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Abstract
We study the single machine scheduling problem under uncertain parameters, with the aim of
minimizing the maximum lateness. More precisely, the processing times, the release dates,
and the delivery times of the jobs are uncertain, but an upper and a lower bound of these
parameters are known in advance. Our objective is to find a robust solution, which minimizes
the maximum relative regret. In other words, we search for a solution which, among all pos-
sible realizations of the parameters, minimizes the worst-case ratio of the deviation between
its objective and the objective of an optimal solution over the latter one. Two variants of this
problem are considered. In the first variant, the release date of each job is equal to 0. In the
second one, all jobs are of unit processing time. Moreover, we also consider the min–max
regret version of the second variant. In all cases, we are interested in the sub-problem of
maximizing the (relative) regret of a given scheduling sequence. The studied problems are
shown to be polynomially solvable.

Keywords Scheduling · Maximum lateness · Min–max relative regret · Interval uncertainty

1 Introduction

Uncertainty is a crucial factor to consider when dealing with combinatorial optimization
problems, especially scheduling problems. Thus, it is not sufficient to limit the resolution of
a given problem to its deterministic version for a single realisation of the uncertain parameters,
i.e., a scenario. Awidely-usedmethod to handle uncertainty is the stochastic approach, which
involves predicting the probabilistic distributions for uncertain problemparameters.However,
this approach has its drawbacks. It requires extensive knowledge about the problem data for
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accurate predictions, a task that can be challenging in real-world situations, particularly in
the context of scheduling problems. In our study, we investigate an alternative method of
handling uncertainty that relies on a set of known possible values of the uncertain parameters
without any need for a probabilistic description, namely the robustness approach or worst-
case approach (Kouvelis & Yu, 1997). The aim of this approach is to generate solutions
that will have a good performance under any possible scenario and particularly in the most
unfavorable one, i.e, the worst case scenario.

The use of the robustness approach involves specifying two key components. The first
component is the choice of the type of uncertainty set. Literature has proposed various
techniques for describing the uncertainty set (Buchheim & Kurtz, 2018), with the discrete
uncertainty and the interval uncertainty being the most well-examined. Indeed, the most
suitable representation of uncertainty in scheduling problems is the interval uncertainty,
where the value of each parameter is restricted within a specific closed interval defined by a
lower and an upper bound. These bounds can be estimated through a data analysis on traces
of previous problem executions.

The second component is the choice of the appropriate robustness criterion (Aissi et
al., 2009; Tadayon & Smith, 2015). One such criterion is the absolute robustness or min–
max criterion, which seeks to generate solutions that provide the optimal performance in the
worst-case scenario, i.e, solutions that minimize themaximum of the objective function value
over all scenarios. This conservative criterion is suitable for situations where anticipating
adverse events is essential to prevent critical consequences. It is relevant in non-repeating
decision-making contexts, such as unique items in financial analysis, and in situations where
preventive measures are vital, like in public health. However, this criterion can be seen as
overly pessimistic in situations where the worst-case scenario is unlikely, causing decision-
makers to regret not embracing a moderate level of risk.

Two less conservative criteria are based on the definition of the “regret": First, the robust
deviation or min–max regret criterion aims at minimizing the maximum absolute regret,
which is the most unfavorable deviation from the optimal performance, i.e., the largest dif-
ference between the value of a solution and the optimal value, among all scenarios. Secondly,
the relative robust deviation or min–max relative regret criterion seeks to minimize the max-
imum relative regret, which is the worst percentage deviation from the optimal performance,
i.e., the greatest ratio of the absolute regret to the optimal value, among all possible sce-
narios. According to Kouvelis and Yu (1997), the min–max relative regret criterion is less
conservative compared to the min–max regret criterion. Indeed, both criteria are particularly
effective in applications where outcomes can be evaluated ex-post, especially in competitive
environments. In such contexts, decision-makers aim to maximize their chances of success
by minimizing missed opportunities that competitors could exploit. In a similar vein, Aver-
bakh (2005) remarks that the relative regret objective is more appropriate compared to the
absolute regret objective in situations where a percentage-based assessment, such as “10%
more expensive", is more relevant than an absolute value comparison, like “costs $30 more".
Indeed, using absolute regret, which is calculated by the difference, can obscure the scale
of the solution, whereas relative regret effectively underscores the proportion between the
solution and the optimal. However, despite its advantages and greater relevance compared to
other criteria, the min–max relative regret criterion has a complicated structure and this may
explain why limited knowledge exists about it.

Our contribution and organisation of the paper:
The focus of this paper is to investigate the min–max relative regret criterion for the

fundamental single machine scheduling problem with the maximum lateness objective. The
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interval uncertainty can involve the processing times, the release dates or the delivery times
of jobs.

In Sect. 2, we formally define our problem and the used criteria. In Sect. 3, we give a
short review of the existing results for scheduling problems with and without uncertainty
consideration. In Sect. 4, we introduce some initial observations that serve as foundational
elements for our proofs. We next consider two variants of this problem.

In Sect. 5, we study the variant where all jobs are available at time 0 and the interval
uncertainty is related to processing and delivery times. Kasperski (2005) has applied themin–
max regret criterion to this problem and developed a polynomial time algorithm to solve it
by characterizing the worst-case scenario based on a single guessed parameter through some
dominance rules. We prove that this problem is also polynomial for the min–max relative
regret criterion. An iterative procedure is used to prove some dominance rules based on
three guessed parameters in order to construct a partial worst-case scenario. To complete
this scenario, we propose a polynomial algorithm based on a linear fractional program,
which is then transformed into a linear program. Subsequently, we develop an algorithm
that replaces the linear program, omitting one constraint. The transition through the linear
program is useful for excluding a difficult constraint while considering the entire procedure
of the problem.

In Sect. 6, we study the maximum relative regret criterion for the variant of the maximum
lateness problemwhere the processing times of all jobs are equal to 1 and interval uncertainty
is related to release dates and delivery times. For a fixed scenario, Horn (1974) proposed an
optimal algorithm for this problem. For the uncertainty version, we simulate the execution
of Horn’s algorithm using a guess of five parameters, in order to create a worst-case scenario
along with its optimal schedule. In Sect. 7, we give a much simpler analysis for the maximum
regret criterion applied to a more general form of this variant of our scheduling problem,
where the processing times of all jobs are uniformly constant. We conclude in Sect. 8.

2 Problem definition and notations

In this paper, we consider the problem of scheduling a set J of n non-preemptive jobs
on a single machine. In the standard version of the problem, each job is characterized by
a processing time, a release date and a delivery time. In general, the values of the input
parameters are not known in advance. However, an estimation interval for each value is
known. Specifically, given a job j ∈ J , let [pmin

j , pmax
j ], [rmin

j , rmax
j ] and [qmin

j , qmax
j ] be

the uncertainty intervals for its characteristics.
A scenario s = (ps

1, . . . , ps
n, rs

1, . . . , rs
n, qs

1, . . . , qs
n) is a possible realisation of all values

of the instance, such that ps
j ∈ [pmin

j , pmax
j ], rs

j ∈ [rmin
j , rmax

j ] and qs
j ∈ [qmin

j , qmax
j ], for

every j ∈ J . The set of all scenarios is denoted by S. A solution is represented by a sequence
of jobs, π = (π(1), . . . , π(n)) where π( j) is the j th job in the sequence π . The set of all
sequences is denoted by Π .

Consider a schedule represented by its sequenceπ ∈ Π and a scenario s ∈ S. The lateness
of a job j ∈ J is defined as Ls

j (π) = Cs
j (π) + qs

j , where Cs
j (π) denotes the completion

time of j in the schedule represented by π under the scenario s. The maximum lateness of
the schedule is defined as L(s, π) = max j∈J Ls

j (π). The job c ∈ J of maximum lateness
in π under s is called critical, i.e., Ls

c(π) = L(s, π). The set of all critical jobs in π under s
is denoted by Crit(s, π). We call first critical job, the critical job which is processed before
all the other critical jobs. By considering a given scenario s, the optimal sequence is the one
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Table 1 Instance of five jobs j 1 2 3 4 5

[pmin
j , pmax

j ] [2, 5] [1, 3] [1, 6] [2, 4] [1, 7]

[rmin
j , rmax

j ] [0, 6] [2, 8] [1, 7] [1, 6] [0, 3]

[qmin
j , qmax

j ] [2, 6] [1, 3] [3, 5] [4, 6] [2, 5]

leading to a schedule that minimizes the maximum lateness, i.e., L∗(s) = minπ∈Π L(s, π).
This is a classical scheduling problem, denoted by 1 | r j | Lmax using the standard three-field
notation, and it is known to be NP-hard in the strong sense (Lenstra et al., 1977).

For this deterministic version of the studied problem, the lateness of a job j can be
formulated as: (1) L j = C j − d j where C j is the completion time and d j is the due date
of j or (2) L j = C j + q j where q j is the delivery time of j . These two formulations
are equivalent in terms of sequence optimality since for each job j the due date d j can be
replaced by a delivery time q j = K − d j where K is a given constant. The reason we
study the delivery time model instead of the due date model is due to the use of the min–
max relative regret criterion, which requires calculating ratios from the lateness values of
solutions. The use of due dates could lead to a negative maximum lateness, thus complicating
the calculation process. Similarly, in approximation theory, the same observation can be done
and themaximum lateness can be zerowhenwe use the due datemodel, presenting analogous
computational challenges.

In this paper, we are interested in the min–max regret and the min–max relative regret
criteria whose definitions can be illustrated by a game between two agents, Alice and Bob.
Alice selects a sequence π of jobs. The problem of Bob has as input a sequence π chosen
by Alice, and it consists in selecting a scenario s such that the regret R of Alice R(s, π) =
L(s, π) − L∗(s) or respectively the relative regret R R of Alice

R R(s, π) = L(s, π) − L∗(s)
L∗(s)

= L(s, π)

L∗(s)
− 1

is maximized. The value of Z(π) = maxs∈S R(s, π) (resp. Z R(π) = maxs∈S R R(s, π)) is
called maximum regret (resp. maximum relative regret) for the sequence π . In what follows,
we call the problem of maximizing the (relative) regret, given a sequence π , as the Bob’s
problem. Henceforth, by slightly abusing the definition of the relative regret, we omit the
constant−1 in R R(s, π), since a scenario maximizing the fraction L(s,π)

L∗(s) maximizes also the

value of L(s,π)
L∗(s) −1. Then,Alice has to find a sequenceπ whichminimizes hermaximum regret

(resp. maximum relative regret), i.e., minπ∈Π Z(π) (resp. minπ∈Π Z R(π)). This problem is
known as the min–max (relative) regret problem and we call it as Alice’s problem.

