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Abstract
This paper considers optimal pricing in a systemwith limited substitutable resources, such as
certain goods or services. Prices for the different resources have to be set and then customers
with heterogeneous preferences show up sequentially. Customers, of n types, select an item
from them available resources, depending on their valuations of the resources and the prices.
The goal is to analyze this optimization problem, characterize a set of candidates to optimal
solutions and provide methods for solving it. We prove that this problem is NP-hard to
approximate within a factor O(n1−ε) for any fixed ε > 0. Another important contribution is
to prove that, the space of prices (which in principle is a continuous domain in R

m), can be
reduced to a finite set of vectors of cardinalitymm−2nm2m . For a deterministic version of the
problem,where the customer types are known to the firm,we provide amathematical program
that chooses the best set of prices. We report extensive computational results showing the
usefulness of our exact approach to solve medium size problems with up to 200 customers
and different assortments of products and customer types. We then show how to approximate
the stochastic model by a small number of solutions of deterministic scenarios solved using
a mixed-integer linear program.

Keywords Pricing · Combinatorial optimization · Sequential arrivals · Substitutable
resources · Monte Carlo simulation

1 Introduction

Our general setting concerns optimal pricing in a systemwith two-way (or horizontal) substi-
tutability. A manager sets a price for each resource (product or service) and then customers
with heterogeneous preferences show up sequentially. Customers select an item from the
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available resources, depending of their valuations of the resources and the prices. A resource
may be depleted during the process and subsequent arrivals must compromise and either
select a less desired resource or even give up and leave empty handed. The manager’s goal
is to maximize profits or welfare by selecting adequate prices. We denote this model as the
max-surplus choice with limited substitutable resources (MSCLS) problem.

In the short-run problem, the firm has given quantities of items from each type, and its
goal is to set their prices so as to maximize the firm’s expected profits. The expectation may
be over the number of arrivals and their types, but mainly over the order by which they arrive.
In the long run problem, the quantities of each type of the product are also decision variables.

One of our important contributions is reducing the set of admissible prices to only a finite
set. We then formulate a scenario-based mixed-integer linear programming (MILP) model
which chooses, for a given scenario (i.e., sequence of customer types) the best set of prices
among the continuum set. We illustrate the usefulness of our MILP formulation to solve
actual problems with random arrivals based on simulations of customers’ arrival scenarios.

In the closest paper to ours, Burkart et al. (2012) formulate an MILP and suggest exact
and heuristic algorithms for a variation of our model. They assume a deterministic demand
process, i.e., the sequence of customer arrivals and their preferences is known to the decision
maker.We note that they provide real life examples to justify themodel, but in these examples
it is more natural to assume, as we do, that the sequence of arrivals is stochastic. They also
assume that the prices should be taken from a set of discrete possible values. Mayer and
Steinhardt (2016) extend the model of Burkart et al. allowing each customer to purchase
more than a single type of a product subject to individual budget constraints. Moon et al.
(2017) also extend this model assuming that the initial inventory level, and the prices, are
decision variables, and the firm incurs fixed and variable inventory costs. They suggest a
hybrid genetic algorithm.

Several authors considered models closely related to ours but where the decision vari-
ables are the inventory ordering quantities rather than the prices, and the arrival process is
deterministic.

In an early paper, Khouja et al. (1996) assume that the amount purchased is independent in
this model of the order by which customers arrive. Instead, it is assumed that if the demand
for one product exceeds the ordered quantity then part of it, a certain proportion, can be
substituted by the other products. Ryzin and Mahaja (1999) assume a multinomial logit
(MNL) choice decision, while Smith and Agrawal (2000) assume that customers who do
not find their first choice randomly choose according to a logit model a substitute or leave
without buying. Mahajan and Ryzin (2001a) characterize and compute the optimal initial
inventory levels by applying a stochastic gradient algorithm. Li (2007), Maddah and Bish
(2007), Rusmevichientong et al. (2010), and Bernstein et al. (2015), assume that customers
randomly select a product from the existing inventory, or give up purchase, according to a
multinomial logitmodel.An algorithmbased on dynamic programming is given byHonhon et
al. (2010). Burnetas andKanavetas (2018) consider amulti-period scenariowith two products
and base-stock replenishment policy. They develop a Markov-chain model assuming that
there are given substitution probabilities, pi j that customers of type i are ready to purchase
product type j if their first preference product i is not available. They obtain analytic formulas
for the profit function, leading to an efficient algorithm for computing the profit-maximizing
order quantities. Mahajan and Ryzin (2001b) consider competition in the model of Mahajan
and Ryzin (2001a). Each of the product types is sold by a different firm, and the authors
compute the Nash equilibrium ordering strategies and the impact of competition on profits.
Nagarajan and Rajagopalan (2008) compute base-stock policies in a similar multi-period
model.
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Other papers, such as Stavrulaki (2011), generalize the model by adding demand stim-
ulation effects, meaning that the demand depends also on the initial inventory (the ordered
quantities). Netessine and Rudi (2003) consider a multi-product model with a single substi-
tution attempt: If the demand for product i exceeds the stored quantity, the unmet demand
will attempt to purchase product j as a substitute, if available, and then the unmet demand
is lost. Salameh et al. (2014) consider a deterministic EOQ-type two-product model with
partial substitution.

Themain feature of ourMSCLSproblem is that the profit depends on the order of customer
arrival types,which affects the availability of products for future arrivals. This feature reminds
of, but is different from, secretary-typemodels and other online optimizationmodels. In those
models the order of type arrivals is random, as in our case, but the decision is dynamic and
done after information is gathered on the type distribution,while profit depends on current and
future arrivals. In our case, we assume that the distribution is known, but the order of arrivals
is random. The decision maker sets the prices once and then each arrival selects its favorite
item type from the available selection. See, for example, Babaioff et al. (2008). Our model
is an off-line model where the firm sets prices once. But, in some aspects it resembles an
on-line setting, such as described, for example, by Stein et al. (2020). The crucial difference
is that unlike the on-line models where the firm assigns products to customers without having
information on future arrivals, in our model the customers are strategic and make their own
choice given the availability of product types, their values, and their prices.

Buchbinder and Gonen (2015), Korula et al. (2018) and Buchbinder et al. (2020) solve
related online models where there arem products and n buyers, and buyer i values the subset
of products S at Vi (S). In the former paper, buyers arrive sequentially, whereas in the two
latter papers the items arrive sequentially. The goal in both models is to assign the items,
online, and maximize the total welfare. Buchbinder and Gonen’s paper is closest to ours.
The main differences are that they allow dynamic choice of prices which are used to induce
buyers to purchase the desired items under asymmetric information about their preferences.
In our model, in contrast, the prices must be fixed once for the complete horizon, and we
discuss both welfare and profit maximization.

Our research is also related to the paper by Gilland and Heese (2013). This paper, as ours,
assumes that product sales and profitability depend on the specific sequence of customer
arrivals rather than only on the aggregate demands for the different products. The focus of
Gilland and Heese (2013) is on evaluating the impact that the sequence of arrivals has on
sales and profits. We do the same, but they assume given prices (and two products and two
customer types). Their problem is to determine the assortment and inventories subject to
constrained shelf space. They derive the probabilities that the n-th arrival is of a given type
and finds his best or second-best choice or none of them, derive monotonicity properties, and
conduct a numerical study that compares three heuristics (they refer to them as benchmarks).

Related models correspond to queueing systems with heterogeneous customers, where
the order of arrival types has an effect on the performance of the system. For example, there
may be setup costs or setup times between the processing of customers of different types.
See also Cláudio et al. (2016)

Another related problem is the Product Line Design Problem considered in Bertsimas and
Mis̆ić (2019). In this problem, the decision is to choose a subset of products to be offered in
order to maximize the profit that is realized when customers make purchases according to
their preferences. In this model, inventory is unlimited, there is a finite set of customer types
each having a preference ranking over the products, profit for each product is known and
fixed, and there is a number of admissible product types designs chosen from a polyhedral
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set. The model chooses the best design and the best assignment of customer types to that
design according with the fixed rankings.

