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Abstract
Migrating birds optimization algorithm is a promisingmetaheuristic algorithm recently intro-
duced to the optimization community. In this study, we propose a superior version of the
migrating birds optimization algorithm by hybridizing it with the simulated annealing algo-
rithm which is one of the most popular metaheuristics. The new algorithm, called MBOx, is
compared with the original migrating birds optimization and four well-known metaheuris-
tics, including the simulated annealing, differential evolution, genetic algorithm and recently
proposed harris hawks optimization algorithm. The extensive experiments are conducted on
problem instances from both discrete and continuous domains; feature selection problem,
obstacle neutralization problem, quadratic assignment problem and continuous functions.
On problems from discrete domain, MBOx outperforms the original MBO and others by up
to 20.99%. On the continuous functions, it is observed that MBOx does not lead the compe-
tition but takes the second position. As a result, MBOx provides a significant performance
improvement and therefore, it is a promising solver for computational optimization problems.

Keywords Metaheuristics · Migrating birds optimization · Feature selection · Quadratic
assignment problem · Obstacle neutralization problem · Continuous functions

1 Introduction

Metaheuristics are commonly used solution techniques for combinatorial optimization prob-
lems. They are preferred to exact algorithms when near optimum solutions are sought on
large problem instances. However, for instances of high complexity or large-scale problems,
heuristics or metaheuristics may not be sufficient to achieve satisfactory results. For this
reason, especially during the last two decades, researchers have been trying to find new tech-
niques that provide better performance. One of the fields that researchers are focusing on is
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hybridizing metaheuristics. Hybrid metaheuristics are generally obtained by combining the
power of two or more metaheuristics or by placing a local search heuristic within a meta-
heuristic. There are several studies in the literature that successfully hybridizemetaheuristics.
The most preferred technique is hybridizing genetic algorithms with a local search proce-
dure or some other metaheuristics (Drezner, 2008; Gonçalves et al., 2005; Kao and Zahara,
2008). Apart from genetic algorithm-focused studies, hybridization of other meta-features
such as simulated annealing with ant colony optimization (Behnamian et al., 2009), simu-
lated annealing with differential evolution (Liao et al., 2014), harmony search algorithmwith
differential evolution (Duan et al., 2013) are observed in the literature.

In this study, we have studied on placing a different exploration strategy into the migrating
birds optimization (MBO) algorithm which is proposed recently. The exploration strategy
built into MBO is the stochastic motion tactic that the MBO algorithm is expected to benefit
(exploit) from a wider range of solutions.

V formation of the migrating birds in real life is the inspiration of the MBO algo-
rithm (Duman et al., 2012). The algorithm starts with randomly initializing the feasible
solutions (represent birds in the analogy) in the solution space and by searching their neigh-
borhood these feasible solutions try to move to better positions. Solutions are placed in a
hypothetical V formation and throughout the algorithm they share their unused neighbors
with the follower solutions. In the original MBO study, the authors test the performance of
theMBO algorithm by comparing it with other metaheuristics on quadratic assignment prob-
lem instances. Results of the experiments show that MBO has competitive performance with
the simulated annealing and better performance than the differential evolution algorithms,
tabu search, scatter search, guided evolutionary simulated annealing, genetic algorithm, and
particle swarm optimization (Duman et al., 2012).

MBO algorithm is proven to be a good performing algorithm and thanks to its swarm
structure and benefit mechanism among the feasible solutions, it has the chance to find the
global minima. Nevertheless, it has a drawback; solutions always move to better feasible
solutions causing the algorithm to get stuck in local minima. In order to avoid getting stuck
at local minima, embedding a new exploration strategy in MBO is a novel and promising
idea. This superior version of MBO is calledMBOx throughout the manuscript. In this study,
we showed the superiority of MBOx over MBO and four other well-known metaheuristics;
genetic algorithms (GA), differential evolution (DE), simulated annealing (SA) and harris
hawks optimization (HHO) on four different problem sets (three of which are NP-Hard):
(i) feature selection problem, (ii) quadratic assignment problem, (iii) obstacle neutralization
problem, (iv) well-known continuous functions, through conducting extensive computational
experiments. Therefore, we believe that MBOx will take its place as a promising problem
solver for optimization problems.

The manuscript is arranged as follows. Brief information about the MBO algorithm,
benchmark algorithms, tackled problems and previouswork are given in Sect. 2. Details of the
MBOx algorithm is discussed in Sect. 3. Implementation details of algorithms, computational
experiments and discussion are given in Sect. 4. Section5 concludes the paper with some
future work.

2 MBO, benchmark algorithms and previous work

In this section, we give some information about MBO and benchmark algorithms with their
summarized literature reviews.

123



Annals of Operations Research

2.1 MBO and related previous work

MBO algorithm is one of the recently proposed swarm intelligence techniques that is inspired
from the migrating birds in real life and their V-shape formation. In this subsection, we prefer
to stick to the metaphor based terminology used in the original MBO paper. However, rather
than using specifics words belong to migrating birds, general optimization terminology will
be used in the remaining of the manuscript to make MBOx easily comparable with other
algorithms.

In the MBO algorithm, there is a leader bird which is chosen randomly among all birds,
whereas the remaining birds are divided into two groups (both groups have same number
of birds) behind the leader bird as in a V-shape formation. Every bird in the flock generates
predetermined number of feasible solutions that determines the speed of the flock (in the
remainder of themanuscript, instead of using ”feasible solution” we prefer to use ”solution”).
The speed of flock determines the search area, where the flock can do search in a wider area
if its speed is higher.

The working principles of the algorithm are as follows. Firstly, initial solutions are gener-
ated randomly by placing the birds to the search space in a hypothetical V-shape formation.
After the initialization phase, leader bird generates its neighbours, selects the best of these
and then replaces if this is better than itself. Then, the leader bird gives best unused solutions
to the bird immediately behind. Remaining birds also share their neighbors in the same way
as the leading bird does. Once all the birds share their unused neighbors with the following
birds, one flapping process is completed. After m flappings, the leader bird is moved to the
last position of one of the tails and the process starts over. Total number of iterations or num-
ber of neighbors generated is used as the stopping criteria. Figure1 presents the structure of
the MBO algorithm where the parameter definitions are as follows:

k = the number of neighbor solutions to be considered
m = number of tours
n = the number of initial solutions
x = the number of neighbor solutions to be shared with the next solution

Duman et al. (2012) introduced theMBO algorithm to the literature in where performance
of the MBO algorithm is tested on QAP instances and also compared with other well-known
metaheuristics. According to the results, MBO has competitive performance with the simu-
lated annealing and outperforms differential evolution algorithms, tabu search, scatter search,
guided evolutionary simulated annealing, genetic algorithm, and particle swarmoptimization.