Given a sequence π , the scenario that maximises the (relative) regret over all possible
scenarios is called the worst-case scenario forπ . A partial (worst-case) scenario is a scenario
defined by a fixed subset of parameters and can be extended to a fully defined (worst-case)
scenario by setting the remaining unknown parameters. For a fixed scenario s, any schedule
may consist of several blocks, i.e., a maximal set of jobs, which are processed without any
idle time between them.

Example: To illustrate the procedures of Alice and Bob, let us consider a concrete instance
involving five jobs, as previously stated in the general problem. The parameters for each job,
including processing time, release date, and delivery time intervals, are given in Table 1.
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Table 2 The scenario chosen by
Bob

j 1 2 3 4 5

ps
j 2 2 1 3 1

rs
j 6 8 7 1 2

qs
j 5 2 4 5 3

Fig. 1 Scheduling of sequences π and σ under scenario s

Let π = (5, 4, 3, 2, 1) be the sequence chosen by Alice. The Bob’s strategy is to choose
values within these intervals to create the worst-case scenario for the Alice’s sequence π ,
depending on the robustness criteria, i.e., the min–max regret or min–max relative regret
criterion. Assume that Bob chooses the scenario presented in Table 2. Note that this scenario
is given as an example and may not necessarily represent the worst-case scenario for the
Alice’s sequence.

The sequence σ = (4, 5, 1, 3, 2) is identified as optimal for this scenario s. Figure1
illustrates the scheduling of sequences π and σ under scenario s. Here, the completion time
of each job is noted below its end, while the lateness is indicated above it in the schedule.

In sequenceπ under scenario s, job 1 is critical with themaximum lateness in this schedule
being L(s, π) = Ls

1(π) = 17. In the optimal sequence σ under s, jobs 1, 2, and 3 are critical,
and the maximum lateness is L∗(s) = L(s, σ ) = Ls

2(σ ) = 13.
The absolute regret of Alice, R(s, π), is calculated as 17− 13 = 4. The relative regret of

Alice, R R(s, π), is 17−13
13 ≈ 30.77%.

Aware of the Bob’s strategy, Alice focuses on selecting a sequence that minimizes her
regret, whether absolute or relative, based on the desired robustness criterion.

3 Related work

In the deterministic version, the problem 1|r j |Lmax has been proved to be strongly NP-hard
(Lenstra et al., 1977). For the first variant where all release dates are equal, i.e, 1||Lmax, the
problem can be solved in O(n log n) time by applying Jackson’s rule (Jackson, 1955), i.e,
sequencing the jobs in the order of non-decreasing due dates. In our specific context, we adapt
Jackson’s rule by sequencing jobs based on non-increasing delivery times. For the second
variant with unit processing time jobs, i.e, 1|r j , p j = 1|Lmax, the rule of scheduling, at
any time, an available job with the smallest due date, or for our context, the biggest delivery
time, is shown to be optimal by Horn (1974). This method can be implemented in O(n log n)

time. For the general version of the second variant with equal processing time jobs, i.e,
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1|r j , p j = p|Lmax, Lazarev et al. (2017) have proposed a polynomial algorithm to solve this
problem in O(Q · n log n) time, where 10−Q is the accuracy of the input–output parameters.

For the discrete uncertainty case, the min–max criterion has been studied for several
scheduling problems with different objectives. Kouvelis and Yu (1997) proved that the min–
max resource allocation problem is NP-hard and admits a pseudo-polynomial algorithm.
Aloulou and Della Croce (2008) showed that the min–max 1|| ∑ U j problem of minimiz-
ing the number of late jobs with uncertain processing times and the min–max 1|| ∑w j C j

problem of minimizing the total weighted completion time with uncertain weights are NP-
hard. In addition, they proved that the min–max problem of the single machine scheduling is
polynomially solvable for many objectives like makespan, maximum lateness and maximum
tardiness even in the presence of precedence constraints where processing times, due dates, or
both are uncertain. Mastrolilli et al. (2013) proved that the min–max 1 || w j C j problemwith
uncertain weights and processing times cannot be approximated within O(log1−ε n) unless
NPhas quasi-polynomial algorithms. For unweighted jobs, they developed a 2-approximation
algorithm for this problem, with uncertain processing times, and demonstrated that it is NP-
hard to approximate within a factor less than 6/5. The only single machine scheduling
problem studied under discrete uncertainty for min–max (relative) regret is the 1|| ∑ C j .
Daniels (1995) investigated this problem using both min–max regret and min–max relative
regret criteria, proving that both are NP-hard. They developed a branch-and-bound algorithm
and heuristic approaches. For the same problem, Yang and Yu (2002) presented a different
NP-hardness proof for all the three robustness criteria. They also introduced a dynamic pro-
gramming algorithm and two polynomial-time heuristics. Other scheduling problems have
been also addressed in the literature. Kasperski et al. (2012) proved that both themin–max and
min–max regret versions of the two-machine permutation flow shop problem, F2 || Cmax,
with uncertain processing times are strongly NP-hard, even with only two scenarios. The
min–max (regret) parallel machine scheduling problem, P || Cmax, with uncertain process-
ing times, was studied in Kasperski et al. (2012); Kasperski and Zieliński (2014), where
various NP-hardness and approximation results were presented.

For the interval uncertainty case, the min–max criterion has the same complexity as
the deterministic problem since it is equivalent to solve it for an extreme well-known sce-
nario. Considerable research has been dedicated to the min–max regret criterion for different
scheduling problems. Many of these problems have been proved to be polynomially solv-
able. For instance, Averbakh (2000) considered the min–max regret 1||maxw j Tj problem
to minimize the maximum weighted tardiness, where weights are uncertain and proposed a
O(n3) algorithm. He also presented a O(m) algorithm for the makespan minimization for a
permutation flow-shop problem with 2 jobs and m machines with interval uncertainty related
to processing times (Averbakh, 2006). The min–max regret version of the first variant of our
problem has been considered by Kasperski (2005) under uncertain processing times and due
dates. An O(n4) algorithm has been developed which works even in the presence of prece-
dence constraints. As an extension of this earlier problem, Fridman et al. (2020) examined the
general min–max regret problem of the cost scheduling problem. The cost function depends
on the job completion time and a set of additional generalized numerical parameters, with
both processing times and the additional parameters being uncertain. They developed poly-
nomial algorithms that improved and generalized all previously known results. On the other
hand, some problems have been classified as NP-hard. Lebedev andAverbakh (2006) showed
that the min–max regret 1|| ∑ C j problem with uncertain processing times is NP-hard. They
also demonstrated that if all uncertainty intervals share the same center, the problem can be
solved in O(n log n) time if the number of jobs is even, but it remains NP-hard if the number
of jobs is odd. For the same problem, Montemanni (2007) presented the first mixed-integer
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Fig. 2 Illustration of the schedules represented by σ under s1 and s2

linear programming formulation. For the min–max regret 1 || w j C j problem with uncertain
processing times, Pereira (2016) presented a branch-and-bound method. Kacem and Kellerer
(2019) considered the single machine problem of scheduling jobs with a common due date
with the objective of maximizing the number of early jobs and they proved that the problem
is NP-hard and does not admit an FPTAS. The min–max regret criterion for minimizing
the weighted number of late jobs was investigated: a polynomial algorithm for due-date
uncertainty with uniform job weights (Drwal, 2018), and a branch-and-bound method for
processing time uncertainty (Drwal & Józefczyk, 2020). Wang et al. (2020) tackled the min–
max regret in single machine scheduling for total tardiness with interval processing times.
They developed amixed-integer linear programmingmodel and demonstrated that an optimal
schedule under the midpoint scenario provides a 2-approximation solution to the problem.
Additionally, they proposed three methods to obtain robust schedules. The min–max regret
criterion was also investigated in, Xiaoqing et al. (2013), Choi and Chung (2016), Liao and
Fu (2020) and Wang and Cui (2021).

Finally, to the best of our knowledge, the only problem studied under themin–max relative
regret criterion for schedulingwith interval uncertainty is the total flow timeproblem1|| ∑ C j

with uncertain processing times. Averbakh (2005) proved that this problem is NP-hard.
Additionally,Kuo andLin (2002) provided anotherNP-hardness proof, developed a fractional
programming formulation, and introduced an algorithm using bisection searches based on
parametric programming.

4 Preliminaries

In this section we present some preliminary observations that we use in our proofs.

Remark 1 (Monotonicity) Consider a set of jobs J and two scenarios s1 and s2 such that
for each job j ∈ J , we have ps1

j ≥ ps2
j , rs1

j ≥ rs2
j and qs1

j ≥ qs2
j . Then, the value of the

maximum lateness in an optimal sequence for s1 cannot be smaller than that for s2, i.e.,
L∗(s1) ≥ L∗(s2).

Proof Let us consider a set of jobs J and two scenarios, s1 and s2, such that for each job
j ∈ J , the conditions ps1

j ≥ ps2
j , rs1

j ≥ rs2
j , and qs1

j ≥ qs2
j hold. Suppose, contrary to our

claim, that L∗(s1) < L∗(s2). Let σ be an optimal sequence for scenario s1. Now, consider the
schedules represented by the sequence σ under scenarios s1 and s2, as illustrated in Fig. 2.

Given that the parameters of each job in scenario s2 are smaller than or equal to those in
scenario s1, it logically follows that Ls2

j (σ ) ≤ Ls1
j (σ ) for each job j ∈ J . Therefore, the

maximum lateness in the sequence σ under the scenario s2 should not exceed that under the
scenario s1, i.e., L(s2, σ ) ≤ L(s1, σ ) = L∗(s1). This observation contradicts our supposition
and thus validates our initial claim. ��

123



Annals of Operations Research

Remark 2 Let a and b be two real positive numbers. Consider the following functions:

1. For f1 : [0, b) → R
+ defined by f1(x) = a−x

b−x , with a ≥ b, the function f1 is increasing
on [0, b).

2. For f2 : R+ → R
+ defined by f2(x) = a+x

b+x , the function f2 is increasing if a ≤ b, and
decreasing if a > b.

3. For f3 : R+ → R
+ defined by f3(x) = a+2x

b+x , the function f3 is increasing if a ≤ 2b,
and decreasing if a > 2b.

