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Abstract

Many transportation activities have shifted to use electric vehicles (EVs) due to low-carbon
and sustainability concerns. The main challenges faced by companies during the transition are
the short range of EVs and the lack of recharging infrastructure. To cope with this situation,
mobile charging vehicles (MCVs) are used in the system. However, this significantly increases
the complexity of the electric vehicle routing problem (EVRP), as the routes for both EVs and
MCVs should be optimized, and the two routes are highly interdependent. Moreover, most
existing literature assumes that EVs need to be fully recharged or swapped, and EVs cannot
wait for MCVs. This may lead to MCVs detour and increase scheduling difficulties, increasing
the overall cost for both routes and reducing efficiency. Therefore, this paper proposes an
EVRP model with synchronized mobile partial recharging and non-strict waiting strategy.
The model relaxed the assumptions about full recharging and MCV waiting strategy, further
increasing the complexity of the EVRP. To solve this model, we propose a two-stage dynamic
programming and forward time slack algorithm based on the labeling algorithm, which is
integrated into the framework of an improved adaptive large neighborhood search algorithm.
Extensive numerical experiments are then conducted to demonstrate the efficiency of the
algorithm and the benefits of the non-strict waiting strategy. Finally, the paper discusses
some management insights based on the above analysis.
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1 Introduction

Transportation plays a pivotal role in green logistics activities (Li et al., 2020a, 2020b),
with road transportation standing out as a prominent contributor to energy consumption and
carbon emissions (International Energy Agency, 2009). Approximately 50% of all diesel fuel
is consumed by road freight transport, accounting for 80% of the net increase in global diesel
use since 2000, emitting significant amounts of greenhouse gases (International Transport
Forum, 2018). In response to environmental concerns, numerous studies and regulations
have been proposed to bolster environmental protection. These include a focus on green
manufacturing and emission reduction (Li et al., 2020a, 2020b; Sun et al., 2018). Additionally,
European commissioners have set forth a vision to achieve near-zero carbon dioxide emissions
in urban centers by 2030 (European Commission, 2011). Consequently, the adoption of new
energy vehicles, projected to contribute approximately 45-50% to emissions reduction, is of
significant interest (China Central Television, 2021). Notable examples include the effective
implementation of electric taxis in Beijing, China leading to a reduction of 5,400 tons of
carbon dioxide emissions between 2012 and 2015 (Ma et al., 2017). Similarly, the utilization
of electric buses saved 626 tons of carbon dioxide between 2013 and 2015 (Ma et al., 2017).
The remarkable emission reduction influences of electric vehicles (EVs) have prompted many
companies, including major corporations like Amazon, SF Express, and JD, have transitioned
from internal combustion engine vehicles to EVs, which has contributed significantly to
reducing carbon emissions.

While the development of EVs promotes the greening of logistics, concerns about mileage
anxiety due to battery technology limitations hamper the widespread application of EVs
(Schneider et al., 2014; Xiao et al., 2023; Zang et al., 2022). To overcome this shortage,
the common approach is to establish fixed charging stations (CS), enabling EVs to recharge
while enroute to serve customers. However, the construction and operation costs of CSs are
substantial (Schiffer & Walther, 2018), resulting in an uneven distribution of CSs, which
cannot effectively meet the growing demand for EV recharging. For this reason, companies
like Lightning eMotors in the US, EzUrja in India, and NIO and Huawei in China have ini-
tiated experimentation with mobile energy replenishment business mode. Meanwhile, some
scholars have also turned their attention to the study of mobile energy replenishment mode
in recent years (Catay & Sadati, 2023; Raeesi & Zografos, 2020). In this mode, specialized
vehicles move to customers to swap or recharge power for EVs, which addresses the inflex-
ibility issue of CSs. Despite the benefits of the mobile mode, the model poses significant
challenges for electric vehicle routing problem (EVRP) optimization. It requires to optimize
the routes of EV and mobile charging vehicles (MCVs), which are closely related and interact
with each other. Therefore, many scholars have studied EVRP in this mode, and the system
consisting of two types of vehicles is referred to as the delivery-charging system.

Existing studies have primarily focused on the exploration of mobile swapping (Raeesi &
Zografos, 2020, 2022), but the aforementioned studies usually assume the swapping of fully
charged batteries, which equates to a full recharging of EVs. While swapping is faster than
fully recharging, swapping may provide unnecessary power than is needed for subsequent
service compared to partial charging. This may result in longer charging times for both MCVs
and EVs, which delays subsequent tasks for these vehicles and reduces system efficiency.
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Moreover, mobile swapping has challenges such as battery ownership disputes and stan-
dardization of battery and swapping technologies (Arora et al., 2023; Setiawan et al., 2023).
Mobile swapping operations also need specialized tools to replace batteries, which is more
complex than mobile charging. Regarding waiting strategies, the mentioned studies typically
prioritize EVs, which does not allow EVs to have additional waiting time beyond serving
customers. This can lead to increased demands on mobile battery swapping vehicles (BSVs)
or MCVs, requiring them to arrive earlier. The situation may force MCVs to prioritize service
for tasks that are farther away but with more urgent charging demand, exacerbating vehicle
scheduling challenges and increasing the cost of the overall delivery-charging system.

To overcome the aforementioned limitations, this study introduces an electric vehicle
routing problem with synchronized mobile partial recharging and non-strict waiting strategy
(EVRP-MPR&NSWS). The model relaxes the restriction that EVs must be full recharging
and allows partial recharging, which is more practical in the real world due to the shorter
recharging time. Unlike the previous models that MCVs must wait for EVs, this model
introduces a non-strict waiting strategy that allows EVs to wait for MCVs to recharge after the
service or even after the time window. Compared to fixed recharging and mobile swapping, the
model introduces the decision of charging locations synchronization, charging levels, arrival
times, and explores waiting scenarios for EVs and MCVs. EVRP-MPR&NSWS enhances the
flexibility of EVs and MCVs while aiming at achieving a lower overall cost for the system.
However, the model further increases the complexity of the solving due to the use of mobile
partial charging with the non-strict waiting strategy. Therefore, this paper also proposes a two-
stage dynamic programming and forward time slack (FTS) algorithm based on the labeling
algorithm in the framework of Improved Adaptive Large Neighborhood Search (IALNS) to
solve practically sized instances.

The main contributions of this study can be summarized as follows. (i) We introduce the
innovative concept of mobile partial recharging. EVs can make use of partial recharging
depending on the remaining service distance, increasing the charging time flexibility of EVs
and MCVs. (ii) We propose a non-strict waiting strategy that does not require MCV to arrive
earlier than the EV, which can optimize further the total cost of the delivery-charging system.
(iii) This paper proposes an efficient algorithm and, in addition to the typical two-stage
dynamic programming component for this problem, we innovatively adapted and improved
the FTS based on the labeling algorithm to synchronized EVPR. These include considerations
like delays in recharging service for EVs with sufficient service time in the route, aiming
to enhance overall efficiency. As a result, the proposed algorithm component addresses the
complexity produced by the non-strict waiting strategy and accurately evaluates solutions
effectively and efficiently. (iv) The computational experiments provide a comprehensive
analysis on the impact of these new ideas for logistics design and managerial insights into
balancing vehicle utilization, overall efficiency, and vehicle characteristics.

The rest of the paper is organized as follows. Section 2 reviews related literature. Section 3
describes the problem and presents an EVRP-MPR&NSWS model. Section 4 describes the
TALNS algorithm for solving the proposed model. Section 5 conducts several computational
experiments to presents the advantages of our proposed model and algorithm. Section 6
summarizes the paper and discusses future research directions.
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2 Literature review

This section reviews and discusses the existing literature related to the EVRP-MPR&NSWS
problem. We first review EVRP and its variants. Then, we describe the main direction of
research on fixed battery energy replenishment in EVRP over the past decade. Finally, we
discuss the emerging mobile battery energy replenishment.

2.1 Electric vehicle routing problem with time windows

In recent years, growing concerns regarding carbon emissions in road freight transportation
have prompted increased research into the green vehicle routing problem (GVRP). Erdogan
and Miller-Hooks (2012) introduced the GVRP with a focus on vehicles utilizing clean fuels.
Building upon this, Zhang et al., (2018a, 2018b) considered the limited loading capacity
of clean fuel vehicles within the context of GVRP. In addition to using clean fuel vehicles,
considering the use of EVs is another increasingly important GVRP. Schneider et al. (2014)
extended the GVRP by incorporating EVs and introducing energy and time constraints, lead-
ing to the development of the EVRP. Bruglieri et al. (2015) extended the EVRP by considering
the battery state of charge (SoC) as a decision variable. However, unlike internal combustion
engine vehicles, EVs are confronted with the challenge of a limited range (Aghalari et al.,
2023). In the context of the EVRP, the efficiency of EV service is influenced by factors
such as power and energy consumption. Therefore, it is necessary to find effective strategies
to ensure that EVs have sufficient battery power to fulfill their freight transportation tasks
efficiently (Erdeli¢ & Cari¢, 2019).