In the literature, there are several applications of MBO to several problems. In Alkaya
and Algin (2015), ant system (AS), GA, SA and MBO algorithms are applied to the obstacle
neutralization problem (ONP). Among these metaheuristic algorithms, MBO and SA give
competitive results and outperform AS and GA. In that study, as a problem, the authors
focused on just one problem (ONP). Whereas in our study, four different problems are
tackled including ONP and for ONP, it is shown that MBOx algorithm outperforms all other
metaheuristics mentioned in Alkaya and Algin (2015). Therefore, our study also provides a
novel contribution to the ONP literature. In another interesting study, neighbor generation
method of theMBO ismodified and soMBO is applied to 30 different functions on continuous
domain (Alkaya et al., 2014). The contribution of that study is developing an effective and
adaptive neighbor generation function for the MBO. The tests are conducted on continuous
functions with different dimension values (2, 10 and 30).

In another study, an improved version of MBO algorithm is introduced to the literature
where it is used to minimize the total flow time for a hybrid flow shop scheduling problem,
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Fig. 1 The structure of the MBO
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which has important practical applications in modern industry. In that study, authors pro-
posed many effective and advanced technologies to improve the MBO algorithm, including
a leaping mechanism, a diversified initialisation method, a local search procedure, a mixed
neighbourhood structure and a problem specific heuristic (Pan and Dong, 2014). Similarly,
in Benkalai et al. (2017), the authors use MBO for solving permutation flow shop problem
with sequence-dependent set-up times. They modified the basic MBO by changing neigh-
bourhood function and generating leader bird using ad-hoc heuristic.

MBO algorithm is also used to solve credit card fraud detection problem (Duman and
Elikucuk, 2013). In that study, original MBO algorithm is improved by using some benefit
mechanism. Improved MBO, genetic algorithm with scatter search (GASS) and MBO algo-
rithms are compared. According to the experiment results GASS is outperformed by both
improved MBO and MBO.

Recently,MBO is applied to the feature selection problemwhere it is compared with some
metaheuristic approaches and it is shown that MBO outperforms others (Algin et al., 2020;
Kalayci et al., 2019).

In addition to these studies, there are many studies where the authors tried to enhance the
MBO algorithm. In Oz (2017), MBO is improved by designing problem specific neighbor
function for the multi-objective task allocation problem. This new neighboring function
allows to perform both exploration and exploitation. In another study Sioud and Gagné
(2018), MBO algorithm is enhanced by developing an adapted neighborhood search based
on a tabu list, an original leader selection process, swap and forward insertion moves, and a
restart mechanism. In some of studies (Segredo et al., 2018; Tongur &Ülker, 2018) theMBO
is hybridizedwith some othermetaheuristics like particle swarm optimization and differential
evolution. It is shown in these studies that hybridization of MBO with other metaheuristics
increase the performance of the MBO.

The results of a set of preliminary tests of MBOx are presented in Algin et al. (2018)
where MBOx is tested on QAP and compared only with MBO algorithm. However, as given
in the introduction section, in our study, we present the performance of MBOx on four well-
known problems with extended datasets and compare it with greater number of algorithms.
Therefore, our study contains a significant contribution and extension over (Algin et al.,
2018).

2.2 Benchmark algorithms

As benchmark algorithms we use GA, SA, DE and HHO. In this subsection, we shortly
describe these benchmark algorithms with their related literature review. Implementation
details of these algorithms are given in Sect. 4.1.

2.2.1 Genetic algorithms (GA)

One of the most popular metaheuristic used in many problems from various application areas
is GA which is inspired from the principles of natural evolution (Holland, 1986). GA is a
population based algorithm and each solution (individual) is represented as a list of genes,
therefore a solution is also referred to as chromosome. In GA, in order to produce better
offsprings the individuals that have better fitness values are more likely to be chosen to
undergo reproduction (Beasley et al., 1993).

GA is and old algorithm, therefore, there are lots of studies in the literature. Here we sum-
marize some of the recently published studies related to the GA. In Sohail (2023), success of
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GAwhen it is applied to the multi-dimensional problems in the fields of artificial intelligence
and data sciences is discussed. It is also mentioned that GA improves the performance of
the artificial intelligence tools such as classification, forecasting and optimization tools. In
another study, non dominant sorting GA algorithm is proposed to solve a multi-objective
problem called sustainable capacitated facility location/network design problem (Brahami
et al., 2022). Similarly in Deng et al. (2022), enhanced version of non dominant sorting GA
algorithm is proposed and applied to multi-objective problems.

Gen and Lin (2023) proposed a survey study related to GA and its applications. Firstly,
hybrid genetic algorithms and adaptive genetic algorithms are mentioned in the study and
then applications of GA on combinatorial optimization problems, network design problems,
scheduling problems, reliability design problem, logistic problems, location and allocation
problems are explained.

2.2.2 Simulated annealing (SA)

SA, proposed by Kirkpatrick et al. (1983) mimics the cooling and annealing of the metals and
it can be said to be the oldest among the metaheuristics. When there are many local optima in
the search space, SA can be used to find global optimum. SA has an explicit strategy to escape
from local minima. The algorithm is similar to hill-climbing but with some randomness. If
the selected move improves the quality of solution, then it is accepted. If the selected move
is worse than current move, there is still chance to accept selected move with a probability
which helps to escape from the local minima. During the search process, the probability is
decreased.

Kosanoglu et al. (2022) developed a hybrid algorithm (DRLSA) by combining double
deep q-network based deep reinforcement learning and SA algorithms. DRLSA applied to a
joint maintenance planning problem where spare decisions of parts inventory management,
workforce training, and workforce planning are considered simultaneously. Another hybrid
algorithm is proposed by Liu et al. (2022) where SA algorithm is combined with shuffled frog
leaping algorithm. It is applied to the continuous functions and feature selection problems.
Fontes et al. (2023) proposed a hybrid particle swarm optimization and SA for the job shop
scheduling problem with transport resources. In another study, SA is hybridized with the
artificial algae algorithm to solve a location routing problem with twp dimensional loading
constraints (Ferreira and de Queiroz, 2022). In order to increase the exploration and exploita-
tion capacity of grasshopper optimization algorithm, it is combined with SA algorithm (Yu
et al., 2022). It is applied to several engineering problems and parameter optimization of the
kernel extreme learning machine problems.

2.2.3 Differential evolution (DE)

DE is one of the latest evolutionary optimization methods proposed by Storn and Price
(1997). DE is a stochastic, population-based optimization algorithm. DE tries to optimize D
dimensional parameter vectors, also called solutions, in a population through generations by
using mutation and crossover operators.

Ahmad et al. (2022) proposed a survey study about the state-of-the-art works related
to the DE algorithm. In that study, modifications on the DE to increase the efficiency and
effectiveness of the algorithm, different DE variants, analysis of different parameter settings
on the DE variants, hybridization of DE and recent applications of DE variants are explained
in details. In Song et al. (2023), a cooperative co-evolutionary DE algorithm combined with
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Fig. 2 Phases of HHO (Heidari et al., 2019)

GA and quantum evolutionary algorithm is designed and applied to train delay scheduling
problem. In another study, a hybrid adaptive DE algorithm is used to solve multi-objective
fuzzy job-shop scheduling problem (Wang et al., 2022). A survey related to the balancing
the exploration and exploitation ability of DE algorithm is proposed recently by Zhang et al.
(2023). In that study, recent works on DE from 2019 to 2023 are summarized and discussed
about the exploration/exploitation trade-off in term of algorithm level, the operator level and
the parameter level.

