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Abstract
The Set Covering Problem (SCP) has been an extensively studied NP-hard problem in the
field of combinatorial optimization since 1970. Over the past five decades, a significant
amount of research has led to the development of a diverse set of covering models to support
decision-making in various areas. However, the SCPs related to real-world applications are
often too complex to solve using existing algorithms due to uncertain problem parameters.
Thus, given the diversity of new developments, there is a pressing need to know both the
current solution approaches and the advanced strategies for studying the uncertain SCP.
This study summarizes the various modeling and solution approaches to the SCP when the
model parameters are uncertain. Further, this study discusses some promising future research
directions of the uncertain SCP that will impact new investigations of decisions on complex
and competitive real-world issues.

Keywords Decision-making · NP-problems · Optimization models · Location models · Set
covering problem · Uncertain optimization

1 Introduction

The Set Covering Problem (SCP) has been an extensively studied NP-hard problem in com-
binatorial optimization since 1970. The SCP can be described by a collection of m items
E = {e1, e2, . . . , em} with the index set I = {1, 2, . . . ,m} and a family of n subsets
S = {S1, S2, . . . , Sn} of E with the index set J = {1, 2, . . . , n}. The goal of the SCP is
to find a collection of subsets C ⊆ S involving a minimum cost to cover all of these elements,
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with the collection C being referred to as a cover. The earliest studies on the SCP were con-
ducted by Lemke et al. (1971) and Toregas et al. (1971). The mathematical formulation of
the SCP, along with other notation essential for this formulation, is provided below:

min z(x) =
∑

j∈J

c j x j (1a)

s.t.
∑

j∈Ji

ai j x j ≥ bi , ∀i ∈ I (1b)

x j ∈ {0, 1}, ∀ j ∈ J , (1c)

x j = 1 if the set S j for j ∈ J is selected to cover an item ei for i ∈ I ; 0 otherwise
c j := cost of set S j for j ∈ J
ai j := constraint coefficient for i ∈ I , j ∈ J
Ji = { j ∈ J : ai j = 1}:= the index set of sets that can cover items ei for i ∈ I
bi := the demand value of constraint i ∈ I

If c j = 1 for all j ∈ J , the model (1a–1c) is equivalent to finding a cover with a minimum
number of subsets in the collection C.

The SCP is important in pedagogical and practical areas. In the linear-relaxed version
of the SCP, where the integrality requirement is relaxed to linear constraints, the integrality
gap is bounded by at most logm (Chvatal, 1979; Slavík, 1996; Grossman & Wool, 1997).
Therefore, studying the SCP provides insight into the use of approximation algorithms in
solving NP-hard problems and, as such, is a prominent example in teaching approximation
algorithms. The simplicity of the mathematical model of the SCP aids in visualizing the
importance of the approximation methods needed for effective educational use.

The initial covering model by Toregas et al. (1971) focused on locating emergency service
facilities optimally. Since then, numerous generalized covering models have been developed,
including the first type, known as the SCP, where all elements must be covered by at least
one set for a specific objective function. When bi = 1 for i ∈ I , we refer to the mathematical
formulation of this model as the classical SCP (1a–1c). In contrast, the second type optimizes
the number of covered items under specific constraints.

The deterministic approaches to solving the SCP are widely discussed and applied in stud-
ies, including literature reviews (Schilling, 1993; Farahani et al., 2012; Wang et al., 2021)
of various deterministic covering models. Schilling (1993) provided the first comprehensive
review of covering problems, while Farahani et al. (2012) reviewed covering models, solu-
tions, and their applications. Bélanger et al. (2019)’s review focused on early work studying
static ambulance location problems. In addition, this study concentrated on new techniques
for addressing tactical and operational decisions, including a summary of the interaction
between the two. The most recent survey on covering models conducted by Wang et al.
(2021) focused on mathematical covering models and their applications in emergency facil-
ity location problems. After excluding the studies that did not meet their inclusion criteria,
they found 87 related papers from three databases (Sc-opus, Google Scholar, and Science
Citation Index). However, these reviews did not explicitly focus on the model (1a–1c); rather
they discussed classical SCP and maximal covering problems together. Further, the surveys
conducted by Schilling (1993) and Farahani et al. (2012) focused on only deterministic
approaches, while the study conducted by Wang et al. (2021) focused on deterministic and
probabilistic covering models only considering emergency facility location, relocation, and
dispatching problems.
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1.1 Classification of uncertainty

More recently, a significant number of new developments have been proposed in decision-
making under uncertainty focusing on the classical SCP. Applying exact or heuristic methods
to make decisions related to real-world applications of the SCP often faces difficulty when
there is uncertainty in the input data. These uncertainties are classified as probabilistic,
stochastic, and robust based on the uncertainty of particular input data or combination of
input data. Probabilistic uncertainties involve quantifying unpredictability using probability
distributions (Aly & White, 1978), while stochastic uncertainties incorporate randomness
or variability, often with time-dependent variables (Powell, 2019) and robust uncertain-
ties address situations where the exact values or distributions of uncertain parameters are
unknown, but their potential range of values is considered (Pereira &Averbakh, 2013). How-
ever, a literature review on the SCP from the perspective of parameter uncertainty has not
yet been conducted, emphasizing the need for such a review. Therefore, a broad and deep
examination of classical SCP from the perspective of an uncertainty approach supporting
decision-making, which has yet to be conducted, merits study.

In this survey, we restrict the search only to focus on the model (1a–1c). More specifically,
our study focused on the existing models studying the uncertain input parameters ai j , bi , c j ;
the decision variable x j for i ∈ I , j ∈ J of the model (1a–1c); and satisfying the covering
constraints with the chance constraint P(

∑
j∈Ji ai j x j ≥ 1) ≥ αi where αi is a threshold

level.

1.2 Survey scope andmethod

We searched for studies in ScienceDirect, Google Scholar, and Connected Papers based
on the keywords (“Set Covering Problems", “Probabilistic", “Stochastic" and “Robust"),
using Boolean operators, article type, and subject area. The subject areas that we focused on
include “Computer Science", “Decision Science", “Engineering", “Environmental Science"
and “Mathematics". The initial search resulted in papers focused on the uncertainty approach
of SCP. Then, we extended the search process by including the studies cited in these papers.
We excluded the studies that did not introduce a mathematical model and those that focused
on the uncertainty of equivalentmathematical models such asmaximal coveringmodels. This
process resulted in 16 studies that considered uncertainty counterparts of SCP in the model
(1a–1c) which are summarized in Table 1. The number of studies published every 10 years
since 1970 is listed in Table 2. Based on Table 2, the number of publications supporting
decision-making under uncertain SCP has slowly increased over the past 50 years. Most of
the studies have focused on the uncertainty of constraints’ coefficients or chance constraints.
Further, we observed that the uncertain version of SCPs received significant attention among
researchers after 2000, meaning this topic is relatively new.

