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Abstract
In this paper we give a systematization of global well-posedness in vector optimization.
We investigate the links among global notions of well-posedness for a vector optimiza-
tion problem (see e.g. Miglierina et al. in J Optim Theory Appl 126:391–409, 2005 for a
detailed explanation of the difference between pointwise and global well-posedness in vector
optimization). In particular we compare several notions of global well-posedness referring to
efficient solutions, weakly efficient solutions and properly efficient solutions of a vector opti-
mization problem.We also establish scalar characterizations of global vector well-posedness.
Finally we study global well-posedness of vector cone-convex functions.

Keywords Vector optimization · Well-posedness · Scalarization

1 Introduction

In a very simplified setting taking a decision involves a single objective that we wish to
minimize or maximize. Anyway, in real situations several conflicting objectives are involved
in a decision and we have to choose the “best” or at least a “good” alternative among the
available ones. This consideration is the foundation of multiobjective or vector optimization.
From its first roots, laid by Pareto at the end of the 19th century, the discipline has pros-
pered and grown, especially during the last decades. Today, many decision support systems
incorporate methods to deal with conflicting objectives. The foundation for such systems is
a mathematical theory of optimization under multiple objectives (see e.g. Erghott 2005).
When dealing with single objective and multiobjective optimization problems, the notion
of well-posedness plays a crucial role. Generally speaking, the different notions of well-
posedness of a given optimization problem can be divided into two classes. Notions in the first
class are based on the behaviour of a prescribed class of sequences of approximate solutions.
Notions in the second class are based on the continuous dependence of the (necessarily
existing) solution on the problem data. For single valued optimization problems the first
notion of the first type was introduced by Tykhonov (1966) and later took his name, while
the second type of well-posedness notions was introduced by Hadamard (1902).
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In this paper we focus on well-posedness notions in the first class. We recall that if A is a
subset of a normed space X and f : X → R, the scalar optimization problem

min
x∈A

f (x) (1)

is well-posed in the sense of Tykhonov, when it has a unique minimizer x̄ ∈ A and every
sequence xn ∈ A such that f (xn) → infx∈A f (x) converges to x̄ . A sequence xn ∈ A
such that f (xn) → inf x∈A f (x) is usually called a minimizing sequence. The motivation
for Tykhonov well-posedness is clearly inspired by a practical point of view. Usually, every
numerical method solving a minimization problem produces iteratively some minimizing
sequence xn and one wants to be sure that the approximate solutions xn are not far from the
(unique)minimum x̄ . In the context of single objective optimization, the relations between the
two approaches and their applications to Mathematical Programming and Optimal Control
have been widely studied (see e.g. Zolezzi, 2001). One can see e.g. (Dontchev & Zolezzi,
1993) for a detailed treatment of well-posedness in the single objective case.

In the last decades, several extensions of the well-posedness notion to vector optimization
appeared (see e.g. Bednarczuk, 1987, 1994a; Loridan, 1995, Dentcheva & Helbig, 1996,
Huang, 2000, 2001; Miglierina et al., 2005 for well-posedness concepts in the vector case).
In Anh et al. (2020) well-posedness of uncertain vector optimization problems is considered,
while in Morgan (2005) vector well-posedness notions are applied to multicriteria games.
Generalizations of well-posedness to set-optimization constitute an active field of research
(see e.g. Crespi et al., 2014, 2018, Miholca, 2021).
In multiobjective optimization we generally have multiple solutions. For this reason, in
Miglierina et al. (2005) a classification of vector well-posedness notions in two groups is
given: pointwise and global notions. Definitions in the first group consider a fixed efficient
point (or the image of an efficient point) and deal with well-posedness of the vector optimiza-
tion problem at this point. For a survey and relationships amongwell-posedness notions in the
first group one can see (Miglierina et al., 2005). This approach imposes that the minimizing
sequences related to the considered point are well-behaved.

Since in the vector case the solution set is typically not a singleton, there is also a class of
definitions, the so-called global well-posedness notions, that involve the efficient frontier, the
weakly efficient frontier or the properly efficient frontier as a whole. In this paper we survey
the notions on global well-posedness and investigate the relationships among them. Then we
characterize global well-posedness notions in terms of well-posedness of suitable scalarized
optimization problems. Finallywe give results concerning thewell-posedness of cone-convex
functions. The outline of the paper is the following. In Sect. 2 we give some preliminary con-
cepts. In Sect. 3 we survey global well-posedness notions in vector optimization. In Sect. 4
we investigate some relationships among the various global well-posedness notions. In sec-
tion 5 we characterize global well-posedness notions in terms of well-posedness of suitable
scalarized optimization problems. Section6 is devoted to the well-posedness of cone-convex
functions. Proofs of the results are given in the Appendix.

2 Preliminaries

2.1 Problem setting and notation

In this section we recall some basic notions on vector optimization. We assume that X , Y
are normed spaces and Y is ordered by a closed, convex and pointed cone K ⊆ Y , with
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nonempty interior. In this setting we have

y1 ≤K y2 ⇐⇒ y2 − y1 ∈ K ,

y1 <K y2 ⇐⇒ y2 − y1 ∈ int K

Clearly, when Y = R
m and K = R

m+ we obtain the classical notion of Pareto order.
We denote by B the closed unit ball, both in X and in Y (from the context it will be clear

to which space we refer).
Let f : X → Y and let A ⊆ X be a closed subset of X .We consider the vector optimization

problem (A, f ) given by

min f (x), x ∈ A

A point x̄ ∈ A is an efficient solution of problem (A, f ) when

( f (A) − f (x̄)) ∩ (−K ) = {0}
We denote by Eff (A, f ) the set of all efficient solutions of problem (A, f ) and byMin (A, f )
the image set of Eff (A, f ) through the objective function f . The image of an efficient solution
is called a minimal point.

