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Abstract
We propose a multi-period mean-risk portfolio model based as a risk measure on the inter-
val conditional value at risk (ICVaR). The ICVaR was introduced in Liu et al. (Ann Op
Res 307:329–361, 2021) in a strict relationship with second-order stochastic dominance and
adopted as risk measure in the formulation of a static portfolio optimization problem: in this
article we reconsider its key properties and specify a multistage portfolio model based on the
trade-off between expected wealth and terminal ICVaR. The definition of this risk measure
depends on a reference point, that by discriminating between contiguous stochastic domi-
nance orders motivated in Liu et al. (2021) the introduction of interval stochastic dominance
(ISD) of the first and second-order specifically in a financial context. We develop from there
in this article and present a set of results that help characterizing rigorously the relationship
between the solution of the multistage stochastic programming portfolio problem and the
underlying ISD principles. An extended set of computational results is presented to validate
in- and out-of-sample a set of mathematical results and the modeling framework over the
2021–2022 period.

Keywords Multistage stochastic programming · Stochastic dominance · Interval
conditional value-at-risk · Multi-period mean-risk model

Introduction

Interval-based stochastic dominance (ISD) was proposed by Liu et al. (2021) as a viable
approach to extend canonical integer-order stochastic dominance (SD) principles to a theo-
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retically continuous dominance ordering. In that article we establish over a restricted support,
an equivalence relationship between second-order stochastic dominance (SSD) and a tail risk
measure denominated interval-based conditional value at risk (ICVaR), including the con-
ditional value at risk (CVaR) studied by Rockafellar and Uryasev (2002) as a sub-case. This
article builds upon that early contribution to propose a multistage mean-risk portfolio model
based on the ICVaR as a risk measure and whose properties are analysed in strict relation-
ship with the underlying stochastic dominance and more general ISD conditions. To this
purpose, several methodological steps are required leading to a set of contributions which
are anticipated next, before framing accurately this article in the state-of-the-art:

– We extend the analysis on the relationship between the ICVaR risk measure and ISD
principles, to be understood as a generalization of classical integer-SD partial orders,
from a one-period to a multi-period framework.

– Through the ICVaR, due to its dependence on a reference point β, as further explained
in Sect. 1, we formulate a class of dynamic mean-risk portfolio optimization problems
that generalize classical mean-CVaR formulations.

– Based on a canonical multistage scenario-based formulation we show under which con-
ditions the proposed mean-ICVaR problem solution is sufficient to enforce ISD over
several stages.

– Genuine multistage SD formulations are well known to be computationally very expen-
sive and hardly solvable due to the curse of dimensionality.We show that themean-ICVaR
model helps overcoming that computational constraint.

The key motivation of this article is thus to propose a multi-period mean-risk portfolio
optimization model which generalizes the classical mean-CVaR model while considering
its stochastic dominance implications. From a financial perspective at the grounds of the
problem formulation is the concept of relative, rather than absolute, portfolio optimization in
which, given an exogenous benchmark, a portfolio manager seeks a strategy outperforming
that benchmark. The adoption of stochastic dominance principles in this context is surely
not new. The interplay between mean-risk portfolio models and stochastic dominance princi-
ples was first investigated by Ogryczak and Ruszczynski (1999) with a focus on the class of
semideviation risk measures and in Ogryczak and Ruszczyński (2002) with a dual character-
ization of stochastic dominance conditions. Levy (2006) in his volume on SD and investment
decision making provides solid foundations for the adoption of SD as a decision paradigm
in portfolio theory. Dentcheva and Ruszczyński (2010) introduce the concept of robust SD
in relationship with risk-averse optimization, that finds a natural application in a financial
context. Along this stream of research: Longarela (2016) proposes a characterization of port-
folio efficiency based on SSD in a one period model Kallio and Hardoroudi (2018) develop
a detailed computational analysis of SSD-constrained portfolio optimization models and
Post and Kopa (2017) analyse a portfolio selection problem employing third-oder stochastic
dominance (TSD) criteria. More recently still in a one period framework Malavasi et al.
(2021) compare optimal mean-variance portfolio efficiency results to SSD-efficiency. Pre-
sented computational results along this stream of applied research are primarily based on one
period, static portfolio models. A specific class of mean-risk models is based on the popular
Conditional Value-at-Risk (Rockafellar & Uryasev, 2002).