2.2.4 Harris hawks optimization (HHO)

HHO is one of the recently published population-based and gradient free optimization meth-
ods proposed by Heidari et al. (2019). HHO is inspired from the nature where swarm of
hawks collaborate during the hunting and a prey tries to escape from hawk attacks. Different
phases of HHO algorithm is shown in Fig. 2. There are three main phases of the HHO: (i)
exploration phase, (ii) transition from exploration to exploitation and (iii) exploitation phase.
The exploration phase consist of two strategies. In the first strategy, hawks perch based on the
other hawks’ positions in the swarm and the prey, whereas in the second strategy, hawks perch
on random tall trees. Transition from exploration to exploitation is performed according to
the escaping energy of the prey. When the energy≥ 1 exploration happens when energy< 1
exploitation happens. In the exploitation phase, according to the chasing strategies of hawks
and escaping behaviors of the prey there are four strategies: (i) soft besiege, (ii) hard besiege,
(iii) soft besiege with progressive rapid dives and iv) hard besiege with progressive rapid

123



Annals of Operations Research

dives. Performance of HHO is measured on continuous functions and compared with other
metaheuristics.

Although HHO is recently published, due to its good performance there are plenty of
studies about it in the literature. In Alabool et al. (2021), a comprehensive review of recent
variants and applications of HHO is given. In another study, improved version of HHO with
simulated annealing is proposed for feature selection problem (Elgamal et al., 2020). In that
study, in order to enhance the population diversity chaotic maps are used at the initialization
phase of HHO and in the exploitation phase of HHO SA algorithm is used to avoid stuck
in local minima. Performance comparison of improved HHO with other metaheuristics are
performed on the medical benchmark datasets. Similarly in Zhang et al. (2021), HHO is
improved by embedding the salp swarm algorithm and applied to some continuous functions
and the feature selection problem.

Multi objective version ofHHO (MOHHO) is proposed in Zouache et al. (2023).MOHHO
uses the strengthened dominance relation to select the solutions with better convergence and
diversity balance. MOHHO uses the rabbit solutions to converge to better area of the search
space. Five bi-objective and seven three objective test functions are used to measure the
performance of the MOHHO and it is compared with three multi objective metaheuristics.
According to the experiment results, MOHHO outperforms others. In order to overcome the
low exploration of HHO, novice protection tournament based HHO is proposed in Li et al.
(2023) and applied to 23 continuous functions and several engineering problems. In another
similar study (Abualigah et al., 2023), two search strategies (sine and cosine functions) are
added to the HHO. Converge speed of the HHO is improved by adding the sine function
whereas cosine function is used to improve the ability of the exploration and exploitation
searches of the HHO. Its performance is tested on 23 continuous functions and several
engineering problems.

2.3 Tackled problems

In this study, we tackled four different problems; (i) feature selection problem (FS), (ii)
quadratic assignment problem (QAP), (iii) obstacle neutralization problem (ONP), (iv) well-
known continuous functions (CFs). The motivation of choosing these problem domains is to
show the capability of MBOx in a cross domain test environment. Specifically, we chose the
CF domain becauseMBOwas originally proposed for discrete problems and its performance
on CFs is unrevealed up to now. ONP is selected because MBO was the best performing
algorithm in the introductory papers of ONP. FS and QAP are selected for being popular and
challenging. In addition, they have different structures/natures in the sense that they all have
different neighbor generation mechanisms. This section provides the details and a discussion
of existing literature about the considered problems.

2.3.1 Feature selection (FS) problem

Feature Selection (FS) is a very important task in themachine learning area. It is used to reduce
the size of the data by removing irrelevant or redundant features and increase the performance
of algorithms by reducing the dimension (number of feature). In today’s computing world,
huge data is a reality and this causes many problems like high storage, low performance, etc.
At that point, to solve these kinds of problems FS must be applied. By selecting the most
important features in the dataset, FS reduces the dataset size and also improves the accuracy
of algorithms.
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In general, feature selection methods are divided into three categories: (i) filter methods,
(ii) wrapper methods, and (iii) embedded methods. In filter method, evaluation of subsets is
performed by subset evaluators, whereas in wrapper methods, it is done by using classifiers.
Due to higher complexity of wrapper methods they are slower than filter methods where
evaluation is performed faster. Embedded methods are similar to wrapper methods, however,
feature selection is performed during training process. FS is in the NP-Hard problem domain.
Therefore, heuristics and metaheuristics are mostly preferred to solve the FS problem.

In the literature, there aremany studieswheremetaheuristics are applied to the FSproblem,
however here we summarized only a few of them. In Algin et al. (2020), four metaheuristics
are applied to solve the FS problem where migrating birds optimization algorithm (MBO) is
applied to the FS problem for the first time and shown thatMBO algorithm outperforms other
metaheuristics in term of accuracy values. Similarly, genetic algorithm (Oreski and Oreski,
2014), particle swarm optimization (Wang et al., 2007) and simulated annealing (Debuse and
Rayward-Smith, 1997) algorithms have been proposed for the FS problem. In another study
Diao and Shen (2015), comprehensive review of ten nature inspired metaheuristics for the
FS problem is provided.

2.3.2 Quadratic assignment problem (QAP)

QAP is a well-known combinatorial optimization problem and also one of the most difficult
problems to solve optimally. The interpretation of the QAP can be explained simply by
assigning offices to people (Hanan andKurtzberg, 1972). In this problem, the affinity between
person i and person j is ci j and their cost matrix is CM = [ci j ]. The people are assigned
to N number of possible offices. The distance between office e and office g is shown as deg
and their distance matrix is DM = [deg]. The assignment cost of person i assigned to office
p(i) and person j assigned to office p( j) is shown as ci j dp(i)p( j). The cost of all office
assignments can be calculated by sum of each assignment costs over all people. The aim
in this problem is minimizing the total assignment cost. A mathematical formulation of the
QAP can be given as follows:

min
N∑

i=1

N∑

j=1

N∑

e=1

N∑

g=1

ci j deg yie y jg (1)

s.t.

N∑

i=1

yie = 1, e = 1, ..., N (2)

N∑

e=1

yie = 1, i = 1, ..., N (3)

yie ∈ {0, 1}, i, e = 1, ..., N (4)

where yie is the binary variable that states the assignment of person i to office e.
There are so many studies related with the QAP in the literature. The QAPLIB website

stores the latest studies on the QAP as well as the QAP instances that researchers are con-
tinuously working on QAPLIB (1997). In Drezner (2008), the author tried to solve the QAP
using different variants of hybrid genetic algorithm. The author compares the simple tabu
search and the modified robust tabu search as local optimization algorithms combined with
a crossover operator. Seven modifications of the basic hybrid genetic algorithm are used on
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Fig. 3 An example to the ONP
and optimal paths for K=0, 1, 2
and 3 Alkaya and Algin (2015)

the experiments. In another study, an improved hybrid genetic algorithm (IHGA) is used to
solve the QAP. In the IHGA, iterated local search technique and tabu search are combined,
called limited iterated tabu search (LITS), and used as local improvement procedure. For the
comparison on the QAP, fast ant system, genetic hybrid algorithm, and robust tabu search
are used. Among these algorithms, IHGA outperformed all algorithms and also the proposed
algorithm gets better solutions than previous studies on the literature (Misevicius, 2004).
Robust tabu search is an important contribution to solve the QAP with fewer parameters and
less complexity and still it is being improved (Paul, 2011; Taillard, 1991, 1995).