We recall also that a point x̄ ∈ A is said to be a weakly efficient solution of problem
(A, f ) when

( f (A) − f (x̄)) ∩ (−intK ) = ∅.

We denote respectively by WEff(A, f ) the set of weakly efficient solutions and by
WMin (A, f ) the image set of WEff (A, f ) through the objective function f , i.e. the set
of weakly minimal points.

Clearly, when Y = R
m and K = R

m+ from the previous definitions we obtain the well-
known concepts of Pareto efficiency. For our purposes it is worth mentioning the notion
of proper efficiency. This notion dates back to Geoffrion (1968) in the case Y = R

m and
K = R

m+. The interested reader can refer e.g. to Guerraggio et al. (1994) for an overview of
the several notions of proper efficient solution and relationships among them.

According to the definition, a Pareto efficient solution for Problem (A, f ) does not
allow improvement of one objective function, while retaining the same values of the oth-
ers. Improvement of some criterion can only be obtained at the expense of the deterioration
of at least one criterion. The trade-offs among objectives can be measured computing the
increase in one objective per unit decrease of another objective. In some situations such
trade-offs can be unbounded. At a properly efficient point an unbounded trade-off cannot
happen.

In this paper we refer to the following general notion of proper efficiency. It can be proven
that Geoffrion’s notion can be obtained as a particular case. A point x̄ ∈ A is a properly
efficient solution of problem (A, f ) when there exists a closed convex pointed cone K ′ with
int K ⊆ K ′ such that x̄ is an efficient solution of problem (A, f ) with respect to the ordering
cone K ′. We denote by PEff(A, f ) the set of properly efficient solutions for problem (A, f )
and by PMin(A, f ) the image of PEff(A, f ) through the function f . For details about the
various notions of solution to a vector optimization problem one can see e.g. (Luc, 1989a).

The positive polar cone of K is denoted by

K+ = {v ∈ Y ∗ : 〈v, y〉 ≥ 0, ∀y ∈ K } (2)

where Y ∗ denotes the topological dual of Y . We recall that if K is a closed convex pointed
cone with nonempty interior, also K+ has nonempty interior. When dealing with vector
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optimization problems, scalarization of the problem is a key issue. This is a tool that allows
to reduce a multiobjective optimization problem to a single objective (or scalar) one. The
easiest way to scalarize a multiobjective optimization problem is the well known linear
scalarizazion. This means to associate to problem (A, f ) the family of problems

min gλ(x) = 〈λ, f (x)〉
with λ ∈ K+.

This technique, anyway relies heavily on convexity assumptions on the objective function
(see e.g. Erghott, 2005; Luc, 1989b). When convexity of the objective function is dropped
we need to use nonlinear scalarization tools. We recall the notion of “oriented distance” from
a point to a set introduced by Hiriart-Urruty (1979) which is useful to introduce nonlinear
scalarization techniques.

Definition 2.1 For a set M ⊆ Y , the oriented distance function �M : Y → R ∪ {±∞} is
defined as

�M (y) = d(y, M) − d(y, Y \ M)

where d(y, M) = inf z∈M ‖y − z‖ is the distance of the point y from the set M .

Function �M has been introduced in the framework of nonsmooth scalar optimization.
Later it has been used to obtain a scalarization of a vector optimization problem, considering
M = −K . The main properties of function �M are gathered in the following proposition
(see e.g. Ginchev et al., 2006; Zaffaroni, 2003).

Proposition 2.1 (i) If M �= ∅ and M �= Y then �M is real valued;
(ii) �M (y) < 0, ∀y ∈ intM, �M (y) = 0, ∀y ∈ ∂M and �M > 0, ∀y ∈ int(Mc);
(iii) if M is closed, then M = {y ∈ Y : �M ≤ 0};
(iv) if M is convex, then �M is convex;
(v) if M is a cone, then �M is positively homogeneous;
(vi) if M is a closed, convex cone, then �M is nonincreasing with respect to the ordering

induced on Y , that is if y1, y2 ∈ Y then

y1 − y2 ∈ M ⇒ �M (y1) ≤ �M (y2).

(vii) If M = −K then it holds

�−K (y) = max
v∈K+∩S

〈v, y〉 = max
v∈K+∩B

〈v, y〉 (3)

where S denotes the unit sphere in Y ∗.

We summarize in the next result some characterizations of solutions of the vector problem
(A, f ) is terms of solutions of a suitable scalar minimization problem obtained through
function �−K (see e.g. (Zaffaroni, 2003; Ginchev et al., 2006)).

Theorem 2.1 Let g(x) = �−K ( f (x) − f (x̄)). Then:

(i) x̄ ∈ Eff(A, f ) if and only if g(x) > g(x̄) = 0 for every x ∈ A\ f −1(x̄).
(ii) x̄ ∈ WEff(A, f ) if and only if g(x) ≥ g(x̄) = 0 for every x ∈ A.

Finally, we recall the notion of K -convex function.

Definition 2.2 Let A be a convex set. A function f : A → Y is said to be K -convex when
for every x, y ∈ A and t ∈ [0, 1] is holds

f (t x + (1 − t)y) ∈ t f (x) + (1 − t) f (y) − K (4)
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3 Global well-posedness notions

We give here a summary of the various notions of global well-posedness. In order to show
some links among them, we divide these notions in three groups. In the first one we consider
those definitions that refer to efficient solutions, in the second group we consider those
definitionswhich refer toweakly efficient solutions,while the third group contains a definition
of well-posedness that refers to properly efficient solutions.