1.3 Real-world applications devoted to decision-making in the uncertain SCP

We discovered 16 studies, seven directly addressing the theoretical aspect of uncertainty in
SCP,while nine discussed real-world scenarios of uncertainty in SCP. In the SCP formulation,
ai j ensures the covering of item ei by the set S j with certainty and bi ensures the covering
of each item at least by one set S j . As evident in the real-world scenario studies examined
below, we observe that when the problem parameters are uncertain, there is no guarantee that
we make decisions satisfying these conditions with 100% accuracy.
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Table 1 Solution techniques

Uncertainty of constraints’ coefficients ai j for i ∈ I , j ∈ J
Solution technique References

Probabilistic formulation Aly and White (1978)

Probabilistic formulation Benveniste (1982)

0–1 Programming model Hwang (2002)

Heuristic algorithm Cabeza et al. (2004)

0–1 Programming model Fischetti and Monaci (2012)

Compact mixed-integer linear programming Degel and Lutter (2013)

Non-compact integer linear model formulations Lutter et al. (2017)

Chance-constrained program by sampling based approach Wu and Kucukyavuz (2019a)

Mixed-integer programming model Wu and Kucukyavuz (2019b)

Uncertainty of objective function’s coefficients c j for j ∈ J

Min–max strategy Pereira and Averbakh (2013)

Uncertainty of demand values bi for i ∈ I

Chance-constrained 0–1 integer programming ReVelle and Hogan (1989)

Chance-constrained 0–1 integer programming Marianov and Revelle (1994)

Enumeration algorithms and branch-and-bound algorithms Beraldi and Ruszczyński (2002a)

Beam search heuristic strategy Beraldi and Ruszczyński (2005)

Mixed-integer programming reformulation Saxena et al. (2010)

Compact mixed-integer linear programming Ding et al. (2020)

1. Uncertainty of constraints’ coefficients ai j of the SCP

(a) Aly and White (1978) discussed locating emergency service facilities by consider-
ing that the location of incidents such as accidents, fires, or customers are random
variables, with customers being considered as items and sites as sets (that is ai j is a
random variable).

(b) Hwang (2002) conducted a study on logistic system design with the aim of optimizing
the performance of logistic system. In this study, customers are taken as the items,
and warehouse or distribution centers (W/D) are considered as sets. It is assumed
that the probability of each demand point being covered is not less than a specified
threshold value.

(c) Cabeza et al. (2004) discussed the probabilistic approach of SCP from the perspective
of biodiversity, specifically focusing on selecting reserve networks that represent
biodiversity efficiently. In this study, the sites and species represent the sets and
items respectively for the modeling. It is assumed that a minimum probability level
is required to represent the species considered.

(d) Fischetti and Monaci (2012) and Ahmed and Papageorgiou (2013) focused on the
uncertainty of ai j for i ∈ I , j ∈ J as a binary random variable indicating whether
set S j covers the item ei depending on the probability of the disappearance of the
decision variable x j for j ∈ J .

(e) Degel and Lutter (2013) applied robust SCP to an emergency medical service facility
problem. Items are taken as the demand nodes and the sets as the location of the
emergency service facility site.
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2. Uncertainty of satisfying demand values bi

(a) ReVelle and Hogan (1989) andMarianov and Revelle (1994) discussed an application
of probabilistic SCP modeling in queuing theory for emergency vehicle location
problems. Items are considered as the demand points and sets as eligible sites for
facilities. These two studies are from a different perspective, where the uncertainty of
demand values is addressed by a concept referred to as the “busy fraction”. Various
versions of these busy fractions were introduced by researchers based on the real-
world scenario.

(b) Ding et al. (2020) discussed uncertainty in the SCP when the coverage of each item
is required by two types of facilities. Items are seen as demand nodes and two types
of facility locations are represented in two different sets.

The review is organized as follows. Sections2–4discuss these 16models in detail, focusing
on three main uncertain categories of the SCP. First, we review the literature on uncertain
input parameters ai j for i ∈ I , j ∈ J . Second,we review the literature on the studies ensuring
that the probability of meeting the coverage constraints

∑
j∈Ji ai j x j ≥ 1, for i ∈ I above

a certain threshold level α. Third, we review the literature on uncertain input parameters bi
for i ∈ I . When introducing the models, we use “:=" to define new notation and “=" for
representing equations. Further, the notation introduced in the classical model (1a–1c) is
commonly used in the models described in this review. If the additional notation is used to
describe a particular model, we will include them above each model. Section5 concludes the
study and discusses promising future research directions for the uncertain SCP, which will
impact new investigations of complex and competitive real-world issues.

2 Uncertainty of constraints’ coefficients

The first category of SCP models focuses on the uncertainty of constraint coefficient ai j
for i ∈ I , j ∈ J and their existing applications. Initially, Soyster (1973) introduces the
uncertainty of the constraint coefficients in linear models. Since there is no guarantee that
the classical covering constraint (1b) can be satisfied with ai j uncertainty, the majority of
the models reviewed in this section utilize the chance-constrained method for modeling, one
of the primary approaches used to solve optimization problems under various uncertainties.
Employing this process to formulate an optimization model ensures that the probability of
meeting the coverage constraints is above a specified level.

2.1 Specialized application-focusedmodels

In this section, we discuss four studies that specifically target uncertain input parameters
ai j , where i ∈ I and j ∈ J . These models have been developed with a focus on particular
applications.

The pioneering work on probabilistic covering by Aly and White (1978) explored the
formulation of a service location problem. Focusing on emergency health services, they
considered the incident location as a random variable. In their model, items were treated as
customers, and sets were defined as sites. The notation of the model is provided below:

k :=number of facilities available
c j := the cost of locating a facility at site j
ti j := response time from an emergency facility at site j to an incident in region i
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λi :=upper bound on the response time from location j to an incident in region i
γi := required service (aspiration) level, 0 ≤ γi ≤ 1
P

(
ti j ≤ λi ) :=probability of the time ti j ≤ to upper bound on the response time λi

x j = 1 if a facility is to be located at j ; 0 otherwise
θ(x) = { j |x j = 1} := set of sites where a facility has been located

Their formulation is given by model (2a–2c), which is a non-linear integer programming
problem:

min z(x) =
∑

j∈J

x j (2a)

s.t P
(
ti j ≤ λi ) ≤ γi , for some j ∈ θ(x), ∀i ∈ I (2b)

x j ∈ {0, 1}, ∀ j ∈ J . (2c)

The distance traveled from the emergency unit to the incident location is assumed to be
random, characterizing the traveling time ti j as a random variable. This study introduces a
cumulative distribution function to determine P

(
ti j ≤ λi ). Assuming the availability of at

least one unit at site j , the variable ai j signifies coverage by the unit at site j for an incident
in subregion i . The model is solved by defining the input variable ai j = 1 if P

(
ti j ≤ λi ) ≥ γi

and 0 otherwise. In this model, the objective function (2a) minimizes the number of selected
sites. Chance constraint (2b) implies that any incident in i ∈ I must be covered for some
j ∈ θ(x). With this information, the model (2a–2c) is reformulated as in model (3a–3c),
which is equivalent to the classical SCP (1a–1c) and, thus, can be solved using its solution
methods:

min z(x) =
∑

j∈J

c j x j (3a)

s.t.
∑

j∈Ji

ai j x j ≥ 1, ∀i ∈ I (3b)

x j ∈ {0, 1}, ∀ j ∈ J . (3c)

The study’s theoretical approach is used to locate emergency service facilities in an urban
environment. The solution approach involves partitioning the emergency service region (such
as a city or country) intom rectangular subregions, guided by specific assumptions. Potential
locations for new sites are then identified, taking into account existing facilities to mitigate
additional fixed costs.

Benveniste (1982) further discusses the derivation of the probability distribution of the
travel time ti j proposed byAly andWhite (1978). This author continues using the samemodel
given by (2a–2c). The chance constraints P

(
ti j ≤ λi ) ≤ γi for some j ∈ θ(x) are linearized,

deriving the term P
(
ti j ≤ λi ) as the proportion of incidents in subregion i covered by facility

j . Accordingly, the input parameter ai j = 1 if P
(
ti j ≤ λi ) ≥ γi and 0 if P

(
ti j ≤ λi ) < γi .