The above class of mean-risk models, whose extension to a multistage model was studied
by Pflug and Ruszczynski (2005) and Pflug and Pichler (2014), includes the one presented
here next. SD criteria have been generally adopted tomodel the risk preferences of a decision-
maker in multistage models focusing on a variety of application domains (Dentcheva and
Ruszczyński 2008; Kopa et al. 2018; Escudero et al. 2018).
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An SSD-constrained dynamic optimization problem was proposed by Dentcheva and
Ruszczyński (2008), where however the problem formulation relied on a univariate SD order
and the value function optimization was based on a recursive discounting process. A similar
approach was more recently applied to a financial context by Mei et al. (2022). An early
application of SSD criteria in a multistage asset and liability management (ALM) problem
is due to Yang et al. (2010) with a focus on risk control at specific stages. More recently, yet
enforcing SSD constraints at individual stages, under an independence assumption, Consigli
et al. (2020) solve an individual ALM problem over a long term horizon. A similar approach
was previously adopted by Kopa et al. (2018) to solve an optimal pension allocation problem
based on a multi-criteria optimization problem formulation with SSD constraints at an inter-
mediate and at the final stage. In general, outside canonical Markovian assumptions adopted
in stochastic dynamic programming, the formulation of multistage stochastic problems may
rely, as done in this work, rather than on discounting future payoffs, on the definition of an
objective function based on the terminal wealth (Moriggia et al., 2019) or a final cost function
(Singh & Dharmaraja, 2020), or an expected shortfall (Haskell & Jain, 2013). The extension
of stochastic dominance principles to a multi-period dynamic framework, requires the def-
inition of dynamic risk preferences, typically through utility functions. A recent review on
dynamic risk measures in financial optimization can be found in Chen et al. (2017), clarify-
ing the distinction between terminal, additive and recursive risk measures, consistent with
respectively terminal or stage-dependent or time-consistent nested (Dentcheva et al., 2022)
SD-constrained formulations. For example, the dynamicCVaR is consistent with the dynamic
SSD criterion (Pflug & Ruszczynski, 2005; Pflug & Pichler, 2014; Chen et al., 2017), and
the dynamic SD risk-averse measure is defined by taking benefit from the so-called expected
conditional stochastic dominance (Escudero et al., 2018). This paper falls in this rather rich
research line with a contribution specifically associated with the introduction of a dynamic
ICVaR measure, whose definition is based on the dynamic ISD criterion.

The extension of SD principles to ISD, from a financial perspective, wasmotivated already
in Liu et al. (2021), still in a one period setting, by the evidence of hardly feasible first-order
stochastic dominance (FSD) portfolio problems and the possibility, through a partition of the
portfolio returns domain, to significantly improve otherwise (SSD)-efficient portfolios. The
introduction of partial orders other than (FSD), (SSD) and (TSD) has also it’s own rational
in decision theory following the early works of Fishburn (1980) on continua of stochastic
dominance ordering, then more recently Baucells and Heukamp (2006) propose the concept
of prospect stochastic dominance, consistently with prospect theory (Kahneman & Riepe,
1998). More relevant in our context are the works by Müller et al. (2017) on first to second-
order SD and by Tsetlin et al. (2015) on generalized almost stochastic dominance (GASD)
as possible extension of integer SD criteria. ISD principles have been established in our
early work in relationship with those contributions, but motivated primarily in a financial
context. In this article we will mainly focus on the ISD implications of the proposed mean-
risk portfolio model, without introducing explicitly any SD constraints in the formulation of
the optimization problem and within a multi-period, rather than a static decision problem.
We do that by introducing a set of lower bounds that help characterizing the dependence over
time of the ICVaR measure on first or second-order portfolio and benchmark distributions.
We provide a comprehensive set of computational results to support and validate the above
claims.

The article will evolve from Sect. 1, where the mathematical and probabilistic properties
of the ICVaR are established on their own and in relationship with ISD principles. In Sect. 2
we focus on such relationship, which is extended through a set of lower bounds, to span
both first and second-order stochastic dominance-based problems. In Sect. 3 we formulate
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a multistage asset allocation problem based on a mean-ICVaR trade-off whose solution
is expected to enforce SD conditions without introducing explicitly multistage stochastic
dominance constraints. In the final Sect. 4 we analyze an extended set of results from the US
market to validate in-sample the proposed model and analyse its effectiveness both in terms
of stochastic dominance results relative to a benchmark and out-of-sample performance.

