; is the number of non-zero
coefficients of fi(zl, ey Ziels Zigls--->2n,X) for every i € N and A = max;en{A;},
then the time complexity of the generating algorithm for the Johnston—Colomer—Martinez
measure is O(n? - A).

7 powerindexR: a tool for measuring the power

This section illustrates the usage of generating functions for computing, among others,
the Johnston index, the Colomer-Martinez measure, and the Johnston—Colomer—Martinez
measure in voting situations. Specifically, we analyse the evolution of power in the most
representative political parties in different compositions of the parliament of Spain in the
period from 2015 to 2019.

For this purpose, we have implemented several power indices in R software (R Core Team,
2024), a fact that enabled the development of the R package powerindexR (Armijos-Toro
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Table 1 Arguments of the functions in powerindexR package

Function Quota Weights Partition Normalized Swing Minimal Quasiminimal
pi.banzhaf v v v v v

pi.colomer Vv v v
martinez

pi. v v v
johnston

pi. v v

johnston

colomer

martinez

pi.shapley v v v

powerindex Vv v v v v v v
MWC v v

QMWC v v

et al., 2024b) for the computation of several power measures. For instance, it additionally
considers the computation of other well-known power measures, such as the Shapley—Shubik
index or the Banzhaf index.

Below, we briefly describe its capabilities for determining power measures of players
in weighted majority games. Following basic instructions, powerindexR in R software
allows the computation of several power measures by introducing the quota ¢ (quota)
and the vector of weights wi, wy, ..., w, (weights) for the set of players of any voting
situation. The remaining arguments are summarized in Table 1, that describes the functions
in powerindexR and their options.

The package is also implemented for other families of weighted majority games. For
instance, if a coalitional structure is considered on N, the extension of the Shapley—Shubik
and the Banzhaf indices is obtained by doing partition=TRUE. In the case of the
Banzhaf index, the parameter normalized=TRUE provides its normalized version, and
swing=TRUE computes the cardinality of the set of coalitions for which each player is
critical. The logical arguments minimal=TRUE and quasiminimal=TRUE respectively
provide the minimal and the quasi-minimal winning coalitions of a weighted majority game.
Besides, powerindex () function requires an extra parameter to indicate the power index
to be computed. Let us note that, although such functions were implemented for a general
number of players, the features of the computer in which power measures are performed
will determine the computational capacity in practice. For example, on a standard personal
computer with an Intel(R) Core(TM) 19-11900KF, 3.50GHz and 16GB RAM, if we consider
a weighted majority game without symmetries, such as the one described in Example 5 of
Freixas and Pons (2023), the Johnston index can be calculated for 25 players in just over
1 min and for 28 players in about 10 min. More information is available on the website https://
cran.r-project.org/package=powerindexR.

7.1 An application of powerindexR: the power in the Spanish parliament

The Spanish parliament, namely Congreso de los Diputados, is composed of 350 seats who
are elected through a proportional representation system every four years (as maximum).
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Table 2 Seats by political party in the Spanish parliament in the period 2015-2019

2015 2016 Apr, 2019 Nov, 2019
Party Seats Party Seats Party Seats Party Seats
PP 123 PP 137 PSOE 123 PSOE 120
PSOE 90 PSOE 85 PP 66 PP 89
PODEMOS 69 UP 71 Cs 57 VOX 52
Cs 40 Cs 32 UP 42 UP 35
ERC 9 ERC 9 VOX 24 ERC 13
DL 8 CDC 8 ERC 15 Cs 10
PNV 6 PNV 5 JxCAT-JTS 7 JxCAT-JTS 8
UP-IU 2 EH Bildu 2 PNV 6 PNV 6
EH Bildu 2 CCa-PNC 1 EH Bildu 4 EH Bildu 5
CCa-PNC 1 Cca-PNC 2 MP-EQ 3
NA+ 2 CUP-PR 2
COMP 2019 1 CCa-PNC-NC 2
PRC 1 NA+ 2
BNG 1
PRC 1
TE 1

This parliament is responsible for representing their constituencies, proposing and passing
legislation, and acting as a control of the different areas of government (such as education,
foreign affairs, or justice, among others).

The current composition of the parliament reflects the results of the last Spanish General
election, held in November 2019. In that moment, the Partido Socialista Obrero Espariiol
(PSOE) holds the largest number of seats with 120, the Partido Popular (PP) obtained 89
seats, the merge of far-left parties Unidas Podemos (UP), 35 seats, the center-right party
Ciudadanos (Cs), 10 seats, the far-right partido VOX, 52 seats, and other smaller parties the
remaining seats. Table 2 completes the distribution of seats by political party in the last four
General elections in Spain until 202