The concept of minimizing sequence which is fundamental in defining well-posedness
for scalar optimization problems in the scalar case (see e.g. Dontchev & Zolezzi, 1993) can
be generalized in several ways to the vector case.

The following notions of minimizing sequence are requested in order to introduce the
definitions of well-posedness in the first group. They extend to the vector case the concept
of minimizing sequence in the sense of Tykhonov.

Definition 3.1 (Bednarczuk, 1994b; Miglierina & Molho, 2003; Miglierina et al., 2005)

(i) A sequence xn ∈ A is said B-minimizing when ∀n ∈ N, ∃kn ∈ K , kn → 0 and yn ∈
Min(A, f ) such that f (xn) ≤K yn + kn ;

(ii) A sequence xn ∈ A is said MM-minimizing when d( f (xn),Min(A, f )) → 0 as n →
+∞.

Now we introduce the well-posedness notions in the first group. These notions extend to
the vector case the classical notion of Tykhonov well-posedness for scalar optimization
problems. The solution of a vector optimization problem generally is not unique and these
notions refer to the set of efficient points. Basically, according to the following notions, a
vector optimization problem is well-posed when every minimizing sequence “approaches”
in some way the set Eff (A, f ).

Definition 3.2 (Bednarczuk, 1994b) Problem (A, f ) is called B-well-posed (B-wp for short)
if:

(i) Min(A, f ) �= ∅,

(ii) for every B-minimizing sequence xn ∈ A\Eff(A, f ) there exists a subsequence
converging to some element of Eff(A, f ).

Definition 3.3 (Bednarczuk, 1994b) Problem (A, f ) is called weakly B-well-posed (weakly
B-wp for short) if:

(i) Min(A, f ) �= ∅,

(ii) for every B-minimizing sequence xn ∈ A it holds d(xn,Eff(A, f )) → 0 as n → +∞.

Definition 3.4 (Miglierina &Molho, 2003) Problem (A, f ) is called MM-well-posed (MM-
wp for short) if

(i) Min(A, f ) �= ∅,

(ii) for everyMM-minimizing sequence xn ∈ A it holds d(xn,Eff(A, f )) → 0 as n → +∞.

The second group of well-posedness definitions gathers those notions that refer to wealkly
efficient points. We need the following notions of minimizing sequence.

Definition 3.5 (Huang, 2000; Crespi et al., 2007)

(i) A sequence xn ∈ A is HCGR-minimizing when ∃k0 ∈ intK , αn ≥ 0, αn → 0 such that
f (x) − f (xn) + αnk0 /∈ −intK ,∀x ∈ A, ∀n ∈ N
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(ii) A sequence xn ∈ A is H-minimizing when ∃k0 ∈ intK , αn ≥ 0, αn → 0, and
yn ∈ WMin(A, f ) such that f (xn) ≤K yn + αnk0, ∀n ∈ N,

(iii) A sequence xn ∈ A is Hw-minimizing when d( f (xn),WMin(A, f )) → 0 as n → +∞.

Remark 3.1 It can be shown (see e.g. Crespi et al., 2007) that Definitions 3.5 (i) and (ii) do
not depend on the choice of k0 ∈ int K , i.e. if {xn} is HCGR-minimizing or H-minimizing
with respect to some k0 ∈ int K , then it is HCGR-minimizing or H-minimizing with respect
to every k0 ∈ int K .

Remark 3.2 In point (i) of Definition 3.5 we can substitute int K with K .

Well-posedness notions in the second group extend Tykhonov definition for scalar opti-
mization problems basically requiring that every minimizing sequence “approaches” in some
way the set WEff (A, f ).

Definition 3.6 (Crespi et al., 2007) Problem (A, f ) is called CGR-well-posed if:

(i) WEff(A, f ) �= ∅,

(ii) for every HCGR-minimizing sequence it holds d(xn,WEff(A, f )) → 0 as n → +∞.

Definition 3.7 (Huang, 2000) Problem (A, f ) is called H-well-posed, if:

(i) WEff(A, f ) �= ∅,

(ii) for every H-minimizing sequence there exists a subsequence converging to some element
of WEff(A, f ).

Definition 3.8 (Huang, 2000) Problem (A, f ) is called Hs-well-posed if:

(i) WEff(A, f ) �= ∅,

(ii) for every HCGR-minimizing sequence there exists a subsequence converging some
element of WMin(A, f ).

Definition 3.9 (Huang, 2000) Problem (A, f ) is called Hw-well-posed if:

(i) WEff(A, f ) �= ∅,

(ii) for every Hw-minimizing sequence it holds d(xn,Weff(A, f )) → 0 as n → +∞.

Finallywe recall a globalwell-posedness notionwith respect to properly efficient solutions
(Lalitha & Chatterjee, 2013).

Definition 3.10 (Lalitha & Chatterjee, 2013) A sequence xn ∈ A is said to be a LC-
minimizing sequence, if for any n, there exist yn ∈ PMin(S, f ) and kn ∈ K with kn → 0
such that f (xn) ≤K yn + kn .

Definition 3.11 (Lalitha & Chatterjee, 2013) Problem (A, f ) is called LC-well-posed if:

(i) PEff(A, f ) �= ∅,

(ii) for every LC-minimizing sequence it holds d(xn,PEff(A, f )) → 0 as n → +∞.