5 Min–max relative regret for 1 || Lmax

In this section, we consider the min–max relative regret criterion for the maximum lateness
minimization problem, under the assumption that each job is available at time 0, i.e., rs

j = 0
for all jobs j ∈ J and all possible scenarios s ∈ S. For a fixed scenario, this problem can
be solved by applying the Jackson’s rule, i.e., sequencing the jobs in non-increasing order
of delivery times. We denote by B(π, j) the set of all the jobs processed before job j ∈ J ,
including j , in the sequence π and by A(π, j) the set of all the jobs processed after job j
in π .

5.1 The Bob’s problem

The following lemma presents some properties of a worst-case scenario for a given sequence
of jobs.

Lemma 1 Let π be a sequence of jobs. There exists (1) a worst-case scenario s for π , (2) a
critical job cπ ∈ Crit(s, π) in π under s, and (3) a critical job cσ ∈ Crit(s, σ ) in σ under
s, where σ is the optimal sequence for s, such that:

i For each job j ∈ A(π, cπ ), it holds that ps
j = pmin

j ,

ii For each job j ∈ J \ {cπ }, it holds that qs
j = qmin

j ,

iii For each job j ∈ B(π, cπ ) ∩ B(σ, cσ ), it holds that ps
j = pmin

j , and
iv cσ is the first critical job in σ under s.

Proof Consider a given worst-case scenario s1. We will apply a series of transformations in
order to obtain a worst-case scenario that fulfills the properties of the statement.

Let cπ ∈ Crit(s1, π) be a critical job in π under s1. The first transformation (T1), from
s1 to s2, consists in replacing:

• ps1
j with pmin

j for each job j ∈ A(π, cπ ), i.e., ps2
j = pmin

j ,

• qs1
j with qmin

j for each job j ∈ J \{cπ }, i.e., qs2
j = qmin

j .

Note that the job cπ remains critical in π under s2, since Ls1
cπ

(π) = Ls2
cπ

(π) and Ls1
j (π) ≥

Ls2
j (π) for each other job j ∈ J \{cπ }. Moreover, by Remark 1, we have L∗(s1) ≥ L∗(s2),

since the value of several delivery times and processing times is only decreased according to
transformation (T1). Thus, s2 is also a worst-case scenario for π , i.e.,

R R(s1, π) = L(s1, π)

L∗(s1)
≤ L(s2, π)

L∗(s2)
= R R(s2, π)

Let σ be an optimal sequence for s2 and cσ ∈ Crit(s2, σ ) be the first critical job in σ

under s2. The second transformation (T2) consists in decreasing in an organized way the
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Fig. 3 Illustration of the schedules represented by the sequences π and σ under the scenario s3 obtained by
Lemma 1

processing times of jobs in B(π, cπ ) ∩ B(σ, cσ ), leading to the scenario s3. Note that, since
the delivery times of jobs do not change in (T2), the optimal sequence for s3 which is obtained
by the Jackson’s rule remains also the same, i.e., σ .

In order to implement the transformation (T2), we consider the jobs in B(π, cπ )∩B(σ, cσ )

in the order that they appear in σ . Let b1, b2, . . . , b� be these jobs according to this order
and � = |B(π, cπ ) ∩ B(σ, cσ )|. Intuitively, we will decrease the processing time of each
job in B(π, cπ ) ∩ B(σ, cσ ) using this order to its minimum value, until either the processing
time of all jobs in B(π, cπ ) ∩ B(σ, cσ ) is reduced to their minimum value or some new jobs
become critical in σ or in π (see Fig. 3). We denote by Nπ = Crit(s3, π)\Crit(s2, π) (resp.
Nσ = Crit(s3, σ )\Crit(s2, σ )) the set of the new critical jobs that will appear in π (resp.
in σ ) under s3. Thus, we can consider one of the following three cases in the given order:

Case 1: Nπ = Nσ = ∅, that is no new critical job appears neither in σ nor in π . Then, in
the scenario s3, we have:

– ps3
j = pmin

j for each job j ∈ B(π, cπ ) ∩ B(σ, cσ ),
– cπ remains critical in π , and
– cσ remains the first critical job in σ .

Let Δ = ∑
j∈B(π,cπ )∩B(σ,cσ )(ps2

j − pmin
j ) be the total decrease of the processing

times from s2 to s3. Note that L(s3, π) = L(s2, π) − Δ and L∗(s3) = L∗(s2) − Δ.
By setting a = L(s2, π) and b = L∗(s2) in Remark 2.1, we obtain:

R R(s2, π) = L(s2, π)

L∗(s2)
≤ L(s2, π) − Δ

L∗(s2) − Δ
= L(s3, π)

L∗(s3)
= R R(s3, π)

where the inequality holds since 0 ≤ Δ ≤ L∗(s2) and L∗(s2) ≤ L(s2, π). Thus,
s3 is also a worst-case scenario for π and, consequently, the triplet (s3, cπ , cσ ) ∈
S × Crit(s3, π) × Crit(s3, σ ) fulfills all the properties of the lemma.

Case 2: Nσ �= ∅, that is some new critical jobs appear in σ . In this case, L∗(s3) = Ls3
cσ

(σ ) =
Ls3

j (σ ), for each job j ∈ Nσ . Let bp , 1 ≤ p ≤ �, be the job whose decrease in
processing time results in the appearance of new critical jobs Nσ in σ . Notice that
Nσ ⊂ B(σ, bp) \ {bp}, since the lateness of all jobs in A(σ, bp) ∪ {bp} is decreased
by the same amount as the processing time of bp . Let c′

σ ∈ Nσ be the first critical
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job in σ under s3 and let again Δ = ∑
j∈B(π,cπ )∩B(σ,cσ )(ps2

j − ps3
j ) be the total

decrease of the processing times from s2 to s3. For the same reasons as before, we
conclude that R R(s2, π) ≤ R R(s3, π). Therefore, s3 is also a worst-case scenario
for π . Consequently, since all the jobs in B(σ, c

′
σ ) have their minimum processing

times under s3, the triplet (s3, cπ , c
′
σ ) ∈ S × Crit(s3, π) × Crit(s3, σ ) fulfills all

the properties of the lemma.
Case 3: Nπ �= ∅, that is some critical jobs appear in π . In this case, L(s3, π) = Ls3

cπ
(π) =

Ls3
j (π), for each job j ∈ Nπ . Let again Δ = ∑

j∈B(π,cπ )∩B(σ,cσ )(ps2
j − ps3

j ). For
the same reasons as before, we conclude that R R(s2, π) ≤ R R(s3, π). Therefore,
s3 is also a worst-case scenario for π . However, the properties of the lemma are not
yet fulfilled. In order to see this, let bp , 1 ≤ p ≤ �, be the job whose decrease in
processing time results in the appearance of new critical jobs Nπ inπ . Thus, there are
still some jobs in

(
B(π, cπ )\B(σ, bp)

)∩ B(σ, cσ )whose processing time in s3 does
not have the minimum value. Then, we apply again transformation (T1) for scenario
s3 by considering a critical job c

′
π ∈ Nπ instead of cπ , as well as, transformation

(T2), until we reach Case 1 or Case 2. This procedure will be repeated at most n
times, since the sequenceπ never changes and the new critical job c

′
π appears always

before the initial critical job cπ in π . ��

Consider the sequence π chosen by Alice. Bob can guess the critical job cπ in π and the
first critical job cσ in σ . Then, by Lemma 1 (i)–(ii), he can give the minimum processing
times to all jobs in A(π, cπ ), and the minimum delivery times to all jobs except for cπ . Since
the delivery times of all jobs except cπ are determined and the optimal sequence σ depends
only on the delivery times according to the Jackson’s rule, Bob can obtain σ by guessing the
position k ∈ �1, n� of cπ in σ . Then, by Lemma 1 (iii), he can give the minimum processing
times to all jobs in B(π, cπ ) ∩ B(σ, cσ ). We denote by the triplet (cπ , cσ , k) the guess made
by Bob. Based on the previous assignments, Bob gets a partial scenario s̄π

cπ ,cσ ,k . It remains
to determine the exact value of qcπ and the processing times of jobs in B(π, cπ ) ∩ A(σ, cσ )

in order to extend s̄π
cπ ,cσ ,k to a fully defined scenario sπ

cπ ,cσ ,k that maximizes the relative
regret for the guess (cπ , cσ , k). At the end, Bob will choose, among all the scenarios sπ

cπ ,cσ ,k
created, the worst-case scenario sπ for the sequence π , i.e.,

sπ = argmax
i, j,k

{
L(sπ

i, j,k, π)

L∗(sπ
i, j,k)

}

In what follows, we propose a linear fractional program (P) in order to find a scenario
sπ

cπ ,cσ ,k which extends s̄π
cπ ,cσ ,k and maximizes the relative regret for the given sequence π .

Let p j , the processing time of each job j ∈ B(π, cπ )∩ A(σ, cσ ), and qcπ , the delivery time of
job cπ , be the continuous decision variables in (P). All other processing and delivery times
are constants and their values are defined by s̄π

cπ ,cσ ,k . Recall that σ( j) denotes the j-th job

in the sequence σ . To simplify our program, we consider two fictive values qσ(n+1) = qmin
cπ

and qσ(0) = qmax
cπ

.

maximize

∑
i∈B(π,cπ ) pi + qcπ

∑
i∈B(σ,cσ ) pi + qcσ

(P)

subject to
∑

i∈B(π, j)

pi + q j ≤
∑

i∈B(π,cπ )

pi + qcπ ∀ j ∈ J (1)
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∑

i∈B(σ, j)

pi + q j ≤
∑

i∈B(σ,cσ )

pi + qcσ ∀ j ∈ J (2)

p j ∈ [pmin
j , pmax

j ] ∀ j ∈ B(π, cπ ) ∩ A(σ, cσ ) (3)

qcπ ∈ [max{qmin
cπ

, qσ(k+1)},min{qmax
cπ

, qσ(k−1)}] (4)

The objective of (P) maximizes the relative regret for the sequence π under the scenario
sπ

cπ ,cσ ,k with respect to the hypothesis that cπ and cσ are critical in π and σ , respectively,
i.e.,

Z R(π) = L(sπ
cπ ,cσ ,k, π)

L∗(sπ
cπ ,cσ ,k)

= L
sπ
cπ ,cσ ,k

cπ
(π)

L
sπ
cπ ,cσ ,k

cσ
(σ )

Constraints (1) and (2) ensure this hypothesis. To preserve mathematical simplicity, Con-
straint (2) is formulated in its general form for all j ∈ J . This is because in the case where
cπ �= cσ and j /∈ A(σ, a) ∪ {a, cπ }, with a is the first job of the set B(π, cπ ) ∩ A(σ, cσ )

as ordered in σ , this constraint involves only fixed parameters and does not influence the
optimization process. Constraints (3) and (4) define the domain of the continuous real vari-
ables p j , j ∈ B(π, cπ ) ∩ A(σ, cσ ), and qcπ . Note that, the latter one is based also on the
guess of the position of cπ in σ . The program (P) can be infeasible due to the Constraints (1)
and (2) that impose jobs cπ and cσ to be critical. In this case, Bob ignores the current guess of
(cπ , cσ , k) in the final decision about the worst-case scenario sπ that maximizes the relative
regret.