Hwang (2002) proposes a logistics system that includes plants, warehouses or distribution
centers (W/D), and customers. A 0–1 programming model is developed to find the minimum
number of W/D among potential sites so that the probability of each demand point being
covered is not less than a specified value. The formulation employs a stochastic variant of
the SCP, treating items as retailers and sets as supply centers. The notation for the model is
provided below:

x j = 1 if the facility is located at point j ; 0 otherwise
ci := logistic cost incurred for node i
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S j (XSj , Y Sj ) :=possible location on supply centers
Ri (XRi , Y Ri ) := location of retailers
Dist(Ri , S j ) = (|XSj − XRi |p + |Y Sj − Y Ri |p)1/p :=distance between Ri and S j

Di :=demand at Ri

αi :=demand change (increasing or decreasing) rate
Tim(Ri , S j ) := travel time between Ri and S j

Fi j (Ri , S j ) := logistic cost incurred between Ri and S j

Fi j = ci Dist(S j , Ri )Di exp(αiTim (S j , Ri ))

Ai := required service level
ri :=critical service level
ai j = 1 if P(Fi j ≤ Ai ) ≥ ri ; 0 otherwise

If p = 1, then Dist(S j , Ri ) becomes rectilinear distance, and if p = 2, it becomes Euclidean
distance. This formulation is given by model (4a–4c), which is a binary integer programming
problem:

min z(x) =
∑

j∈J

x j (4a)

s.t.
∑

j∈J

ai j x j ≥ 1, ∀i ∈ I (4b)

x j ∈ {0, 1}, ∀ j ∈ J . (4c)

The objective function (4a) minimizes the total number of facilities. Constraint (4b) ensures
that all the retailers are at least covered by one supply center. This model is then applied
to a logistic system design. It is assumed that a W/D center is always available in model
(4a–4c). In the second stage of this study, the model (4a–4c) is applied to solve a vehicle
routine problem using an improved version of a genetic algorithm. GUI-type programming,
an integrated VRP-solver based on a genetic algorithm, is developed to solve the problem.
The proposed method has proven effective in addressing logistics system design for multi-
warehouse/distribution centers.

Cabeza et al. (2004) discuss probabilistic SCP in relation to biodiversity persistence.
Their study develops two reserve selection approaches by considering both habitat models
and spatial reserve design. In the formulation, the items are treated as sites and sets as species.
The notation of the model is provided below:

N := total number of sites
pi j :=probability of finding a species j in site i
S := set of selected sites
Ii = 1 for i ∈ S; 0 otherwise
b :=boundary length penalty (when b = 0, the problem becomes the classical version)
L

′ := ratio of boundary length of the selected reserve system to the total area
p j :=probability of having at least one occurrence of species j in any site
ci :=cost of including site i
Tj := the minimum probability level that is required to represent species j

123



Annals of Operations Research

Their formulation is given by model (5a–5d).

min z(I ) =
∑

i∈S
Ii ci + bL

′
(5a)

s.t. p j ≥ Tj , ∀ j ∈ J (5b)

p j = 1 −
(∏

i∈S
(1 − pi j

)
, ∀ j ∈ J (5c)

Ii ∈ {0, 1}, ∀i ∈ S. (5d)

The objective function (5a) minimizes the combination of the number of areas and the bound-
ary length required to represent all target species. Constraint (5b) gives the minimum level
of target probability for each species, while constraint (5c) defines that p j equals the proba-
bility of having at least one occurrence of species j in any site i . A case study with a dataset
of 26 butterfly species from Creuddyn Peninsula in north Wales illustrates the model. The
researchers introduced two heuristic iterative algorithms for comparing the model (5a–5d):
a forward algorithm adding sites and a backward algorithm starting with all sites and then
excluding them one by one. Results indicate that although the backward algorithm outper-
forms the forward one, it does not guarantee finding the exact optimal solution.

2.2 Specialized generic models

In this section, we discuss three generic studies that specifically target uncertain input param-
eters ai j with probabilistic and stochastic uncertainties.

Fischetti andMonaci (2012) introduce a stochastic variant of the SCP, called the Uncertain
SCP (USCP). The notation of the model is provided below:

N = {1, 2, . . . , n} := set of columns
M = {1, 2, . . . ,m} := set of rows
P̄i ∈ [0, 1] :=minimum required probability for row i to be covered by at least one
selected column j
Pj ∈ [0, 1] :=disappearing probability of column j
ai :=coefficients in i th row for i ∈ M
cj :=costs associated with a column j

The model assumes that the input parameter ai j for i ∈ M, j ∈ N follows a Bernoulli
distribution. Their formulation is given by model (6a–6c), which is a non-linear integer
programming problem with a chance constraint.

min z(x) =
∑

j∈N
c j x j (6a)

s.t. P{aTi x ≥ 1} ≥ P̄i , ∀i ∈ M (6b)

x j ∈ {0, 1}, ∀ j ∈ N . (6c)

The objective function (6a)minimizes the number of selected sets, and constraint (6b) ensures
the coverage of item ei by at least one selected set S j with the minimum required level of
probability P̄i . Following a modeling technique proposed by Haight et al. (2000) and letting
w j = − ln p j ( j ∈ N ) and W̄i = − ln(1 − P̄i ), Fischetti and Monaci (2012) propose a new
model (7a–7c) which is equivalent to the model (6a–6c). Their new model is a binary linear
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integer programming problem given below:

min z(x) =
∑

j∈N
c j x j (7a)

s.t.
∑

j∈Ji

w j x j ≥ W̄i , ∀i ∈ M (7b)

x j ∈ {0, 1}, ∀ j ∈ N . (7c)

where Ji = { j ∈ N : ai j = 1} for i ∈ M . In thismodel, the objective function (7a)minimizes
the number of selected sets. Constraint (7b) gives the linearized version of constraint (6b).
Note the challenging nature of constraints (7b), which take the form of a knapsack-type
constraint. The researchers propose a cutting plane model (8a–8c) as a noncompact-integer
linear programming solution, modifying (7b) to (8b):

min z(x) =
∑

j∈N
c j x j (8a)

s.t.
∑

j∈Ji

x j −
∑

j∈S
x j ≥ 1, S ⊆ Ji :

∑

j∈S
w j < W̄i , i ∈ M (8b)

x j ∈ {0, 1}, j ∈ N . (8c)

where S ⊆ Ji such that
∑

j∈S w j < W̄ and
∑

j∈S x∗
j >

∑
j∈Ji x

∗
j −1. The set of constraints

(8b) ensures that row i ∈ M must be covered by a subset of columns which has a small
probability of disappearing. A cutting plane algorithm was proposed to solve model (8a–8c).
These researchers implemented the cutting plane algorithm in C language, and a CPLEX
solver is used for optimization. Further, the performance of the algorithm was evaluated
using all NETLIB (2013) instances.