The paper by Yücel et al. (2009) is related to the assortment problem and the decisions are
made on which product to offer and their inventory (how much to order from each supplier);
however there are no decisions on prices; which are given. They assume random demand
and employ a scenario-based approach to handle it. Note that in our setting, the order of
demand affects profits because the inventory levels are finite and customers may substitute
to less desired products. In contrast, in the assortment problems the inventory is unbounded
but there may be a cost per holding each type of product.

The rest of the paper is organized as follows: In Sect. 2.1 we analyze the complexity of the
MSCLS problem showing that even the single-customer problem is NP-hard to approximate.
Section 2.2 is devoted to give insights on the solutions of the simplest problem with two
products and one customer type, whereas Sect. 2.3 analyzes the case of two products and
two customers types. Next, Sects. 2.4 and 2.5 extend the characterization of solutions to the
more general case of two products and n customers types and the fully general situation with
m products and n customers types. Moreover, in Sect. 2.5 we prove the existence of a finite
dominating set, i.e. a finite set of candidates, of prices for optimal solutions of the problem,
and use it to solve instances of relatively small size. Section 3 provides an exact mixed integer
linear programming (MILP) model to solve the deterministic version of theMSCLS problem
where the firm knows the sequence of customer types. Extensive computational results on two
different types of randomly generated data are reported in Sect. 3.1. Interestingly, we observe
that, what may seem to be counter-intuitive, when we are concerned with social welfare, it is
more important to control the prices when there is enough inventory than when there is short
inventory. Based on the results we gather in this section some managerial insights comparing
the profit-maximizing solution with the system welfare are given. We then show in Sect. 4
how to approximate the stochastic instances of medium size by a small number of solutions
of deterministic scenarios solved with ourMILP formulation. The paper terminates in Sect. 5
with some concluding remarks and extensions of the current works worth to be investigated.

2 The problem: complexity and special cases

In the MSCLS problem, a monopolistic firm sells m types of a certain class of products.
Let p j denote the price set by the firm for a unit of type j , j = 1, . . . ,m. Customer types,
i = 1, . . . , n are random with a given probability distribution. Customers of type i value the
unit of type j at vi j ≥ 0. Given prices p1, . . . , pm we denote by ui j = vi j − p j the net utility
to a customer of type i who buys an item of type j (note that we simplify the notation and do
notmention the price p j explicitly). Customers sequentially inspect the set S ⊆ {1, . . . ,m} of
available types and depending of their type i computes j∗ = argmax{ui j | j ∈ S}. If ui, j∗ < 0
the customer balks, i.e., leaves without making a purchase. Otherwise the customer buys a
unit of type j∗. Two goals are considered in this paper maximization of overall profit (p j ) or
welfare (vi j ). The latter given as the summation of the values given for customer i to product
j , namely vi j , for all i, j over all customers and purchased products.

2.1 Complexity of theMSCLS problem

The single-customer problem can be shown to be NP-hard to approximate within factor
O(n1−ε), for anyfixed ε > 0.This inapproximability bound followsby adapting an analogous
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hardness result due to Theorem 1 in Aouad et al. (2018), which establishes a relationship
between computing large independent sets in graphs and assortment optimization under the
ranking-based choice model. In the former problem, given an undirected graph G = (V , E),
a subset of verticesU ⊆ V is independent when no pair of vertices inU is joined by an edge.
The objective is to compute an independent set of maximal cardinality. In this context, Hastad
(1996) showed that the independent set problem on n-vertex graphs cannot be approximated
in polynomial time within factor O(n1−ε), for any fixed ε > 0, unless P = NP. See Aouad
et al. (2018) for details.

Given an independent set instance, G = (V , E) with V = {v1, . . . , vn}, we define the
set of customer types as [n]. Each type i ∈ [n] is sampled with probability α

n2i
, where

α = (
∑

i∈[n] 1
n2i

)−1 is a normalization constant. In addition, the set of products is [n], and
the value customer of type i associated with product j is given by:

vi j =
⎧
⎨

⎩

n2i , if j = i
n2 j+1, if j < i and (vi , v j ) ∈ E
−∞, otherwise.

Observation: The optimal prices satisfy p∗
j ∈ {n2 j , n2 j+1,∞}.

Let R∗ = E[p∗]. We now show that the size of the maximum independent set is within
[ R∗

α
− 1, R∗

α
].

Consider an independent set U ⊆ V and define the pricing vector p j = n2 j if v j ∈ U
and p j = ∞ otherwise. A customer of type i buys product of type i (since every product
j �= i either has vi j = −∞ or p j = ∞), and the expected price paid by a customer is
E[p] ≥ ∑

j∈U p j
α
n2 j

= α|U |.
In the opposite direction, we claim that there is an independent set in G consisting of at

least R∗ − O(1) vertices. To verify this claim, note that with respect to any pricing vector
that satisfies the observation, every customer type i ∈ [n] can either:
1. Purchase product i (only if pi = n2i ).
2. Purchase product j < i such that (vi , v j ) ∈ E at a price of at most n2 j+1 ≤ n2i−1.
3. Not purchase any product.

The individual contribution toward R∗ is α in the first case and at mostαn otherwise. Let U
consist of the customes who fall in case 1. We observe that:

1. |U | ≥ R∗
α

−1 since by the preceding discussion, R∗ ≤≤ α|U |+ α
n (n−|U |) ≤ α(|U |+1).

2. U is an independent set inG. To verify this claim, suppose that two vertices vi1 �= vi2 ∈ U
were joined by an edge; without loss of generality, i1 < i2. Since i1 purchases product i1
we must have pi1 = n2i1 . As a result, customer i2 associates a utility of n2i1+1 −n2i1 > 0
with product i1 and a zero utility with product i2, in contradiction to the fact that vi2 ∈ U .

2.2 Two product types and one customer type

This section analyzes the special case of two product types and a single customer type, while
introducing our solution approach. Suppose all customers are of the same type, which we call
type i . If both products are available, the customer compares ui1 := vi1− p1, ui2 := vi2− p2,
and 0. Assuming that vi1 and vi2 are fixed, we view this decision as a function of the prices.
There are five possibilities:

• ui j < 0 for j = 1, 2. i-customers balk. We denote this possibility by the preference
ranking (0).
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Fig. 1 Preference space of i-customers

• ui1 ≥ 0 > ui2. i-customers purchase a 1-item if 1 ∈ S, otherwise they balk. We denote
this possibility by the preference ranking (1).

• ui2 ≥ 0 > ui1. i-customers purchase a 2-item if 2 ∈ S, otherwise they balk. We denote
this possibility by the preference ranking (2).

• ui1 ≥ ui2 ≥ 0. i-customers purchase a 1-item if 1 ∈ S, they purchase a 2-item if S = {2},
and balk only if S = ∅. We denote this possibility by the preference ranking (12).

• ui2 ≥ ui1 ≥ 0. i-customers purchase a 2-item if 2 ∈ S, they purchase a 1-item if S = {1},
and balk only if S = ∅. We denote this possibility by the preference ranking (21).

The five regions are shown in Fig. 1. The partition is determined by the point (vi1, vi2)which
we call the pivot point.

Considering the firm’s pricing choice, since the product ranking is fixed in any region,
the firm’s choice would be to set the highest possible value for each price as long as it stays
in the region. In the upper-right region there are no sales and prices are not relevant. In the
other two outer regions, one of the prices is not relevant, and can be decreased, without loss
of generality, towards the bordering inner region.

In the two inner regions, the firm profits from increasing both prices, and the optimal
point is the upper-right point of the region. The arrows in Fig. 1 mark the directions in which
profits increase without changing customers’ preferences.

We conclude that the optimal prices are p1 = vi1 and p2 = vi2, but the firm can still
choose, by a slight reduction in one of the prices, the product that customers will prefer when
both product types are available. Specifically, if vi1 > vi2 then the firm will set p1 = vi1 − ε

for a small ε > 0 to induce sales of product 1 which entail a higher profit. Similarly, if
vi2 > vi1 the firm will reduce p2 by a small amount.

Remark 2.1 As we see, in all candidates for optimality, the prices are equal to the customer’s
welfare. In other words, the net consumer surplus is zero. Therefore, the monopoly’s profit is
equal to the social welfare, andmaximization of profit also achievesmaximum social welfare.