Numerous studies have explored various EVRP variants to improve EV service efficiency,
including scenarios with mixed fleets. These works introduced mixed fleets comprising EVs
and internal combustion engine vehicles (Donmez et al., 2022; Goeke & Schneider, 2015;
Sassi etal., 2015). Various recharging technologies have been considered, exploring different
charging configurations, such as regular, fast, and ultra-fast recharging (Felipe et al., 2014;
Keskin & Catay, 2018). Additionally, distinct charging functions have also been examined.
Some studies assumed linear charging functions (Bruglieri et al., 2015; Hiermann et al., 2016;
Yu et al., 2021), while others considered nonlinear functions (Montoya et al., 2017; Pelletier
etal., 2018). Furthermore, diverse energy consumption models have been investigated. Some
studies treated EV energy consumption as a linear function linked to distance (Bruglieri et al.,
2019; Paz et al., 2018; Schiffer & Walther, 2018), while others developed models that account
for factors such as speed, vehicle mass, terrain, air resistance, and rolling resistance (Liu et al.,
2017; Macrina et al., 2019; Rastani & Catay, 2023).

In summary, scholars have explored the extension of GVRP and EVRP, mainly empha-
sizing the critical effect of batteries on EV operation. However, these studies focused on
applying realistic technologies or designing more accurate formulas for calculating energy
consumption and recharging rate in the model, with limited exploration on recharging modes.
Therefore, this paper aims to further explore innovations in recharging mode with the expec-
tation of completing the service with lower cost and higher efficiency.

2.2 Fixed battery energy replenishment
Selecting an appropriate recharging method is essential for improving the efficiency of EVs.

Previous research has explored various recharging methods, including station replenishment,
regenerative braking (Bhurse & Bhole, 2018), and wireless charging (Mouhrim et al., 2019).
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Among them, stationary battery swapping and stationary recharging have received significant
attention.

Regarding the stationary battery swapping method, EVs can visit a battery swapping sta-
tion to exchange their depleted batteries for fully charged ones (J.-Q. Li, 2014). The depleted
batteries can then be recharged during nighttime hours, taking advantage of discounted tariffs
and reducing charging expenses (United Nations Environment Programme, 2009). The bat-
tery swapping station has been widely studied in EVRP (Liao et al., 2016; Masmoudi et al.,
2018). For example, Wang et al. (2018) set up battery swapping stations and constructed a
low-carbon travel land-sea integrated network on Penghu Island. Ma et al. (2021) investi-
gated a shared autonomous EVRP with battery swapping stations providing energy. Yang
et al. (2023) introduced a battery swapping priority function based on battery health and the
SoC of the batteries. They categorized the batteries into three banks, taking into account their
health states.

Considering the stationary recharging method, EVs can travel to CSs for recharging, with
the charging time dependent on the SoC upon arrival and the subsequent journey’s charge
requirements (Erdeli¢ & Cari¢, 2019). Some studies assumed that EVs are fully recharged
at CSs each time (Goeke & Schneider, 2015; Hiermann et al., 2016; Zhang et al., 2018a,
2018b). However, in practice, vehicles may not need full recharging to return, resulting in
unnecessary charging time (Keskin & Catay, 2016). Consequently, some studies allowed
partial recharging (Desaulniers et al., 2016; Schiffer & Walther, 2018; Yu et al., 2021). Its
advantages was demonstrated by Wang and Zhao (2023), who found that partial recharging
reduces logistics costs compared to full recharging.

Existing literature has explored fixed battery energy replenishment in EVRP, mainly focus-
ing on two methods, fixed battery swapping and fixed recharging, with few scholars focusing
on the effect of mobile recharging on logistics cost and efficiency. In this paper, we will
study the logistics design of mobile recharging and reveal the practical advantages from the
perspective of mobility.

2.3 Mobile battery energy replenishment

Fixed battery energy replenishment involves significant investment costs and lacks flexibility
due to the uneven distribution of CSs locations. In contrast, the mobile replenishment vehicles
offer an efficient alternative by reducing the need for fixed facilities, eliminating detours for
EVs, and minimizing response times. As such, mobile energy replenishment mode has gained
significant traction in recent years.

Shaoetal. (2017) established a scheduling model for mobile swapping, prioritizing service
requests based on SoC and confirming the viability of mobile swapping. Raeesi and Zografos
(2020) introduced the concept of the electric vehicle routing problem with time windows
and synchronized mobile battery swapping (EVRPTW-SMBS), incorporating temporal and
spatial synchronization. In their model, BSVs can provide swapping batteries for multiple
EVs. Subsequently, Raeesi and Zografos (2022) extended the concept to enable EVs to
recharge at CSs. Ren et al. (2023) innovatively integrated UAVs into EVRPTW-SMBS,
employing a Q-learning-based large neighborhood search algorithm to solve the problem.
Catay and Sadati (2023) proposed the electric vehicle routing problem with time windows
and mobile charging stations (EVRPTW-MCS). Their findings demonstrated that mobile
recharging by MCVs can reduce costs by an average of 42% and save over 31% of the time
compared to fixed recharging.
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In summary, scholars believe that mobile battery energy replenishment is more flexible
and convenient than fixed battery energy replenishment. Existing research primarily focuses
on applying mobile swapping technology to smaller EVs. However, electric trucks have
larger and heavier batteries, which pose challenges for battery swapping. Although only
few literatures have investigated mobile partial recharging, it is becoming a trend. This
research explores the underexplored realm of mobile partial recharging. In addition, the
aforementioned studies commonly assume that BSVs or MCVs should arrive before EVs.
This assumption could exacerbate the scheduling challenges for BSVs or MCVs, increase
the frequency of additional BSVs or MCVs use, and raise overall costs. In contrast, this
study relaxes the assumption and explores the use of MCVs for partial recharging of EVs.
However, the interdependence between the two-tier routes of MCVs and EVs can potentially
render the routes infeasible or significantly change solutions, posing challenges for solving
EVRP (Drexl, 2012). This paper introduces the forward time slack algorithm to effectively
solve the challenges of temporal synchronization and service delay.

Table 1 summarizes the research innovations of representative papers in EVRP and high-
lights our unique contribution.

3 The EVRP-MPR&NSWS description and formulation

In this section, we first provide a formal description of the electric vehicle routing
problem with synchronized mobile partial recharging and non-strict waiting strategy (EVRP-
MPR&NSWS). Next, we present a small illustrative example of the problem. Subsequently,
we introduce an integer non-linear programming model and its linearization.

3.1 Problem description

In the EVRP-MPR&NSWS, a delivery-charging system comprising EVs and MCVs is
defined. The MCVs and EVs have a limited range, where EVs serve a set of customers
and MCVs are equipped with batteries to recharge EVs, effectively expanding the traveling
range of the EVs. There is only one depot, and both EVs and MCVs start their routes from and
return to that depot, initiating their journeys with fully recharged batteries. When recharg-
ing, both EVs and MCVs must meet at the same customer location, staying there until the
recharge completes. While EVs can serve customers during recharging, MCVs leave after
the recharging process finishes. It is important to note that EVs must serve customers within
their specific time window, but the recharging process is not constrained by this time win-
dow. Furthermore, this paper considers mobile partial recharging and the non-strict waiting
strategy (described in Sect. 3.2).

Similar to Raeesi and Zografos (2020), we assume that the EV and the MCV’s energy
consumption follows a linear function to distance, and the charging function is linear. EVs
are exclusively tasked with delivery, whereas MCVs are solely dedicated to recharging EVs.
However, the recharging process can only take place at customer locations, and MCVs can
fully or partially recharge EVs. It is assumed that full recharging takes longer than battery
swapping, which encourages the partial charging strategy.

To simplify the model, we assume that MCVs carry two different batteries, with one for
traveling and the other for recharging. This simplification ignores the optimization of battery
allocation. Moreover, since recharging does not hinder cargo handling, this model assumes
it is possible to serve customers and recharge simultaneously. Note that while simplifying
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Table 1 Research on related papers

References Algorithm Time Partial Fixed or Replenishment Waiting
windows charge mobile method strategy (EV
cannot wait)

Schneider Heuristic Vv X
etal.
(2014)

Li (2014) Exact WV

Hiermann Heuristic v
et al.
(2016)

Keskin and Heuristic Vv N
Catay
(2016)

Desaulniers Exact Vv J
etal.
(2016)

Pelletier et al.  Exact X X
(2018)

Raeesi and Heuristic Vv X
Zografos
(2020)

Maet al. Heuristic Vv X
(2021)

Raeesi and Heuristic Vv v
Zografos
(2022)

Maet al. Heuristic Vv X
(2023)

Ren et al. Heuristic Vv X
(2023)

Catay and Heuristic v N [ @ VA
Sadati
(2023)
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assumptions are employed to balance the complexity of the proposed problem and algorithms,
in Sect. 5 we discuss further these assumptions.

Furthermore, in contrast to previous studies, this model introduces the notion that MCV's
can arrive later than EVs, even outside the customers’ time window. The recharging pro-
cess can continue after the EV serves customers (non-strict waiting strategy), significantly
augmenting the complexity of solving the model.

Figure 1 illustrates an example of the EVRP-MPR&NSWS, with solid lines represent-
ing EV routes, dashed lines depicting MCV routes, and nodes denoting customers. Three
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Depot

QO  customer

Recharging Node

5) ——> EVroute
MCV route

Fig. 1 An illustrative example of the EVRP-MPR&NSWS

EVs serve fifteen customers, recharged by two MCVs. They converge for recharging at cus-
tomers 5, 7, 9, 12, and 15, and all of these recharging nodes involve the non-strict waiting
strategy.