Note that the Constraint (1) can be safely removed when considering the whole procedure
of Bob for choosing the worst-case scenario sπ . Indeed, consider a guess (i, j, k) which is
infeasible because the job i is not critical in π due to the Constraint (1). Let s be the scenario
extended from the partial scenario s̄π

i, j,k by solving (P) without using the Constraint (1).
Let cπ be the critical job under the scenario s. Thus, Ls

cπ
(π) > Ls

i (π). Consider now the
scenario s′ of maximum relative regret in which cπ is critical. Since sπ is the worst-case
scenario chosen by Bob for the sequence π and by the definition of s′ we have

L(sπ , π)

L∗(sπ )
≥ L(s′, π)

L∗(s′)
≥ L(s, π)

L∗(s)
= Ls

cπ
(π)

L∗(s)
>

Ls
i (π)

L∗(s)
In other words, if we remove the Constraint (1), (P) becomes feasible while its objective
value cannot be greater than the objective value of the worst-case scenario sπ and then the
decision of Bob with respect to the sequence π is not affected. This observation is very useful
in Alice’s algorithm. However, a similar observation cannot hold for Constraint (2) which
imposes cσ to be critical in σ .

As mentioned before, the program (P) is a linear fractional program, in which all con-
straints are linear, while the objective function corresponds to a fraction of linear expressions
of the variables. Moreover, the denominator of the objective function has always a positive
value. Charnes and Cooper (1962) proposed a polynomial transformation of such a linear
fractional program to a linear program by introducing a linear number of new variables and
constraints. Hence, (P) can be solved in polynomial time.

Note also that, in the casewhere cπ �= cσ , the value of themaximum lateness in the optimal
sequence (

∑
j∈B(σ,cσ ) ps

j + qs
cσ
) is fixed since the processing times of jobs processed before

the job cσ in σ , as well as, the delivery time qs
cσ

of the job cσ are already determined in the
partial scenario s̄π

cπ ,cσ ,k . Therefore, if cπ �= cσ then (P) is a linear program. Consequently,
the Charnes-Cooper transformation is used only in the case where cπ = cσ .

The procedure of Bob, given a sequence π , is summarized in Algorithm 1.
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Algorithm 1 Bob’s algorithm for 1 || Lmax

Require: A set of jobs J with their uncertain characteristics, and a sequence π .
Ensure: A worst-case scenario sπ .
1: for each i ∈ J do
2: for each j ∈ J do
3: for each position k ∈ �1, n� do
4: Create a partial scenario s̄π

i, j ,k as follows:

– p
s̄π
i, j,k

�
← pmin

�
,∀� ∈ A(π, i)

– q
s̄π
i, j,k

�
← qmin

�
, ∀� ∈ J \ {i}

– p
s̄π
i, j,k

�
← pmin

�
,∀� ∈ B(π, i) ∩ B(σ, j)

5: Extend s̄π
i, j,k to the scenario sπ

i, j ,k by solving the program (P)

using only the Constraints (2)-(4)

6: return sπ = argmax
i, j,k

{
L(sπ

i, j ,k , π)

L∗(sπ
i, j ,k )

}

Theorem 1 Given a sequence π , Algorithm 1 calculates the maximum relative regret by
guessing cπ the critical job in π , cσ the first critical job in σ , where σ is the optimal sequence
for the worst-case scenario s, and k ∈ �1, n� the position of job cπ in σ and solving for each
guess (cπ , cσ , k) a linear program with at most O(n) variables and O(n) constraints.

5.2 A better combinatorial algorithm for the Bob’s problem

In this subsection, we proposeAlgorithm 2, designed as a substitute for Line 5 inAlgorithm 1.
This line involves extending the partial scenario s̄π

i, j,k generated by the guess (i, j, k), where
i is the critical job in π (the sequence chosen by Alice), j is the critical job in σ (the
optimal sequence for s̄π

i, j,k), and k is the position of the job i in σ . The goal of this extension
is to form the fully defined scenario sπ

i, j,k by solving the linear program (P) using the
Constraints (2)–(4).

In addition to the inputs required by Algorithms 1, 2 takes as input the guess (i, j, k), the
partial scenario s̄π

i, j,k and the optimal sequence σ for this scenario. Recall that σ is obtained
by applying the Jackson’s rule to the delivery times of all jobs and by guessing the position
k of i in σ . Then, the algorithm determines the scenario sπ

i, j,k that maximizes the relative
regret by identifying the remaining parameters with respect to the Constraints (2)–(4). These
parameters include p�, the processing time of each job � ∈ B(π, i) ∩ A(σ, j), and qi , the
delivery time of the job i . Recall that the Constraint (2) ensures that i is critical in σ and the
Constraints (3) and (4) establish the domain of the remaining parameters. It is important to
recall that Bob excludes the Constraint (1), which is typically used to ensure that the job i is
critical in π . This exclusion is justified within the overall context of the Bob’s procedure, as
was detailed earlier. We consider the jobs in the set B(π, i) ∩ A(σ, j), ordered as they occur
in σ . Let this ordered set be denoted by a1, a2, . . . , am , where m is the number of jobs in
B(π, i) ∩ A(σ, j).

Algorithm 2 describes this substitution for Line 5 in Algorithm 1. Initially, it starts with
a basic scenario, setting all job parameters to their minimum values. It then addresses two
main cases: the first, where the jobs i and j are distinct and the job j is critical in σ under this
basic scenario; and the second, where i equals j , referred to as c, with the potential for j to
be critical in σ . Each case involves a series of modifications, transitioning from one scenario
to another, or adjustments to the parameters of the scenario, with the aim of maximizing the
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relative regret. A third case arises as an exception to the main cases, considered when the
guess (i, j, k) leads to an infeasible program (P).

Algorithm 2 Substitution of Line 5 in Algorithm 1
Require: A set of jobsJ with their uncertain characteristics, a sequence π , a guess (i, j, k), a partial scenario

s̄π
i, j,k , and the optimal sequence σ for this scenario.

Ensure: A scenario sπ
i, j,k , extending the partial scenario s̄π

i, j ,k to maximize the objective of (P) under
Constraints (2)–(4), will be generated, except when the guess (i, j, k) results in an infeasible program (P),
in which case it will be ignored.

1: Extend the partial scenario s̄π
i, j ,k to the fully defined scenario smin by setting:

– q
smin
i ← max{qmin

i , qσ(k+1)}
– p

smin
a�

← pmin
a�

, ∀� ∈ �1, m�

CASE 1: Different jobs for i and j

2: if i �= j and j ∈ Crit(smin, σ ) then
3: Modify the scenario smin to produce the scenario s0 by setting:

– q
s0
i ← q

smin
i + min

{
L

smin
j (σ ) − L

smin
i (σ ), min{qmax

i , qσ(k−1)} − q
smin
i

}

4: for � = 1, . . . , m do
5: Modify the scenario s�−1 to produce the scenario s� by setting:

– p
s�
a�

← p
s�−1
a�

+ min

{

L
s�−1
j (σ ) − max

h∈A(σ,a�)∪{a�}
L

s�−1
h (σ ), pmax

a�
− p

s�−1
a�

}

CASE 2: Same job for i and j , denoted as c

6: else if i = j and L∗(smin) − L
smin
c (σ ) ≤ min{qmax

c , qσ(k−1)} − q
smin
c then

7: Adjust the scenario smin by setting:
– q

smin
c ← q

smin
c + L∗(smin) − L

smin
c (σ )

8: Consider smin as the initial scenario, denoted by s0, for the following loop.
9: for � = 1, . . . , m do
10: Modify the scenario s�−1 to produce the scenario s� by setting:

– p
s�
a�

← p
s�−1
a�

+ min

{

L
s�−1
c (σ ) − max

h∈A(σ,a�)∪{a�}
L

s�−1
h (σ ), pmax

a�
− p

s�−1
a�

}

Adjustment of the scenario sm : Step 1
11: if qsm

c < min{qmax
c , qσ(k−1)} and

∑m
�=1(pmax

a�
− psm

a�
) > 0

and L(sm , π) < 2L∗(sm ) then

12: Let Δ = min
{∑m

�=1(pmax
a�

− psm
a�

),min{qmax
c , qσ(k−1)} − qsm

c

}

13: Adjust the scenario sm by:
– setting qsm

c ← qsm
c + Δ

– increasing the total processing time of the jobs (a�)�∈�1,m� by Δ,

with respect to their maximum values.
Adjustment of the scenario sm : Step 2

14: if qsm
c < min{qmax

c , qσ(k−1)} and L(sm , π) < L∗(sm ) then
15: Adjust the scenario sm by setting:

– qsm
c ← min{qmax

c , qσ(k−1)}

CASE 3: The guess (i, j, k) results in an infeasible program (P)

16: else
17: Ignore the guess (i, j, k)

18: return sπ
i, j,k
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Fig. 4 Illustration of the increases in the remaining parameters from the initial scenario smin to an extended
scenario s

Theorem 2 Algorithm 2 replaces Line 5 in Algorithm 1 by extending s̄π
i, j,k to the scenario

sπ
i, j,k .

Proof Let s∗ be the scenario extended from the partial scenario s̄π
i, j,k and obtained by solving

the program (P) using the Constraints (2)–(4), with qs∗
i , ps∗

a1 , . . . , ps∗
am

as the values of the
remaining parameters. Let sm be the scenario defined by the partial scenario s̄π

i, j,k and by

the values of the remaining parameters, specifically qsm
i , psm

a1 , . . . , psm
am , as constructed by

the algorithm. We aim to demonstrate that s∗ can be transformed into sm while maintaining
the objective value of (P) unchanged and adhering to the Constraints (2)–(4). This can be
represented as:

L(s∗, π)

L∗(s∗)
= L(sm, π)

L∗(sm)

In Line 1, the algorithm extends the partial scenario s̄π
i, j,k to the fully defined scenario smin

by initializing the remaining parameters to their respective lower bounds. For any scenario
s, whether directly extending s̄π

i, j,k or derived from such an extension, we define Δs
q =

qs
i −qsmin

i , andΔs
a�

= ps
a�

− psmin
a�

for � ∈ �1, m�, as the increases in the respective remaining
parameters with respect to smin (see Fig. 4). Remark that any adjustment to the value of any
increase directly corresponds to changing the value of its corresponding parameter for any
given scenario. For a job h ∈ A(σ, a1)∪{a1}, b(h) is defined as the index of the job in the set
(a�)�∈�1,m�, corresponding to h if included in this set, or to the job immediately preceding
h in σ otherwise. We assign a fictive value of b(h) = 0 for any job h ∈ B(σ, a1)\{a1}. It is
observed that, for any scenario s, the completion time of a job h ∈ J can be expressed as:
Cs

h(σ ) = Csmin
h (σ )+∑b(h)

�=1 Δs
a�
. This formulation is crucial for the subsequent reformulations

of the objective of (P) and the Constraint (2), which will clarify the process of the exchange
of charges during the scenario transformations in our proof. In what follows, we consider
two cases.