2.3 Two product types and two customer types

Consider now the joint selections of two customers, say customer types i and j . Without
loss of generality, assume v j1 > vi1, and to simplify the exposition by avoiding tie-breaking
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Fig. 2 Preference space of i- and j-customers

rules in case of indifference, we assume v j2 �= vi2. There are three cases depending on the
relative locations of the pivots of customers of types i and j , and each case is further divided
into two subcases:

1. v j2 < vi2

(a) v j1 − v j2 < vi1,
(b) v j1 − v j2 > vi1;

2. v j2 > vi2 and v j2 − v j1 < vi2 − vi1

(a) v j1 − v j2 < vi1,
(b) v j1 − v j2 > vi1;

3. v j2 > vi2 and v j2 − v j1 > vi2 − vi1

(a) v j2 − v j1 < vi2,
(b) v j2 − v j1 > vi2.

We now analyze the case v j2 < vi2. The analysis of the other cases is similar and we
present it in the appendix.

The case 1(a), i.e., v j2 < vi2 and v j1−v j2 < vi1, is shown in Fig. 2. The joint performance
space has thirteen regions. We call the five open regions outer regions, and the other regions
inner regions. Case 1(b) is similar except for that the pivot of customer type j moves to the
right so that region (21,21) in Fig. 3 disappears.

Considering the firm’s pricing choice, since the ranking by both customers are fixed in
any region, the firm’s choice would be to set the highest possible value for each price as long
as it stays in the region. The arrows in Fig. 2 mark the directions in which profits increase
without changing customers’ preferences. Note that in the upper-right region there are no
sales and prices are not relevant. In the other four outer regions, one of the customers buys
only one of the products and the other customer either doesn’t buy any product or buys only
the same product as the first customer. This means that in these regions one of the prices is
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Fig. 3 Customer preferences: v j1 > vi1 and v j2 < vi2

not relevant, and can be decreased, without loss of generality, towards the bordering inner
region.

In all other eight regions, the firm profits from increasing both prices, and the optimal
point is the upper-right point of the region.

Claim 2.2 Without loss of optimality, the profit-maximizing prices are not set in any of the
outer regions.

Proof The upper-right region is clearly not optimal since there are no sales there. In the other
outer regions only one product is sold. Decreasing the price of the other product till we reach
another region enables sales of this product when the other one is not available, while not
affecting the sales of the other product that remains the preferred one for both customer types.


�
Wemark the preference types related to customers i and j . For example, in region (12, 1),

i-customers’ preference is (12) and j-customers’ preference is (1).
The above discussion leaves, in the case given in Figs. 2 and 3, the following eight

candidates for optimal pricing:

1. (vi1, vi2)

(a) from region (21,1),
(b) from region (12,1);

2. (v j1, v j2)

(a) from region (2,12),
(b) from region (2,21);

3. (v j1, vi2)

4. (vi1, v j2)

5. (vi1 − vi2 + v j2, v j2),
6. (vi1, vi1 + v j1 − v j2).

Remark 2.3 Social welfare depends on customer choice and is affected by the customers
choice as determined by the partition of the plane as induced by the prices. However, the
welfare is independent of the exact point within the cell.
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We observe that the best pricing in both regions (21,1) and (12,1) are (vi1, vi2). Similarly,
the best pricing for regions (2,12) and (2,21) is (v j1, v j2). However, the firm can choose, by
a slight change of the prices, whether it wants to reach these points from one of the regions
or the other. The better choice between such a pair of options that have identical prices, is
determined by the available quantities of the products and the number of customers of each
type.1 For the other candidates, it is easy to see that the best preference region that contains
them is such that the candidate prices are at its upper-right corner, as in Fig. 3.

To illustrate the use of these insights, consider a simple case were there is one item of
each type and one customer of each type, and the preferences are as in Fig. 3. Except for
two cases, the profit will be p1 + p2. For example, with prices v j1, vi2 and preferences
(2,1), both customers will buy their preferred type for any order of their arrival, with profit
p1 + p2. However, in region (12,1), if the i-customer arrives first, she will buy product 1,
and customer j will not make a purchase. The expected profit will be then p1 + 0.5p2.
In this simple example, the optimal pricing is (v j1, vi2) which clearly dominates the other
candidates.

Denote by I� the number of type � items available for sale, and suppose that the number
of customers of type i is fixed at ci . With the input values (vi�), the prices determine the rank
vector R. To compute an optimal pricing policy we need to be able to compute �(R, p), the
expected profits (over the permutation of arrivals of customers) associated with a given set
of prices, p = (p1, p2) and the resulting rank vector R.

For example, consider the case where all customers prefer product type 1, and only type
1 customers are ready to purchase product type 2, i.e., R =(12,1).

• If I1 ≥ c1 + c2 then � = p1(c1 + c2).
• Suppose I1 < c1 + c2. Denote by q(k) the probability that among the first I1 arrivals

there are exactly k type 1 customers. Then,

q(k) =
(c1
k

)( c2
I1−k

)

(c1+c2
I1

) .

The value of k satisfies of course k ≤ c1 and I1 − k ≤ c2, hence k ∈ [I1 − c2, c1]. The
expected profit is therefore

� = p1 I1 +
∑

k

q(k) · min{c1 − k, I2}p2,

and social welfare equal

S =
∑

k

q(k) {kv11 + (I1 − k)v21 + min{c1 − k, I2}v12} .

A similar computation applies for region (2,21).
• In the other cases, the sales, profits, and welfare are deterministic. The case (1,2) (and

similarly and (2,1)) is, of course, simple, and the sales of product i are min(ci , Ii ). In the
case (21,1), the profit is also deterministic, and equal p2 min(c1, I2) + p1(min(I1, c1 +
c2 − min(c1, I2)). Finally, for (21,12)), the sales of product 1 are like in the case (21,1)
and the sales of product 2 are as in the case (2,12).

1 If vi2 ≥ vi1 then approaching (vi1, vi2) from (21,1) is preferred because i-customers both buy the more
expensive product and leave items of type 1 to j customers who are only ready to buy this product type.
Similarly, if v j1 ≥ v j2 then approaching (v j1, v j2) from (2,12) is the preferred option.
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2.4 Two product types and n customer types

Suppose that there aren customer types, and twoproduct types.We form the joint performance
space of these n customer types. To each pivot there are 3 lines, the horizontal, the vertical, and
the one with slope of 45 degrees. The candidate points for optimal prices are the intersections
of these lines. The performance space is characterized by the ranking of the input values
{vi1}, {vi2} and {vi1 − vi2} for all i = 1, . . . , n. The number of candidates pricing options
becomes quadratic in n. For each candidate we know the ranking vector associated with it.
We compute and compare O(n2) return values.

2.5 m product types and n customer types: Structure of the solutions of the problem

Let us assume that we have m product types and n customers. The availability of products is
described by the vector I = (I1, . . . , Im), I j is the number of items for product type j . More-
over, we suppose a constant number of customers ci of class i . Thus, C = (c1, c2, . . . , cn)
is the overall population of buyers and

∑n
i=1 ci is the size of the population.

The feature space, i.e., the space of meaningful prices is a subset of Rm+. This space
is subdivided into cells where the preferences of customers are constant with respect to
the product types. In other words, the order of the preferences over the products does not
change. It is not difficult to see that these cells are induced by the following arrangement of
hyperplanes:

p j =vi j , i = 1, . . . , n, j = 1, . . . ,m, (1)

p j − pk =vi j − vik, i = 1, . . . , n, j �= k = 1, . . . ,m. (2)

Recall that the combinatorial complexity of an arrangement is the overall number of cells
of all dimensions in this arrangement. It is well-known that the combinatorial complexity of
an arrangement of n hyperplanes in R

m is �(nm), see e.g. (Edelsbrunner 2012, Chapter 7)
and (Halperin 2004, Chapter 24).

Overall, the number of hyperplanes that are relevant to determine the prices is O(m2n) in
R
m . Therefore, the combinatorial complexity of this arrangement is �(m2mnm). Vertices of

the cells in this arrangements are candidate prices. The complexity of the number of vertices
is bounded above by the overall number of cells of any dimension. Therefore, the number of
candidate prices is O(m2mnm).