3.2 The description and practical significance of EVRP-MPR&NSWS model

Existing research on mobile battery energy replenishment takes EVs as a priority, assuming
that MCVs must arrive first and wait for EVs (Catay & Sadati, 2023; Raeesi & Zografos,
2020). The assumption increases the restrictions on EVs and MCVs, resulting in higher total
costs for the delivery-charging system. Unlike previous studies, our model uses the non-strict
waiting strategy, which leads to a more flexible scheduling space for EVs and MCVs and can
effectively reduce the total cost. The application of partial recharging also plays a positive
role in cost optimization.

This section uses the instances R102-10 and C202-10 (refer to Sect. 5 for the details
of the instances) to illustrate the improvement of EVRP-MPR&NSWS compared with the
EVRPTW-SMBS model. R102-10 and C202-10 consist of one warehouse and ten cus-
tomers with different distributions, demands, and time windows. After using CPLEX to
obtain the optimal solution for each of the two models, we found that using the non-
strict waiting strategy effectively reduced the cost of the overall delivery-charging system.
Figure 2a, b show the optimal solution of the R102-10 in the two models. In the EVRP-
MPR&NSWS, since the EV at node 2 can wait for the MCV, the MCV can recharge the
EV at node 2 instead of detouring to node 3. This changes EV routes and reduces the
total cost from 564.57 to 554.07. Figure 2¢, d show the optimal solution of the C202-
10 in the two models. EV routes are consistent in the optimal solutions of both models,
and MCVs visit the same customers. Nevertheless, in the EVRP-MPR&NSWS, EVs can
wait for MCVs to recharge after the service at node 10, thereby leaving sufficient time
for the MCV to charge the other vehicle at node 1 first. The optimal order of MCV vis-
its is changed in the EVRP-MPR&NSWS, which reduces the total cost from 534.76 to
526.75.
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Depot Depot
O customer QO  customer
Recharging Node Under Recharging Node
Strict Waiing Under NSWS
—> EVroute ——> EVroute

MCV route
Total Cost 564.57

— — » MCV route
Total Cost 557.60

(a)The Optimal Solution of SMBS for R102-10 (b) The Optimal Solution of MPR&NSWS for R102-10

Depot

Depot
QO  customer
QO  customer

Recharging Node Under
Strict Waiting

Recharging Node
Under NSWS

—> EVroute
— — > MCV route
Total Cost 526.75

—> EVroute
— — =» MCV route

Total Cost 534.76

(c)The Optimal Solution of SMBS for C202-10 (d) The Optimal Solution of MPR&NSWS for C202-10

Fig. 2 Comparison of optimal solutions between SMBS and MPR&NSWS

3.3 Mathematical model

The EVRP-MPR&NSWS model can be defined on a complete directed graph G = (N, A),
where N is the set of all nodes, and A = {(i, j)|i, j € N,i # j} is the set of directed arcs.
Each (i, j) € A has an associated distance d;; and a travel time #;;. N = N. U Np, where
N, = {1,2...n} is the set of customers and Np = {0, n + 1} is the set of depots, with n
+ 1 being the dummy node of the depot representing the end of the route. Each customer
i € N, has a known demand ¢;, a service time s; and a time window [e;, [;] to be served. M
refers to an arbitrary large constant number in the model. The set, parameters, and variables
of EVRP-MPR&NSWS are summarized in Table 2.

According to the above definitions, a mathematical model for EVRP-MPR&NSWS is
formulated as follows

min C, - Z Zxojk—l-cm- Z ZZij

JjENu 11 keK JENuy1 meM
X Y Yo Y Y Ydiam O
ieNg jeN,+1 keK i€Ngy jEN,+1 meM

@ Springer



Annals of Operations Research

Table 2 Notation for the EVRP-MPR&NSWS model

Sets

Ne¢

Np

No

Nut1

K

M
Parameters
lij

dij
Si
lei, Ii]
Ce

Cm

Ce

Cm

qi

U

Oc
Op
Qe

8

Te

m

Variables

mMcv
Tim

EV
eik

gMcv

im
EV
Sik

Xijk

Zijm

Set of customer nodes,N. = {1, 2, ...,n}
Set of depot nodes,Np = {0, n + 1}

Set of departing nodes Ng = {0} U N

Set of arriving nodes N, 4.1 = Ne U {n + 1}
Setof EVs,K = {1, 2, ...k}

Set of MCVs,M = {1,2,...m}

Time between nodes i € Ng and j € N4
Distance between nodes i € Ng and j € Ny41
The service time of customers i € N,
Time window of customers i € N,

Fixed costs of EV

Fixed costs of MCV

Cost of travel for EV

Cost of travel for MCV

Demand of customers i € N,

Load capacity of EV

Rechargeable battery capacity for MCV
Traveling battery capacity of MCV
Traveling battery capacity of EV

Charge rate

Energy consumption rate of EV

Energy consumption rate of MCV

Integer variable, i.e., the load of EV at node i € N, 4|
Nonnegative continuous variable, i.e., the battery SoC of EV when arrive at node i € Ny
Nonnegative continuous variable, i.e., the battery SoC of EV when leave node i € N,

Nonnegative continuous variable, i.e., the rechargeable battery SoC of MCV when arrive at
nodei € Ny4|

Nonnegative continuous variable, i.e., the traveling battery SoC of MCV when arrive at node
i € Nyy1

Nonnegative continuous variable, i.e., the arrival time of EV at node i € N,

Nonnegative continuous variable, i.e., the arrival time of MCV atnode i € N4

Nonnegative continuous variable, i.e., the start service time of EV at node i € N

Nonnegative continuous variable, i.e., the start recharging time of MCV atnode i € N, 4

Nonnegative continuous variable, i.e., the leaving time of EV at node i € N4

Binary variable, i.e., it equals 1 if EV travels from node i € Ny tonode j € N, 4|
Binary variable, i.e., it equals 1 if MCV travels from node i € Ny to node j € Ny
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subject to

Y ) xipg=1 VieN, ()

JENn+1 k€K
DD Nik= Y, ) ik Vi€ N 3
JjENo keK JENu41 keK
Yo ziim= Y, Y Zijm Vi€ Ne @
jeNomeM jENpy1 meM
05 = max|cf e}, VieNe, ke K ©)
60" =max[cfV, MV VieN, ke K, meM ©6)

657 = max0F +5i.04Y + gV —v)|. VieN, ke K. meM ()
‘55‘/ + tij - Xijk - M - (1 —Xijk) =< Tﬁv, Vi € No, j € Nut1, L # J, keK ®
eigeivgli, VieN, kekK ©)]

OMEY + g (Yik — yir) + tij - Zijm — M - (1 = Zijm)
gz/’.‘,{CV, YieNy, jENwy1, i #j, keK, meM (10)

0 < yjk < yik —re-dij - xijk + Yig — yir)-
D> zimm+ Qe (1—xij). Vi€ No, j€Npy1.i#j. kek  (11)

heNy41 meM

O<yik =Yik=Qe VieN, kekK 12)

0< hjm < him — (Yix — yix) + Qc - (1 - Zijm)7

VieNg, jENpy1, i #j, ke K, meM (13)

O0<him=Q, VieN, meM (14)

0<bjm < bim—rm-dij Zijm+ Qb (1 —2zijm), Vi € No, j € Nup1, i #j, meM
(15)

0<bjm <Qp, VieN, meM (16)

0 <ujr <ujr—qi xijk+U- (1 —xijx), Vi € No, j € Nop1, i # j, ke K (17)

0<up=<U (18)
xijk € {0, 1}, Vi € No, j € Npy1, 1 # j, k€ K 19)
Zijm €{0,1}, Vi € Ng, j € Npq1, i #j, meM (20)

The objective function (1) seeks to minimize the overall cost, including the travel and
fixed costs for both EVs and MCVs. Constraint (2) ensures that EVs visit each customer
once for delivery, while constraints (3) and (4) enforce routing balance for EVs and MCVs,
respectively. Constraints (5) to (7) define EVs’ service start time, MCVs’ charging start time,
and EVs’ departure time, which are also the scheduling and synchronization constraints for
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EVs and MCVs. Constraints (7) and (8) ensure that EVs satisfy the time constraints by
determining MCVs’ charging completion time. Constraint (9) ensures that customer service
commences within their time window. Constraint (10) specifies the potential arrival time for
MCVs at the recharging node. Constraints (11) and (12) ensure the conservation of power after
EVs partial recharging. Constraints (13) and (14) articulate MCVs’ battery level constraints,
while constraints (15) and (16) safeguard against the MCVs’ traveling battery falling below
zero. Constraints (17) and (18) ensure customer demand satisfaction while respecting EVs
capacity constraints. Constraints (19) and (20) are ranges of values for decision variables.

In the above model, the formulation incorporates nonlinear constraints, particularly the
term (Yir — yix) - ZheN,,_H ZmeM Zinm 1n constraints (11). Solving such nonlinearities poses
challenges for commercial solvers. Therefore, we define a new variable @, as in Eq. (21),
representing the amount of recharging at recharging nodes. Equations (22)—(25) are required
to define z; in a linear setting properly.