2.3.3 Obstacle neutralization problem (ONP)

ONP is a kind of constrained shortest path problem where an agent tries to reach to a destina-
tion point swiftly and safely from a given source point through an arrangement of disc-shaped
obstacles in the plane. Due to the agent’s payload capacity, (s)he has limited number of neu-
tralization capability, say by K . When the agent neutralizes a disc, (s)he can enter the disc
and the neutralization cost is added to the traversal length of the path.

Mathematically, an ONP instance is a tuple (A, s, t , K , c,), whereA represents a finite set
of open discs in R2, s is the start point and t is the target (terminal point) in R2, K is a given
constant in N and c is a cost function mapped to R≥0. In this problem, the goal is taking the
agent from s to t safely through the shortest path.

An instance of ONP is provided in Fig. 3. In this instance, neutralization cost is 1 and
radius of each disc is set to 5. When the agent has zero neutralization capability (K=0), then
(s)he chooses red (solid) path. Similarly, for the values of K = 1, 2, 3; green (dotted), blue
(dashed), and black (bold solid) paths are the optimum paths, respectively.
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ONP is introduced to the literature in Alkaya et al. (2015) where a heuristic approach is
proposed to solve the ONP. The proposed approach is called penalty search algorithm (PSA).
In the PSA, largest penalty term α∗ is found in the unconstrained shortest path where it has
the highest number of neutralizations and also satisfies the neutralization limit. It is shown
that PSA can find the optimum paths in special cases: all discs have equal neutralization cost
and radii. However, in many cases this may not be realistic.

In another study related to ONP, an exact algorithm is developed (Alkaya and Oz, 2017).
There are two phases in the exact algorithm. In the first phase, PSA is used to find an upper
bound for the ONP. In the next phase, if the upper bound is not optimal solution, starting from
upper bound a kth shortest path algorithm is used to obtain the optimal solution. Both grid
and continuous graphs are used to test the performance of the exact algorithm. Experiment
results show that the algorithm works very fast on moderate and small sized graphs. Since
the exact algorithm is based on the PSA, the cases mentioned in the PSA are required.

In Algin et al. (2013), an ant system algorithm is developed where problem specific infor-
mation is used in the state transition rule to guide the ants. In that study, in order to improve
the performance of the algorithm, importance of parameter fine tuning of an algorithm is
showed. In the experiments, a real world naval minefield dataset is used. However, in their
study, without performing any metaheuristic comparison, they only present the algorithm
developed for the ONP and the results of the computational experiments. In Algin and
Alkaya (2015), MBO is compared with ant system and ant colony system algorithms on the
ONP and it is shown that MBO outperforms other two algorithms. In a recent study, genetic
algorithm, migrating birds optimization, simulated annealing and ant system algorithms are
exploited to solve the ONP (Alkaya and Algin, 2015). Performance of metaheuristic algo-
rithms are tested on the ONP instances and compared with the optimum solution obtained
using an exact algorithm.

2.3.4 Continuous optimization problems

In addition to FS, ONP and QAP, we also tackled 30 well-known continuous functions
including Rosenbrock’s, Weierstrass, Ackley’s and Schaffer’s functions. These functions
are well known in the sense that they are used as benchmark problems for assessing the
performance of the optimization algorithms (Alkaya et al., 2014). Four of those functions
can be seen in Fig. 4 and their equations are given below. Equations of 30 continuous functions
are given in the Appendix A.

• Rosenbrock’s function:

f (x) =
D−1∑

i=1

(100 (x2i − xi+1)
2 + (xi − 1)2) (5)

• Weierstrass function:

f (x) =
D∑

i=1

(
20∑

k=0

[0.5kcos(2π.3k(xi + 0.5))]
)

−D
20∑

k=0

[0.5kcos(2π.3k .0.5)]
(6)

123



Annals of Operations Research

• Ackley’s function:

f (x) = −20 exp

⎛

⎝−0.2

√√√√ 1

D

D∑

i=1

x2i

⎞

⎠

−exp

(
1

D

D∑

i=1

cos(2πxi )

)
+ 20 + e

(7)

• Schaffer’s F7 function:

f (x) =
(

1

D − 1

D−1∑

i=1

(x2i + x2i+1)
1/4(x2i + x2i+1)

1/4

sin2(50(x2i + x2i+1)
0.1)

)
(8)

In the next section, we provide the details of the proposed MBOx algorithm.

3 MBOwith a new exploration strategy (MBOx)

In this section, we present the details of the proposed hybrid MBO, namely MBOx. MBOx
algorithm is obtained by embedding a new exploration strategy and its related parameters
into the MBO.

MBO is proven to be a good performing algorithm and thanks to its swarm structure
and benefit mechanism among the solutions it has the chance to find the global minima.
Nevertheless, it has a drawback; it always moves to better solutions causing the algorithm to
get stuck in local minima.

We want to note that even though the original MBO algorithm is defined with a metaphor
usingmigrating birds, in our study, we prefer to use a metaphor-free description of theMBOx
algorithm written according to Sörensen (2015). Therefore, the word "solution" will be used
throughout the manuscript.

Modification of MBO’s exploration policy is a promising and novel idea which avoids
getting stuck at local minima. Hence, in order to increase the probability of finding global
optimum by moving to worse solutions, we embedded a stochastic move strategy in MBO
algorithm. The strategy is; the best solution, z′, in the neighbour set of a solution (z) is
accepted as new solution depending on f (z), f (z′) and T where f is the fitness evaluation
function. z′ replaces z if f (z′) < f (z) or, in case f (z′) ≥ f (z), with a probability which is a
function of T and f (z′)− f (z).We calculate the probability using theBoltzmann distribution.
Mathematical formulation is given in Eq.9.

z ⇐
⎧
⎨

⎩
z′, if f (z′) < f (z)

z′, else if random(0, 1) < exp(
−‖ f (z′) − f (z)‖

T
)

(9)

In this way, we expect to enhance the exploration capability of the MBO algorithm. In the
implementation, the best solution found throughout the algorithm is traced and its fitness is
reported as the output.

The structure of the MBOx algorithm is shown in Fig. 5. In addition to the parameters of
MBO, MBOx has three more parameters:

• a: temperature decrease ratio
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Fig. 4 (a) Rosenbrock’s function (b) Weierstrass function (c) Ackley’s function (d) Schaffer’s F7 function

• dp: position of the temperature decrementation operation
• T : initial temperature

Values of a and T that present best performance are investigated in Sect. 4. On the other
hand, for the decrementation operation (dp), we determined two possible locations; first one
is just after the innermost for loop, and the second one is just before moving the solution.