Degel and Lutter (2013) generalize the assumption that the ai j follows a Bernoulli dis-
tribution proposed by Fischetti and Monaci (2012) which results from a known column
disappearing probability p j for j ∈ J . They propose individual and independent coefficient
disappearing probabilities pi j for i ∈ I , j ∈ J , and define the generalized USCP (GUSCP).
The notation of their model is provided below:

Ni = { j ∈ J |i can be covered by j} :=neighborhood of a given row i
ai j = 1 if j ∈ Ni ; 0 otherwise
pi j ∈ [0, 1] :=probability of disappearing the coefficient ai j for i ∈ I and j ∈ J
pi j := individual and independent coefficient disappearing probabilities of ai j
y j = 1 if column j is selected; 0 otherwise
α ∈ (0, 1] :=minimum coverage probability level
p̄i j :=nominal value
p̂i j :=worst case deviation of p̄i j
p̄i j + p̂i j :=worst case scenario
�i := robust-α cover of row i
c j :=costs associated with column j
C(y∗) = { j ∈ J |y∗

j = 1} for all i ∈ I
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�i is the solution y∗ ∈ {0, 1}n with P�i

(∑
j∈J ai j y

∗
j ≥ 1

)
≥ α. Their formulation is given

by model (9a–9c), which is a nonlinear integer programming problem:

min z(y) =
∑

j∈J

c j y j (9a)

s.t. P
(∑

j∈J

ai j y j ≥ 1
)

≥ α, ∀i ∈ I (9b)

y j ∈ {0, 1}, ∀ j ∈ J . (9c)

Assuming independence, the probability of covering items is represented as P
( ∑

j∈J ai j y
∗
j

≥ 1
)

= 1−∏
j∈C(y∗) pi j . The model (9a–9c) can be transformed into a linear integer model

similar to (7a–7c). In real-world scenarios, the exact value of pi j is unknown. To accommo-
date this uncertainty, it is assumed that pi j lies within the interval [ p̄i j − p̂i j , p̄i j + p̂i j ] ⊆
[0, 1]. A robust formulation for the GUSCP is introduced, represented by model (10a–10c):

min z(y) =
∑

j∈J

c j y j (10a)

s.t. P�i

(∑

j∈J

ai j y j ≥ 1
)

≥ α, ∀i ∈ I (10b)

y j ∈ {0, 1}, ∀ j ∈ J . (10c)

In this model, the objective function (10a) minimizes the number of selected sets. Chance
constraint (10b) gives the minimum coverage probability on the condition that at most �i

realizations of pi j are equal to the worst case and n − �i other realizations of pi j equal to
the nominal value. Constraint (10c) defines the domain of the decision variable y j . Addition-
ally, the chance constraint (10b) is in non-linear form, thus, it has been reformulated into a
linearized form, creating a mixed-integer linear programming problem (MILP) represented
by model (11a–11f). This formulation introduces additional non-negative variables ζi j and
ηi to solve the Robust Uncertain Set Covering Problem (RUSCP):

min z(y) =
∑

j∈J

c j y j (11a)

s.t.
∑

j∈J

wi j y j +
∑

j∈J

ζi j + γiηi ≤ ln(1 − α), ∀i ∈ I (11b)

ζi j + ηi ≥ (w
′
i j − wi j )y j , ∀i ∈ I ; ∀ j ∈ J (11c)

ζi j ≥ 0, ∀i ∈ I ; ∀ j ∈ J (11d)

ηi ≥ 0, ∀i ∈ I (11e)

yi ∈ {0, 1}, ∀ j ∈ J . (11f)

where

w
′
i j =

{
ln( p̄i j + p̂i j ) if p̄i j + p̂i j > 0
ln(1 − α) if p̄i j + p̂i j = 0

∀i ∈ I and j ∈ J

wi j =
{
ln( p̄i j ) if p̄i j > 0
ln(1 − α) if p̄i j = 0

∀i ∈ I and j ∈ J
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Objective function (11a) minimizes the number of selected sets. Constraints (11b–11e) rep-
resent the reformulation of chance constraint (10b), and constraint (11f) defines the domain
of the decision variable y j . The importance of the proposed MILP model is explained using
an emergency medical service facility problem by considering demand nodes as items and
sites as sets.

Lutter et al. (2017) focus on an extension of the RUSCP formulation given by model
(11a–11f), proposing two non-compact integer linear formulations to solve the RUSCP by
converting chance constraint (10b) into a linear form. We provide the additional notation
required to define these two new models below:

N̄i = { j ∈ J |1− p̄i j > 0} := set of all facility location sites being able to cover demand
node i ∈ I with positive nominal probability 1 − p̄i j
w̃i j = w

′
i j − wi j ≥ 0

The first non-compact reformulation (RUSCP-NCG) is given by the model (12a–12c),
and constraint (12b) provides the linearized version of constraint (10b):

min z(y) =
∑

j∈J

c j y j (12a)

s.t.
∑

j∈N̄i

wi j y j +
∑

j∈S
w̃i j y j ≤ ln(1 − α), ∀i ∈ I ; ∀S ⊆ N̄i : |S| ≤ �i (12b)

y j ∈ {0, 1}, ∀ j ∈ J . (12c)

The second non-compact formulation, RUSCP-NCS, focuses on the subsets that fail to
satisfy the �i -robust α-covering condition. The definition for the �i -robust α-covering con-
dition can be found in Definition 1.

Definition 1 (�i -robust α-cover) Let i ∈ I , �i ∈ N0, � = (�i )i∈I , α ∈ [0, 1) and let pi j
have realization in [ p̄i j , p̄i j + p̂i j ] ⊆ [0, 1] for all j ∈ J . Define the worst-case coverage
probability for a set C ⊆ J by

P�i

(∑

j∈C
ai j ≥ 1

)
:= 1 − max{U⊆C: |U |≤�i }

{ ∏

j∈U
( p̄i j + p̂i j ).

∏

j∈C\U
p̄i j

}
.

A �i -robust α-cover C ⊆ J of the i-th demand node has a worst-case coverage probability
P�i (

∑
j∈C ai j ≥ 1) greater or equal to α. A set C ⊆ J is called a �i -robust α-cover if C is a

�i -robust α-cover for each row i ∈ I .

The second formulation is given by the model (13a–13d) and constraints (13b–13c) provide
the linearized version of constraint (10b):

min z(y) =
∑

j∈J

c j y j (13a)

s.t.
∑

j∈N̄i

y j ≥ 1, ∀i ∈ I (13b)

∑

j∈N̄i\S
y j ≥ 1, ∀i ∈ I ; ∀S ⊆ N̄i :

∑

j∈S
wi j + max{U⊆S: |U |≤�i }

∑

j∈U
w̃i j > ln(1 − α)

(13c)

y j ∈ {0, 1}, ∀ j ∈ J . (13d)
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These authors compare the proposed two non-compact formulations on the basis of large
sets of unicost and non-unicost data sets and a modified version of SCP instances from the
ORLIB (1990).

2.3 Specialized uncertain SCPmodels with desired coverage

In this section,we discuss two studies that specifically address the desired coverage of the SCP
while considering uncertain input parameters ai j with associated probabilistic uncertainties.

Wu and Kucukyavuz (2019a) discuss the chance-constrained combinatorial optimization
problem and consider its application to solve the probabilistic approach of partial SCP. The
notation of the model is provided below:

V1 = {1, 2, . . . , n} := index set for sets
V2 = {1, 2, . . . ,m} := index set for items
xi = 1 if component i is selected; 0 otherwise
bi :=objective coefficient of xi
ε ∈ [0, 1] := risk level
τ :=number of covered items in V2
σ(x) := the random variable represents the number of covered items in V2 for given x .
B(x) := random event of interest for a given x
σ(x) ≥ τ :=desired covering event B(x) for given x .

Uncertainty of ai j in the classical SCP model (1a–1c) is the focus in their study for all i ∈ V2
and j ∈ V1. Their probabilistic SCP formulation is given by model (14a–14c):

min z(x) =
∑

i∈Vi
bi xi (14a)

s.t. P
(
σ(x) ≥ τ

) ≥ 1 − ε (14b)

x ∈ {0, 1}n . (14c)

In this model, the objective function (14a) minimizes the total cost of the sets selected from
V1 while guaranteeing a certain degree of coverage of the items in V2. Chance constraint
(14b) defines the probability that the selected subsets covering a given number τ of items
in V2 is at least 1 − ε. Finally, constraint (14c) defines the domain of decision vector x . If
τ = m number of items, then model (14a–14c) is equivalent to the probabilistic SCP model,
which has a chance constraint. However, since τ ≤ m is addressed in this study, it follows the
structure of the Partial Probabilistic SCP (PPSCP). An experimental data set from a human
sexual contact network is used to illustrate the proposed algorithm. V1 and V2 denote the
groups of different genders in the data set, and models were implemented in C++ with a
CPLEX optimizer.