@i =Yk —yik) D Y Zihm 1)

heNy+1 meM
w; < Q.- Z Z Zikm (22)
heNy11 meM
w; < Yk — ik (23)
@i = Yo —yik— Qe | 1= D D zinm (24)
heN,+1 meM
0< w; < Qe (25)

4 Solution methodology

The non-strict waiting strategy and spatiotemporal synchronization pose a challenge in find-
ing optimal solutions for large-scale problems since any small change may alter all EV and
MCYV routes, even for heuristic algorithms. To address the EVRP-MPR&NSWS model, this
section introduces a two-stage dynamic programming (DP) and forward time slack (FTS)
based on the labeling algorithm. The algorithm utilizes Improved Adaptive Large Neighbor-
hood Search (IALNS) as its framework, initially generating an initial solution through greedy
insertion. Subsequently, it employs removal and insertion operators to explore the neighbor-
hood for constructing EV routes, where the operator selection relies on the roulette wheel
mechanism. Then, a two-stage dynamic programming approach is used to tackle the cou-
pling synchronization and partial recharging issues for EVs and MCVs, based on which FTS
is employed to ensure the feasibility of the non-strict waiting strategy. Finally, a simulated
annealing acceptance criterion is applied to improve the diversity of solutions. Algorithm 1
outlines the primary IALNS algorithm framework.
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Input: R: Removal operators, I: Insertion operators, T: initial temperature, c: cooling rate
Output: The best-found solution

01: Generate an initial solution S

inie-Initial temperature T: Val[S;, ;] *T

init

02: Initialize probability 7, for each removal operator r€R and probability 77, for each insertion
operatori €I /I Roulette wheel mechanism
03: Let jter bethe counter initialized as jter<1

04: Sbest* Scur‘rent&sinit

05: while jter < itery, . do

06: Select a removal operator r* € R with a probability 7,
07: Let S,,sbe destroyed by applying operator r* to S_,,rent
08: Select an insertion operator [ € Iwith probability 7,
09: Let S, berepaired by applying operator {* with Two-Stage DP Procedure to S, .
10: Let S,,,, beevaluated by applying FTS Procedureto S,, //FTS Procedure
I1: ifc(S, o) < c(Spesy) then
12: Sbesthsnew
13: elif c(S, .., ) < c(S.yrent) then
14: SCuTTéTltHSHE\/V
15: else
16: Simulated Annealing Procedure , Generate a random number e € [0, 1]
17: if ,—CnewCaurent). ¢ thep
18: SCuTTéTlt(_STIQ\/V
19: end if
20: end if
21: Update the scores and probabilities of removal and insertion operators using
the adaptive weight adjustment procedure

22: iter—iter + 1.T<T * ¢
23: end while
N

4: Retum Sp.s

Algorithm 1 The procedure of IALNS

4.1 Roulette wheel mechanism and simulated annealing

The roulette wheel mechanism regulates the selection of operators. Let x denote a given
set of operators and let §; denote the weight of operator. Based on operator’s performance
at each iteration, the operator weight §; is computed, and the probability of the operator k
being selected is w; = &/ Zkex 8.0k 1s calculated as §; = Sk(l - rp) + rpak/ wg, where
rp is the roulette wheel parameter, wy is the number of times it has been used in the most
recent Nypdate iterations, and oy is the score of operator i before the update. If c(Spew) <
¢(Spest), the score is increased by o1. If c(Spew) < c(Scurrent), but c(Spew) > ¢(Spest), the
score is increased by o9. If ¢(Spew) > ¢(Scurrent), but the solution is accepted, the score
is increased by o3. To ensure the diversity of solutions, the algorithm adopts the simulated
annealing acceptance mechanism, which always accepts Spey if ¢(Spew) < ¢(Scurrenr) and
with probability e~ (€Gmew)=ceurren)/T if ¢(S,01) > ¢(Seurrent), where T is the current
temperature. The initial temperature is ¢(S;,i;) - Tini¢, and the initial solution is accepted with
a fifty percent chance, where c(S;iyi;) is the objective function value of the initial solution
Sinir and Tip;; is the initialization constant. During the algorithm, the temperature is cooled
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at a fixed rate ¢, and the current temperature is reduced after each iteration to ¢ - T, where
0 < ¢ < 1is afixed parameter, and the algorithm returns the best solution found after a fixed
number of iterations.

4.2 Removal operators

This section introduces three types of removal operators inspired by the works of Ropke and
Pisinger (2006a, 2006b), Demir et al. (2012) and Hof and Schneider (2021), namely Route
Remove, Segment Remove, and Vertex Remove.

4.2.1 Route remove

Route Remove operators remove the entire EV/MCV route, including four operators: (i)
mixed-random route removal (MRR), (ii) cumulative maximum charge route removal (CRR),
(iii) waiting time route removal (WRR), (iv) looseness route removal (LRR). The WRR
operator is applied to MCV routes only, and the remaining removal operators are applied
to both vehicle types. CRR is referred to the description of Hof and Schneider (2021). The
explanations of the proposed MRR, WRR, and LRR are given as follows.

Mixed-random route removal For EV routes, the MRR operator uses the roulette wheel
mechanism to select EV routes for removal. The selected probability is based on efficiency,
which is calculated by H, = D, / > " gr. D, is the distance of the route r, and g, is the
customer demand. For MCV routes, the MRR operator uses the roulette wheel mechanism
to select MCV routes for removal. The selected probability is based on distance.

Waiting time route removal The WRR operator removes the MCV route with the longest
cumulative waiting time to eliminate poorly synchronicity of MCV and EV. The cumulative
waiting time } ;. AP“"is givenby >, oy AP =3 {|thY — 1MV}, where APl
is waiting time at recharging node i in a feasible route.

Looseness route removal The LRR operator adapts the design of Dénmez et al. (2022)
by removing the loosest routes, making the routes tighter and improving the efficiency of
vehicle utilization. For EV routes, the tightness index is measured by the following equation,

Tightnessg = wi(Ty [ Tmax) + w2(Cr/ Cu) + w3(u, / U), where T, is the EV route
duration, Tyhax is the maximum sustainable duration of the EV route, C, is the number of
customers on the EV route, C,, is the number of all customers, 1, is the total customer demand
on the EV route, and the weights w; between 0 and 1, satisfying > w; = 1,i € {1, 2, 3}. For
MCYV routes, the tightness index is measured by Tightnessy = wa(by [ bmax) + ws (- /1),
where b, is the MCV route duration, by, is the maximum sustainable duration of all MCV
routes, /, is the distance of MCV routes, [, is the cumulative distance traveled by all MCV
routes, and the weights w; between 0 and 1, satisfying Y w; = 1,i € {4, 5}.

4.2.2 Segment remove

Referring to Hof and Schneider (2021), Segment Remove operators remove a partial segment
of the EV route, including four operators: (i) random segment removal (RSR), (ii) waiting
time segment removal (WSR), (iii) looseness segment removal (LSR), and (iv) charging
efficiency segment removal (CESR). RSR is random selection removal, and WSR and LSR
are similar to the definitions in Route Remove operators, thus their descriptions are omitted.
CESR is a newly designed operator, which is measured as follows.
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Charging efficiency segment removal The CESR operator selects the EV route with the
highest recharging volume and removes the segments with the lowest charging efficiency.
This operator aims to improve the charging efficiency of the recharging nodes and take
more significant advantage of partial recharging. The charging efficiency is measured by
H; = Cs/Qjs, where Cy is the number of nodes contained in the segment, and Q; is the
recharging volume of the recharging nodes in the segment.

4.2.3 Vertex remove

Vertex remove operators remove some customer/recharging nodes in the EV/MCV route
nodes, consisting of the following operators: (i) random vertex removal (RVR), (ii) worst
distance vertex removal (WDVR), (iii) relevance vertex removal (ReVR), and (iv) waiting
time vertex removal (WVR). RVR and WDVR are referred to Demir et al. (2012) and their
descriptions are ignored. ReVR and WVR are measured as follows.

Relevance vertex removal Referring to Hof and Schneider (2021), ReVR defines corre-
lation based on the distance cost c;;, the demand variance ‘ui — uj|, and the time variance

cij d___ Jui—ujl lei—e;|
max(jcij) Tx maX(ui)*Wii"(Mz) + XemaX(ez)*ﬂ;in(ei)'

‘e,- - ej’ between nodes as R;; = x°

Waiting time vertex removal The WVR operator operates on the recharging nodes in the EV
routes and removes the recharging node with the longest EV waiting time. The waiting time
at the recharging node i is given by t; = max (‘L’iM v _ ‘L'iE v, O), which eliminates the poorly
synchronized recharging nodes as much as possible under the non-strict waiting strategy.

4.3 Insertion operators

This section introduces four insertion operators inspired by the works of Ropke and Pisinger
(20064a, 2006b) and Demir et al. (2012).

Greedy insertion (GI) The GI operator inserts nodes at the best position greedily. The
insertion cost Ad; at position i between j and k is calculated as Ad; = dj; + dijx — djx. The
operator iterates for all nodes in the removal list until i* = min{|Ad;|} is chosen. The node
i* is inserted into the route and then removed from the removal list.

Regret insertion (RI) The RI operator applies a forward-looking mechanism using the
2-regret criterion. Let i* = argmax{Adj» — Ad;}, where Ad; refers to the cost in the
GI operator,Ad;; is the best reinsertion, and Ad,;, is the second-best reinsertion, then the
customer with the highest regret value is inserted.

Greedy insertion with noise (GIN) The GIN operator uses randomness to select the optimal
position of the nodes, so as to increase the diversity. The randomness is achieved by modifying
the insertion cost of the nodes as Ad;“’ise = Ad; +d - - &, where Ad; is the cost, d is the
maximum distance between the nodes, u is the noise parameter set to 0.1, and ¢ is a random
number within [— 1,1].