Case 1: When i �= j , the lateness of j in the sequence σ is fixed for any scenario extending
s̄π

i, j,k , since both the processing times of the jobs in B(σ, j) and the delivery time
of j are predetermined by s̄π

i, j,k . Consequently, if the second condition in Line 2
is not satisfied, specifically if the job j is not critical in σ under smin, which is
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the scenario with the minimum possible lateness values for all jobs, then the guess
(i, j, k) is ignored as indicated in Lines 2, 16, and 17. This is because such a guess
results in an infeasible program (P). Suppose that this is not the case. To maximize
the relative regret, the algorithm needs only to maximize the maximum lateness in
π since the maximum lateness in σ is fixed. Let s be the scenario sought by the
program (P). The objective of (P), considering the variables Δs

q and (Δs
a�

)�∈�1,m�,
can be reformulated as follows:

maximize L(s, π) = Lsmin
i (π) +

m∑

�=1

Δs
a�

+ Δs
q

Furthermore, the Constraint (2) is restated as:

Lsmin
j (σ ) ≥ Lsmin

i (σ ) +
b(i)∑

�=1

Δs
a�

+ Δs
q , and

Lsmin
j (σ ) ≥ Lsmin

h (σ ) +
b(h)∑

�=1

Δs
a�

∀h ∈ (
A(σ, a1) ∪ {a1}

) \ {i}.

To effectively achieve this objective, Algorithm 2 starts with the scenario smin and
initially increases the delivery time of i to its maximum, thereby obtaining the
scenario s0. It then iteratively modifies each scenario s�−1 to produce s�, for � =
1, . . . , m, by increasing the processing time of the job a� to its maximum, with
respect to the limits set by the Constraints (2)–(4) at each iteration.
Let us first consider the value of the delivery time of i . According to Line 3, qs0

i
is increased from its previous value in the scenario smin by the minimum of the
following two quantities: (i) Lsmin

j (σ ) − Lsmin
i (σ ), which guarantees that the job j

remains critical in σ (the Constraint (2)), and (ii) min{qmax
i , qσ(k−1)}−qsmin

i , which
adheres to the upper bound for the delivery time of i (the Constraint (4)). Note
that the resulting increase represents the maximum possible augmentation of the
delivery time of i from the scenario smin without violating the specified constraints.
Consequently, given that smin matches s∗ in all previously determined values by
s̄π

i, j,k , and considering that smin is characterized by the minimum values for the
remaining parameters, it follows that the delivery time of i under s∗ cannot exceed
that under s0, i.e., qs∗

i ≤ qs0
i .

Subsequently, we transform s∗ to s∗
0 by increasing the delivery time of i to its

maximum value, i.e., q
s∗
0

i = qs0
i . At the same time, we decrease the equivalent

amount from the charges in the increasesΔs∗
ah
, for h ∈ �1, m�, following the order in

which their corresponding jobs appear in the sequence σ . This order is important to
prevent the job i from becoming critical in σ , especially when i ∈ A(σ, a1). Indeed,
the exchange of charges initially involves decreasing the remaining processing times
of the jobs in B(σ, i), during which the lateness of i in σ remains unchanged. Once
these processing times of the jobs in B(σ, i) reach their minimum values, s∗

0 will
match s0 in all processing times of the jobs in B(σ, i). Thus, it ensures that j remains
critical in σ under s∗

0 , as our algorithm constructs s0 under the same conditions.
Moreover, since we decrease the completion time of i in π by the same amount
increased in its delivery time, we get L(s∗, π) = L(s∗

0 , π). Therefore, the scenario
s∗
0 matches s0 in the delivery time of i , along with all values determined by s̄π

i, j,k ,
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and maintains the same objective value of (P) as the scenario s∗, all while adhering
to the Constraints (2)–(4).
Now, we examine the processing time of the job a� for each iteration, where
� = 1, . . . , m. As indicated in Lines 4 and 5, the processing time ps�

a�
is increased

from its previous value in s�−1 by the minimum of the following two quantities:
(i) Ls�−1

j (σ ) − Ls�−1
h (σ ), where h is the job in A(σ, a�) ∪ {a�} with the maximum

lateness in σ , ensuring that the job j remains critical in σ (the Constraint (2)),
and (ii) pmax

a�
− ps�−1

a�
, which adheres to the upper bound for the processing time

of a� (the Constraint (3)). Recall that the maximum lateness in σ is fixed, i.e.,
Ls�

j (σ ) = Lsmin
j (σ ) for all � ∈ �0, m�. Note also that this increase specifically

applies to the processing time of the job a� at each iteration, while the remaining
processing times of the subsequent jobs ah , for h ∈ �� + 1, m�, remain unchanged
from their values in smin, i.e., ps�

ah = psmin
ah for h ∈ ��+1, m�. The resulting increase

represents the maximum possible augmentation of the processing time of a� from
the scenario s�−1 without violating the specified constraints. Consequently, since
s∗
�−1 matches s�−1 in all predetermined parameters and s�−1 has the minimum val-
ues for the remaining undetermined parameters, it follows that the processing time

of a� under s∗
�−1 cannot exceed that under s�, i.e., p

s∗
�−1

a�
≤ ps�

a�
.

Subsequently, we transform s∗
�−1 to s∗

� by increasing the processing time of a�

to its maximum value, i.e., p
s∗
�

a�
= ps�

a�
. At the same time, we decrease the

equivalent amount from the charges in the increases Δ
s∗
�−1

h , for h ∈ �� + 1, m�,
following the order in which their corresponding jobs appear in the sequence σ .
For the same reasons as before, this order effectively ensures that no job within
A(σ, a�) ∪ {a�} becomes critical in σ . Additionally, as the completion time of the
job i remains constant in π throughout this exchange of charges, we deduce that
L(s∗

�−1, π) = L(s∗
� , π). Moreover, the scenario s∗

� matches s� in the processing time
of the job a� and in all values determined by s�−1. By induction, we conclude that s∗
is transformed into s∗

m , which in turn matches sm in all parameter values, and they
share the same objective value of (P), i.e., L(s∗, π) = L(sm, π), with respect to
the Constraints (2)-(4).

Case 2: When i = j , denoted as c, the completion time of the critical job c in the sequence
σ is fixed for any scenario extending s̄π

c,c,k , since the processing times of the jobs in
B(σ, c) are predetermined by s̄π

c,c,k . However, the value of the maximum lateness of
c in σ is not fixed, since its delivery time is not determined yet. As outlined in Line 7,
the algorithm forces c to become critical in σ under smin by increasing its delivery
time by L∗(smin) − Lsmin

c (σ ). If c cannot be made critical through this adjustment,
i.e., the second condition of Line 6 is not satisfied, specifically when the required
increase of the delivery time of c exceeds the allowable range for c, then the guess
(c, c, k) is ignored. This is because such a guess results in an infeasible solution for
the program (P). Assume that this is not the case. Let s be the scenario sought by the
program (P). The objective of (P), considering the variables Δs

q and (Δs
a�

)�∈�1,m�,
can be reformulated as follows:

maximize
Lsmin

c (π) + ∑m
�=1 Δs

a�
+ Δs

q

Lsmin
c (σ ) + Δs

q
(5)
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The Constraint (2) is restated as:

Lsmin
c (σ ) + Δs

q ≥ Lsmin
h (σ ) +

b(h)∑

�=1

Δs
a�

∀h ∈ A(σ, a1) ∪ {a1}

Firstly, Algorithm 2 maintains the delivery time of c at its minimum possible value
as determined in the scenario smin. This scenario is then used as the initial state,
denoted s0, for the following iterative process, as specified in Line 8. Throughout
this procedure, for each � = 1, . . . , m, the algorithm modifies the scenario s�−1 to
produce the scenario s� by increasing the processing time of the job a� to its maxi-
mum,with respect to theConstraints (2)–(4). It is important to note that the algorithm
maintains the delivery time of c constant during this procedure, i.e., qsmin

c = qs�
c for

� = 1, . . . , m.
After completing this iterative process up to Line 10 and obtaining the scenario sm ,
the scenario s∗ can be transformed into s∗

m , such that in this new scenario s∗
m , the

processing times of all jobs in (a�)�∈�1,m� are greater than or equal to those in the

scenario sm , i.e., p
s∗
m

a�
≥ psm

a�
for each � = 1, . . . , m. For convenience, we refer to s∗

as s∗
0 . For each � = 1, . . . , m, we iteratively transform s∗

�−1 into s∗
� by adjusting the

processing time of the job a�. Specifically, whenever p
s∗
�−1

a�
< psm

a�
, we increase the

processing time of a� to match that in sm , i.e, we set p
s∗
�

a�
= psm

a�
. Simultaneously, we

decrease the same amount from the increasesΔ
s∗
�−1

h , for h ∈ (B(π, c)∩A(σ, c))\{a�}
where p

s∗
�−1

h > psm
h , in order to align them with those in sm , Δ

sm
h . This transfer of

charges follows the order in which the corresponding jobs are appear in σ . For the
same reasons as before, this ordering ensures that c remains critical in σ , as effec-
tively guaranteed by the scenario s�. Consequently, this transformation preserves the
objective value of (P), as it increases the lateness of c by the exact amount decreased
and keeps its lateness in σ constant. By applying inductive reasoning, we ultimately

achieve the scenario s∗
m , which satisfies p

s∗
m

a�
≥ psm

a�
for each � = 1, . . . , m, while

maintaining the objective value of (P) and adhering to the Constraints (2)–(4).
Subsequently, if the delivery time of c has reached its maximum possible value
under the initial scenario smin, it necessarily holds the same maximum value under
the scenario sm , i.e., qsmin

c = qsm
c = min{qmax

c , qσ(k−1)}. For this case, we deduce
that the scenarios sm and s∗

m match in all parameter values. This is because: Firstly,
if the delivery time of c in s∗

m is less than that in sm , then s∗
m would not be a feasible

scenario, as such a situation would necessarily violate the predefined constraints.