We recall that a finite dominating set for a problem is a finite subset of its feasible domain
where one can always find an optimal solution of the problem. The reader should observe
that the set of admissible prices for this problem is a continuum set of Rm+. However, as it
is stated in our next result one can reduce to a finite set to find an optimal solution for the
MSCLS problem.

Theorem 2.4 There exists a finite dominating set of admissible prices for the MSCLS model
considered in this paper.

The proof follows from the discussion above since one can always find an optimal solution
of the corresponding problem among the vertices of the cells induced by the arrangement,
A, of hyperplanes (1) and (2).

We note in passing that if the number of productsm is fixed, then the number of candidate
prices is polynomial in the number of customers.
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Within each cell of this arrangement one can determine an n-vector s = (s1, . . . , sn)
where si is an ordered tuple with up to m elements, si = ( j1, . . . , jm). The index j� is the
customer i’s �-th most preferred product type in that region.

Then, for a given configuration of values vi j for all i = 1, . . . , n, j = 1, . . . ,m, and
inventory levels I , the goal is to compute for each cell A ∈ A, the expected value of the
reward obtained with respect to the permutations of arrivals.

�(A) = 1

#PR(C)

∑

σ∈PR(c1,...,cn)

m∑

j=1

p j N j (A, I , σ ) (3)

where PR(C) is the set of permutations with repetition of C , N j (A, I , σ ) is the number of
items of type j from I , bought by the customers in C when they arrive in the order induced
by σ and p j is the price of item j in the cell A.

The reader may note that to get the expected value of the reward, �, for a given con-
figuration v of values and inventory level I , it suffices to compare the values �(A) for all
A ∈ A,

� = max
A∈A �(A). (4)

Needless to say, this evaluation requires to explicitly enumerate all the cells in A. This is a
difficult task because of the number of such cells but also because one must generate them
explicitly.

In the following, we show 1) how to refine (reduce) the number of cells (candidate price
vectors); and 2) how to efficiently evaluate implicitly all the cells by two different methods.
Refined number of candidate price vectors:We now improve the bound on the number of
cases to be compared.

Let’s add a new product that corresponds to balking (not buying any product) indexed 0
with p0 = 0 and vi0 = 0 for all i .

Consider a candidate vector of prices (corresponding to a vertex of the arrangement of
hyperplanes), p0 = 0, p1, . . . , pm . To avoid dealing with ties, assume that the vi j values are
in “general position” so that no linear combination of them with 0,±1 coefficients equals
zero.

Consider the indifference graph G with m + 1 vertices corresponding to the products
(including product 0), and edges corresponding to the pairs of products ( j, k) for which there
exists a customer i who is indifferent between the products, i.e., vi j − vik = p j − pk .

Note that G does not contain a cycle except for cycles induced by the same customer i
(such cycles follow from transitivity—if customer i is indifferent between products j, k and
between k, l then i is also indifferent between j and l). Otherwise, consider a cycle where not
all edges are induced by the same customer, and follow it according to an arbitrary orientation.
The price differences over the edges of this cycle sum up to zero, and this means that the sum
of the value differences is also zero, contradicting the general-position assumption. Now,
orient each edge so that it points to the product which the customer is induced to prefer by
the perturbation of prices selected by the solution.

Note that when the indifference graph contains a connected component related to the same
customer type, these preferences are induced by a directed path that spans this component,
which gives the associated permutation. Replacing the component by that path, and ignoring
the other indifference edges in this component, yields a directed forest, which we also call
G.
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Claim 2.5 Under the optimal set of prices, the underlying undirected graph of G is a spanning
tree.

Proof Otherwise, we can simultaneously increase the prices of products related to a com-
ponent that does not include product zero, without affecting the customers’ preferences.


�

Consider the cells adjacent to the given point. The preferences in each cell correspond to
a digraph obtained from G by orienting its edges, say from the more preferred product to
the less preferred. It is possible to induce these preferences by small reductions in the prices,
starting from leaves of the tree.

There are mm−2 spanning trees, and each has nm possible assignments of customer types
and 2m orientations. Therefore the number of cells to be checked is mm−2nm2m .

We conclude that when m and n are relatively small it is possible to enumerate the set of
candidates of price vectors. To complete the solution we need a way to compute the best one
among them by evaluating the expected value of each. We propose two methods for doing it.
The first is an exact method that can be implemented when the number of arrivals is not too
large, and the second is a faster heuristic.

It is easy to compute recursively the expected profit associated with a given price vector.
For example, suppose that the number N of arrivals is given but not their types which are
random variables. Let qi be the probability that a customer is of type i , where these events
are independent. The formulation for a deterministic scenario is very similar. Let f�(I ) be
the expected profit when there are � customers to arrive and inventory levels I = (I1, ..., Im).
Then

f�(I ) =
n∑

i=1

qi (p j(i) + f�−1(I \ e j(i))) : j(i) is the most preferred item in

{k : Ik > 0} for an i−customer,

where e j , j = 1, . . . ,m is the j-th canonical vector of Rm and e0 is the null vector if
the customer i� balks. In a preprocessing phase we generate preference lists, one for every
product type. Then, whenever a product type is depleted, we go over these lists and delete this
product type. All these deletions take O(mn) which is dominated by the other operations,
and then finding the preferred product for a customers from the available inventory takes
constant time. If all I -values are bounded by U then the complexity is O(nNUm). Finally,
we repeat this computation for each of the O(mm−2nm2m) admissible price vectors. This
approach is valid although very costly, due to the high number of evaluations required for its
application.

Note that, without loss of generality, we can assume that U ≤ N . When N is large we
suggest an alternative approach. For given prices we apply Monte Carlo simulation by gen-
erating many scenarios (sequences of arrival types of customers). We estimate the expected
profit associated with these prices by taking the average profit across these scenarios.

Due to the large cardinality of the state space of our recursive approach, we propose
an alternative, more efficient procedure for optimizing the profit in our model, including a
detailed description of the Monte Carlo method for medium-sized instances will given in
Sects. 3 and 4. The alternative approach is based on a mixed-integer linear programming
formulation that takes advantages of implicit enumeration of feasible solutions based on
pruning and bounding, as usual in mathematical programming models.
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3 Amixed integer linear programming (MILP) formulation for the
evaluation of optimal policy prices in theMSCLS problem

The goal in this section is to find a valid MILP formulation that computes the optimal prices
and optimal reward, FO(I , σ ), provided that a deterministic arrival scenario σ and inventory
level vector I , are given. The computation of FO(I , σ ) is provided in formulations (6)–(23)
and (27)–(38). Then, it is possible to obtain the expected value of the reward � for any
deterministic scenario determined by a set of customersC , inventory level I and configuration
of values v

� = 1

#PR(C)

∑

σ∈PR(c1,...,cn)

FO(I , σ ). (5)

In order to obtain a valid formulation for the computation of FO(I , σ ), we consider the
following elements. A set of inputs which are given.

• The deterministic arrival scenario, σ , is known and there are K arrivals. To simplify the
presentation we assume that each client has its own type and preference and therefore,
we identify the index of the customer with the stage when it arrives.

• Let v̂r j denote the r -th highest admissible price given by the different customers to
product type j . We assume that there are N j such admissible prices induced by the finite
dominating set described in Sect. 2.5. It is clear that v̂1 j ≥ v̂2 j ≥ . . . ≥ v̂N j j for all
j = 1, . . . ,m.

• The initial inventory levels of the different product types I j for j = 1, . . . ,m.

We define the following variables:

• p j is the price assigned to the j-th product type, for j = 1, . . . ,m;
• dr j is equal to 1 if p j is set to v̂r j and zero otherwise. Thus, p j is set to the r th highest

admissible price given to product j . Then,

p j =
N j∑

r=1

dr j v̂r j , ∀ j = 1, . . . ,m

• zi j is equal to 1 if customer i is willing to buy product type j at the price p j (i.e.,
vi j ≥ p j ), and zero otherwise. Since optimal prices must coincide with one of the
customers’ admissible prices we have represented zi j as a single choice equation. Then,

zi j =
∑

r :v̂r j≤vi j

dr j , ∀ i = 1, . . . , K , j = 1, . . . ,m.