Wu and Kucukyavuz (2019b) extend the PPSCP model (14a–14c) using an oracle to
reformulate it into aMILP. A dynamic program technique is described to compute P

(
σ(x) ≥

τ
)
in their study.
Āi, j , a decision variable representing a dynamic programming recursion for A(x, i, j), is

defined for 1 ≤ j ≤ i, i ∈ V2 as:

A(x, i, j) =

⎧
⎪⎨

⎪⎩

A(x, i − 1, j)(1 − P(x, i)), j = 0

A(x, i − 1, j)(1 − P(x, i)) + A(x, i − 1, j − 1)P(x, i), 0 < j < i

A(x, i − 1, j − 1)P(x, i), j = i
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A proposed compact MILP formulation is given in model (15a–15h):

min z(x) =
∑

i∈V1
bi xi (15a)

s.t. Ā0,0 = 1 (15b)

Āi, j = Āi−1, j (1 − P(x, i)), ∀i ∈ V1; j = 0 (15c)

Āi, j = Āi−1, j (1 − P(x, i)) + Āi−1, j−1P(x, i), ∀i ∈ V1; 0 < j < i (15d)

Āi, j = Āi−1, j−1P(x, i), ∀i ∈ V1; j = i (15e)
m∑

j=τ

Ām, j ≥ 1 − ε (15f)

x ∈ {0, 1}n (15g)

Āi, j ∈ R+, 0 ≤ j ≤ i ≤ m. (15h)

The objective function (15a) minimizes the total cost selection of subsets of items.
Constraint (15b) is the boundary condition of the dynamic programming, and constraints
(15c–15e) are the dynamic programming recursive functions. Constraint (15f) is the goal
function of the model. These researchers demonstrated the effectiveness of their proposed
method by implementing it in C++ with a CPLEX optimizer.

3 Uncertainty of objective cost coefficients

The third category of SCPmodels reviewed here focuses on the uncertainty of cost coefficient
c j for j ∈ J . In this section, we highlight a unique study that addresses this uncertainty.

Pereira and Averbakh (2013) study the uncertainty of cost coefficients in the objective
function of the SCP, assuming that an interval estimate value is known for each cost coef-
ficient. According to the authors, their study is the first which applies robust techniques to
address this uncertainty. The notation of the model is provided below:

M = {1, . . . ,m} := set of rows
N = {1, . . . , n} := set of columns
� := set of all coverings
X ∈ � :=a subset of covering and also a |N |-dimensional characteristic vector of
covering
c−
j := lower bound of the cost coefficient c j

c+
j :=upper bound of the cost coefficient c j

[c−
j , c+

j ] :=uncertain interval of the cost coefficient c j
S :=Cartesian product of the uncertain intervals [c−

j , c+
j ] for j ∈ N

s := scenario in the set S
csj :=cost corresponds to scenario s
x j = 1 if j ∈ X ; 0 otherwise
s(X) := scenario induced by X
cs(X)
j = c+

j if j ∈ X ; c−
j otherwise

θ := free variable
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In their notation the classical SCP for any X ∈ � and fixed s ∈ S is given by

min F(s, X) =
∑

j∈X
csj (16a)

s.t X ∈ �. (16b)

The objective function (16a) minimizes the cost of the selected cover in this model while
the constraint set (16b) contains all possible covers. Let R(s, X) be the regret for X under
scenario s. Then, the authors define R(s, X) = F(s, X) − F∗(X) where F∗(X) is the
optimum objective value of model (18a–18b). Themin–max regret strategy is used to address
the uncertainty of the cost coefficients. Thus, the min–max robust deviation version of model
(16a–16b) is defined as the robust SCP, which is referred to as the ROB.SETCOVER; its
formulation is given below:

min Z(X) = max
s∈S R(s, X) (17a)

s.t X ∈ �. (17b)

The objective function (17a) minimizes the worst-case regret for the covering X while the
constraint set (17b) contains all possible covers. These researchers reformulate model (17a–
17b) as follows:

min
X∈�

( ∑

j∈N
c+
j x j − min

Y∈�

( ∑

j∈N
cs(X)
j y j

))
(18a)

s.t X ∈ �. (18b)

Here y j = 1 if j ∈ Y , and 0 otherwise. By introducing a free variable θ , they provide an
equivalent formulation to model (18a–18b) as follows:

min z(x) =
∑

j∈N
c+
j x j − θ (19a)

s.t θ ≤
∑

j∈N
c−
j y j +

∑

j∈N
y j (c

+
j − c−

j )x j , forall, Y ∈ � (19b)

∑

j∈N
ai j x j ≥ 1, ∀i ∈ M (19c)

x j ∈ {0, 1}, ∀ j ∈ N . (19d)

The objective function (19a) along with constraint (19b) minimizes the worst-case regret
for the covering X . In other words, the objective function (19a) finds the covering X ∈ � with
the smallest maximum regret. Constraints (19c) and (19d) are equivalent to X ∈ �. Since
model (19a–19d) generates an exponential number of constraints for constraint (19b), it is
challenging to solve with optimization solvers. Therefore, Benders decomposition and the
Branch-Cut approach are applied to simplify the model. The researchers present numerical
results considering three algorithms, two using Benders decomposition, with the third using
the Branch-Cut approach in conjunction with several heuristic techniques.
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4 Uncertainty of satisfying demand values

The fourth category of SCP models reviewed here focuses on the uncertainty of demand
values bi for i ∈ I and their applications. We also include the studies finding generalized bi
values to ensure that the probability of meeting the coverage constraints is above a specified
threshold level. In past studies, emergency vehicle location problems were studied from a
deterministic perspective, where items are considered as customers and sets as vehicles.
However, the availability of vehicles to satisfy a specific demand is not guaranteed all the
time since they could be engaged in previous calls. This issue motivated the studies focusing
on probabilistic location SCP. Most models in this category utilize the concept of a “busy
fraction” of vehicles developed using queuing theory. This busy fraction is defined as the ratio
of time the vehicles are busy responding to calls. Since there is no guarantee that classical
covering constraint (1b) can be satisfied with the uncertainty of bi , these models are also
considered under the chance-constrained category on the reliability of service availability.

4.1 Uncertainty in demand values: a queuing theory approach with a busy fraction

In this section, we explore two studies that employ a specific formula to estimate the uncer-
tainty of bi , and utilize the queuing theory approach to solve thesemodels. ReVelle andHogan
(1989) study the probabilistic location SCP. The notation of their formulation is provided
below:

J := set of eligible facility sites (indexed by j)
I := set of demand nodes (indexed by i)
tμ:= shortest time from potential facility site j to demand node i
S:= standard for coverage (for either time or distance)
fk := frequency of calls for service at demand node k, in calls per day
t̄ := the average duration of a call (hours)
Mi := set of demand nodes within S of node i
Ni = { j | tμ ≤ S} (the set of nodes j located within the time or distance standard of
demand node i)

Fi = t̄
∑

k∈Mi
fk

24 (the denominator provides the daily hours of service availability and the
numerator provides the total number of calls for service at all the demand nodes (k ∈ Mi )
per day)
bi := the smallest integer satisfying 1 − (

Fi
bi

)bi ≥ α

x j = 1 if a facility is located at node j ; 0 otherwise.