Hence, this ensures that q
s∗
m

c = qsm
c . Secondly, the transformations from s∗ to s∗

m
in this specific case proceed in the same manner as in the previously proven case

where i �= j . Therefore, p
s∗
m

a�
= psm

a�
for each � = 1, . . . , m. Note that in this case,

the algorithm does not apply any adjustments to the scenario sm as it is already
optimized to maximize the relative regret.
Otherwise, if qsm

c does not achieve its maximum, i.e., qsm
c < min{qmax

c , qσ(k−1)},
we examine two sub-cases:

(1) If
∑m

�=1(pmax
a�

− psm
a�

) = 0, this indicates that while the delivery time of c has the
potential for further increase, all jobs in (a�)�∈�1,m� have reached their maximum
processing times under the scenario sm . Consequently, these jobs have also reached

their maximum processing times under the scenario s∗
m , since p

s∗
m

a�
≥ psm

a�
= pmax

a�
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for each � = 1, . . . , m. As a result, sm and s∗
m match in terms of all processing times.

To maximize the relative regret, the algorithm adjusts the scenario sm by setting qsm
c

to its maximum possible value, i.e., min{qmax
c , qσ(k−1)}, under the condition that

L(sm, π) < L∗(sm), as specified in Lines 14 and 15 (Adjustment of the scenario sm :
Step 2). This condition is crucial for increasing the relative regret. Indeed, in this
specific case, increasing qsm

c by ε > 0 uniformly increases the maximum lateness in
both π and σ by ε. Thus, to ensure that the relative regret is an increasing function,
it is necessary that the condition L(sm, π) < L∗(sm) is satisfied. This requirement is
validated by the inequality L(sm ,π)

L∗(sm )
<

L(sm ,π)+ε
L∗(sm )+ε

, as shown inRemark 2.2,wherea and

b represent Lsm
c (π) and Lsm

c (σ ), respectively. Therefore, since sm and s∗
m matched

in all processing times and the delivery time of c in sm is assigned the maximum
possible value, we conclude that sm and s∗

m match in all parameters.
(2) If

∑m
�=1(pmax

a�
− psm

a�
) > 0, this indicates that both the delivery time of c and the

processing times of some jobs in (a�)�∈�1,m� have the potential for further increase.
According to the objective function 5, increasing the processing time of any job in
the scenario sm by ε necessitates a corresponding increase in the delivery time of
c by ε to ensure c remains critical in σ . Conversely, any increase in the delivery
time of c by ε allows for the possibility to increase the total processing time of the
remaining jobs by ε without violating the Constraints (2) and (3). Consequently, such
adjustments lead to an increase in the maximum lateness in σ by ε, and in π by 2ε. To
maximize the relative regret, the algorithm proceeds through two steps to adjust the
scenario sm . In the first step, as detailed in Lines 11–13 (Adjustment of the scenario
sm : Step 1), the quantity Δ = min

{∑m
�=1(pmax

a�
− psm

a�
),min{qmax

c , qσ(k−1)} − qsm
c

}

is simultaneously added to the delivery time of c and the total processing time of
the jobs (a�)�∈�1,m� where psm

a�
< pmax

a�
, with respect to their maximum values. The

order and the quantity of the increases applied to the total processing time of these
jobs is not important. To ensure that this adjustment results in an increase in the
relative regret, i.e., L(sm ,π)

L∗(sm )
<

L(sm ,π)+2ε
L∗(sm )+ε

, it is necessary that L(sm, π) < 2L∗(sm).
This requirement is derived from Remark 2.3, where we set a = L(sm, π) and
b = L∗(sm). The second step is initiated when the processing times of all jobs have
reached their maximum values, while the delivery time of c has not. Under these
conditions, we return to the sub-case previously addressed. Consequently, given that
all the remaining parameters in sm are less than or equal to those in s∗

m , and sm

is adjusted to achieve the maximal possible increasing of the relative regret, it is
deduced that s∗

m can be transformed to match sm .

In conclusion, we demonstrate that in all cases, s∗ can be transformed into sm while
maintaining the objective value of (P) unchanged and adhering to Constraints (2)–(4). Con-
sequently, sm extends s̄π

i, j,k by maximizing the relative regret for the guess (i, j, k), thereby
confirming the validity of the theorem. ��

Note that calculating the lateness of any job in a sequence under any scenario, as well
as identifying the critical job in any sequence under any scenario, each requires O(n) time.
Remark also that themost computationally intensive steps inAlgorithm2occur in the iterative
procedure, specifically during the operations in Lines 4 and 5, and Lines 9 and 10. These
steps involve calculating the maximum lateness for jobs h ∈ A(σ, a�) ∪ {a�} in the sequence
σ under the scenario s�−1 for each � = 1, . . . , m. This calculation is performed in O(n) time
and is repeated O(n) times.

However, it is important to note that this maximum lateness calculation can be performed
once for the scenario smin before initiating the iterative procedure. For � = 1, . . . , m and for
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all jobs h ∈ A(σ, a�) ∪ {a�}, the lateness Ls�
h (σ ) = Lsmin

h (σ ) + ∑b(h)
�=1 Δ

s�
a�
. Since

∑b(h)
�=1 Δ

s�
a�

increases for all such jobs h, the order of maximum lateness among the jobs remains consis-
tent for any scenario s�. Therefore, the computational complexity of Algorithm 2 is O(n2).
Moreover, by substituting the direct solution of the program (P) in Line 5 with the applica-
tion of Algorithm 2, the computational complexity of Algorithm 1 is effectively reduced to
O(n5).

5.3 The Alice’s problem

In this section, we follow the ideas in Kasperski (2005) and we show howAlice constructs an
optimal sequence π minimizing the maximum relative regret, i.e., π = argminσ∈Π Z R(σ ).
Intuitively, by starting from the last position and going backwards, Alice searches for an
unassigned job that, if placed at the current position and it happens to be critical in the final
sequence π , will lead to the minimization of the maximum relative regret for π .

In order to formalize this procedure we need some additional definitions. Assume that
Alice has already assigned a job in each position n, n − 1, . . . , r + 1 of π . Let Br be the
set of unassigned jobs and consider any job i ∈ Br . If i is assigned to the position r in π ,
then the sets B(π, i) and A(π, i) coincide with Br and J \Br , respectively, and are already
well defined, even though the sequence π is not yet completed (recall that B(π, i) includes
i). Indeed, B(π, i) and A(π, i) depend only on the position r , i.e., B(π, i) = B(π, j) =
Br and A(π, i) = A(π, j) for each couple of jobs i, j ∈ Br . Hence, Alice can simulate
the construction in Bob’s algorithm in order to decide which job to assign at position r .
Specifically, for a given job i ∈ Br , Alice considers all scenarios s Br

i, j,k , where j ∈ J is the
first critical job in the optimal sequence σ for this scenario and k ∈ �1, n� is the position
of i in σ , constructed as described in Bob’s algorithm. Note that, we slightly modified the
notation of the scenario constructed by Bob for a guess (i, j, k) to s Br

i, j,k instead of sπ
i, j,k ,

since a partial knowledge (Br = B(π, i)) of π is sufficient to apply the Lines 4–5 of the
algorithm. Moreover, the reason of omitting Constraint (1) in the program (P) is clarified
here, since the job i is not imposed to be necessarily critical in π . For a job i ∈ Br , let

fi (π) = max
j∈J ,k∈�1,n�

{
L(s B(π,i)

i, j,k )

L∗(s B(π,i)
i, j,k )

}

Then, Alice assigns to position r the job i which minimizes fi (π). The procedure of Alice
is summarized in Algorithm 3.

Algorithm 3 Alice’s algorithm for 1||Lmax

Require: A set of jobs J with their uncertain characteristics.
Ensure: A sequence π minimizing the maximum relative regret.
1: Bn ← J
2: for r ← n downto 1 do
3: Let i = argmini∈Br { fi (π)} be the job of minimum fi (π) in Br
4: Set π(r) ← i and Br−1 ← Br \ {i}
5: return π

The following theorem proves that Algorithm 3 returns the optimal sequence.
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Fig. 5 The relationship between sequences π , σ and σ
′

Theorem 3 Algorithm 3 returns a sequence π that minimizes the maximum relative regret
for the problem 1 || Lmax in O(n · TBob(n)) time (i.e., O(n6) time), where TBob(n) is the
complexity of the Bob’s problem.

Proof Recall that Br is the set of unassigned jobs at position r . For a sequence π , recall also
that s Br

i, j,k is the scenario constructed by Bob based on the guess (i, j, k)where B(π, i) = Br

and, for i ∈ Br , the function fi (π) is defined by:

fi (π) = max
j∈J ,k∈�1,n�

{
L(s B(π,i)

i, j,k )

L∗(s B(π,i)
i, j,k )

}

Letπ be the sequence constructed byAlgorithm3 andσ be an optimal sequence forAlice’s
problem. Consider r the last position in which σ and π are different, i.e., π(r) �= σ(r) and
π(i) = σ(i) for r < i ≤ n. We select σ in way that minimizes r . If r = 0 then π = σ and
π is optimal. Let r > 0. We form a new sequence σ

′
by inserting job σ(s) directly after job

σ(r) in the sequence σ . The illustration in Fig. 5 demonstrates the connections between the
sequences π , σ , and σ

′
, and showcases the sets Ar , Br , E , and D that result from it.

Let c ∈ J be the critical job in σ ′, i.e., Z R(σ ′) = fc(σ
′). We distinguish three cases:

Case 1: c ∈ Ar ∪ D, the set B(σ, c) does not change from σ to σ ′, i.e., B(σ, c) = B(σ ′, c).
Then, σ ′ is also an optimal sequence for Alice since Z R(σ ′) = fc(σ ) = fc(σ

′) ≤
Z R(σ ).