• ζ jk is equal to 1 if product j is available at period k;
• w jk� is equal to 1 if product type j is the �-th most preferred by customer k given the

prices p1, . . . , pm and zero otherwise. These w jk� variables will allow us to implicitly
enumerate all the ordered regions of preferences of customers on product types.

• η jk� is equal to 1 if at period k product j is available and it is the �-th most preferred for
customer k given the prices p j and this customer is willing to buy it, and 0 otherwise.
Actually, this means that η jk� = zk jζ jkw jk�. We observe that

∑m
j=1 η jk� = 1 states that

at period k there is some product available for customer k with �-th level of preference,
and this customer is willing to buy it.

• Moreover, we define variableα jk� that equals 1 if customer k actually buys product type j
at price p j provided that it is available and product j is the �-th most preferred. Formally,
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α jk� are similar to the η variables but imposing that only one of them can assume value
1 for each k:

m∑

j=1

m∑

�=1

α jk� ≤ 1, k = 1, . . . , K .

These variables define the product actually bought at stage k, namely it is the product
j∗ such that

∑m
�=1 α j∗k� = 1. Here, the reader must also observe that customer k buys

the �-th most preferred product at period k only if all the product types that are more
preferred than the �-th one have been already sold. This relationship links variables η

and α:
m∑

j=1

η jk� +
m∑

j=1

m∑

�′=�+1

α jk�′ ≤ 1, ∀k = 1, . . . , K , � = 1, . . . ,m.

The above inequality states that if there is some available product for customer k with
preference � this customer, k, will not buy another product with lower preference. The
reader should observe that since η jkl = zk jw jk�ζ jk , in the non-linearized version of the
formulation, this inequalities appear as (20):

m∑

j=1

zk jw jk�ζ jk +
m∑

j=1

m∑

�′=�+1

α jk�′ ≤ 1, ∀k = 1, . . . , K , � = 1, . . . ,m.

• We denote by A jk the amount of product type j available just before the (k+1)st arrival
occurs. We can compute recursively A jk : A j0 = I j and A jk = A jk−1 − ∑m

�=1 α jk�,
for k = 1, . . . , K , j = 0, . . . ,m − 1. Observe that the variable ζ jk is clearly defined by
A jk−1. Actually, ζ jk equals 0 if A jk−1 = 0, and 1 otherwise.

The objective function aims at maximizing the revenue along the planning horizon
1, . . . , K assuming that customers buy their most preferred available product type. In the
case of welfare optimization, we simply replace p j by v jk in the objective function.

FO(I , σ ) := max
K∑

k=1

m∑

j=1

m∑

�=1

α jk� p j (6)

s.t. p j =
N j∑

r=1

dr j v̂r , j , j = 1, . . . ,m (7)

zk j =
∑

r :vk j≥v̂r j

dr j , k = 1, . . . , K , j = 1, . . . ,m (8)

m∑

�=1

w jk� ≤ zk j , j = 1, . . . ,m, k = 1, . . . , K (9)

m∑

j=1

w jk� ≤ 1, k = 1, . . . , K , � = 1, . . . ,m (10)

m∑

j=1

w jk�(vk j − p j ) ≥
m∑

j=1

w jk�+1(vk j − p j ),

k = 1, . . . , K , � = 1, . . . ,m (11)
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A jk = A jk−1 −
m∑

�=1

α jk� j = 1, . . . ,m, k = 1, . . . , K (12)

A j0 = I j , j = 1, . . . ,m (13)
m∑

j=1

m∑

�=1

α jk� ≤ 1, k = 1, . . . , K (14)

m∑

�=1

α jk� ≤ zk j , j = 1, . . . ,m, k = 1, . . . , K (15)

A jk−1 ≤ I jζ jk, j = 1, . . . ,m, k = 1, . . . , K (16)

ζ j,k ≤ A j,k−1, j = 1, . . . ,m, k = 2, . . . , K (17)

α jk� ≤ w jk�, j, � = 1, . . . ,m, k = 1, . . . , K (18)

α jk� ≤ ζ jk, j, � = 1, . . . ,m, k = 1, . . . , K (19)
m∑

j=1

zk jw jk�ζ jk +
m∑

j=1

m∑

�′=�+1

α jk�′ ≤ 1,

� = 1, . . . ,m − 1, k = 1, . . . , K (20)

p j , A jk ≥ 0, j = 1, . . . ,m, k = 1, . . . , K , (21)

dr j ∈ {0, 1}, r = 1, . . . , N j , j = 1, . . . ,m, (22)

zk j , ζ jk, w jk�, α jk�, η jk� ∈ {0, 1}, j, � = 1, . . . ,m, k = 1, . . . , K .

(23)

The objective function (6) computes the revenue in the entire planning horizon which is
compatible with customers’ utilities. Indeed, if a customer arrives at period k then the price
paid will be p j with the highest utility (p j − vk j ) among those which are attractive for this
customer and with available items (A jk > 0, ζ jk = 1). Constraints (7) set the prices of
the different product types. It is based on the observation that p j is equal to the admissible
price v̂r j of some customer, otherwise we can increase p j without affecting the sales pattern.
Constraints (8) state whether the price set for product type j makes it attractive for the
different customer types. Indeed, customer type k is willing to buy it only if p j is set to
a value less than or equal to the customer’s utility of product j (vk j ) or in other words, if
some variable dr j with r : v̂r j ≤ vk j is set to 1. We note in passing that constraints (8) also
guarantee that the sum of dr j variables over r is≤ 1 which is necessary for (7) to make sense.
Constraints (9) imply that if the custumer arriving at k does not buy product type j (zk j = 0)
then the preference of customer k over product type j is also zero. Constraints (10) ensure
that for each customer type i , the preference ranking � is assigned to at most one product
type. Constraints (11) state the ranking of the preference regions for the prices: for each
customer k, if w jk� = 1 and w j ′k�+1 = 1 then vk j − p j ≥ vk j ′ − p j ′ , and thus for customer
k product type j is better than j ′. We observe that for each k an assignment of compatible
values to w jk� for all j, � = 1, . . . ,m defines the correct ranking of products types for this
customer type in a region. Next, constraints (12) define the availability of product type j
after the k-th arrival: A jk must be equal to the amount available at the previous stage minus
the item bought by the customer that arrives at the k-th stage. In addition, constraints (13) set
the initial inventory levels of product types. Constraints (14) define that at most one product
is bought at stage k among those which are available. Constraints (15) tell that product type
j can be bought by customer k only if the customer that arrives at this stage is willing to buy
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product j . Constraints (16) and (17) state the inventory of product types that are available
at stage k. Constraints (18) and (19) define, with (14) and (15), the correct values of the α

variables. Finally, constraints (20) enforce that customer k would buy some product type of
its (� + 1) most preferred type only if all those belonging to its � most preferred are not
available. Conditions (21)–(23) define the range of variables.

The above problem seems is a valid formulation although it contains nonlinearities due
to products of variables. In order to get an MILP, one must linearize those products of
variables. Products of variables that explicitly appear in the formulation are:w jk� p j , α jk� p j

and zk jw jk�ζ jk . In the following we handle these terms.

q jk� = p jw jk� ⇔
⎧
⎨

⎩

q jk� ≤ p j

q jkk ≤ w jk�Mj

p j − Mj (1 − w jk�) ≤ q jk�

(24)

β jk� = α jk� p j ⇔
⎧
⎨

⎩

β jk� ≤ p j

β jk� ≤ Mjα jk�

p j − Mj (1 − α jk�) ≤ β jk�

(25)

η jk� = zk jw jk�ζ jk ⇔

⎧
⎪⎪⎨

⎪⎪⎩

η jk� ≤ w j�

η jk� ≤ zk j
η jk� ≤ ζ jk
zk j + w jk� + ζ jk ≤ 2 + η jk�

(26)

The reader may realize that q jk� stands for the price given to the product type j if it is the
�-th most preferred in the list of preferences of the customer arriving at k; whereas β jk� is
the price of product type j if α jk� = 1. We observe that the third case in the definition of β is
not necessary in our case since we are maximizing these variables in the objective function.
We also note in passing that the big Mj bounds can be set to maxk=1,...,K vk j since product
type j will never be paid more than the maximum utility assigned by the customers to that
product.