The algorithm is exploring continuously with a higher T value by moving to worse neigh-
bour solutions, whereas with a lower T value the algorithm is exploiting around the given
initial solution (as in the original MBO). A high a value may decrease the temperature (the
probability of moving to worse solutions) very fast, resulting an equivalent behaviour of the
original MBO algorithm. Moreover, a low a value may decrease the temperature not as high
as needed. On the other hand, we observe that for dp = 1, the temperature decrementation
operation is performed m times more frequently than for dp = 0. Hence, a quick decrease
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Fig. 5 The structure of the
MBOx
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Table 1 Description of UCI
datasets

Dataset Instances Features Classes C4.5 (%)

Abalone 4177 8 29 20.49

Arrhythmia 452 275 16 60.40

Iris 150 4 3 96.00

Muskv1 476 166 2 84.87

Optdigits 5620 64 10 90.68

Ticdata2000 5822 85 41 94.45

Vehicle 846 18 4 72.58

Wine 178 13 3 93.82

occurs in T when dp = 1. The results of best performing values of these parameters are
given and discussed in Sect. 4.

4 Computational experiments and results

In this section, we present the setup for our extensive computational experiments, their
results and discussions of important findings. In the first part, we present the parameter fine
tuning tests and in the second part we present the results of the detailed comparisons of the
algorithms.

The experiments are run on an HP Z820 workstation with Intel Xeon E5 processor at 3.0
GHz with 128 GB RAM running Windows OS. All algorithms are implemented in the Java
language. Different stopping criteria are set for the problems. Stopping criterion for the FS
problem is creating a predefined number of solutions which is set to 50,000. Regarding the
ONP, the stopping criterion is a predefined number of iterations (Alkaya andAlgin, 2015). The
stopping criterion for the QAP is a given number of solution instances generated (where each
neighbor, child, mutant, trial or donor vector is counted). Specifically, the allowed number
of solution instances generated is N 3 ∗ 100 where N is the number of possible locations
or facilities for QAP instances. On the other hand, the stopping criterion for the continuous
optimization problems is D∗10, 000 solution instances generated where D is the dimension.

4.1 Implementation details of algorithms

In the FS problem, we focus on the filter methods where metaheuristics are used as the search
algorithms. In order to evaluate subsets we use correlation-based FS (CFS) (Hall, 1999) as
a subset evaluator and performance of subset returned by the search algorithm is measured
by using the decision tree (C4.5) classifier (Quinlan, 2014). CFS evaluates the subsets of
features according to the correlation of features and class where subsets are uncorrelated
with each other but highly correlated with the class. C4.5 classifier is a tree based method
composed of leaf, root and branches. In the tree, each path from root to leaf represents the
classification rules. Performance of algorithms is measured on the eight datasets taken from
UCI machine learning repository (Lichman et al., 2013). Table 1 gives information about the
datasets where the range of number of features and instances changes from 4 to 275 and 150
to 5822, respectively. Results belonging to C4.5 classifier are the accuracy values obtained
by using full number of features.
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In our six algorithms, solution for the FS problem is implemented as given in Algin et
al. (2020). A solution is defined as a random number (between 0 and 1) vector where each
element of the vector represents the weight of the features in the dataset. If the weight value of
a feature is greater than or equal to 0.5, then the feature is selected in that subset, otherwise
it is not selected. Mutation in GA and neighbor generation in MBO, MBOx and SA are
performed by updating all elements of a solution with a small amount. Crossover in DE
and GA and mutation in DE are implemented as given in Hancer et al. (2018). Exploration
phase of HHO is performed by using crossover operator of DE. In the exploitation phase of
HHO, neighbor generation function ofMBOx is used one times with current solution for hard
besiege, neighbor generation function of MBOx is used three times with current solution and
the best one selected for soft besiege, neighbor generation function of MBOx is used three
times with the best solution and the best one selected for soft besiege with progressive rapid
dives, and for the hard besiege with progressive rapid dives neighbor generation function of
MBOx is used one times with best solution.

In ourQAP implementation, similar to the ones inAlkaya andDuman (2015), Duman et al.
(2012), MBO andMBOx obtain a neighbour solution for the QAP by a pairwise exchange of
any two locations. Regarding SA, GA and DE, implementation details are given in Davendra
and Onwubolu (2007), Gambardella et al. (1999). PTL crossover is used for exploration
phase of the HHO. For the exploitation phase, in a similar way as in the FS problem, neighbor
generation of MBOx and mutate by insertion operator are used with current or best solution.

Remember that in ONP the agent finds shortest path between s-t points without exceeding
the neutralization limits. So, we can think of the ONP as selecting at most K discs. In this
study, a solution for the ONP is represented as a set of discs, S (see Fig. 6). While calculating
the cost of the path, neutralization cost of all discs in the space is set to amaximumvalue. Then
cost of discs which are in set S is set to original value. After that, Dijkstra’s algorithm is used
to calculate the path cost. Finally all discs’ cost is set to their original value for finding new
solution. An example is given in the Fig. 6 where there is a solution with five neutralization
limits: {12, 8, 17, 2, 33}. Cost of this solution is calculated by maximizing the neutralization
cost of all discs except {12, 8, 17, 2, 33}. Then, under this terms, Dijkstra’s algorithm is used
to find the shortest path. In this example only four of the discs are neutralized. Once shortest
path is found, the neutralization cost of all discs is set back to their original values.

In order to apply MBOx algorithm to the ONP we need to use a well designed neigh-
bor generation function. In our study, we used the neighbour generation function developed
in Alkaya and Algin (2015). In this function, a neighbor of a solution is obtained by swapping
one of the elements of S with one of its nearby discs by avoiding any replicates in S. Specifi-
cally, if the discs’ centers are at most 3 * radius away from each other, a disc is closely placed
to another. If there is no closely placed disc around a disc, then any disc from A is selected
for replacement. Figure7 depicts the neighbor generating method for the ONP. In Fig. 7a, a
solution with five discs is given. One of the discs that belongs this solution is selected ran-
domly (d13). In Fig. 7b, new solution is generated by swapping d13 with one of its neighbors
(d18). SA and MBO also use the same neighbor function of the MBOx. On the other hand,
for GA and DE, the crossover operator in our implementation is the one developed in Alkaya
and Algin (2015), and the mutation operator is the neighbour generation function used by
MBOx. In the HHO, crossover operator of DE is used in the exploration phase and for the
exploitation phase, in a similar way as in the FS problem, neighbor generation function is
used with different repetitions and different solutions (current or best).

In order to design a well performing MBOx algorithm an effective neighbor generating
function is crucial. In a D dimensional solution space, we used D dimensional spheres (D-
spheres) to have amore effective exploration plan.While generating a neighbor for a solution,
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Fig. 6 A solution with five neutralization limits

its neighbor can be obtained only within the D-sphere around it. A neighbor of a solution
can be at most r units away from the original solution where r is the radius of the D-sphere
that surrounds it. A random number in [0, r ] is used to keep the distance that how far will
the new solution be away from the original solution (l).