In the next section we will investigate relationships among the various global well-
posedness notions and we will provide several examples. We close this section with two
examples that illustrate Definition 3.11.
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Example 3.1 (Lalitha&Chatterjee, 2013) Consider problem (A, f )with f : R2 → R
2 being

the indentity mapping and

A = R
2+ ∪ {(x1, x2) : x2 ≥

√
1 − (x − 1)2, 0 ≤ x ≤ 2} (5)

It can be seen that for K = R
2+ we have

PEff(A, f ) = {(x1, x2) : x2 =
√
1 − (x − 1)2, 0 < x < 1} (6)

and problem (A, f ) is LC-well-posed.

Example 3.2 (Lalitha & Chatterjee, 2013) Consider problem (A, f ) with f : R → R
2

defined as

f (x) =
{

(x,
√
1 + x2), x < 0

(−x, x), x ≥ 0

A = R and K = R
2+. It holds

PMin(A, f ) = {(−x, x) : x ≥ 0} (7)

and PEff(A, f ) = {x : x ≥ 0}. For the sequence {xn} with xn = −n we have f (xn) =
(−n,

√
1 + n2). Hence, we observe that yn − f (xn) + kn ∈ K where yn = (−n, n) ∈

PMin(A, f ) and kn = ( 1n ,
√
1 + n2 − n) ∈ K , that is {xn} is a LC-minimizing sequence.

Clearly problem (A, f ) is not LC-well-posed since d(xn,PEff(A, f )) �→ 0.

4 Relations amongwell-posedness notions

In this section we establish relations among the various global well-posedness notions. We
need the following assumptions.

A1. For every ε > 0 there exists δ > 0 such that

( f (A) − Min(A, f )) ∩ (δB − K ) ⊆ εB

(see e.g. (Miglierina et al., 2005)).
A2. Eff(A, f ) compact.
A3. WEff(A, f ) compact.
A4. Eff(A, f ) = WEff(A, f )
A5. Eff(A, f ) = PEff(A, f ).

In the following we will use the notation �⇒Ai when the implication holds under
assumption Ai .

4.1 Relations amongwell-posedness notions in the first group

The following relations are known (see e.g. (Huang, 2000; Miglierina et al., 2005)).

Theorem 4.1

�⇒ �⇒
B-wp weakly B-wp MM-wp

⇐�A2 ⇐�A1
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Next example shows that assumption A2 cannot be avoided in order weakly B-well-posednes
implies B-well-posedness.

Example 4.1 (Miglierina et al., 2005) Let X = Y = A = R
2 and K = R

2+, let f : R2 → R
2

be defined as f (x1, x2) = (x21 , x
2
1 ). We have Eff(A, f ) = {(0, x2) : x2 ∈ R} and it is easily

seen that problem (A, f ) is weakly B-well-posed but not B-well-posed.

Next example shows that assumption A1 is crucial in order MM-well-posedness implies
weakly B-well-posedness.

Example 4.2 (Miglierina et al., 2005) Let f : R2 → R
2 be the identity function, let K = R

2+
and

A = {(x1, x2) ∈ R
2 : x1 ≥ 0 ∨ x2 ≥ 0 ∨ x2 ≥ −x1 − 1}

It is easily seen that assumption A1 does not hold and problem (A, f ) is MM-well-posed but
not weakly B-well-posed.

4.2 Relations amongwell-posedness notions in the second group

From the definitions we obtain the following chain of implications.

Theorem 4.2

�⇒A3

GGR-wp Hs-wp �⇒ H-wp �⇒ Hw-wp
⇐�

Next example shows that assumption A3 cannot be avoided in order CGR-well-posedness
implies Hs-well-posedness.

Example 4.3 Consider the identity function f : A ⊆ R
2 → R

2 where A = {(x, y) ∈
R
2 : y ≥ 0 ∧ y ≥ −x}. Problem (A, f ) is CGR-well-posed, but not Hs-well-posed as, for

example, the Hs-minimizing sequence xn = (−n, n + 1
n

)
doesn’t admit any subsequence

converging to a weakly efficient point.

The next examples show that the implications among Hs-well-posedness, H-well-
posedness and Hw-well-posedness cannot be reverted even under assumption A3.

Example 4.4 Let A = {(x1, x2) ∈ R
2 : x2 ≥ −x1ex1} and let f : R2 → R

2 be the identity
function. We have WEff(A, f ) = Eff(A, f ) = {(x1, x2) ∈ R

2 : x1 ≥ 0, x2 = −x1ex1} and
problem (A, f ) is Hw-well posed but not H-well-posed.

Example 4.5 Let A = {(x1, x2) ∈ R
2 : (x2 ≥ −(x1 − 1)ex1 , x1 < 0) ∨ (x1 = 0, x2 ∈

[−1,−2])} and let f : R2 → R
2 be the identity function.We haveWEff(A, f ) = {(x1, x2) :

x1 = 0, x2 ∈ [−1,−2]} and (A, f ) is H-well-posed. The sequence (−n, (n + 1)e−n)

is HCGR-minimizing but not H-minimizing and does not converge to an element of
WEff(A, f ). Hence (A, f ) is not Hs-well-posed.

4.3 Relations amongwell-posedness notions in different groups

Now we give relationships among well-posedness concepts referring to different solution
concepts. We need the following result.