Regret insertion with noise (RIN) The RIN operator is an extension of the RI operator but
uses the same noise function as the GIN operator.
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4.4 Two-stage dynamic programming procedure

In contrast to the traditional EVRP, this paper addresses a more complex problem involving
EVs and MCVs. The interaction between EVs and MCVs poses more difficulties in synchro-
nizing them when considering mobile partial charging and the non-strict waiting strategy.
To tackle the challenge, the paper introduces a Two-Stage Dynamic Programming. Stage-I
dynamic programming aims to identify all viable solutions, ensuring that the EV adheres to
time, capacity, and energy constraints. Building upon Stage-I, Stage-II dynamic program-
ming is employed to pinpoint the optimal insertion location for the recharging node on the
MCYV route and establish the optimal combination of EV and MCV routes. To facilitate partial
recharging, the algorithm introduces a partial recharging enhancement procedure (Enhance-
ment Procedure), referring to Donmez et al. (2022). The Enhancement Procedure initiates by
eliminating redundant recharging nodes from the current route. Subsequently, it adjusts the
energy transmitted from these nodes to the minimum level required for the vehicle to reach
the next recharging node.

In the Stage-I dynamic programming, nodes from the removal list are inserted into the
corrupted EV route E Sgesr0ryeq to ensure adherence to time and capacity constraints (lines
01-07). The battery state of charge (SoC) is defined as SoC = Q, + @w; — Dy ;, where Q,
is the traveling power of the EV, @; is the recharging amount, and Dy ; is the distance from
the warehouse to the node i. For routes that violate energy constraints, locations with route
SoC < 0 are identified and stored in the charging list as potential recharging node insertion
locations (lines 08—15). Then, recharging nodes are inserted into these positions to assess
energy constraints. Some EV routes may require the insertion of multiple recharging nodes
to meet energy constraints. The Enhancement Procedure is then executed to conduct partial
recharging and verification, recording all feasible repair solutions in ¢ feqgipie (lines 16-22).
If none of the recharging node insertion scenarios enable the route to meet the time constraint,
they are recorded in ¢ feasinle (lines 23-36). However, if any viable restoration scenario
EXIStS, Ppotfeasible Temains empty. The pseudo-code for Stage-I dynamic programming is
detailed in Algorithm 2.
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Input: ESastoveqs: Destroyed EVs solution, Removelist: List of the removed customers
Output: (éﬁm,b;g -feasible EVs solution, ;15,,,!@,5,5;;9 :unfeasible EVs solution

01: Initialize ¢ﬁ(15lf‘f9 — {}, ¢710[f£’(15f17f9 ~— {} ~ESr£mp0ran"," - None

02: for node in Removelist do /{Insert removed customers into EStmporar
03: Insert node into ESgestoyes With Insertion Operator

04: If ES.esirovea 1S feasible in terms of time and capacity constraints then

05: EStemporary <~ ESaestroyed

06: end if

07: end for

08: for route in ESimporay do //Find all feasible repair solutions
09: if route violates power constraints do

10: m «~ 1,n < sequence number of the customer with SoC<0

11: Insertlist < list(range(m,n))

12: for i in Insertlist do

13: if route[i] is the recharging node then

14: del Insertlist(i]

15: end if

16: unfeasible < 0

17: for j in Insertlist do //Determine power and time constraints
18: Insert recharging node into route[j]

19: if route is feasible in power constraints then

20: Enhancement Procedure

21: if route is feasible in time constraints then

22: @ easivie -append(route)

23: else

24: unfeasible < 1

25: end if

26: end if

27: end for

28: if unfeasible = 1 then //Record all unfeasible repair solutions
29: for k in Insertlist do

30: Insert recharging node into route[k]

3L Poseasivie -append( route)

32: end for

33: end if

34: end if

35: end for

36: Return ¢ Easible ¢mz asible

Algorithm 2 The stage-I dynamic programming

The Stage-I dynamic programming outputs ¢ reqsiple and @y easivie to determine which
customers can be inserted into the recharging nodes. Building upon the results of the Stage-I,
the Stage-1I dynamic programming determines optimal insertion locations to establish the
best MCV routes, referred to as the mobile charging vehicle routing problem (MCVRP). In
MCVREP, Z represents the set of nodes that can be inserted into the recharging nodes, and we
define Zo = Z U {0}, Z,+1 = Z U {n + 1}. w; is the recharging amount, charging time is
g - w;, The mathematical formulation of the MCVRP is as follows.

min Cp, - Z ZZij+Cm'Z Z Zd[j'Zijm (26)

J€ZLyy1 meM i€l j€lpy+1 meM
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Y Y zm=1 Vielk 27)

J€ZLyy1 meM
S n ¥ T amm0vies @
j€Zy meM JE€Lp 1 meM
oMY 4 g ;- Z Z Zino +1ij + Zijm — M - (1 = Zijm)
h€Zpt1 0eM
<tV Vi€Lo, j €L iF#j meM @

0<hjm <him—i Zijm+ Qc- (1 —2zijm), Vi €Zo, j € Lny1.i # j, me M (30)
0<hjy <Q¢ YieZyU{n+1}, me M 31

0 <bjm < bim—rm-dij - Zijm+ Qv+ (1 — zijm), Vi €Zo, j € Lps1,i #j, meM

(32)
0<bim<Qp VicZoUln+1), me M (33)
ho =bo = Q. (34)

Similar to the original problem, constraint (26) serves as the objective function to minimize
MCYV costs. Constraint (27) ensures that the MCV visits each node only once. Constraint
(28) is the routing balance for MCV. Constraint (29) ensures the conservation of MCV
energy. Constraints (30)-(31) represent MCV constraints related to the charging battery level.
Constraints (32)-(34) pertain to MCV constraints regarding the traveling battery level. This
paper solves the MCVRP by using the Stage-II dynamic programming.

In Stage-II dynamic programming, for each feasible solution in ¢ f.4sipie, the recharging
node is individually inserted into the MCV route. If inserting the recharging node causes a
delay in the EV’s arrival time, FTS Procedure based on the labeling algorithm (see Sect. 4.5)
is employed to determine whether it renders the EV route infeasible in terms of time. If
feasible, it identifies the optimal restoration scheme E'S,¢pqireq for the EV route and the
optimal insertion scheme M S, ¢pgireqa for the MCV route (lines 01-10). If @ foq5ipe cOnsists
entirely of time-infeasible repair schemes, the steps in lines 02—10 are repeated. Subsequently,
the location in ESy¢paireq that violates the time constraint is checked, denoted as p. If p
corresponds to the depot, the node at route location (p-1) is removed; otherwise, the node at
route location p is deleted. Removing the recharging node may lead to battery SoC feasibility
issues, in which case, the recharging node must be reinserted at other nodes. The Enhancement
procedure is repeated until the EV route complies with time and energy constraints (lines
13-30). Simultaneously, a new EV route needs construction to reinsert the deleted customer
nodes, with the condition that it adheres to time, capacity, and energy constraints (lines
31-39). The pseudo-code for the Stage-II dynamic programming is provided in Algorithm
3.
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Input: ESgestones: Destroyed solution of EVS, MSyesones: Destroyed solution of MCVS, @scsis »

qﬁrzigﬁasibie

Output: ESyepares: Repaired solution of EVS, MSyepair4: Repaired solution of MCVs

01: for route in ¢_,ga5,-b;9 do //Insert recharging nodes into MCV routes
02: Find recharging nodes in the route

03: Insert recharging nodes into MSissones With Insertion Operator

04: if the insertion of recharging nodes delays the arrival time of the route then

05: Algorithm 4

06: if the route is feasible in time constraints then

07: MSrepairea <~ MSaestoryea

08: Find the best insert programme route € P rasivie

09: Replace the corresponding route with 7oure  in ESzesored

10: ESrepaired ~ ESaestoryed /IDetermine the best EV routes
11: if (ﬁ,,,lfm,»g;g isnot & then //Addressing unfeasible options
12: repeat lines 02 to 10

13: Removelist < []

14: for route in ESiepaires do //Find the node that violates the constraint
15: while route violates the time constraints do

16: p < the node position that violates time constraint

17: if route[p] is depot then

18: Removelist.append(route[p-1])

19: del route[p-1]

20: else

21: Removelist.append(route[p])

22: del route[p]

23: end if

24: while route violates the power constraint do

25: p < the node position that SoC<0

26: Insert recharging node into route[ p -1]

27: end while

28: Enhancement Procedure

29: end while

30: end for

3L for node in Removelist do //Generate a new EV route
32: generate a new route and insert nodes with Greedy Insertion

33: Ensure new route’s capacity/time/power constraints are met

34: end for

35: if recharging nodes need to be inserted into a new route do

36: repeat lines 03 to 07 //Insert new recharging nodes
37: end if

38: end if

39: Return ESyepaired, MSrepaired

Algorithm 3 The stage-II dynamic programming

4.5 Label algorithm and FTS procedure

The IALNS employs labeling algorithm as the core to construct a label L, for each recharging
node. The label evaluates the feasibility of partial recharging solutions with the non-strict
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waiting strategy by calculating the maximum EV waiting time. Suppose the EV route is
denoted as (0,...,7,j...,k,n+ 1), where i represents a recharging node. The label L,
consists of four components, denoted as L, = { 6;, Bi, Po, T;}, where the first component
stores the charging time at i, the second component stores the time of arrival of the MCV at
i, the third component stores the latest time of arrival of the MCV when the EV’s recharging
completion time equals the end time of service at i, and the fourth component stores the delay
maximum time provided the EV’s route does not violate the constraint at i. If the EV arrives
at recharging node i at time ti‘,%V, Eq. (35) gives B;.