Additionally, determining the location (coordinate in each axis) of the point in the D
dimensional space is also very important. For this, we used the following set of trigonometric
formula.

xD = l ∗ cos(θD−1)

xD−1 = l ∗ sin(θD−1) ∗ cos(θD−2)

xD−2 = l ∗ sin(θD−1) ∗ sin(θD−2) ∗ cos(θD−3)

...
x2 = l ∗ sin(θD−1) ∗ sin(θD−2) ∗ ... ∗ sin(θ2) ∗ cos(θ1)
x1 = l ∗ sin(θD−1) ∗ sin(θD−2) ∗ ... ∗ sin(θ2) ∗ sin(θ1)

where xi is the coordinate of the point in the i th axis and θi is the angle between i th and
(i + 1)th axis. Before using this set of formula θi ’s must be obtained randomly such that θ1
∈ [0, 2π] and θi ∈ [0, π] for i = 2, . . . , D − 1. An example for the formulas given above is
presented in Fig. 8 for D = 3.

SA and MBO use the same neighbor function of MBOx. On the other hand, for GA and
DE, the crossover operator in our implementation is the well-known ”one-cut crossover” in
which the coordinates of the solutions are used as chromosomes. The mutation operator is
the neighbour generation function explained above. HHO is implemented as in the original
study (Heidari et al., 2019).
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Fig. 7 A solution with five discs (a) and a neighbor solution with five discs (b)

4.2 Parameter fine tuning

As explained in the previous sections, all algorithms under focus have several parameters and
they need to be fine tuned so that their best performing values are revealed for each problem.
Therefore, we tried to determine the best performing parameter values of the algorithms in the
first set of computational tests. In this subsection, unless stated otherwise, each reported figure
is an average of 10 runs. This first set of tests are conducted on randomly selected 5 datasets
taken from UCI Machine Learning Repository (Lichman et al., 2013), randomly selected
10 QAP instances (files) taken from QAPLIB (QAPLIB, 1997), 10 ONP instances given
in Alkaya and Algin (2015) and 4 continuous optimization functions given in Sect. 2.3.4 for
D=2 and r=1. To be consistent, if they exist in the literature, we got the best performing values
of the parameters from previous studies. Otherwise we conducted parameter fine tuning tests.
Table 2 presents the best performing values of the algorithms. Of those 20 applications (five
algorithms each applied on four problems), ten are taken from the literature as footnoted
in Table 2. HHO algorithm doesn’t have any parameters to be fined tuned other than hawk
number, therefore, we didn’t put it to the table. As recommend in Heidari et al. (2019), we
set the hawk number to 30.

Since this study is introducing the MBOx to the literature, we provide its parameter
fine tuning analysis in detail. Firstly, we fine tuned the parameters peculiar to MBOx. We
determined 19 values for the T and 11 values for the a parameters. On the other hand, we
determined two possible locations for the decrementation operation (dp). Together with the
a, T and dp parameters, best performing values of the parameters inherited from the original
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Fig. 8 Representation of a point (solution) and its vectors in three dimensions

MBO algorithm are given in Table 2. Regarding the values of parameters a and dp, 1.06 and
0 are the best performing values, respectively. On the other hand, we observed that 3000 is a
better value for T . This is given in Fig. 9. In the figure, the performance of MBOx draws an
U shape where low and high values of T present worse results. This is in line with the above
discussion in Sect. 3 about exploration versus exploitation. In addition to the given parameters
in Table 2, there is another parameter called radius used in the neighbor generation phase
of MBOx, MBO and SA algorithms’ adapted versions for the FS problem. The values of the
radius parameter in the fine tune experiments are {0.01, 0.02, 0.05} and its best performing
values for MBOx, MBO and SA are 0.02, 0.02 and 0.05, respectively.

4.3 Comparison of the algorithms

After fine tuning the parameters for all algorithms, we made an extensive set of tests for
comparing the algorithms.

In the FS problem, 8 different datasets are used for each search algorithm. All experiments
are repeated 31 times and the percentages of average accuracy values are given in Table 3.

According to Table 3, it is seen that all search algorithms have competitive results. Among
six algorithms, in terms of average accuracy values, we can say that MBOx is the best
performing search algorithm followed by MBO. In terms of winning cases among 8 dataset:
MBOx has 5, MBO, SA and DE have 2 and GA and HHO have 1 winning case(s). When we
check the feature number, all algorithms decrease the number of feature significantly which
is about 50% on the average.
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Fig. 9 Performance of MBOx with various T parameter values

Table 3 Accuracy values (%) of
algorithms

Dataset MBOx MBO SA DE GA HHO

Abalone 21.05 19.34 19.34 20.21 20.02 19.34

Arrhythmia 60.43 60.64 60.73 60.09 60.56 60.57

Iris 96.00 96.00 96.00 96.00 96.00 96.00

Muskv1 81.92 81.99 81.52 84.87 81.57 82.38

Optdigits 90.13 90.64 90.26 89.54 88.15 90.60

Ticdata2000 94.38 94.21 94.20 81.47 94.14 93.25

Vehicle 72.58 69.30 69.82 71.39 69.04 68.32

Wine 95.69 93.96 93.82 91.96 94.00 93.82

Average 76.52 75.76 75.71 74.44 75.44 75.54

In the literature, QAP is the mostly tackled problem when compared to the other three
problems. Therefore, rather than using our implementations for SA,DE andGA,we preferred
to obtain and use results from the literature. The results belonging to SA and GA are obtained
from Gambardella et al. (1999) and for the DE algorithm the results are taken from Davendra
and Onwubolu (2007). Note that the DE algorithm used for QAP is an enhanced version of
the classical DE algorithm (called EDE) andGA is hybrid GA (called HGA)where the details
can be found in Davendra and Onwubolu (2007) and Gambardella et al. (1999), respectively.

In QAP experiments, we conducted tests on 38 small/medium-size and 5 large-size QAP
instances with 31 runs in each test where we compared the performance of the algorithms
with respect to the distance to the best known solutions (BKS) given in the literature in
percentages (QAPLIB, 1997). Results are given in Table 4 as an average of 31 runs. The
values given in this table are measured in per cent above the BKS. Out of 38 instances,MBOx
outperformed other metaheuristics on 11 instances, MBO got best results on 9 instances, SA
on 0 instance, HGA on 10 instances, EDE on 8 instances andHHO is 0 instance. According to

123



Annals of Operations Research

Table 4 Performance comparison of MBOx with other metaheuristics on the QAP instances (% deviation
from BKS)