123



Annals of Operations Research

Theorem 4.3 A sequence xn ∈ A is B-minimizing if and only if for every e ∈ intK there
exists αn → 0+, yn ∈ Min(A, f ) such that

f (xn) ∈ yn − K + αne (8)

Theorem 4.4 It holds:

�⇒A4

H-wp B-wp
⇐�A3,A4

The next example shows that if WEff(A, f ) �= Eff(A, f ), then H-well-posedness does
not imply B-well-posedness.

Example 4.6 Let A = {(x1, x2) ∈ R
2 : x2 ≥ g(x1), x1 ∈ [−2, 1]}, where

g(x1) =
{

−x21 − x1, x1 ∈ [−1, 1]
0, x1 ∈ [−2,−1]

anf let f : R
2 → R

2 be the identity function, K = R
2+. Then Eff(A, f ) = {(x1, x2) :

x2 = −x21 − x1, x1 ∈ (0, 1]}, WEff(A, f ) = Eff(A, f ) ∪ {[−2,−1] × {0}}. It is easily
seen that problem (A, f ) is H-well-posed. The sequence

(−1 + 1
n ,−(−1 + 1

n )2 + 1 − 1
n

)
is

B-minimizig and converges to (−1, 0) which belongs to WEff(A, f ), but not to Eff(A, f ).
Hence problem (A, f ) is not B-well-posed.

If the compactness assumption does not hold in the previous theorem, B-well-posedness
does not imply H-well-posedness as the following example shows.

Example 4.7 Let A = [−1,+∞], f : A → R, f (x) =
{

−x2 + 1, x ∈ [−1, 1]
0, x ≥ 1

, K = R+.

WEff(A, f ) = Eff(A, f ) = {−1}∪[1,+∞] is not compact andwe have that problem (A, f )
is B- well-posed but not H-well-posed.

Theorems 4.1 and 4.4 entail that under asumptions A3 and A4 it holds:

B-wp = weakly B-wp = H-wp

The proof of the next result is straightforward from the definitions.

Theorem 4.5 If assumption A5 holds, then LC-wp is equivalent to weakly B-wp.

The relationships among the various globalwell-posedness notions are summarized below.

�⇒ �⇒
B-wp weakly B-wp M-wp

⇐�A2 ⇐�A1

�⇒A3

GGR-wp Hs-wp �⇒ H-wp �⇒ Hw-wp
⇐�

�⇒A4

H-wp B-wp
⇐�A3,A4

weakly B- wp ⇔A5 LC-wp
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5 Global well-posedness and scalarization

When dealing with vector optimization scalarization is a useful technique to reduce the
problem under consideration to a single objective problem. In (Miglierina et al., 2005) the
authors introduce a new approach to the study of well-posedness for vector optimization
problems. They show the various pointwise well-posedness notions for a vector optimization
problem, can be characterized as well-posedness properties of a suitable scalarized problem.
Hence they show the existence of a parallelism between scalar and vector well-posedness.
Among various scalarization procedures known in the literature, the authors of (Miglierina
et al., 2005) choose the one based on the oriented distance function. In this section, we apply
a similar approach to characterize some of the global well-posedness notions in terms of
well-posedness of a suitable scalarized problem.

Consider the scalar minimization problem (A, g)

min g(x), x ∈ A

where g : A ⊆ X → R and denote by argmin(A, g) the solution set of problem (A, g),
which we assume to be nonempty. A sequence xn ∈ A is minimizing for problem (A, g)
when g(xn) → inf g(A).Now,we recall somewell-posedness notions for scalar optimization
problems (see e.g. Dontchev & Zolezzi, 1993).

Definition 5.1 Problem (A, g) is well-posed in the generalized sensewhen argmin(A, g) �=
∅ and every minimizing sequence contains a subsequence converging to an element of
argmin(A, g).

When argmin(A, g) is a singleton, the previous definition reduces to the classical notion
of Tykonov well-posedness.
We recall also a generalization of the above mentioned notion (see e.g. Bednarczuk & Penot,
1994).

Definition 5.2 Problem (A, g) is metrically well-set (m-well-set) if:

(i) argmin(A, g) �= ∅,

(ii) for every minimizing sequence xn ∈ A, d(xn, argmin(A, g)) → 0.

We consider the following scalar problem associated with the vector one (A, f ):

min h(x), x ∈ A,

where

h(x) = inf
z∈Eff(A, f )

�−K ( f (x) − f (z)) (9)

In the sequelwe denote this problemby (A, h). Next Theorem characterizes the set of efficient
points of the vector problem (A, f ) in terms of solutions of the scalar problem (A, h).

Theorem 5.1 Assume Eff(A, f ) is compact anf f is continuous. It holds h(x) ≥ 0, ∀x ∈ A
and h(x) = 0 if and only if x ∈ Eff(A, f ). Hence Eff(A, f ) coincides with the set of
solutions of problem (A, h).

The next results provide a characterization of B-well-posedness of vector problem (A, f )
in terms of well-posedness of the scalar problem (A, h).

Theorem 5.2 A sequence xn ∈ A is B-minimizing if and only if is minimizing for problem
(A, h).
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Theorem 5.3 Let f : X → Y be a continuous functions and Eff(A, f ) be a compact set.
Then problem (A, f ) is B-well-posed if and only if the scalar problem (A, h) is well-posed
in the generalized sense.

We consider now the following scalar problem associated with the vector one (A, f ):

min h1(x), x ∈ A,

where

h1(x) = − inf
z∈A

�−K ( f (z) − f (x))

In the sequel we denote this problem by (A, h1). Function h1 is always nonnegative, in fact
it is enough to observe that for z = x, we have

�−K ( f (x) − f (x)) = �−K (0) = 0

We observe that function h1 can be rewritten as

h1(x) = sup
z∈A

[−�−K ( f (z) − f (x))]

and, recalling Proposition 2.1, we get

h1(x) = sup
z∈A

min
ξ∈K+∩S

〈ξ, f (x) − f (z)〉.