pi=max (e Biot) + 6, +dio1.. (35)

where d; 1 ; represents the distance of the MCV from the recharging node i-1 to the recharging
node i. Since recharging and service are considered simultaneously, the EV’s recharging
completion time &% at the recharging node is denoted as &% =max (%", g;) + 6;. It is
assumed that recharging must be completed before the end of service, and its service end
time at the recharging node is also éi’,:; V*—max (ti’,f v, e,-) + s;. The value Bg can be computed

using Eq. (36).
Bo=max (‘cl-lfzv, ei) +s; — 6;. (36)

When altering the order of visiting the recharging nodes on an MCV route, the MCV’s
arrival time at the recharging node changes. The change could delay the time when the EV
visits the node following the corresponding recharging node on the respective route, which
may lead to the EV violating the time window constraint. To avoid reorganizing the EV
routes after each change in MCV routes, the FT'S Procedure is designed based on Grangier
et al. (2016). When a visit time deferral occurs, the FTS Procedure calculates the maximum
delay time and compares it to the actual delay time. The operation does not violate the time
window constraint if the delay time exceeds the maximum delay time.

The early arrival times of the vehicles from node j to k on the EV route before any
deferrals occur can be calculated, the time at which the vehicles arrive before the start of the
time window. Their cumulative early arrival times ET are determined by Eq. (37).

ETj = Z max (0, ey — rf,f) (37
wej,k

Assuming that the end of the time window at the node is /;, the delay time 7; can be
calculated as Eq. (38).

Tizmin{ET]’,k +1ljx— T]E]Y} (38)

After obtaining the label L, for each recharging node on the EV route, if all the recharging
nodes satisfy B; — Bo < T;, VL, € R (where R is the set of all the labels on the EV route),
it indicates that the EV route adheres to the time window constraints.

In FTS Procedure based on the labeling algorithm, the first step involves initializing the
list of recharging nodes and the list of labels (line 01). Subsequently, the EV route is input,
and recharging nodes are added (lines 02—06). Then, labels for different positions of each
recharging node are calculated, including 6;, B;, Bo, and 7;. Notably, if 7; > 0, the FTS
Procedure is employed for computation (lines 07-15). After obtaining the label set for each
recharging node, the EV route’s time feasibility and permissible waiting time are determined
using the values B;, Bo, and T; from the labels. If 8; — o < T;, VL, € R, the EV route
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complies with the time window constraints. In the case of 7; > 0, it is necessary to compute
the delay times for all nodes following the EV route’s recharging nodes and calculate the
actual arrival times for each node along the EV route (lines 16-30). The pseudo-code for the
FTS Procedure is presented in Algorithm 4.

e ——— o - o i
Input:Route, Z',E :EV arrive time, B, :MCV arrive time, d{; :distance from | to j, ETA/ ks Tik

j.K

output: L,z :Arrival time after EV delay

01: Initialize TransNodelist < [],R < [] //nitialize the list of labels
02: for node in Route do
03: if the node is recharging node then
04: TransNodelist.append(node)
05: end if
06: end for
07: for node in TransNodelist do //Calculate label values
08: Lo~ 1}
09: L, .append(6, =g/, max(c? . f,)+6,+d.,, max(c ,¢)+s,—6)
10: T,=0 or T,=min{ETJ,.k +1,, - rEi}
11: L .append(7;)
12: R .append(L,)
13: end for
14: for L, in B do //Determining the validity of labels
15: if L_.I!=0 then
16: if L_..p—L_.J3 >L_I, then
17: return False
18: else
19: Tim =max(0,L,.f, —L,.f,— > max(0,e, —7;"))
’ ) we Q. k-1
20: Z',EI” - 2',‘}5r + I'E;,_]v //Update EV arrival time
21: end if
22: else
23: if L_.B—L_/3 >0 then
24: return False
25: end if
26: end if
27: end for

Bl

28: Return L_, 7

Algorithm 4 FTS Procedure

This section includes an example to illustrate the operation of the FT'S Procedure. A virtual
node is constructed at the recharging node’s location for illustrative purposes. An EV route (0,
1,2,2,3,4,5,0) is assumed, where 2’ represents a virtual charging node. It should be noted
that 2’ and 2 are located at the same customer location, and the time window of 2’ is the same
as the time window of the depot. Furthermore, since recharging and service can be carried out
simultaneously, their time windows will not affect each other. Figure 3 displays each node’s
time windows, travel times, and arrival times. Cumulative early arrival times ET for reaching
each node and slack times /; — " are calculated according to Eq. (37), and T; = 10 as

i
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Fig. 3 Impact of different battery levels

per Eq. (38). Assuming service time s; = 30 and charging time 6; = 4, we obtain Sy = 96.
Assuming the MCYV arrives at the recharging node at time g; = 106, the label at recharging
node 2° L, = (4,94, 106, 10). Due to 8; — Bo = T;, the route does not violate the time
constraint. It is important to note that the delay of nodes following the EV route’s recharging
node and the calculation of the deferred arrival time ‘L'iE V= max(0, ;i — Bo — ET;—1) are

required after changing the MCV arrival time. The results are a deferred arrival time of 120
at node 3, 130 at node 4, and no deferral at node 5.

5 Computational experiments

This section presents numerical experiments on the EVRP-MPR&NSWS model to evaluate
the effectiveness of the proposed operator and solution algorithm. Comparisons are also made
with different operational models, and some management insights are discussed.

5.1 Benchmark instances and experimental setting

The EVRP-MPR&NSWS model utilizes the EVRPTW-SMBS instances originally proposed
by Raeesi and Zografos (2020), which include 36 small instances (5, 10, and 15 customers)
and 112 large instances (25 and 100 customers). They are constructed based on the VRPTW
benchmark introduced by Solomon (1987) and the EVRP instances presented by Schneider
et al. (2014), which comprise six sets of test instances (C1, R1, RC1, C2, R2, and RC2).
These instances are categorized according to the geographical location of the customer into
clustered “C”, randomly distributed “R” and half clustered and half randomly distributed
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Table 3 Parameter settings

Parameter Description Value Parameter Description Value

Nseg Minimum total 40n Nstop Number of stops 5n
number of
iterations

Nno Improve Number of 1.5n Nupdate Number of 0.3n
consecutive updates of
non-optimizing operator weights

Sup Upper bound of 40 Siow Lower bound of 3
removable removable nodes
nodes

c Cooling 0.99 P Reaction 0.1
coefficient coefficient

Ao, Aoy, Aoj Weight {33,9,13} Tinit Initial temperature ~ 0.004
adjustment coefficient
parameters

01, 92, Y3, O4, @5 Shaw removal {9,2,3,5,3} I Noise parameter 0.1
parameters

“RC”. Additionally, instances in the first group (R1, C1, and RC1) have a short scheduling
horizon, whereas the second group instances (R2, C2, and RC2) have a longer one.

The EVs and MCVs also adopted the parameter characteristics and assumptions in Raeesi
and Zografos (2020), including battery capacity and energy consumption. It was assumed
that the MCV possesses arechargeable battery five times larger than that of the EV, a traveling
battery twice the size of the EV, and a similar energy consumption rate. The origination and
unit traveling costs of EVs and MCVs are set to C, = 50, Cp = 60, c, = ¢, = 1 with
reference to Raeesi and Zografos (2020) and Shao et al. (2017). However, unlike the battery
swapping time presented in EVRPTW-SMBS (¢ = 3), this study assumes that EVs require
5 units to be fully recharged (¢ = 95).

The parameters are divided into two sets. The first set refers to Ropke and Pisinger (2006a,
2006b) and defines the iteration parameters of the IALNS algorithm, including the roulette
wheel mechanism, operator coefficients, and the simulated annealing acceptance framework,
as detailed in Table 3, where n is the number of customers. The second set, encompassing
vehicle and customer information, is outlined in the instances.

5.2 The performance of the operators

This section evaluates the performance of the removal and insertion operators in terms of
solution quality. Following the approach of Franceschetti et al. (2017), %Usage, %Imp, and
%]IBest are performance metrics. %Usage represents the proportion of iterations in which
this operator is used relative to the total number of iterations. A larger %Usage indicates a
higher weight for the operator in the roulette wheel, illustrating a greater contribution of the
operators in the iteration process. %IBest represents the percentage of the total number of
iterations in which the operator is used and achieves the optimal solution. It indicates the
operator’s efficacy in reaching the global optimum. %Imp represents the percentage of the
total number of iterations in which the operator is used and improves the existing solution,
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demonstrating the operator’s capacity for local optimization by obtaining a superior solution
to the current one. We run algorithm ten times per instance, and the Table 4 shows the results.

Table 4 illustrates the operators’ performance, where the MRR and LRR operators perform
the best with their high %Usage, %Improvement, and %IBest. This indicates that mixed
random selection and route tightness measurements typically lead to improved solutions
compared to existing ones. In contrast, the CESR operator exhibits the highest %Usage but
underperforms, possibly due to the challenge of obtaining a better solution than the current
one. Regarding %IBest, the WVR operator performs well and is employed efficiently. The
WYVR operator’s performance improves with larger instance sizes indicating that removing
more poorly synchronized recharging nodes through the WVR operator is more favorable
for system optimization. Concerning insertion operators, those with noise achieve a higher
%1Best than those without noise. The randomness introduced by noise enhances search
diversity, resulting in a more effective discovery of optimal solutions.