The formulation for the Probabilistic Location SCP (PLSCP) is given in (20a–20c):

min z(x) =
∑

j∈J

x j (20a)

s.t.
∑

j∈Ni

x j ≥ bi , ∀i ∈ I (20b)

x j ∈ {0, 1}, ∀ j ∈ J . (20c)

where bi is the smallest integer satisfying 1 − (
Fi
bi

)bi ≥ α. These researchers introduced an
estimation of system-wide busy fraction in Equation (21):

qi = t̄
∑

k∈Mi
fk

24
∑

j∈Ni
x j

. (21)

123



Annals of Operations Research

The objective function (20a) minimizes the number of facility locations. Constraint (20b)
enforces the assignment of the minimum number of facility locations to guarantee reliability
level α of node i . Here, the items are considered as demand zones, and sets are considered
as potential facility sites.

Marianov and Revelle (1994) further study the PLSCP. In the previous studies, it was
assumed that the availability of servers is independent of one another. However, this assump-
tion may be violated practically; hence, the study focuses on an adjustment of the assumption
of independence of server availability, presenting a new formulation. It is shown that the prob-
ability of at least one server being available equals 1-probability of all the servers within S
being busy. As this model is an extension of the formulation presented in ReVelle and
Hogan (1989), we will only introduce the additional notation necessary to define the new
formulation. The required notation is provided below:

λi := arrival rate
1
μi
:= single server’s mean service time

s = ∑
j∈Ni

x j := number of servers

ρi = t̄
∑

k∈Mi
fk

24 = λi
μi

pi = λi
μi∗s := probability of a server being busy in the region

Thus, usingEq. (21) andReVelle andHogan (1989)’s assumption of the binomial distribution,
the probability of at least one server being busy can be calculated as:

1 - P [all servers of node i are busy] = 1 −
(

ρi∑
j∈Ni

x j

) ∑
j∈Ni

x j

. (22)

ReVelle and Hogan (1989) determine the deterministic equivalent form of Eq. (22) as
∑

j∈Ni
x j ≥ bi where bi is the smallest integer satisfying 1 −

(
ρi
bi

)bi ≥ α. The principal

difference between Marianov and Revelle (1994)’s model and the PLSCP model (20a–20c)
introduced by ReVelle and Hogan (1989) is how the parameter bi is calculated. The imple-
mentation of the model is exemplified using a real-world scenario of the emergency vehicle
location problem considering items as demand points and sets as eligible sites for facilities.
Further, this concept is applied to the maximum location SCP (ReVelle & Marianov, 1991;
Borrás & Pastor, 2002) by introducing different versions of busy fractions and mathematical
formulations.

4.2 Uncertainty in demand values: a probabilistic approach

In this section, we explore three studies that replace the demand value vector (b1, . . . , bm)

with a binary random vector ε ∈ {0, 1}m . Probabilistic approaches have been utilized to solve
these models.

Beraldi and Ruszczyński (2002b) initially introduce the uncertainty of demand values bi .
They discussed probabilistic SCP, where the demand values of each covering constraint in
the classical SCP (1a–1c) are replaced by a binary random vector. The set of rows is indexed
by i and the set of columns by j in their formulation. The notation of the model is provided
below:

ε :=a binary vector in {0, 1}m
T :=0–1 matrix with m rows, n columns
p ∈ (0, 1) :=pre-specified reliability level
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Their formulation is given by the model (23a–23c), which is a nonlinear binary integer
programming problem:

min z(x) = cT x (23a)

s.t. P
(
T x ≥ ε

)
≥ p (23b)

x ∈ {0, 1}n . (23c)

The objective function (23a) minimizes the cost of selected sets. Constraint (23b) ensures the
probabilistic version of the covering constraint is at least satisfied by the probability p. They
solve thismodel using two different approaches, the complete and the hybrid approaches. Two
steps are applied in the complete approach, the first finding the p-efficient points using either
forward or backward enumeration methods and the second using various tailored solution
methods to determine the optimal solution for the probabilistic SCP. The meaning of the
p-efficient point condition can be found in Definition 2.

Definition 2 A point v ∈ {0, 1}m is called a p-efficient point of the probability distribution
function F , if F(v) ≥ p and there is no binary point y ≤ v, y 	= v such that F(y) ≥ p.

The hybrid solution approach generates only the required p-efficient points, avoiding their
complete enumeration. After finding the p-efficient points, each problem can be represented
as a classical SCP. Then its optimal solution is obtained using three methods, the Forward
Branch-and-Boundmethod, theBackwardBranch-and-Boundmethod, and greedy heuristics.
The performance of these methods and their efficiency is discussed using test problems under
the three categories of small, medium, and large.

Beraldi and Ruszczyński (2005) conduct an extensive study on model (23a–23c). A Beam
Search heuristic strategy was proposed to solve the model. The Beam Search strategy is a
modified version of the classical Branch-and-Bound algorithm that employs a Breadth-First
Search approach. It narrows down the search space by considering only a limited number
of promising nodes, resulting in reduced memory requirements. Beam Search has found
applications in various domains, including speech recognition (Lowerre, 1976), scheduling
(Sabuncuoglu & Bayiz, 1999), and engineering design (Deb & Kumar, 2007). A compu-
tational experiment was carried out to compare the performance of methods proposed in
Beraldi and Ruszczyński (2002b). This comparison involved the classical Branch and Bound
method and the introduced Beam Search strategy. The results indicate that the Beam Search
technique outperforms the classical Branch and Bound method in solving stochastic integer
problems under probabilistic constraints.

Saxena et al. (2010) introduce a new formulation to model (23a–23c), the notation of
which is provided below:

N := row index set
M :=column index set
L :=number of blocks
M1, . . . , ML :=partitions of M
{ξ1, . . . , ξ L } :=a set such that ξ t is a 0–1 random Mt vector ∀t ∈ {1, 2, . . . , L}
zi :=a binary value in {0, 1}
Ft (zt ) = P(ξ t ≤ zt )
St := set of binary vectors which are either p-efficient or dominate a p-efficient point of
Ft
It := set of p-efficient point of Ft
ηt = ln Ft (zt ),∀t ∈ {1, 2, . . . , L}
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Their formulation is given by model (24a–24g), which is a mixed-integer programming
problem:

min z(x) = cx (24a)

s.t. Ax ≥ z (24b)
∑

t∈L
ηt ≥ ln p (24c)

ηt ≤ (ln Ft (v))
(
1 −

∑

i∈Mt ,vi=0

zi
)
, ∀v ∈ St ; ∀t ∈ {1, 2, . . . , L} (24d)

1 ≤
∑

i∈Mt ,vi=0

zi , ∀v ∈ It ; ∀t ∈ {1, 2, . . . , L} (24e)

zi ∈ {0, 1}, ∀i ∈ M (24f)

x j ∈ {0, 1}, ∀ j ∈ N . (24g)

Objective function (24a) minimizes the cost of selected sets, and constraints (24b–24f) rep-
resent the probabilistic covering constraint (23b) in the model (23a–23c). An example is
used to illustrate MIP reformulation, and a large test bed is used to discuss computational
efficiency. A CPLEX solver is used to solve the instances, with the computational results
showing that the proposed procedure efficiently solves the probabilistic SCP.

4.3 Uncertainty in demand values frommultiple facilities

Another area of interest related to uncertainty in demand value is the study of multiple
coverages for each item with probabilistic conditions. In this section, we highlight a unique
analysis that addresses a specific variant of the covering problem: the robust set covering
problem with probabilistic and cooperative covering by two types of facilities.