Case 2: c ∈ E ∪ {σ(r)}, the set B(σ, c) loses the job σ(s) by moving from σ to σ ′, i.e.,
B(σ ′, c) = B(σ, c)\ {σ(r)}. Let j ′ ∈ J and k ∈ �1, n�. We consider the worst-case

scenarios sc(σ
′) = s B(σ ′,c)

c, j ′,k and sc(σ ) = s B(σ,c)
c, j ′,k constructed by the Bob’s algorithm

by the guesses (c, j ′, k, B(σ ′, c)) and (c, j ′, k, B(σ, c)) as seen previously. Notice
that sc(σ

′) and sc(σ ) have the same Bob’s sequence σBob since it depends on the

job c and its position k in σBob. Moreover, we have L∗(sc(σ
′)) = Lsc(σ

′)
c′ (σBob) =

Lsc(σ )

c′ (σBob) = L∗(sc(σ )) since c′ is the first critical job in σBob and psc(σ
′)

j =
psc(σ )

j = pmin
j for each j ∈ B(σBob, c′) according to Lemma 1. Consequently, since

L(sc(σ
′)) ≤ L(sc(σ )), we get Z R(σ ′) = max

j∈J f j (σ
′) ≤ max

j∈J f j (σ ) ≤ Z R(σ ).

Thus, σ ′ is also an optimal sequence for Alice.
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Case 3: c = σ(s) = π(r), it is established that Br = B(π, π(r)) = B(σ ′, σ (s)) =
B(σ, σ (r)). By equivalences, we get

Z R(σ ′) = fσ(s)(σ
′) = max

( j ′,k)∈J 2
{ L(s B(σ ′,σ (s))

σ (s), j ′,k )

L∗(s B(σ ′,σ (s))
σ (s), j ′,k )

}

= max
( j ′,k)∈J 2

{ L(s Br
π(r), j ′,k)

L∗(s Br
π(r), j ′,k)

}

(∗)≤ max
( j ′,k)∈J 2

{ L(s Br
σ(r), j ′,k)

L∗(s Br
σ(r), j ′,k)

}

= max
( j ′,k)∈J 2

{ L(s B(σ,σ (r))

σ (r), j ′,k )

L∗(s B(σ,σ (r))

σ (r), j ′,k )
}

= fσ(r)(σ ) ≤ Z R(σ )

The fact that π is constructed by Algorithm 3, and π(r) = argmini∈Br
{ fi (π)} is the

job selected by Algorithm 3 to be the job of minimum fi (π) among all jobs i ∈ Br ,
implies the inequality (∗). Therefore, σ ′ is also an optimal sequence for Alice.

The conclusion drawn from cases 1 to 3 is that σ
′
is the optimal sequence, which contradicts

the fact that r is minimal and therefore, concludes the proof. ��

6 Min–max relative regret for 1 | rj,pj = 1 | Lmax

In this section,we consider the case of unit processing time jobs, i.e., ps
j = 1 for all jobs j ∈ J

and all possible scenarios s ∈ S. In contrast to the previous section, the jobs are released
on different dates whose values are also imposed to uncertainties. For a fixed scenario, Horn
(1974) proposes an extension of the Jackson’s rule leading to an optimal schedule for this
problem: at any time t , schedule the available job, if any, of the biggest delivery time, where
a job j is called available at time t if r j ≤ t and j is not yet executed before t .

6.1 The Bob’s problem

Since all jobs are of unit the processing times, a scenario s is described by the values of
the release dates and the delivery times of the jobs, i.e., by rs

j ∈ [rmin
j , rmax

j ] and qs
j ∈

[qmin
j , qmax

j ], for each j ∈ J . In the presence of different release dates, the execution of the
jobs is partitioned into blocks that do not contain any idle time. In a given schedule under a
scenario s and a sequence π , a job u j is referred to as the first-block job for a job j ∈ J if
it is the first job processed in the block containing j . The following lemma characterizes a
worst-case scenario for a given sequence of jobs π .

Lemma 2 Let π be a sequence of jobs. There exists a worst-case scenario s, a critical job
c ∈ Crit(s, π) and its first-block job uc in π under s such that:

i For each job j ∈ J \ {c}, it holds that qs
j = qmin

j ,

ii For each job j ∈ J \ {uc}, it holds that rs
j = rmin

j .
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Proof Let s1 be a worst-case scenario for a given sequence π , c ∈ Crit(s1, π) be a critical
job in π under s1 and uc be its first-block job. We consider the following transformation,
from s1 to s2, which consist in replacing:

– qs1
j with qmin

j for all the jobs j ∈ J \{c}, i.e., qs2
j = qmin

j ,

– rs1
j with rmin

j for all jobs j ∈ J \{uc}, i.e., rs2
j = rmin

j .

Note that the critical job c remains critical in π under s2, since Ls1
c (π) = Ls2

c (π) and
Ls1

j (π) ≥ Ls2
j (π) for each other job j ∈ J \{c}. Moreover, by Remark 1, L∗(s1) ≥ L∗(s2),

since the value of several delivery times and release dates is only decreased according to the
transformation. Then, we get:

R(s1, π) = L(s1, π)

L∗(s1)
≤ L(s2, π)

L∗(s2)
= R(s2, π)

Therefore, s2 is also a worst-case scenario for π and the lemma holds. ��

Consider the sequence π chosen by Alice. Bob can guess the critical job c in π and its
first-block job uc. Using Lemma 2, we get a partial scenario s̄ by fixing the delivery times
of all jobs except for c as well as the release dates of all jobs except for uc to their minimum
values. It remains to determine the values of qc and ruc in order to extend the partial scenario
s̄ to a scenario s. At the end, Bob will choose, among all scenarios created, the worst-case
one for the sequence π , i.e., the scenario with the maximum value of relative regret.

In what follows, we explain how to construct a sequence σ which will correspond to an
optimal schedule for the scenario s when the values of qc and ruc will be fixed. The main idea
of the proposed algorithm is that, once a couple of σ and s is determined, then σ corresponds
to the sequence produced by applying Horn’s algorithm with the scenario s as an input.
The sequence σ is constructed from left to right along with an associated schedule which
determines the starting time B j and the completion time C j = B j + 1 of each job j ∈ J .
The assignment of a job j to a position of this schedule (time B j ) introduces additional
constraints in order to respect the sequence produced by Horn’s algorithm:

(C1) There is no idle time in [r j , B j ),
(C2) At time B j , the job j has the biggest delivery time among all available jobs at this

time, and
(C3) The delivery times of all jobs scheduled in [r j , B j ) should be bigger than qs

j .

These constraints are mainly translated to a refinement of the limits of qc or of ruc , i.e.,
updates on qmin

c , qmax
c , rmin

uc
and rmax

uc
. If at any point of our algorithm the above constraints

are not satisfied, then we say that the assumptions/guesses made become infeasible, since
they cannot lead to a couple (σ, s) respecting Horn’s algorithm. Whenever we detect an
infeasible assumption/guess, we throw it and we continue with the next one.

Let �[x] be the x-th job which is released after the time rmin
uc

, that is, rmin
uc

≤ r s̄
�[1] ≤ r s̄

�[2] ≤
. . . ≤ r s̄

�[y]. By convention, let r s̄
�[0] = rmin

uc
and r s̄

�[y+1] = +∞. To begin our construction,
we guess the positions kc and kuc of the jobs c and uc, respectively, in σ as well as the interval
[r s̄

�[x], r s̄
�[x+1]), 0 ≤ x ≤ y, of Buc in the optimal schedule s for σ . Let kmin = min{kc, kuc }.

We start constructing σ and its corresponding schedule by applying Horn’s algorithm with
input the set of jobs J \ {c, uc} for which all data are already determined by the partial
scenario s̄, until kmin − 1 jobs are scheduled. Then, we set σ(kmin) = argmin{kc, kuc }. We
now need to define the starting time of σ(kmin) and we consider two cases:
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Case 1: kc < kuc . We set Bc = max{Cσ(kmin−1), r s̄
c }. If Bc = r s̄

c and there is an idle time and
an available job j ∈ J \{c, uc} in [Cσ(kmin−1), Bc), then we throw the guess kc, kuc ,
[r s̄

�[x], r s̄
�[x+1]) since we cannot satisfy constraint (C1) for j , and hence our schedule

cannot correspond to the one produced by Horn’s algorithm.
Let qs̄

a = max{qs̄
j : j ∈ J \{c, uc} is available at Bc}. Then, in order to sat-

isfy constraint (C2) we update qmin
c = max{qmin

c , qs̄
a}. Let qs̄

b = min{q j : j ∈
J \{c, uc} is executed in [rc, Bc)}. Then, in order to satisfy constraint (C3) we
update qmax

c = min{qmax
c , qs̄

b}. If qmax
c < qmin

c , then we throw the guess kc, kuc ,
[r s̄

�[x], r s̄
�[x+1]) since we cannot get a feasible value for qs

c .
It remains to check if there is any interaction between c and uc. Since kc < kuc , uc is
not executed in [rc, Bc). However, uc may be available at Bc, but we cannot be sure
for this because the value of rs

uc
is not yet completely determined. For this reason,

we consider two opposite assumptions. Note that Bc is already fixed by the partial
scenario s̄ in the following assumptions, while rs

uc
is the hypothetical release date

of uc in the scenario s.

Assumption 1.1: rs
uc

≤ Bc. In order to impose this assumption, we update rmax
uc

=
min{rmax

uc
, Bc}.

Assumption 1.2: rs
uc

> Bc. In order to impose this assumption, we update rmin
uc

=
max{rmin

uc
, Bc + 1}.

If in any of these cases we have that rmax
uc

< rmin
uc

, then we throw the corresponding
assumption, since there is no feasible value for rs

uc
. For each non-thrown assumption,

we continue our algorithm separately, and we eventually get two different couples
of sequence/scenario if both assumptions are maintained. More specifically, for
each assumption, we continue applying Horn’s algorithm with input the set of jobs
J \{σ(1), σ (2), . . . , σ (kmin − 1), c, uc} starting from time Cc = Bc + 1, until
kuc − kc − 1 additional jobs are scheduled. Then, we set σ(kuc ) = uc and Buc =
max{Cσ(kuc −1), rmin

uc
, r s̄

�[x]}. Note that Buc depends for the moment on the (updated)

rmin
uc

and not on the final value of rs
uc

which has not been determined at this point of
the algorithm. If Buc ≥ r s̄

�[x+1], then we throw the guess on [r s̄
�[x], r s̄

�[x+1]). We next
check if the constraints (C1)-(C3) are satisfied for all jobs in J \{uc} with respect to
the assignment of the job uc at the position kuc of σ with starting time Buc . If not,
we throw the current assumption. Otherwise, Horn’s algorithmwith input the jobs in
J \{σ(1), σ (2), . . . , σ (kuc )} and starting from time Buc + 1 is applied to complete
σ .