The linearized formulation is:

FO(I , σ ) := max
K∑

k=1

m∑

j=1

m∑

�=1

β jk�

s.t. (7) − (10), (12) − (19) (27)
m∑

j=1

(w jk�vk j − q jk�) ≥
m∑

j=1

(w jk�+1vk j − q jk�+1),

k = 1, . . . , K , � = 1, . . . ,m (28)
m∑

j=1

η jk� +
m∑

j=1

m∑

�′=�+1

α jk�′ ≤ 1, ∀k = 1, . . . , K , � = 1, . . . ,m (29)

q jk� ≤ p j , j, � = 1, . . . ,m, k = 1, . . . , K (30)

q jk� ≤ w jk�Mj , j, � = 1, . . . ,m, k = 1, . . . , K (31)

p j − Mj (1 − w jk�) ≤ q jk� j, � = 1, . . . ,m, k = 1, . . . , K (32)

β jk� ≤ p j j, � = 1, . . . ,m, k = 1, . . . , K (33)

β jk� ≤ Mjα jk� j, � = 1, . . . ,m, k = 1, . . . , K (34)

η jk� ≤ w jk�, j, � = 1, . . . ,m, k = 1, . . . , K (35)

η jk� ≤ zk j , j, � = 1, . . . ,m, k = 1, . . . , K (36)
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η jk� ≤ ζ jk, j, � = 1, . . . ,m, k = 1, . . . , K (37)

zk j + w jk� + ζ jk ≤ 2 + η jk�, j, � = 1, . . . ,m, k = 1, . . . , K

p j , A jk, q jk�, β jk� ≥ 0, j, � = 1, . . . ,m, k = 1, . . . , K ,

dr j ∈ {0, 1}, r = 1, . . . , N j , j = 1, . . . ,m,

zk j , w jk�, ζ jk, α jk�, η jk� ∈ {0, 1}, j, � = 1, . . . ,m, k = 1, . . . , K .

(38)

Remark 3.1 Variables α can be relaxed to be continuous without modifying the validity of the
formulation. So far in the experiments this relaxation gives worse computing times increasing
by a factor of 3. Some constraints can be strengthened improving the bound given by the
linear relaxation and reducing the size of the formulation. Constraint (19) can by replaced
by:

m∑

�=1

α jk� ≤ ζ jk, j = 1, . . . ,m, k = 1 . . . , K . (39)

The same argument applies to replace constraints (36) and (37) by the following ones:

m∑

�=1

η jk� ≤ zk j , j = 1, . . . ,m, k = 1 . . . , K . (40)

m∑

�=1

η jk� ≤ ζ jk, j = 1, . . . ,m, k = 1 . . . , K . (41)

Analogously, constraints (30) and (33) can be reinforced by:

m∑

�=1

q jk� ≤ p j , j = 1, . . . ,m, (42)

m∑

�=1

β jk� ≤ p j , j = 1, . . . ,m, k = 1, . . . , K (43)

Implementing all those reinforcements reduces the computing time in instances with K =
12, n = 4,m = 6 from 120 seconds to 20 seconds. Instances of size K = 16, n = 8,m = 7
take around 300 seconds.

Example 3.2 We illustrate the model with a situation with two customers and three products
types (n = 2 and m = 3) and K = 7 arrivals of customers. Consider the following arrival
pattern (1, 2, 2, 2, 1, 1, 2) and an availability of products given by I = (1, 3, 3).

The utility of customers for product types appears in the table below.

(vi j ) 1 2 3

1 4 4.5 5.25
2 5 4 6

The optimal prices are p1 = 5; p2 = 4.5, p3 = 6 with an objective function of 36.5.
Observe that with these prices type 1 customers (those that correspond with arrivals 1, 5, 6)
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only buy product type 2, whereas type 2 customers (those arriving at stages 2, 3, 4, 7) buy
products 1 and 3. Therefore, product 2 is the most preferred for type 1 customers and product
1 and 3 are, respectively, the most and second most preferred products for type 2 customers
(for these prices).

The solution is descried by the α variables: α211 = α121 = α332 = α342 = α241 = α261 =
α372 = 1. Remember that, for instance, α342 = 1 means that customer type 2 (i = 2) that
arrives at the fourth stage (k = 4) buys product type 3 ( j = 3) being this type its second
most preferred one (� = 2).

Finally, the inventory of products types at each stage of the process is described by the A
variables:

(A jk ) 0 1 2 3 4 5 6 7

1 1 1 0 0 0 0 0 0
2 3 2 2 2 2 1 0 0
3 3 3 3 2 1 1 1 0

3.1 Computational experiments

In order to assess the usefulness of ourMILP formulation for solving the deterministic version
of the problem we have conducted a series of computational experiments. We have generated
utilities vi j as random integers in the interval [0, 100] and considered for the experiments
subsets of O(Km) admissible prices. In addition,we have organized the data according to four
different factors: number of customers (K ), number of products (m), number of different of
customers (n) and the type of inventory: “short” for those scenarios where there are possibly
not enough items to cover the demand of all arriving customers and “enough” for those
scenarios where it is very likely to cover the demand of arriving customers.

We have generated five instances of each combination of the following levels of the above
factors: K ranges in {20, 30, 50, 100},m ranges in {2, 4, 6}, n ranges in {2, 4, 6}, and type of
inventory in {short, enough}. The inventory generation is done with the following process.
For the “short” scenarios the inventory of each product is randomly generated as the rounding
integer that results from 1.2 ∗ random ∗ K/m, and for “enough” scenarios as the rounding
integer that results from 2 ∗ random ∗ K/m (random is a uniform number in [0, 1]).

We have run themodel inXpress solver in a laptopwith an I7 cpu processor and 8GbRAM
memory with a time limit of 3600 seconds per instance, and we report averages of different
results obtained. We report in Tables 1 and 2 the results of our computational experiments.
The results are presented by rows and each row is the average of five instances. In each row
we include: LP-GAPwhich reports the percentage gap of the best solution found with respect
to the linear relaxation;GAP = UB−LB

LB ·100, whereUB and LB are, respectively, the value
of best solution found and the value of the best lower bound termination; the percentage gap
at termination (after the cpu time is finished); “Solved” indicates the number of instances
out of 5 solved to optimality; CPU is the average time required to solve the instance or
3600 in case optimality cannot be proven; Surplus-I is the percentage of units not sold in the
optimal solution and Utility is defined as the average difference between the value given by
the customers to each item type and the price they paid for them under the profit-maximizing
prices.
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Table 1 Instances with short inventory

K n m LP-GAP GAP Solved CPU Surplus-I(%) Utility

20 2 25.77 0.00 100% 11.67 6.81 0.96

2 21.23 0.00 5 0.35 16.65 1.27

4 23.37 0.00 5 2.11 1.11 1.51

6 32.71 0.00 5 32.54 2.67 0.09

20 4 33.50 0.00 100% 63.57 2.90 4.13

2 33.37 0.00 5 0.58 4 5.57

4 29.92 0.00 5 8.42 3.53 1.27

6 37.22 0.00 5 181.72 1.18 5.54

20 6 48.11 0.00 100% 330.82 9.50 6.91

2 54.68 0.00 5 0.78 7.26 11.42

4 58.80 0.00 5 11.57 11.85 5.66

6 30.85 0.00 5 980.12 9.39 3.64

Total 20 35.79 0.00 100% 135.35 6.41 4

30 2 47.95 0.00 100% 27.73 18.10 1.52

2 50.26 0.00 5 0.39 35.37 2.73

4 44.92 0.00 5 7.24 13.55 1.78

6 48.65 0.00 5 75.55 5.38 0.04

30 4 32.85 1.29 93.3% 279.40 2.46 3.42

2 15.94 0.00 5 0.75 0.00 5.41

4 28 0.00 5 19.20 2.77 2.77

6 54.61 3.88 4 818.26 4.60 2.09

30 6 52.27 1.28 93.3% 617.16 21.96 3.94

2 76.90 0.00 5 1.94 50.16 3.24

4 42.90 0.00 5 26.48 14.81 2.83

6 37 3.85 4 1823.07 0.91 5.75

Total 30 44.35 0.86 95.5% 308.10 14.17 2.96

50 2 39.46 0.00 100% 58.25 7.26 0.27

2 27.94 0.00 5 0.47 15.81 0.00

4 38.37 0.00 5 17.42 0.00 0.30

6 54.59 0.00 5 176.59 5.70 0.56

50 4 38.09 0.58 93.3% 326.37 4.11 4.36

2 45.73 0.00 5 2.36 5.56 9.45

4 45.18 0.00 5 38.79 4.66 1.62

6 23.37 1.74 4 937.97 2.11 2.01

50 6 43.61 2.42 80% 911.88 14.24 6.76

2 56.49 0.00 5 4.81 26.92 9.60

4 44.97 0.00 5 76.76 10.71 6.22

6 29.38 7.26 2 2654.07 5.10 4.45
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Table 1 continued