5.3 Performance of the non-strict waiting strategy and the algorithm

In this section, we assess the performance of the proposed EVRP-MPR&NSWS algorithm by
comparing its solutions with other waiting strategies and CPLEX. The evaluation is conducted
on instances involving 5, 10, 15, and 100 customers, aiming to evaluate the effectiveness of
both the algorithm and the non-strict waiting strategy.

5.3.1 Different waiting strategies and solution method

In this paper, the FTS Procedure based on the labeling algorithm serves as the core of TALNS to
address the non-strict waiting strategy. In the development of the FTS, we progressively relax
the constraints on waiting strategies for EVs and MCVs within delivery-charging systems.
This relaxation results in three progressively less stringent waiting strategies, each allowing
for varying degrees of flexibility. Waiting Strategy 1 (WS1) represents the most stringent
waiting strategy, requiring the MCV arrives before the EV and waits for the EV to commence
service. Waiting Strategy 2 (WS2) relaxes the waiting restriction imposed on the early arrival
of MCVs, requiring that the MCV’s charging end time precedes the EV’s service completion
time. Non-Strict Waiting Strategy 3 (NSWS3), presented in this paper, imposes no waiting
constraints. The EV can wait for the MCV to complete charging after the end of its service
or even beyond the designated time window, and the MCV can wait for the EV to recharge
at its discretion.

To evaluate the effectiveness of the non-strict wait strategy and the efficiency of the
algorithmic components, this section outlines the algorithmic components used to solve
models with different waiting strategies, as detailed in Table 5.

5.3.2 Experiments with small-scale instances

This section evaluates the performance of the IALNS algorithm by solving small instances
using CPLEX. TC represents the total cost, TV is the total number of vehicles, A% and Gap%
indicate the gap between the WS1/WS2 and NSWS3, and the gap between the NSWS3 and
CPLEX, respectively, with a CPLEX time limit of 7200 s. Table 6 reveals that CPLEX
identifies the optimal solution in 33 instances, with NSWS3 matching CPLEX in these cases.
In the remaining 3 instances, where CPLEX does not find the optimal solution within the
specified time, NSWS3 outperforms with an average improvement of 3.36%. CPLEX exhibits
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Table 5 Algorithm component . . .
Algorithmic components TALNS labeling algorithm FTS

WS1 W
WS2 W J
NSWS3 v Vi v

an average runtime of 1958.57 s, while NSWS3 has an average runtime of only 13.74 s.
These findings demonstrate that the algorithms in this paper efficiently handle small-scale
instances. Additionally, to evaluate the algorithm components’ contributions, the solutions
of WS1, WS2, and NSWS3 are compared. Relative to NSWS3, the quality of WS1 and WS2
solutions, which lack specific components, decreases by an average of 2.90% and 0.46%,
respectively, underscoring the effectiveness of incorporating FTS components into the [ILANS
algorithm.

5.3.3 Experiments with large-scale instances

This section solves large-scale instances involving the three waiting strategies of EVRP-
MPR&NSWS. Table 7 presents the results of these strategies with 100 customers, and the
Gap% is computed as gap = (72”2/22;2”3) x 100%.

In Table 7, it can be observed that NSWS3 outperforms WS1 in 42 instances, while in
14 instances, their solutions coincide. Similarly, NSWS3 outperforms WS2 in 27 instances,
with the remaining 29 solutions the same as NSWS3. On average, NSWS3 demonstrates
improvements of 2.77% in total cost, 2.39% in total number of vehicles, and 2.58% in total
distance compared to WS1. Compared to WS2, NSWS3 exhibits average improvements of
0.99%, 0.87%, and 0.66%, respectively. These indicate that the overall system optimization
benefits from relaxing the assumption that MCVs must arrive earlier than EVs. Excessive
emphasis on the priority of the EVs may affect the optimization of the system.

Table 8 provides the average results across various instances for the three strategies. De
represents EVs’ travel distance, Dm represents MCVs’ travel distance, Ve denotes the number
of EVs, and Vm represents the number of MCVs. NSWS3 outperforms all instances except
where the total cost matches WS2 at C2. Specifically, for C2, R2, and RC2, the average total
cost of NSWS3 is 1.29% lower than that of WS1, with only slight differences in fleet size.
However, for R1 and RCI, the average total cost of NSWS3 is 4.39% lower than that of
WS due to the shorter time windows. This underscores the significance of considering the
non-strict waiting strategy, which can simultaneously benefit both EV and MCV routes in
the delivery-charging system.

5.4 The added value of the EVRP-MPR&NSWS

By comparing with other classical models, this section explores the added value of the EVRP-
MPR&NSWS mode in the context of various recharging modes and discusses in detail the
specific advantages of the proposed mode.

The EVRP-MPR&NSWS is compared with other prominent modes, namely the
EVRPTW-PR proposed by Keskin and Catay (2016), the EVRPTW-MCS introduced by
Catay and Sadati (2023), and the EVRPTW-SMBS developed by Raeesi and Zografos (2020).
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Table 8 Computational results for different instance collections

Ins Time mode  TC TV TD Ve De Vm Dm Gap
(%)

Cl WS1 1694.05 12 1074.05 10 839.69 2 23436 0.30
WS2 1690.77 12 1070.77 10 83639 2 23438  0.10

NSWS3 1689.01 12 1069.01 10 83448 2 23453 0.00

Cc2 WS1 972.04 4 762.04 3 612.58 1 149.46  3.49
WS2 939.28 4 72928 3 589.86 1 139.42  0.00

NSWS3 939.28 4 72928 3 589.86 1 139.42  0.00

R1 WS1 2491.05 19.58 1588.55 1492 1268.5 4.67 32005 4.28
WS2 2427.71 1692 154854  13.58 1258.11 333 29043 1.63

NSWS3 2388.75  16.75 152542  13.67 1249.51 3.08 2759 0.00

R2 WS1 118426 5 931.53 473 91533  0.27 16.2 0.32
WS2 1180.7 5.09 92434 4091 91586  0.18 848  0.01

NSWS3 1180.54 491 932.36  4.64 919.17  0.27 13.19  0.00

RC1  WSI 2704.41 17 1823.16  13.88 146632  3.13  356.84 4.72
WS2 2633.02  16.5 1778.02 135 1444.8 3 333.22 1.95
NSWS3 2582.57  16.25  1750.07 135 143522 2.63 31484  0.00

RC2  WSI 1376.68 6 1072.93  5.63 1048.15  0.38 24.78 1.21
WS2 1361.99  5.88 1065.74  5.63 1049.23  0.25 16.51  0.13

NSWS3 1360.18  5.88 1063.93  5.63 1048.06  0.25 15.87  0.00

The numbers in bold represent the best average solutions from the various strategies

It is essential to note that the mobile swapping proposed by Raeesi and Zografos (2020)
cannot service customers when swapping. However, due to the convenience of recharging,
the EVRP-MPR&NSWS can serve customers while recharging. To better demonstrate the
advantages of the EVRP-MPR&NSWS, we introduce a mode where recharging and serving
customers cannot be done simultaneously, called the separation model. Table 9 provides the
results of these modes with 100 customers, where “PR” corresponds to the EVRPTW-PR,
“SMBS” represents the EVRPTW-SMBS, “MPRS*” stands for the separation model, “MCS”
denotes the EVRPTW-MCS, and “MPR&NSWS” refers to the EVRP-MPR&NSWS. Addi-
tionally, ““S” indicates the number of recharging nodes, while “F” represents the total power
of recharging or swapping.

As depicted in Table 9, all instances of MPR&NSWS exhibit lower costs than MPRS*,
primarily because simultaneous recharging and service reduce overall time requirements. On
average, MPR&NSWS leads to a 32.44% reduction in the total cost and a 13.74% decrease in
fleet size compared to PR. PR’s total cost includes factors such as total distance, vehicle fixed
costs, and the cost of operating the CSs. Even without factoring in the fixed investment cost
of constructing CSs, PR remains more expensive than MPR&NSWS. EVs face additional
travel time and are more likely to miss time windows when detouring to CSs for recharging.
The MCS mode, which prevents EVs from waiting for MCVs, is equivalent to the WS1.
On average, MPR&NSWS outperforms the MCS mode regarding total cost, EV fleet size,
MCYV fleet size, number of recharging trips, and recharging volume. This demonstrates the
outstanding results of the non-strict waiting strategy proposed in this paper.
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Furthermore, the average cost of MPRS* is 4.22% lower compared to SMBS. The substan-
tial 61.55% reduction in MCV recharging compared to BSVs emphasizes the considerable
energy-saving potential of mobile partial recharging. In contrast, SMBS outperforms MPRS*
for instances C102 and RC106, possibly due to the longer full recharging time, which makes
partial recharging less advantageous. Although SMBS and MPRS* have similar fleet sizes,
MCVs exhibit better energy replenishment efficiency, serving EVs 3.91 times on average
compared to 3.49 times for BSVs. Moreover, for R101 and R111, BSVs require a minimum
of 16 batteries, which imposes additional inventory costs for the company.