Ding et al. (2020) investigate the robust uncertain two-level cooperative SCP when the
coverage of each item is required by two types of facilities denoted by y and z. This study
combines the concepts of robust, probabilistic, and cooperative covering by introducing
�-robust two-level-cooperative α-cover constraints. Two mathematical models have been
proposed. The notation of the model is provided below:

I = {1, 2, . . . ,m} := set of demand nodes indexed by k
J = {1, 2, . . . , n1} := set of y-facility location sites indexed by j
K = {1, 2, . . . , n2} := set of z-facility location sites indexed by k
c1j :=costs of building y-facility located at site j

c2j :=costs of building z-facility located at site k
ai j ∈ {0, 1} := y-facility location j ∈ J is able to cover the demand node i
bik ∈ {0, 1} := z-facility location k ∈ K is able to cover the demand node i

Since the model has two types of facilities, the deterministic model is a little different from
the classical SCP model (1a–1c). Further, this study considered the uncertainty of the ai j and
bik values, which represent whether a location j ∈ J or k ∈ K is able to cover the demand
node i . Hence, ai j and bik are considered independent random binary variables.
It considered that ai j = 1 with a probability of (1 − pi j ) and ai j = 0 with probability pi j .
Likewise, bik = 1 with a probability of (1 − qik) and bik = 0 with probability qik . Their
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formulation is given by model (25a–25d), which is a binary non-linear integer programming
problem for two facility types. This model is referred to as the Two-Level Cooperative SCP
(TLCSCP):

min
∑

j∈J

c1j y j +
∑

k∈K
c2k zk (25a)

s.t.
(∑

j∈J

ai j y j
)( ∑

k∈K
bik zk

)
≥ 1, ∀i ∈ I (25b)

y j ∈ {0, 1}, ∀ j ∈ J (25c)

zk ∈ {0, 1}, ∀k ∈ K . (25d)

The objective function (25a) minimizes the building cost of two types of facilities. Con-
straint (25b) ensures that each demand node covers at least one y-facility and z-facility
simultaneously. Then, the generalized probabilistic model is developed based on TLCSCP
model (25a–25d), which is in non-linear form.

The notation of the model is provided below:

δ = 2γ + αβ − αγ − √
α(4βγ + αβ2 + αγ 2 − 2αβγ )

2γ
,

β, γ ∈ [0, 1] are constants with β + γ = 1
α ∈ [0, 1) :=coverage level of the two facility types as covering at least one y-facility
and z-facility simultaneously
p̂i j ≥ 0 worst case deviation values
q̂ik ≥ 0 worst case deviation values
pi j = [ p̄i j , p̄i j + p̂i j ] ⊆ [0, 1], p̄i j ≥ 0 a nominal value
qik = [q̄ik, q̄ik + q̂ik] ⊆ [0, 1], q̄ik ≥ 0 a nominal value

The authors converted the constraint (25b) to two linear constraints
∑

j∈J ai j y j ≥ 1, ∀i ∈ I

and
∑

k∈K bik zk ≥ 1, ∀i ∈ I , and then two-level cooperative constraint P
(∑

j∈J ai j y j ≥
1,

∑
k∈K bik zk ≥ 1

)
≥ α, ∀i ∈ I is introduced.

By assuming that the variables y j and zk are independent variables, they obtained

⎛

⎝1 −
∏

j∈J

p
y j
i j

⎞

⎠ .

(
1 −

∏

k∈K
qzkik

)
≥ α, ∀i ∈ I (26)

where constraint (26) is in non-linear form and its relaxation leads to the following linear
approximation formulation. Their first formulation is given by model (27a–27f), which is an
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integer linear programming program:

min
∑

j∈J

c1j y j +
∑

k∈K
c2k zk (27a)

s.t.
∑

j∈J

ln(pi j )y j ≤ ln(1 − α), ∀i ∈ I (27b)

∑

k∈K
ln(qi j )zk ≤ ln(1 − α), ∀i ∈ I (27c)

β
∑

j∈J

ln(pi j )y j + γ
∑

k∈K
ln(qik)zk ≤ ln

[(
1 − α

1 − δ

)β

η
γ

i

]
, ∀i ∈ I (27d)

y j ∈ {0, 1}, ∀ j ∈ J (27e)

zk ∈ {0, 1}, ∀k ∈ K (27f)

The secondmodel is obtainedbasedon the concept of�-robust two-level-cooperativeα-cover
provided in Definition 1. The set of constraints (27a–27f) are reformulated into constraint
(28b–28k) using Definition 1. The second formulation is given by model (28a–28m), which
is a compact mixed-integer linear programming problem:

min
∑

j∈J

c1j y j +
∑

k∈K
c2k zk (28a)

s.t.
∑

j∈J

ln( p̄i j )y j +
∑

j∈J

ζ 1
i j + �iη

1
i ≤ ln(1 − α); ∀i ∈ I (28b)

∑

k∈K
ln(q̄ik)zk +

∑

k∈K
ζ 2
ik + �iη

2
i ≤ ln(1 − α); ∀i ∈ I (28c)

β
[∑

j∈J

ln( p̄i j )yi j +
∑

j∈J

ζ 1
i j + �iη

1
i ]

]
+ (28d)

γ
[ ∑

k∈K
ln(q̄ik)zk +

∑

k∈K
ζ 2
ik + �iη

2
i

]
≤ ln

[
1 − α

1 − δ

β
η

γ

i

]
; ∀i ∈ I (28e)

ζ 1
i j + η1i ≥ ln( p̄i j + p̂i j ) − ln( p̂i j )y j ; ∀i ∈ I , j ∈ J (28f)

ζ 2
ik + η2i ≥ ln(q̄ik + q̂ik) − ln(q̂ik)zk; ∀i ∈ I , k ∈ K (28g)

ζ 1
i j ≥ 0; ∀i ∈ I , j ∈ J (28h)

ζ 2
ik ≥ 0; ∀i ∈ I , k ∈ K (28i)

η1i ≥ 0; ∀i ∈ I (28j)

η2i ≥ 0; ∀i ∈ I (28k)

y j ∈ {0, 1}; ∀ j ∈ J (28l)

zk ∈ {0, 1}; ∀k ∈ K . (28m)

Computational experiments and analysis are conducted by implementing problems in
MATLABR2016a, and a CPLEX solver is used to solve the problems. Computational results
demonstrate that the compact mixed-integer linear programming model can efficiently solve
the uncertain SCP when each item requires coverage from two types of facilities.
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5 Conclusion and possible future research avenues

5.1 Summary of the survey

Theworld and its needs change constantly and dramatically; thus, uncertainty appears almost
everywhere. This situation is also true in the mathematical sciences. Here, we focused on the
uncertain counterparts of a pedagogically and practically significant problem known as the
SCP. The SCP has been extensively studied since 1970. Early studiesmainly aimed to develop
efficient methods for solving the deterministic SCP. However, since 2020, researchers have
shifted their focus towards addressing the inherent uncertainty associated with the SCP by
developing newmethodologies. Due to the considerable development of generalized covering
models, Schilling (1993) provided a classification of two types of these models as mentioned
in the introduction. In our study, we specifically targeted the uncertain variant of the SCP
defined in the model (1a–1c). This variant involves the requirement of covering all items of
the SCP using at least one set while simultaneously minimizing the value of the objective
function.