K n m LP-GAP GAP Solved CPU Surplus-I(%) Utility

Total 50 40.35 0.96 91.1% 416.26 8.48 3.65

100 2 35.64 0.00 100% 54.14 1.68 0.06

2 20.10 0.00 5 0.93 2.74 0.00

4 41.05 0.00 5 97.14 2.11 0.19

6 48.87 0.00 5 74.99 0.00 0.00

100 4 29.60 0.45 86.7.% 716.22 5.57 2.84

2 45.99 0.00 5 7.87 14.12 6.52

4 23.35 0.00 5 86.60 2.30 1.24

6 19.48 1.36 3 2054.17 0.30 0.76

100 6 47.06 11.90 73.3% 1270.43 8.94 9.60

2 45.10 0.00 5 6.65 16.31 7.86

4 34.89 0.00 5 300.99 3.33 2.70

6 61.19 35.71 1 3503.64 7.18 18.25

Total 100 37.39 4.03 84.4% 666.65 5.32 4.08

General Average 39.47 1.47 92.3% 383.53 8.58 3.67

From the tables we observe that we can solve instances up to 100 customers and different
distributions of types and number of products types. For the hardest combination, with 6
customers types and 6 products, optimality of the solution found could not be proven for
K = 50, 100 in some cases. We also observe that the type of inventory (“enough” or “short”)
does not seem to influence the difficulty of the problems. Actually, in both cases we could
solve to optimality the same number of instances 167 out of 180. It is also very interesting to
remark that inmany cases not all product units are sold due to the preferences of the custumers
and the policy of prices.We observe that for the short scenario instances the expected value of
1.2∗random is 0.6 so we expect to have shortage generally which may be increased because
the effect of the order of arrivals and choice rules. In this case the leftovers are 8.58% of the
product units. In the other case, the expected value of 2 ∗ random is 1 but, by the effect of
the order of arrivals and the choice rules, there is a 33.98% of leftovers.

Remark 3.3 It is interesting to note what may seem to be counter-intuitive, that from Utility
we conclude that when we are concerned with social welfare, it is more important to control
the prices when there is enough inventory that when there is short inventory!

4 Monte Carlo model for price selection

We illustrate the usefulness of our MILP formulation to solve actual problems with random
arrivals based on simulations of customers’ arrival scenarios. The simulation consists of the
following.

1. Instances generation

(a) We fix the number of customer types, n and product types m.
(b) We randomly generate the utilities vi j and fix the probabilities q1, . . . , qn of the

different customer types.
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Table 2 Instances with enough inventory

K n m LP-GAP GAP Solved CPU Surplus-I(%) Utility

20 2 50.79 0.00 100% 11.96 21.95 3.37

2 33.01 0.00 5 0.13 24 7.37

4 53.61 0.00 5 3.05 20.71 2.14

6 65.75 0.00 5 32.70 21.13 1.20

20 4 64.69 0.00 100% 49.76 34.44 3.96

2 35.64 0.00 5 0.49 16.43 3.55

4 90.08 0.00 5 9.78 54.38 2.94

6 68.35 0.00 5 139.03 32.50 5.03

20 6 70.09 0.00 100% 101.01 34.05 8.02

2 64.60 0.00 5 1.34 30.00 10.11

4 76.22 0.00 5 11.96 39.90 8.78

6 69.45 0.00 5 289.74 32.26 6.25

Total 20 61.86 0.00 100% 54.25 30.14 5.05

30 2 59.50 0.00 100% 18.63 38.70 0.38

2 24.14 0.00 5 0.10 29.92 0.00

4 62.34 0.00 5 6.86 30.89 0.37

6 92.03 0.00 5 48.94 55.28 0.55

30 4 51.35 0.00 100% 115.10 32.49 4.67

2 36.34 0.00 5 0.55 51.11 5.49

4 48.83 0.00 5 19.74 22.54 2.29

6 68.86 0.00 5 325.01 23.81 6.21

30 6 69.03 0.21 93.3% 397.15 43.32 11.04

2 65.84 0.00 5 0.60 69.89 15.10

4 76.58 0.00 5 20.51 37.15 10.72

6 64.66 0.64 4 1170.34 22.92 8.23

Total 30 59.96 0.07 97.8% 176.96 38.17 5.79

50 2 57.87 0.00 100% 84.45 27.99 3.72

2 28.81 0.00 5 0.50 18.05 0.76

4 86.99 0.00 5 15.62 40.38 5.54

6 63.64 0.00 5 254.03 27.51 5.27

50 4 63.06 0.81 93.3% 378.63 38.80 6.77

2 71.24 0.00 5 11.27 76.56 12.44

4 63.97 0.00 5 64.73 20.51 5.39

6 53.97 2.44 4 1059.90 19.32 3.92

50 6 63.38 2.33 80% 899.20 33.11 8.83

2 67.08 0.00 5 2.01 46.80 12.61

4 78.44 0.00 5 76.88 41.19 8.26

6 44.62 6.98 2 2618.69 11.32 6.08
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Table 2 continued

K n m LP-GAP GAP Solved CPU Surplus-I(%) Utility

Total 50 61.36 1.02 91.1% 446.06 33.18 6.34

100 2 41.80 0.00 100% 256.55 23.72 1.72

2 52.81 0.00 5 1.71 41.51 3.03

4 40.76 0.00 5 47.39 21.27 1.95

6 29.64 0.00 5 771.50 4.81 0.16

100 4 55.73 7.43 80% 1002.85 21.79 10.49

2 45.84 0.00 5 55.49 23.24 16.86

4 55.35 0.00 5 129.72 11.64 5.79

6 65.98 22.30 2 2823.34 30.48 8.87

100 6 116.49 35.56 66.7% 1262.54 58.45 16.06

2 100.91 0.00 5 4.82 108.09 13.32

4 83.82 0.00 5 178.65 27.43 11.37

6 164.75 106.67 0 3604.14 39.84 23.41

Total 100 70.70 14.02 82.2% 827.95 34.42 8.82

General Average 63.50 3.82 92.8% 379.17 33.98 7.38

(c) We fix the number of arrivals K and numbers of available items per product type,
I1, . . . , Im .

2. Solution approach

(a) We simulate a number N of arrival scenarios of customerswith the above probabilities.
Then, we apply our MILP to each of the N scenarios to get the optimal objective
function values and set of prices p1, . . . , pm . This way, we obtain N sets of prices
for the products according with the different arrival scenarios.

(b) The simulation is used to fix a priori each one of the set of prices obtained as an
optimal solution for each scenario: we compute for each one of these price sets the
average profit obtained when this set is applied to all our N scenarios, and output the
one which maximizes this average.