Since the PR mode of fixed charging is significantly different from the other mobile modes,
we focused on analyzing the results of the four mobile modes. Figure 4 presents route results
for the C204 within the other four modes, where solid lines depict the EV, while dashed lines
represent the MCV. In the SMBS mode, there are 5 EVs and 1 BSV, resulting in a total cost
of 1095.98, while the MPRS*, MCS, and MPR&NSWS modes have 3 EVs and 1 MCV, with
total costs of 957.86, 956.08, and 940.02, respectively. The lower cost in the MPR&NSWS
mode compared to MPRS* and MCS modes is consistent with expectations. Compared to
the SMBS mode, the number of EVs in the MPRS* mode was reduced from 5 to 3 vehicles,
resulting in a cost reduction of 12.6%.

Further analysis reveals that the total charging time for MCVs at the four recharging
nodes is 10.25, while the total swapping time for BSVs is 12. It indicates that despite the
full recharging taking longer compared to swapping, partial recharging offers greater time
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Fig. 4 Route diagrams under different modes of C204
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(c) MCS mode (d) MPR&FTS mode

Fig. 5 Route diagrams under different modes of R108

flexibility and ultimately shorter recharging time, which underscores the superior benefits of
mobile partial recharging compared to mobile swapping.

Similarly, Fig. 5 presents route results for the R108. The SMBS mode encompasses 15
routes with a total cost of 2066.61, while the MPRS* mode includes 14 routes with a total
cost of 1999.63. In contrast, the MCS and MPR&NSWS modes consist of 13 routes, with
total costs of 1961.95 and 1913.11, respectively. Unlike the SMBS and MCS modes, the
MPR&NSWS and MPRS* modes relax the waiting strategy at recharging nodes 8, 59, 61, and
100, which makes them cost less. The total costs of the MPR&NSWS mode and the MPRS*
mode is 7.43% and 3.24% lower than the SMBS mode, respectively, due to the narrower
time window of R108 and the application of a non-strict waiting strategy. Additionally, the
total cost of the MPR&NSWS mode is 2.49% lower than that of the MCS mode, further
demonstrating the effectiveness of the non-strict waiting strategy.

5.5 Sensitivity analysis of different vehicle characteristics

This section focuses on the impact of various vehicle characteristics on the EVRP-
MPR&NSWS solution. To examine these effects, 24 instances are selected for experimenta-
tion from 25 and 100 customer instances (selected from the first two instances of C1,R1,RC1,
C2, R2, and RC2). Modifications to problem characteristics generate a set of new instances,
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Fig. 6 Impact of different battery levels

which are then compared with the results of the original instances, offering insights into the
application and operation of two types of vehicles.

5.5.1 Traveling battery

This section explores the influence of different EV and MCV traveling battery capacities on
the solution. Low and high battery capacities are represented by 80% and 120% of the original
battery, respectively. Figure 6 depicts the total cost, distance traveled, and the number of
vehicles under varying battery capacities. Predictably, low battery capacity in EVs limits their
travel distance, increasing the need for MCV deployments and recharging times. Similarly,
MCYVs with low battery capacity need more deployments to serve fewer EVs due to their
limited range. An intuitive improvement is to deploy more EVs, reducing the energy demands
on each delivery route. Consequently, whether EVs or MCVs, the larger the battery capacity,
the lower the total cost.

In summary, advancements in battery technology hold critical significance for MCV
operators and the delivery-charging system, promising substantial cost and vehicle count
reductions. Additionally, increasing the frequency of recharging cannot always reduce the
cost when battery capacity is fixed. Deploying more EVs can decrease the recharging fre-
quency, providing more relaxed time windows for MCVs and reducing the overall system
cost.

5.5.2 Charging rate

The analysis in this section considers a slow charging rate, requiring ten units of time to reach
full capacity, and an extra-fast charging rate, requiring three units of time. Figure 7 illustrates
that the cost of the slow charging rate is generally higher due to the extended charging time.
Interestingly, the improvement in ultra-fast charging is limited. This is because the saving in
charging time is short and not enough to synchronize the EV and MCV better. Consequently,
while increasing charging speed reduces the operator’s costs, its effects diminish. Besides
improving customer satisfaction and reducing waiting times, increasing charging speeds will
unlikely reduce operating costs further.
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5.5.3 Shared batteries

This section investigates the impact of whether MCVs use the same battery to supply power
for traveling and charging. “NS” denotes unshared batteries, while “S” represents shared
batteries, with numbers indicating customer size. Shared batteries combine the energy of the
original traveling and charging batteries. Figure 8 reveals that using shared batteries results
in smaller MCV sizes, averaging 19.75% less. The reduction occurs because MCVs can
balance traveling and charging energy, serving EVs more frequently and requiring fewer
deployments to meet demand. Moreover, the total cost of shared batteries is, on average,
1.06% lower than that of unshared batteries. From a system optimization perspective, shared
battery technology yields superior outcomes, as even the worst-case scenario remains the
same, with most scenarios displaying improvements.
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Fig. 9 Impact of different cost

5.5.4 Deployment and operating costs

This section evaluates the impact of varying deployment and operating costs for MCVs
on the overall system. A 50% and 100% increase in deployment and operational costs for
MCVsis regarded as high and ultra-high, respectively. Figure 9 illustrates the impact of these
cost changes. Generally, as costs increase, the total cost of the system rises. There are two
scenarios for cost increases: one where delivery and charging routes remain unchanged, and
the system cost increases solely due to elevated MCV costs. In contrast, altering existing
routes leads to higher system costs. Another scenario is route changes due to changes in
MCYV deployment or operating costs. The cost changes in this scenario tend to be small, with
the number of charges gradually decreasing as MCV costs rise. Eventually, all deliveries will
use EVs without recharging.

When MCVs are operated by third parties, deployment and operational costs become
critical factors in MCV utilization. The higher the cost, the lower the MCV utilization rate.
MCYV costs are not the sole determining factor for the system, and advancements in battery
technology can yield substantial cost savings. Surprisingly, optimizing MCV costs provides
significant benefits. Nevertheless, the optimization is not limitless, as MCV costs decrease,
the optimization of the system tends to plateau, with the number of recharges no longer
increasing due to battery capacity constraints and time window limitations. Moreover, as
MCV costs approach those of EVs, further optimization becomes less feasible in the real
world.

6 Conclusion

This paper extends the EVRP model to EVRP-MPR&NSWS to explore mobile partial
recharging decisions using the non-strict waiting strategy. EVs are employed for delivery
tasks. MCVs can perform partial recharging on multiple EVs with low battery levels, result-
ing in a decrease in charging times and an increase in practicality. Unlike the traditional
EVRP that takes EVs as a priority, the EVRP-MPR&NSWS model does not require MCVs
to arrive immediately when EVs request recharging, and EVs can wait for recharging after
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servicing customers. This removes the time window restriction for MCVs and allows MCVss
to serve EVs more efficiently, thereby reducing the total cost of the delivery-charging system.

While mobile partial recharging decisions with the non-strict waiting strategy offer an
opportunity to save cost and improve time flexibility, challenges arise concerning recharging
volume, waiting decisions, and the spatial and temporal coordination of MCVs and EVs. To
address these complex problems, an improved ALNS algorithm is developed. The algorithm’s
core components include the labeling algorithm and FT'S modules, designed to solve recharg-
ing amount and timing decisions. The instances for EVRP-MPR&NSWS were sourced from
Solomon (1987) and Raeesi and Zografos (2020). Extensive numerical analysis of different
waiting strategies shows that labeling algorithm and FTS achieve superior results across all
instances, demonstrating the effectiveness of our algorithm. The results also underscore the
competitiveness and efficacy of the non-strict waiting strategy in reducing the total cost of
the delivery-charging system. Moreover, the advantages of the EVRP-MPR&NSWS model
are showcased by demonstrating its competitiveness against relevant benchmark examples of
EVRPTW, EVRPTW-SMBS, and EVRPTW-MCS. Our model reduces the total cost in these
instances. Furthermore, we conducted a sensitivity analysis and provided operational sug-
gestions and management insights. Based on the results of the computational experiments,
we propose that companies, when designing their logistics plans, could innovatively consider
additional waiting time of the EVs for MCVs to become available for recharging purposes.
This approach would offer greater flexibility and efficiency in cargo distribution. Upon ana-
lyzing the various characteristics of vehicles, we show that companies could benefit from
consolidating the traveling and recharging batteries of MCVs. This consolidation improves
recharging flexibility and reduces operating costs, although it necessitates careful consider-
ation of battery power allocation decisions. It is essential to note that we do not recommend
companies overprice their MCVs. While this may result in higher profits, it could decrease
the overall utilization of MCV across the system, potentially leading to increased costs.

Due to the current insufficient number of recharging infrastructures and their uneven dis-
tribution, MCVs will become an essential way to replenish the power of EVs. Future research
may explore more application scenarios for MCVs. For instance, MCVs could set up tem-
porary charging points at any location and serve multiple EVs at the same time, reducing
MCYV travel distances. EVs could also share power to reverse recharge the MCVs, which
would enable the MCVs to service more EVs or travel longer distances. To enhance the
model’s realism, future studies may use nonlinear charging and energy consumption func-
tions. Additionally, future research may delve into demand fluctuations, which may change
in MCV charging locations and require further algorithmic advancements to coordinate EV's
and MCVs effectively.
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