Weshow that theweak solutions of the vector problem (A, f ) can be completely characterized
by solutions of the scalar problem (A, h1).

Theorem 5.4 Let x̄ ∈ A. Then x̄ ∈ WEff(A, f ) if and only if h1(x̄) = 0 (and hence
x̄ ∈ argmin (A, h1)).

Theorem 5.5 A sequence is HCGR-minimizing if and only if is minimizing for problem
(A, h1).

The next result provides the equivalence between well-posedness of the vector problem
(A, f ) and of the related scalar problem (A, h1). The proof is straightforward combining
Theorems 5.4 and 5.5.

Theorem 5.6 (A, f ) is CGR-well-posed if and only if (A, h1) is m-well-set.

We close this section considering the remarkable case of linear scalarization.
Consider functions gλ(x) = 〈λ, f (x)〉 with λ ∈ K+ \ {0} and the family of parametric

scalar problems (X , gλ) given by

min gλ(x), x ∈ X ,

where λ ∈ C+ ∩ ∂B.

Theorem 5.7 (Crespi et al., 2011) Let f : X → Y be K−convex on the convex set A
and assume WMin (A, f ) is closed. If problems (X , gλ) are metrically well-set for every
λ ∈ K+ ∩ ∂B, then problem (A, f ) is Hw-well-posed.

In general, the converse of the Theorem is not true as the following example shows.

Example 5.1 Let f : A ⊆ R
2 → R

2 defined as f (x1, x2) =
(

x21
x2

, x1

)
, K = R

2+ and A =
{(x1, x2) ∈ R

2 : x1 ≥ 0, x2 ≥ 1}. The objective function is K−convex, WMin (A, f ) =
{(0, 0)}, WEff (A, f ) = {(0, x2) : x2 ≥ 1}. Problem (A, f ) is Hw-well-posed but the scalar
problem (X , gλ) with λ = (1, 0) is not metrically well-set.
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6 Well-posedness of cone-convex functions

A classical result in scalar optimization states that optimization problems involving convex
functions defined on a finite dimensional space with a unique minimum point are Tykhonov
well-posed. It is also well-known that this result cannot be extended to the case of functions
defined on an infinite dimensional space (see e.g. Dontchev & Zolezzi, 1993). In this section
we consider extensions of this result to vector optimization problems involving K -convex
functions. We assume X and Y are finite dimensional spaces. The next result concerns
B-well-posedness of K -convex functions.

Theorem 6.1 (Miglierina et al., 2005) Let f be K -convex and continuous on the convex set
A. For every ȳ ∈ Min(A, f ), assume that f −1(ȳ) is compact and suppose that Min(A, f )
is compact. Then, problem (A, f ) is B-well-posed.

Remark 6.1 Since B-wp is the strongest notion among the well-posedness notions referring
to the set of efficient points (see Sect. 4), the assumptions of the previous Theorem ensure
that a K - convex function is also weakly B-wp and M-wp.

Now we give a result concerning CGR-well-posedness of K -convex functions.

Definition 6.1 A set A ⊆ X is said to be connected when there are no open subsetsU and V
of X such that:

A ⊆ U ∪ V , A ∩U �= ∅, A ∩ V �= ∅ and A ∩U ∩ V = ∅

The next result concerns CGR-well-posedness.

Theorem 6.2 Let f : X → Y be a a continuous K -convex function and assumeWEff(A, f )
is bounded. Then problem (A, f ) is CGR-well-posed.

Since (under assumption A3) CGR-wp is the strongest notion among the well-posedness
notions referring to the set of weakly efficient points (see Sect. 4), the assumptions of the
previous Theorem ensure that a K -convex function is also Hs-wp, H-wp and Hw-wp.

Finally we recall the following result about LC-well-posedness of cone-convex functions.

Theorem 6.3 (Lalitha & Chatterjee, 2013) If in problem (A, f ), A is a closed, convex subset
of X, f : A → Y is continuous and K -convex map on A and PEff(A, f ) is compact, then
problem (A, f ) is LC-well-posed.

In the previous results the boundedness assumption on WEff (A, f ) and the compactness
assumptions on Eff (A, f ) and PEff(A, f ) cannot be avoided, as the following example
shows.

Example 6.1 Let A = R × [1,+∞] ⊆ R
2 and f : A → R

2 be defined as f (x, y) =
( x

2

y , x2
y ). We have Eff (A, f ) = WEff (A, f ) = PEff(A, f ) = {(0, y), y ∈ [1,+∞]}

and Min(A, f ) = WMin(A, f ) = PMin(A, f ) = {(0, 0)}. The sequence (n, n3) is B-
minimizing, HCGR- minimizing, LC-minimizing, but does not converge to an element in
Eff (A, f ) = WEff (A, f ) = PEff(A, f ).
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Appendix A: Proofs of the results

Proof of Theorem 4.2. Relations between CGR-wp and Hs-wp follow directly from the def-
initions. Relations among Hs-wp, H-wp and Hw-wp can be found in Huang (2000).