In Table 3 we report the result of a simulation with N = 200 scenarios with the following
characteristics: there are n = 5 customers types andm = 6 products. Each instance simulates
the arrival of K = 45 customers with probabilities for each customer type given by q1 = 0.1,
q2 = 0.3, q3 = 0.25, q4 = 0.15, q5 = 0.2. We consider the two types of inventory levels,
“short” and “enough”. The inventory level and the number of each type of item is the same for
all the instances. In the case of short level the inventory is 7, 1, 14, 1, 6, 1, respectively, for
each product type; whereas in the case of enough inventory is 7, 9, 15, 8, 6, 7. The utilities
have been generated as random numbers in [0,10] and cpu time is measured in seconds. The
layout of the tables is as follows. By rows we report the average and standard deviation of
the different indicators. By columns we report two different blocks, one for short inventory
and another one for enough inventory. Each one of them reports the cpu time (cpu), the best
objective value (Obj) and number of items not sold (Surplus-U).

Next, we show results of a Monte Carlo evaluation of the pricing policies found by the
MILP on this simulation. Let us denote by P∗

i the optimal pricing policy (obtained solving
the MILP model) of the scenario Si for i ∈ {1, . . . , N }.
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Table 3 Simulation for 200 scenarios with 45 arrivals per scenario

Short inventory Enough inventory

cpu Obj Surplus-U cpu Obj Surplus-U

Average 3562.51 163.68 0.79 3576.18 218.04 10.67

Deviation 184.89 12.13 1.34 156.58 18.86 3.14

Table 4 Simulation for 200
scenarios with 45 arrivals per
scenario and short inventory

Short inventory Enough inventory

� A�
i∗ Surplus-U A�

i∗ Surplus-U

20 159.85 2.9 232.84 12.25

40 164.27 1.1 231.74 12.35

60 165.92 2.2 231.10 12.3

80 161.18 3.2 231.44 12.7

100 164.45 2.3 232.02 12.15

120 166.31 2.1 233.63 12.2

140 161.23 1.3 231.17 12.25

160 166.95 2.4 232.87 12.2

180 166.27 2.3 231.95 12.25

200 160.51 1.3 231.80 12.2

Then, for each � ∈ {20, 40, . . . , 200}, we evaluate the value of the optimal pricing policy
P∗
i , for i = � − 19, . . . , �, on each scenario S j , for j = � − 19, . . . , �, and call it R�

i j . Then,

we compute the average value Aver�
i := 1

20

∑�
j=�−19 R

�
i j obtained on these 20 scenarios

with policy P∗
i . Let A

�
i∗ := max�−19≤i≤� Aver�

i and P�
i∗ the best policy associated with our

approximation.
We report the results in Table 4, with the following layout. There, � refers to the last

scenario used for the corresponding row, A�
i∗ reports the best average value evaluated over

the scenarios of the corresponding block with 20 scenarios S�−19, . . . , S� and Surplus-U is
the average number of items unsold using that policy.

The results show that the Monte Carlo method is rather stable in that the best pricing
policy ensures very similar average values regardless the scenarios where it is applied, and
also that the number of items unsold stabilizes rather quickly. These results are consistently
reproduced over different simulations of different arrival processes and inventory levels. Thus
showing that this methodology can be used to set prices in these problems.

Figure 4 depicts some of these results. Each one of the N = 200 price vector found by the
solver on theMILP is evaluated on all the arrival scenarios and the values averaged. Then, we
choose the price vector that returns themaximumaverage value as our bestMonteCarlo (MC)
policy. The histograms show the evaluation of the best price vector found by the solver in each
scenario (Actual) and the values obtained by the best MC price vector obtained on all the N
scenarios, (Ev. Best Policy) for the two types of inventory levels (short and enough). Looking
at the distribution, for instance in the short inventory case (see Fig. 4-left), if we consider
≥ 185, as the good region of values, just choosing 20 independent scenarios the probability
that the best one of them goes in the good region (≥ 185) is: 1−(1−26/100)20 = 0.938. The
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Fig. 4 Distribution of actual objective values and best MC price vector values on 200 scenarios

Table 5 Approximation of MC price vector with blocks of N̂ = 20 scenarios and short inventory

A20 A40 A60 A80 A100 A120 A140 A160 A180 A200

163.68 162.92 163.68 161.98 163.68 163.68 162.92 161.98 160.06 162.72

Table 6 Approximation of MC price vector with blocks of N̂ = 20 scenarios and enough inventory

A20 A40 A60 A80 A100 A120 A140 A160 A180 A200

232.12 232.12 231.93 229.51 232.12 232.12 232.12 232.12 232.12 232.12

same computation in the enough inventory case (see Fig. 4-right), to be in the good region
(≥ 230) is: 1 − (1 − 36/200)20 = 0.981.

Actually, one does not need to sample that many scenarios (200) to get a good approxi-
mation of the best MC price vector. Specifically, we claim that sampling N̂ � N scenarios
and taking the best one of them (with respect to its average value over these N̂ scenarios) is
sufficient.

To illustrate this question, we use as benchmark A∗, the value of the best MC price vector.
In the above simulation the average and median values of the MC price vector in the short
inventory case are 163.68 and 166. Similarly, the average and median values of the MC price
vector in the case of enough inventory are 232, 1 and 232, 6, respectively.

Next, we obtain a number C of candidates, each resulting from a small sample of N̂
scenarios, as in Table 4 (for N̂ = 20 � N = 200 and C = 10 candidates). We run each of
these candidates over the whole set of 200 scenarios and obtain their averages A1, . . . , AC

(see Tables 5 and 6).
Let f � = 100A�/A∗ be the percentage of approximation obtained by each of these

candidates. We consider the distribution of f �, specifically its average and median values.
The distribution of the f � approximates by more than 98% those values of the MC policy in
both cases. Once again, this confirms the conclusion that with a reduced number of random
scenarios (N̂ = 20) we can easily obtain very good results using the MC approach, based on
the deterministic MILP solutions, to set prices for the stochastic situation.
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5 Concluding remarks

This paper considers optimal pricing in a systemwith limited substitutable resources, such as
certain goods or services. Prices, chosen froma continuum set, for the different resources have
to be set and then customerswith heterogeneous preferences showup sequentially. Customers
select an item from the available resources, depending of their valuations of the resources and
the prices. We prove that this problem is NP-hard to approximate within a factor O(n1−ε)

for any fixed ε > 0. In spite of that, we have characterized the set of candidates for optimal
solutions as the finite set of vertices of a subdivision of Rm with cardinality mm−2nm2m .
Moreover, we provide a mathematical program that chooses the best set of prices among
the continuum set, based on the above reduction result. We report extensive computational
results showing the usefulness of our exact approach to solve medium size problems with up
to 100 customers and different assortments of products and customer types.

There are some possible extensions of our work as for instance considering that the
inventory levels of the different products are decision variables and assuming that the arrival
process is stochastic rather than deterministic. Both extensions are interesting but they are
beyond the scope of this paper and may be the content of a follow-up paper.

Appendix

vj1 > vi1 and vj2 − vj1 < vi2 − vi1

The preference space for the case v j1 > vi1 and v j2−v j1 < vi2−vi1 is shown in Fig. 6. Case
2(b) is similar except for that the pivot of customer type j moves to the right so that region
(21,21) disappears. Again, there are thirteen regions and the candidates for optimal pricing
are those at the upper-right corners of the inner regions. Also here, there are two candidates
that can be approached from two regions. Specifically, (vi1, vi2) is the upper-right point of
both regions (12,12) and (21,12), while (v j1, v j2) is the upper-right corner of regions (0,12)
and (0,21). In the former case both customer types are flexible and items will be sold as long
as the inventory is not depleted. Approaching from region (12,12) is preferred if and only
if the revenue from product 1 is higher, i.e., vi1 > vi2. In the latter case, only j-customers
make a purchase, and approaching from region (0,12) is the preferred option if and only if
v j1 > v j2.

vj1 > vi1 and vj2 − vj1 > vi2 − vi1

The preference space for the case v j1 > vi1 and v j2−v j1 > vi2−vi1 is shown in Fig. 5. Case
3(b) is similar except for that the pivot of customer type j moves up so that region (12,12)
disappears. Again there are thirteen regions and six candidate points for optimal pricing,
two of them can be approached from two regions, and the choice is very similar to the one
corresponding to Fig. 6.
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Fig. 5 Customer preferences: v j1 > vi1 and v j2 − v j1 > vi2 − vi1

Fig. 6 Customer preferences: v j1 > vi1 and v j2 − v j1 < vi2 − vi1
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