We identified 16 models, with chance-constraint concepts being the most commonly used
in them along with probabilistic and robust optimization techniques. The uncertain input
parameters ai j , bi , c j for i ∈ I , j ∈ J have been studied in these models. Among these
uncertainties, the ability to include a particular item ei in one specific set S j is most frequently
discussed. In this review, we described the complete mathematical models, including all vari-
ables and model parameters, and we highlighted the application if the model was developed
explicitly focusing on a particular practical problem.

Further, we outlined the solution technique utilized to solve each model. Since the SCP
is an NP-hard optimization problem, the optimal global solution employing the Branch-and-
Bound or Branch-and-Cut algorithm will work only for small-scale test problems. Some
studies grouped test problems as small, medium, or large based on the number of items and
the number of sets utilized to construct the test problem since there is no generally accepted
measurement for grouping test problems. The models become more complicated with the
integration of the uncertain concept. Thus, heuristic and approximation algorithms were
developed to efficiently solve the uncertain models computationally. Most of the application
models presented in this study explored issues related to applications for emergency services.
However, we also found several models focusing on reserve design and logistic system
design, among others.We also included tables summarizing our findings. Specifically, Table 1
displays the solution technique utilized by each model, while Table 2 displays the number of
studies conducted during each decade between 1970 and 2020.

Progress has been made, and the SCP with uncertain problem parameters has been well-
explored over the past five decades in decision science. Still, this study discovered some
crucial future research questions and further computationally efficient theoretical develop-
ments to the SCP with uncertain problem parameters when we make decisions on complex
and competitive real-world issues.

5.2 Future research directions

This section presents promising and specific future research directions focusing on three
research avenues: (1) improved robust optimization methods when an estimated interval
containing the nominal cost value of each set is known, but the nominal value is unknown;
(2) theoretical investigations when a random integer vector replaces the demand values of
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each covering constraint; (3) innovative designs when multiple objectives appear in the SCP
model with uncertain parameters.

1. Although the primary goal of the SCP is to identify a least-cost collection of sets to cover
all items, the nominal cost values of sets are unknown even though an estimated interval
containing the nominal cost value for the set is known.We found only one study conducted
by Pereira and Averbakh (2013), which utilized Robust Optimization (RO) techniques to
address this issue. Their proposed solution approach generates an exponential number
of constraints, and three solution techniques are developed using Benders decomposition
and the Branch-Cut approaches. RO became widely used during the last decade; thus, we
believe there is potential for new research focusing on RO and straightforward general-
ized covering models. For example, recently, (Coco et al., 2022) use model (19a–19d) to
study the solutions of the min-max regret weighted SCP (min–max regret WSCP) and
the min–max regret maximum benefit SCP (min–max regret MSCP). The determinis-
tic model MSCP has additional conditions compared to the classical SCP, specifically∑

j∈M w j x j ≤ T where M is set of columns, w j is the weight of the columns j and T is
the maximum capacity. To improve computing capabilities, research on how to solve large
problems in a reasonable amount of time using this robust SCP formulation is beneficial.
Several solution methods based on RO have been developed for similar types of NP-hard
optimization problems such as the knapsack problem and the traveling salesman problem.

2. This survey found studies focused on the uncertainty of demand values bi in four areas:
(1) cover each item at least once with a reliability level; (2) find the minimum num-
ber of demand points to achieve a predefined reliability coverage level; (3) replace the
demand values of each covering constraint with a binary random vector; and (4) cover
each item with two types of facilities. In addition to these investigations, several real-
world applications of the SCP—including vehicle routing, crew scheduling, and logical
analysis of data (Marsten & Shepardson, 1981; ReVelle & Hogan, 1989; Marchiori &
Steenbeek, 2000b; Daskin & Stern, 1981; McDonnell et al., 2002; Weerasena et al.,
2014; Kohl & Karisch, 2004; Hammer & Bonates, 2006; Bettinelli et al., 2014; Mar-
chiori & Steenbeek, 2000; Saxena & Arora, 1981; Bandara et al., 2012)—require more
than one set to cover each item (multiple covers), meaning a random integer vector
replaces the demand values of each covering constraint in the model. These problems
are formulated as SCPs with generalized coverage constraints. Studies on the general-
ized SCP with multiple objective functions have been proposed by Weerasena (2020)
and Weerasena et al. (2022). The feasible set for this generalized case can be written as
the set

{
x ∈ {0, 1}n : ∑

j∈J ai j x j ≥ bi for i ∈ I ,where bi is a random integer
}
. With

this extension, a straightforward uncertain feasible region can be represented by the set{
x ∈ {0, 1}n : P

(∑
j∈J ai j x j ≥ bi

) ≥ αi for i ∈ I ,where bi is a random integer
}

where αi is the minimum reliability level of item ei and P is a probability function. Even
though the binary vector is transferred to an integer vector, solving the newmodel is more
challenging due to multiple covers. Thus, an important direction for future research is to
investigate modeling approaches to solve the SCP when a random integer vector replaces
the demand values of each covering constraint in the model.

3. This survey discovered decision-making in SCPs with uncertain counterparts only with
single objective optimization models. Some application areas of SCPs include loca-
tion/allocation science (emergency medical vehicle allocations, facility locations) and
conservation biology (designing reserve systems for managing wildlife habitats and pop-
ulations). Naturally, such applications require decision-making with conflicting objective
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functions (centering different service areas or species) that need optimization with an
uncertain counterpart.When solvingmodels involvingmultiple conflicting objective func-
tions, the optimization stage provides a set of all Pareto points (or efficient points). The
typical decision-making process for particular application problems is subjective and
primarily driven by the expert opinion of the specific application area. Cases like this
would benefit significantly from a mathematically driven approach for multi-objective
optimization with uncertain counterparts. The uncertain features and multiple objective
functions are more challenging to address; therefore, it requires innovative optimization
methods to solve large-scale SCPmodels.While the classical SCPwith multiple objective
functions has received attention since 2000, (Jaszkiewicz, 2003; Prins et al., 2006; Flo-
rios & Mavrotas, 2014; Weerasena et al., 2017; Weerasena & Wiecek, 2019; Weerasena,
2020; Weerasena et al., 2022), thus far research is limited on finding Pareto solutions for
the uncertain SCP with multiple objective functions. Therefore, another important future
research direction is to investigate solution approaches to SCP consisting of multiple
conflicting objective functions and uncertain counterparts.

5.3 Concluding remarks

The SCP is important in the combinatorial optimization literature due to its diverse applica-
bility to real-world issues focusing on location, science, and other related areas. This study
reviewed the uncertain variants of the SCPs with applications. Progress has been made over
the past five decades in decision science, focusing on the uncertain SCP. Still, this study
discovered several crucial future research questions to investigate with the decision-making
process of the set covering models under uncertainty. We discussed three promising future
research directions to support decisions on complex and competitive real-world issues based
on current accomplishments.

Funding This work was supported by the National Science Foundation under Grant #2137622.

Declarations

Conflict of interest None.

References

Ahmed, S., & Papageorgiou, D. J. (2013). Probabilistic set covering with correlations. Operations Research,
61(2), 438–452.

Aly, A.A.,&White, J. A. (1978). Probabilistic formulation of the emergency service location problem. Journal
of the Operational Research Society, 29(12), 1167–1179.

Bandara, D., Mayorga, M., & McLay, M. (2012). Optimal dispatching strategies for emergency vehicles to
increase patient survivability. International Journal of Operational Research, 15(2), 195–214.

Bélanger, V., Ruiz, A., & Soriano, P. (2019). Recent optimization models and trends in location, relocation,
and dispatching of emergency medical vehicles. European Journal of Operational Research, 272(1),
1–23.

Benveniste, R. (1982). A note on the set covering problem. Journal of Operational Research Society, 33,
261–265.
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