File MBOx MBO SA EDE HGA HHO

bur26a 0.00377 0.00092 0.14110 0.00600 0.01200 0.01504

bur26b 0.00472 0.00136 0.18280 0.00020 0.02190 0.01566

bur26c 0.00373 0.00006 0.07420 0.00005 0.00000 0.01787

bur26d 0.00189 0.00004 0.00560 0.00010 0.00020 0.01893

bur26e 0.00664 0.00006 0.12380 0.00020 0.00000 0.01734

bur26f 0.00218 0.00009 0.15790 0.00001 0.00000 0.01967

bur26g 0.02182 0.00006 0.16880 0.00010 0.00000 0.01697

bur26h 0.01089 0.00004 0.12680 0.00010 0.00030 0.01960

chr25a 0.15510 0.15957 12.49730 0.22700 2.69230 0.59612

els19 0.49728 0.02817 18.53850 0.00070 0.00000 0.31335

kra30a 0.01550 0.01868 1.46570 0.03280 0.13380 0.16573

kra30b 0.00512 0.00691 0.19470 0.02530 0.05360 0.15189

nug20 0.00303 0.00614 0.07000 0.01800 0.00000 0.10576

nug30 0.00437 0.00576 0.12100 0.00500 0.00700 0.11002

sko42 0.00457 0.00680 0.11400 0.00900 0.00300 0.09951

sko49 0.00471 0.00626 0.13300 0.00900 0.04000 0.08915

sko56 0.00501 0.00706 0.11000 0.01200 0.06000 0.09352

sko64 0.00505 0.00678 0.09500 NA 0.09200 0.08902

sko72 0.00563 0.00736 0.17800 NA 0.14300 0.08918

sko81 0.00571 0.00712 0.20600 NA 0.13600 0.08608

sko90 0.00594 0.00747 0.22700 NA 0.19600 0.08598

tai20a 0.02210 0.01475 0.71600 0.01300 0.26800 0.10616

tai20b 0.34687 0.00457 6.72980 0.00590 0.00000 0.11307

tai25a 0.09122 0.02113 1.00200 0.01100 0.62900 0.09403

tai25b 0.45325 0.00759 1.12150 0.00300 0.00000 0.20518

tai30a 0.02778 0.01871 0.90700 0.01100 0.43900 0.08950

tai30b 0.39632 0.01552 4.40750 0.02390 0.00030 0.15609

tai35a 0.02866 0.01986 1.34500 0.03700 0.69800 0.08985

tai35b 0.35272 0.01494 3.17460 0.01010 0.10670 0.14464

tai40a 0.02825 0.02145 1.30700 0.02600 0.88400 0.08853

tai40b 0.36362 0.02770 4.56460 0.02700 0.21090 0.17284

tai50a 0.02951 0.02392 1.53900 0.01800 1.04900 0.08964

tai50b 0.34902 0.01545 0.81070 0.00100 0.21420 0.14811

tai60a 0.05782 0.02285 1.39500 NA 1.15900 0.08888

tai60b 0.33741 0.02198 2.13730 NA 0.29050 0.16771

tai80a 0.09482 0.02341 0.99500 NA 0.79600 0.08483

tai80b 0.30112 0.02588 1.43860 NA 0.82860 0.17217

wil50 0.00158 0.00293 0.06100 0.03800 0.03200 0.05471
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Fig. 10 Performance comparison of MBOx and MBO on large-size QAP instances

Fig. 11 Convergence graphs for the QAP instances. (a) sko56 (b) wil50

these results, it is shown that MBOx performed best among these metaheuristics. Obviously
this is due to the improved exploration capability of MBOx. Following the MBOx algorithm,
HGA and MBO algorithms have competitive results. On large-size QAP instances, MBOx
and MBO are compared. Average of 10 runs can be seen in Fig. 10. According to the results,
thanks to the new exploration strategy of MBOx, it outperforms MBO algorithm in all large-
size instances.

In order to see convergence of the algorithms, we added convergence graphs for two
instances (see Fig. 11). Since results of SA, EDE and HGA algorithms were taken from the
literature, we put MBOx, MBO and HHO algorithms into the graphs convergence graphs. As
seen in Fig. 11, MBO converges faster at the beginning, but in later iterations it gets stuck and
falls behind the MBOx. HHO is originally developed for the continuous problems, therefore,
it doesn’t perform well at all for the QAP instances.

Tests on ONP are conducted on 10 ONP instances with 50 runs in each test. Each ONP
instance includes 100 disks and the allowed maximum neutralization for the agent is set to
5. In this experiment, four types of different graph resolution are used (10 × 10, 20 × 20,
50×50 and 100×100). Results (costs of the shortest path) are shown in Fig. 12 as an average
of 50 runs and 10 instances. As seen in this figure, MBOx outperforms other metaheuristics
in all resolution settings. Performance of MBOx is better than others up to 20.99%, 20.94%,
14.49% and 10.02% for the resolutions 10x10, 20x20, 50x50 and 100x100, respectively.
With these results we can say that MBOx is again the best performing metaheuristic on the
ONP.
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Fig. 12 Performance comparison of MBOx with other metaheuristics on the ONP

Regarding the convergence graphs, one of the ONP instances is selected and its conver-
gence graph is presented in Fig. 13 for different graph resolutions. In the figure, x axis is the
number of iterations and y axis is the cost of the shortest path.

The results of the tests on continuous functions can be summarized as follows. There are
30 optimization functions used in the literature, mostly in parts, but we use all of them to
assess a broad and fair comparison of the algorithms. Peculiar to the optimization functions,
we can list the dimension (D) and radius (r ) parameters. Dimension refers to the size of the
dimension that the function lies in and radius refers to the area limit where a neighbor can
be sought in. We considered 11 different dimensions and 3 different radii values. Hence, a
total of 990 cases arise (algorithms work with 3 different radii values on 30 functions created
in 11 different dimensions). When an algorithm is asked to find the global optimum for a
function, it runs 31 times for a given setting and its average is recorded (that is each test
is repeated 31 times). In order to compare the performance of the algorithms, we counted
the number of cases that each algorithm outperforms others. According to the our results,
it is seen that HHO algorithm, which is originally developed for the continuous domains,
outperforms other algorithms on most of the cases and takes the first place in continuous
function problem domain. Number of winning cases out of 30 functions for HHO are given
in Table 5.

In order to see the comparison of other algorithms we present another table where HHO
is not included (See Table 6). While comparing MBOx, MBO, SA, DE and GA we set the
radius value as r={1, 5, 10}.

The comparison results of five algorithms are presented in Table 6. In the table, we observe
that as the radius value increases, MBOx outperforms MBO and the others. This is due to
the exploration capability embedded to the MBOx. Another interesting point observed in the
table is the good performance of MBOx in higher dimensions. Even though the search space
enlarges exponentially with increasing D values, MBOx find better results more easily than
the others. Therefore, we can conclude that MBOx performs better on larger solution spaces
by taking advantage of the new exploration capability.
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Fig. 13 Captions of subfigures should be in parentheses like (a) 100 × 100, (b) 50 × 50, (c) 20 × 20, (d) 10
× 10.

Table 5 Number of winning
cases of HHO

D HHO

2 27

5 24

10 24

15 29

20 27

25 28

30 28

35 28

40 28

45 28

50 28

Convergence graphs of the algorithms on randomly chosen two continuous functions are
given in Fig. 14 where x axis is the iteration number and y axis is F(x) value.