��
Proof of Theorem4.3. Clearly if xn satisfies (8) then it is B-minimizing. Conversely, assume
xn is B-minimizing, that is ∀n ∈ N, ∃kn ∈ K , kn → 0 and yn ∈ Min(A, f ) such that
f (xn) ≤K yn + kn . We show that for e ∈ intK , ∃αn > 0, αn → 0, such that

{xn : f (xn) − yn ∈ kn − K } ⊆ {xn : f (xn) − yn ∈ αne − K }
which holds if for kn ∈ K , kn → 0, ∃αn > 0, αn → 0 such that kn − K ⊆ αne − K . The
previous inclusion can be written as kn − αne − K ⊆ −K , and it is satisfied if �−K (kn −
αne − z) ≤ 0, ∀z ∈ K , since K is a closed, convex cone (see Proposition 2.1). Since �−K

is subadditive, we have

�−K (kn − αne − z) ≤ �−K (kn) + �−K (−αne) + �−K (−z).

In order that the righthandside in this inequality is nonpositive it is enough to require
�−K (kn) + �−K (−αne) ≤ 0, since �−K (−z) ≤ 0.

By homogeneity of the oriented distance function,

�−K (kn) + αn�−K (−e) ≤ 0

holds for

αn ≥ − �−K (kn)

�−K (−e)

(observe �−K (−e) < 0 since e ∈ int K ). Choose αn = − �−K (kn)
�−K (−e) and observe αn → 0+ to

get the desired conclusion. ��
Proof of Theorem 4.4 Since assumption A4 holds, Theorem 4.3 entails that a sequence is B-
minimizing if and only if is H-minimizing. Hence H-wp �⇒A4 B-wp. Now we show that
under assumptions A3 and A4 B-well-posedness implies H-well-posedness. Let xn ∈ A be a
H-minimizing sequence, i.e. there exists k0 ∈ intK , αn > 0, αn → 0 and yn ∈ Min(A, f )
such that f (xn) ≤K yn + αnk0. There are two possible cases:

(1) xn ∈ A \ Eff(A, f ). In this case xn is a B-minimizing sequence, so there exists a
subsequence converging to some element of Eff(A, f ).

(2) xn ∈ Eff(A, f ). By compactness of Eff(A, f ), there exists a subsequence converging to
an efficient point.

Proof of Theorem 5.1 It is known (see e.g. Zaffaroni, 2003) that z ∈ Min(A, f ) if and only
if z is the unique solution of the scalar minimization problem

miny∈Min(A, f )�−K (y − z)

Hence for z ∈ Min(A, f ) it follows �−K (y − z) ≥ 0 and �−K (y − z) = 0 if and only
if y = z. It follows inf z∈Eff(A, f ) �−K ( f (x) − f (z)) ≥ 0 for every x ∈ A. Assume x ∈
Eff(A, f ). Then inf z∈Eff(A, f ) �−K ( f (x) − f (z)) ≤ �−K ( f (x) − f (x)) = 0 which entails
inf z∈Eff(A, f ) �−K ( f (x)− f (z)) = 0.Conversely assume inf z∈Eff(A, f ) �−K ( f (x)− f (z)) =
0. Since f is continuous, Proposition 2.1 (vii) entails that also �−K ( f (x) − f (·)) is con-
tinuous and since Eff(A, f ) is compact the infimum is attained at some point z̄ ∈ Eff(A, f )
i.e. �−K ( f (x) − f (z̄)) = 0. It follows x ∈ f −1(z̄) and hence x ∈ Eff(A, f ). ��
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Proof of Theorem 5.2. Assume xn is a minimizing sequence for problem (A, h). Then

inf
z∈Eff(A, f )

�−K ( f (xn) − f (z)) → 0 (10)

This implies the existence of a sequence zn ∈ Eff(A, f ) such that�−K ( f (xn)− f (zn)) → 0.
Let �−K ( f (xn) − f (zn)) = αn → 0+ and let e ∈ int K with �−K (−e) ≤ −1. By
Proposition 2.1, we have

�−K ( f (xn) − f (zn) − αne) ≤ �−K ( f (xn) − f (zn)) + �−K (−αne)

= �−K ( f (xn) − f (zn)) + αn�−K (−e) ≤ �−K ( f (xn) − f (zn)) − αn = 0

which, according to Proposition 2.1 gives

f (xn) − f (vn) − αne ∈ −K (11)

that is {xn} is B-minimizing (see Theorem 4.3).
Conversely, assume {xn} is B-minimizing. By Theorem 4.3, for e ∈ int K with�−K (e) =

1 there exists αn > 0, αn → 0 and zn ∈ Eff(A, f ) such that f (xn) ∈ f (zn) − K + αne.
Then, by Proposition 2.1 we have

0 = inf
x∈A

inf
z∈Eff(A, f )

�−K ( f (x) − f (z)) ≤ inf
z∈Eff(A, f )

�−K ( f (xn) − f (z)) (12)

≤ �−K ( f (xn) − f (zn)) ≤ �−K (αne) = αn (13)

This entails h(xn) = inf z∈Eff(A, f ) �−K ( f (xn) − f (z)) → 0 which completes the proof. ��
Proof of Theorem 5.3 The proof is immediate combining Theorems 5.1 and 5.2. ��
Proof of Theorem 5.4. Let x̄ ∈ WEff(A, f ) i.e. f (z) − f (x̄) /∈ −intK , ∀z ∈ A. Hence

�−K ( f (z) − f (x̄)) ≥ 0, ∀z ∈ A

which entails h1(x̄) ≤ 0. Since h1(x) ≥ 0 ∀x ∈ A, we get h1(x̄) = 0 which means
x̄ ∈ argmin(A, h1).