Case 2: kc > kuc . We set Buc = max{Cσ(kmin−1), rmin
uc

, r s̄
�[x]}. As before, Buc depends on

rmin
uc

and not on the final value of rs
uc
. If Buc ≥ r s̄

�[x+1] then we throw the current

guess on [r s̄
�[x], r s̄

�[x+1]). We need also to check if the constraints (C1)-(C3) are
satisfied for all jobs in J \{uc} with respect to the assignment of the job uc at the
position kuc of σ with starting time Buc . If not, we throw the current guess kc, kuc ,
[r s̄

�(q), r s̄
�(q)+1). Note that the last check is also applied for c and eventually leads to

update qmax
c = min{qmax

c , qs̄
uc

} if c is available at Buc . This can be easily verified
because of the guess of the interval of Buc .
Next, we continue applying Horn’s algorithm with input the set of jobs
J \{σ(1), σ (2), . . . , σ (kmin−1), c, uc} starting from time Buc +1, until kc −kuc −1
additional jobs are scheduled. Then, we set σ(kc) = c, Bc = max{Cσ(kc−1), r s̄

c },
and we check if the constraints (C1)-(C3) are satisfied for all jobs in J \{c} with
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respect to the assignment of the job c at the position kc of σ with starting time Bc.
If not, we throw the current guess kc, kuc , [r s̄

�[x], r s̄
�[x+1]). Moreover, an update on

qmin
c and qmax

c is possible here, like the one in the begin of case 1. Finally, Horn’s
algorithm with input the jobs in J \{σ(1), σ (2), . . . , σ (kc)} and starting from time
Cc = Bc + 1 is applied to complete σ .
Note that after the execution of the above procedure for a given guess c, uc, kc, kuc ,
[r s̄

�[x], r s̄
�[x+1]), and eventually an assumption 1.1 or 1.2, we get a sequence σ and

its corresponding schedule, while the values of qs
c and rs

uc
are still not defined but

their bounds are probably limited to fit with this guess. Then, we apply the following
three steps in order to get the scenario s:

(a) Extend the partial scenario s̄ to a scenario smin by setting qsmin
c = qmin

c and rsmin
uc =

rmin
uc

.
(b) Extend the scenario smin to the scenario s1 by increasing the delivery time of c to

its maximumwithout increasing the maximum lateness and without exceeding qmax
c ,

i.e., qs1
c = qsmin

c + min{qmax
c − qsmin

c , L∗(smin) − Lsmin
c (σ )}.

(c) Extend the scenario s1 to the scenario s by increasing the release date of uc to its
maximum without increasing the maximum lateness, without exceeding rmax

uc
and

without violating the constraint (C1) and the current guess.

The following theorem holds since in an iteration of the above algorithm, the guess cor-
responding to an optimal sequence σ for the worst-case scenario s will be considered, while
Horn’s algorithm guarantees the optimality of σ . The algorithm iterates through all possible
guesses of the critical job c, its first-block job uc, their positions kc and kuc , and the inter-
val [r s̄

�[x], r s̄
�[x+1]], resulting in O(n5) combinations. For each combination, the algorithm

applies Horn’s algorithm with a complexity of O(n log n). Thus, the overall complexity is
O(n6 log n).

Theorem 4 There is a polynomial time algorithm which, given a sequence π , constructs a
worst-case scenario sπ of maximum relative regret for the problem 1|r j , p j = 1|Lmax. The
complexity of the algorithm is O(n6 log n).

6.2 The Alice’s problem

In this section, we describe Alice’s algorithm in order to construct an optimal sequence
minimizing the maximum relative regret for 1|r j , p j = 1|Lmax. Since Alice knows how Bob
proceeds, she can do a guess g of the five parameters c, uc, kc, kuc , [r�[x], r�[x+1]) in order
to construct an optimal sequence σg for a scenario sg corresponding to this guess. Then, she
assumes that σg is provided as input to Bob. Bob would try to maximize its relative regret
with respect to σg by eventually doing a different guess ĝ, obtaining a scenario sĝ , i.e.,

R R(sĝ, σg) = max
g′

L(sg′ , σg)

L∗(sg′)

Note that, if g = ĝ, then R R(sĝ, σg) = 1 since by definition σg is the optimal sequence for
the scenario sg = sĝ . Therefore, Alice can try all possible guesses in order to find the one that
minimizes hermaximum relative regret by applyingBob’s algorithm to the sequence obtained
by each guess. Given the number of the possible guesses and the complexity of the Bob’s
algorithm, the overall complexity of Alice’s algorithm is O(n5n6 log n) = O(n11 log n).
Hence the following theorem holds.
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Theorem 5 There is a polynomial time algorithm which constructs a sequence π minimizing
the maximum relative regret for the problem 1|r j , p j = 1|Lmax. The complexity of the
algorithm is O(n11 log n).

Note that, Bob’s guess for this problem defines almost all parameters of a worst-case
scenario, without really using the input sequence provided by Alice. This is not the case in
Sect. 5 where, according to Lemma 1, the jobs that succeed the critical job in Alice’s sequence
should be known. For this reason Alice’s algorithm is simpler here compared to the one in
Sect. 5.3.

7 Min–max regret for 1 | rj,pj = p | Lmax

In this section, we consider the min–max regret criterion for a general version of the problem
studied in Sect. 6, which aims to minimize the maximum lateness subject to the constraint
that the processing time for each job is fixed to a constant value, i.e., 1|r j , p j = p|Lmax . For
a given scenario, Lazarev et al. (2017) have proposed a polynomial algorithm to solve this
problem in O(Q · n log n) time, where 10−Q is the accuracy of the input–output parameters.

7.1 The Bob’s problem

Bob characterizes the worst-case scenario for a given sequence π based on the following
Lemma.

Lemma 3 Let π be a sequence of jobs. There exists (1) a worst-case scenario s, (2) a critical
job c ∈ Crit(s, π) and (3) its first-block job uc in π under s such that:

i For each job j ∈ J \ {c}, it holds that qs
j = qmin

j ,

ii For each job j ∈ J \ {uc}, it holds that rs
j = rmin

j ,
iii qs

c = qmax
c ,

iv rs
uc

= rmax
uc

.

Proof Let s1 be a worst-case scenario for a given sequence π , c ∈ Crit(s1, π) be a critical
job and uc be the first-block job for c in π under s1. We will show that this scenario can be
transformed into another worst-case scenario that fulfills the properties of the statement. The
first transformation (T1), from s1 to s2, consist in replacing:

– qs1
j with qmin

j for all the jobs j ∈ J \{c}, i.e., qs2
j = qmin

j ,

– rs1
j with rmin

j for all jobs j ∈ J \{uc}, i.e., rs2
j = rmin

j .

Note that the job c remains critical in π under s2, since Ls1
c (π) = Ls2

c (π) and Ls1
j (π) ≥

Ls2
j (π) for each other job j ∈ J \{c}. Moreover, by Remark 1, L∗(s1) ≥ L∗(s2), since the

value of several delivery times and release dates is only decreased according to transformation
(T1). Thus, s2 is also a worst-case scenario for π , i.e.,

R(s1, π) = L(s1, π) − L∗(s1) ≤ L(s2, π) − L∗(s2) = R(s2, π)

The second transformation (T2), from s2 to s, consist in replacing:

– qs2
c with qmax

c , i.e., qs
c = qmax

c ,
– rs2

uc with rmax
uc

, i.e., rs
uc

= rmax
uc

.
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The delivery time of c increases by Δq = qmax
c − qs2

c and the release date of uc increases
byΔr = rmax

uc
−rs2

uc from s2 to s. As a result, the completion times of the jobs preceding uc in
π will increase by at most Δr , i.e., Ls

j (π) ≤ Ls2
j (π) + Δr for each job j preceding uc in π ,

while the completion time of job c will increase byΔr +Δq , i.e., Ls
c(π) = Ls2

c (π)+Δr +Δq ,
since it belongs to the same block as uc in the schedule of π under s2. Thus, c remains critical
in π under s.

Let σ be the optimal sequence for scenario s2. Since the maximum lateness in σ cannot
increase by more than Δr + Δq from s2 to s, we get:

L∗(s) − L∗(s2) ≤ L(s, σ ) − L(s2, σ ) ≤ Δr + Δq = L(s, π) − L(s2, π)

Then R(s2, π) ≤ R(s, π), we conclude that s is also a worst-case scenario for π and satisfies
all the properties of the lemma. ��

Using Lemma 3, Bob can determine the worst-case scenario s for a given sequence π ,
chosen by Alice, by guessing the critical job c and its first-block job uc in π . The overall
complexity of this process is O(Q ·n3 log n), where 10−Q is the accuracy of the input–output
parameters.

Theorem 5 There is a polynomial time algorithm which, given a sequence π , constructs
a worst-case scenario sπ of maximum regret for the problem 1|r j , p j = p|Lmax. The
complexity of the algorithm is O(Q · n3 log n).

7.2 The Alice’s problem

The concept behind theAlice’s algorithm forminimizing themaximum regret for 1 | r j , p j =
p | Lmax is similar to the one discussed in Sect. 6.2. The only difference is that in this case,
Bob only needs to guess two parameters, c and uc, which is a simpler task compared to the
other problem. Therefore, Alice can minimize her maximum regret by testing all possible
guesses using the Bob’s algorithm on the sequence generated by each guess. Thus, the
overall complexity of the Alice’s algorithm is O(Q ·n5 log n), arising from evaluating O(n2)

combinations and applying Bob’s algorithm for each. As a result, the following theorem
applies.

Theorem 6 There is a polynomial time algorithm which constructs a sequence π minimizing
the maximum regret for the problem 1|r j , p j = p|Lmax. The complexity of the algorithm is
O(Q · n5 log n).

8 Conclusions

We studied the min–max relative regret criterion for dealing with interval uncertain data for
the single machine scheduling problem of minimizing the maximum lateness. We considered
two variants and we proved that they can be solved optimally in polynomial time. Our main
technical contribution concerns the sub-problem of maximizing the relative regret for these
variants. The complexity of our results justifies in a sense the common feeling that the
min–max relative relative criterion is more difficult than the min–max regret criterion.

Note that our result for the variant without release dates can be extended even in the case
where the jobs are subject to precedence constraints. Indeed, Lawler (1973) proposed an
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extension of Jackson’s rule for the deterministic version of this problem, while the mono-
tonicity property still holds. Thus, the corresponding lemma describing a worst-case scenario
holds, and the determination of the optimal sequence depends only on the guess of the posi-
tion of the critical job in this sequence which should be imposed to respect the precedence
constraints.

In the future, it is interesting to clarify the complexity of the general maximum lateness
problem with respect to min–max relative regret when all parameters are subject to uncer-
tainty. We conjecture that this problem is NP-hard. If this is confirmed, the analysis of an
approximation algorithm is a promising research direction.
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