5 Conclusion

In this study, we studied on embedding a different exploration strategy to the migrating birds
optimization (MBO) algorithm. Proposed algorithm is called MBOx and its performance is
tested on 8 well-known feature selection (FS) problem instances taken from UCI repository,
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Fig. 14 Convergence graphs for the continuous functions. (a) f7 (b) f19

43 quadratic assignment problem (QAP) instances (including 5 large-size instances) taken
from the QAPLIB, 10 obstacle neutralization problem (ONP) instances with four resolution
settings and 30 well-known continuous optimization functions with 11 different dimensions.
Results regarding theFS show thatMBOxhas higher accuracyvalue than the other algorithms.
Results regarding the ONP show that again MBOx outperforms others by up to 20.99% and
therefore becomes the best metaheuristic applied on the ONP, to our best. On the continuous
functions, it is observed that MBOx does not lead the competition but takes the second
position. On QAP, again MBOx algorithm gives solutions better than others in terms of
number of winning case. As a result, MBOx is definitely showing better performance than
the original MBO and other well-known metaheuristics on problems from discrete domain
and therefore it is a promising problem solver for computational optimization problems. As
a future research, other behavior patterns can be used to improve the MBOx. Specifically,
keeping the personal best approach can be used to improve MBOx after T reaches 0 so
that a better exploitation capability will be embedded. Another direction for future work
might be improving MBOx by adding adaptive or self-adaptive exploration and exploitation
capabilities.

Appendix A: 30 continuous functions

All continuous functions used in this study are listed below. Details of all results for the
continuous function problem are given in the website (https://mimoza.marmara.edu.tr/
~falkaya/files/cont_function_results.pdf).
Basic functions

1. Bent cigar function:

f1(x) = x21 + 106
D∑

i=2

x2i

2. High conditioned elliptic function:

f2(x) =
D∑

i=1

(106)

i − 1

D − 1 x2i
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3. Neumaire 3 function:

x = D2x/100

f3(x) =
D∑

i=1

(xi − 1)2 +
D∑

i=1

xi xi−1 + D(D + 1)(D − 1)

6

4. Discus function:

f4(x) = 106x2i +
D∑

i=2

x2i

5. Different powers function:

f5(x) =

√√√√√
D∑

i=1

|xi |
2+4

i − 1

D − 1

6. Rosenbrock’s function:

x = 30x/100

f6(x) =
D−1∑

i=1

(100 (x2i − xi+1)
2 + (xi − 1)2)

7. Alpine function:

x = 10x/100

f7(x) =
D∑

i=1

|xi sin(xi ) + 0.1xi |

8. Ackley’s function:

f8(x) = −20 exp(−0.2

√√√√ 1

D

D∑

i=1

x2i ) − exp(
1

D

D∑

i=1

cos(2πxi )) + 20 + e

9. Weierstrass function:

x = x/100

f9(x) =
D∑

i=1

(

20∑

k=0

[0.5kcos(2π.3k(xi + 0.5))]) − D
20∑

k=0

[0.5kcos(2π.3k .0.5)]

10. Griewank’s function:

x = 600x/100

f10(x) =
D∑

i=1

x2i
4000

−
D∏

i=1

cos(
xi√
i
) + 1

11. Rastrigin’s function:

x = 5.12x/100

f11(x) =
D∑

i=1

(x2i − 10 cos(2πxi ) + 10)
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12. Katsuura function:

x = 5x/100

f12(x) = 10

D2

D∏

i=1

(1 + i
32∑

j=1

)
|2 j xi − |2 j xi ||

2 j
)

10

D1.2 − 10

D2

13. Expanded Scaffer’s F6 function:

g(x, y) = 0.5 + (sin2(
√
x2 + y2) − 0.5)

(1 + 0.001(x2 + y2))2

f13(x) =
D−1∑

i=1

g(xi , xi+1) + g(xD, x1)

14. HappyCat function:

f14(x) = |
D∑

i=1

x2i − D|1/4 + (0.5
D∑

i=1

x2i +
D∑

i=1

xi )/D + 0.5

15. HGBat function:

f15(x) = |(
D∑

i=1

x2i )
2 − (

D∑

i=1

xi )
2|1/2 + (0.5

D∑

i=1

x2i +
D∑

i=1

xi )/D + 0.5

16. Schwefel’s problem 2.22:

x = 10x/100

f16(x) =
D∑

i=1

|xi | +
D∏

i=1

|xi |

17. Schwefel’s problem 1.2:

f17(x) =
D∑

i=1

(

i∑

j=1

x j )
2

18. Schwefel’s problem 2.26:

x = 500x/100

f18(x) =
D∑

i=1

(xi sin
√|xi |)
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19. Penalized function:

x = 50x/100

μ(xi , a, k,m) =
⎧
⎨

⎩

k(xi − a)m xi > a
0 a ≤ xi ≤ a

k(−xi − a)m xi < −a

f19(x) = 0.1{sin2(3πx1) +
D−1∑

i=1

(xi − 1)2[1 + sin2(3πxi+1)]}

+(xD − 1)2[1 + sin2(2πxD)]} +
D∑

i=1

μ(xi , 5, 100, 4)

20. Schaffer’s F7 function:

f20(x) = (
1

D − 1

D−1∑

i=1

(x2i + x2i+1)
1/4 + (x2i + x2i+1)

1/4 sin2(50(x2i + x2i+1)
0.1))

21. Salomon function:

f21(x) = 1 − cos(2π
D∑

i=1

xi ) + 0.1
D∑

i=1

x2i

The following 7 functions are newly generated composition functions.

22. Well function:

f22(x) =
{∑D

i=1 x
2
i max(x) < 20

400 ∗ D otherwise

Composition functions
23. ’8’ + ’13’ + ’21’:

f23(x) = f8(x) + f13(x) ∗ 10 + f21(x) ∗ 1e − 2

24. ’2’ + ’9’ + ’15’ + ’16’:

f24(x) = f2(x) ∗ 1e − 9 + f9(x) ∗ 2 + f15(x) ∗ 1e − 1 + f16(x) ∗ 5e − 2

25. ’3’ + ’4’ + ’7’ + ’18’:

f25(x) = f3(x) ∗ 0.25 + f4(x) ∗ 1e − 9 + f7(x) + f18(x) ∗ 1e − 2

26. ’5’ + ’6’ + ’12’:

f26(x) = f5(x) ∗ 1e − 5 + f6(x) ∗ 1e − 7 + f12(x) ∗ 1e − 2

27. (’10’ + ’14’ + ’20’)*’18’:

f27(x) = f18( f10(x), f14(x), f20(x))

28. (’19’ + ’17’ + ’1’)*’9’:

f28(x) = f9( f19(x), f17(x), f1(x))

29. (’3’ + ’12’ + ’15’)*’8’:

f29(x) = f8( f3(x), f12(x), f15(x))
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30. (’6’ + ’21’ + ’14’)*’13’:

f30(x) = f13( f6(x), f21(x), f14(x))
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