Let h1(x̄) = 0. Then, clearly, x̄ ∈ argmin(A, h1). From h1(x̄) = 0, we get �−K ( f (z) −
f (x)) ≤ 0, ∀z ∈ A, which means f (z) − f (x) /∈ −intK , ∀z ∈ A (see Proposition 2.1)
and hence x̄ ∈ WEff(A, f ). ��
Proof of Theorem 5.5. Let xn ∈ A be a HCGR-minimizing sequence i.e. there exists k0 ∈
int K , αn > 0, αn → 0 such that

f (x) − f (xn) + αnk
0 /∈ −intK , ∀x ∈ A

This entails �−K ( f (x) − f (xn) + αnk0) ≥ 0, ∀x ∈ A, and hence, by subadditivity of
�−K (·),

�−K ( f (x) − f (xn)) ≥ −αn�−K (k0)

Put γn = αn�−K (k0) ≥ 0. We have γn → 0 and

0 ≤ h1(x
n) = − inf

z∈A
�−K ( f (z) − f (xn)) ≤ γn,

hence h1(xn) → 0, that is xn is minimizing for problem (A, h1).
Conversely, assume xn isminimizing for problem (A, h1).Hence h1(xn) → 0,which implies
h1(xn) ≤ βn, for some sequence βn ≥ 0, βn → 0. It holds,

− inf
z∈A

�−K ( f (z) − f (xn)) ≤ βn,
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that is inf z∈A �−K ( f (z) − f (xn)) ≥ −βn and this is equivalent to

�−K ( f (z) − f (xn)) ≥ −βn, ∀z ∈ A.

Since�−K (y) = maxξ∈K+∩S〈ξ, y〉 (see Proposition 2.1), choosing a vector k0 ∈ intK ,with
〈ξ, k0〉 ≥ 1, ∀ξ ∈ K+ ∩ S we obtain, ∀z ∈ A:

�−K ( f (z) − f (xn) + βnk
0) = max

ξ∈K+∩S
〈ξ, f (z) − f (xn) + βnk

0〉

≥ max
ξ∈K+∩S

〈ξ, f (z) − f (xn)〉 + min
ξ∈K+∩S

〈ξ, βnk
0〉

≥ max
ξ∈K+∩S

〈ξ, f (z) − f (xn)〉 + βn

≥ −βn + βn = 0.

Hence�−K ( f (z)− f (xn)+βnk0) ≥ 0, ∀z ∈ A and this is equivalent to say f (z)− f (xn)+
βnk0 /∈ −intK , ∀z ∈ A.

Hence xn is a HCGR-minimizing sequence for the vector problem (A, f ). ��
Proof of Theorem 6.2. Let

WEffεne (A, f ) = {x ∈ A : ( f (A) − f (x)) ∩ (−int K − εne) = ∅}
Assume that problem (A, f ) is not CGR-well-posed. Then we can find sequences εn →
0+, xn ∈ WEff εne (A, f ) , such that, for some δ > 0 it holds xn /∈ WEff (A, f ) + δB,
where B denotes the unit ball in Y .

We claim that for every n there exists a point zn ∈ ∂[WEff ( f , A)+δB]∩WEff εne(A, f ).
If such a zn does not exist, we would have for every n

WEff εne (A, f ) ⊆ int [WEff (A, f ) + δB] ∪ [WEff (A, f ) + δB]c . (14)

Clearly WEff εne (A, f ) ∩ [WEff (A, f ) + δB]c �= ∅. Further it holds
WEff εne (A, f ) ∩ int [WEff (A, f ) + δB] �= ∅, (15)

since

WEff (A, f ) ⊆ WEff εne (A, f ) ,

We prove that WEff εne (A, f ) is connected and hence (14) cannot hold since

WEff εne (A, f ) ∩ int [WEff (A, f ) + δB] ∩ [WEff (A, f ) + δB]c = ∅
and both int [WEff (A, f ) + δB] and [WEff (A, f ) + δB]c are open.

If ȳ = f (x̄), with x̄ ∈ WEff (A, f ), the level set

Lev ( f , ȳ, A) = {x ∈ A : f (x) ∈ ȳ − K }
is clearly nonempty and further we have

Lev ( f , ȳ, A) ⊆ WEff (A, f ).

Indeed, assume there exists a point x ′ ∈ Lev ( f , ȳ, A) \WEff (A, f ). Hence f (x ′) ∈ f (x̄)−
K and we can find a point x ′′ ∈ A such that f (x ′′) ∈ f (x ′) − int K . This entails f (x ′′) ∈
f (x ′) − int K ⊆ f (x̄) − int K , which contradicts to x̄ ∈ WEff (A, f ).
The inclusion Lev ( f , ȳ, A) ⊆ WEff (A, f ) proves Lev ( f , ȳ, A) is bounded. Since f

is continuous, we conclude that WEff (A, f ) is closed and hence Lev ( f , ȳ, A) is compact.
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Further, the compactness of Lev ( f , ȳ, A) and the K -convexity of f imply Lev ( f , y, A) is
compact ∀y ∈ Y (when nonempty) (Lucchetti & Miglierina, 2004).

This implies that the set WEff εne(A, f ) is connected, nonempty and closed (see Theorem
4.1 in Crespi et al., 2007) and hence (14) cannot hold. It follows the existence of a sequence
zn ∈ ∂ [WEff (A, f ) + δB] ∩ WEff εne (A, f ) .

Since WEff (A, f ) is compact, we can assume zn converges to a point z̄ ∈
∂ [WEff (A, f ) + δB]. Since zn ∈ WEff εne (A, f ) the continuity of f gives z̄ ∈
WEff (A, f ). ��
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