1 Interval-based conditional valute-at-risk

We summarize few results from Liu et al. (2021) that help characterizing the risk measure.
Consider two random variables, say W and Y : then W interval stochastically dominates

(ISD) Y to the kth-order if, for a given β ∈ R the following inequalities hold:

Fk(W , η) ≤ Fk(Y , η), ∀η ≤ β, (1)

Fk+1(W , η) ≤ Fk+1(Y , η), ∀β ≤ η, (2)

where Fk(W , η) = E[(η−W )k−1+ ]
(k−1)! if k > 1 and F1(W , η) = P[W ≤ η]. Based on the reference

point β, we denote this stochastic dominance order byW �(k,β) Y . Following (1), (2), below
the β quantile, we adopt the stronger kth-order SD to describe the dominance relation; above
β, the weaker (k + 1)th-order SD. For notation simplicity, we denote the ISD dominance
relationship of order k with the benchmark β as ISD-k.qβ , where qβ is the survival value of
β with respect to the benchmark variable Y , i.e., qβ = PY (y ≥ β), where y is a realization
of Y . Relying on this notation, we see that we are approximating a continuous ordering
scheme between traditional integer-order SD: FSD will correspond to ISD-1.0, SSD to ISD-
2.0, TSD to ISD-3.0, and ISD-k.qβ for different qβ values will span the interval between the
integer orders. The ISD generalization of canonical SD theory is well established across a
range of optimal decision problems (Dentcheva & Ruszczynski, 2003; Müller et al., 2017;
Tsetlin et al., 2015; Levy, 2006) and it was shown in Liu et al. (2021) to be particularly
meaningful when tackling an optimal portfolio selection problem in which a benchmark
investment policy was considered. The ability to discriminate between say first and second-
order stochastic dominance over a partition of the portfolio return distribution allows a great
deal of flexibility in terms of risk control and performance enhancement.

We define the ICVaR and then recall in Proposition 1, the key result linking this risk
measure to second-order stochastic dominance. Over one period, the ICVaR of a random
variable W with tolerance α and reference point β, is defined as:

ρα,β(W ) = sup
η≤β

{η − 1

1 − α
E[η − W ]+}, α ∈ [0, 1). (3)

We see from Eq. (3) that the ICVaR can be understood as a generalization of Conditional
Value-at-Risk (CVaR). The main difference between the two is that the supreme of ICVaR is
taken over (−∞, β] rather than over R. When considering k = 2 in Eq. (1), on the left-hand
side of the reference point, the following result links the ICVaR concept to second-order
interval stochastic dominance in the domain η ≤ β, as proven in that early article.

Proposition 1 [Liu et al. (2021)] The constraint

F2(W , η) ≤ F2(Y , η), ∀ η ≤ β,

is equivalent to

ρα,β(W ) ≥ ρα,β(Y ), ∀ α ∈ [0, 1).
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Fig. 1 ICVaR and CVaR

The ICVaR measure is thus in strict relationship with the concept of interval stochastic
dominance and indeed the very denomination of this risk measure intends to emphasize that
connection: an evidence inspiring this contribution. The ICVaR preserves the risk aversion
induced by second-order ISD on the left tail (−∞, β].
Proposition 2 (Liu et al. (2021)) For β ≥ VaRα(W ),

ρα,β(W ) = CVaRα(W );
while for β ≤ VaRα(W ),

ρα,β(W ) = β − 1

1 − α
E[β − W ]+.

It is worth noting that the CVaR can be defined on the loss or the return functions. Here,
we use the definition from Dentcheva and Ruszczyński (2006), CVaRα(W ) = supη∈R{η −
1
α
E[η − W ]+}, to remain consistent with the introduced notation.
Proposition 2 implies that ρα,β(W ) is always smaller than or equal to CVaRα(W ) and

the ICVaR includes the CVaR as a special case. When VaRα(W ) is smaller than or equal
to the preset benchmark β, the investor would just use CVaR to measure the risk. When
VaRα(W ) is greater than β, the investor would just focus on the loss beyond the benchmark.
Essentially, through β we may specify different shortfall distributions and the ICVaR applies
to those losses larger than both the benchmark β and the quantile estimation VaRα(W ). In
this article, slightly abusing notation, all tail risk concepts will actually refer to returns- rather
than values-at-risk. Figure1 shows two cases: ρα,β1(W ) = β − 1

1−α
E[β1 − W ]+, where β1

is smaller than VaRα(W ); and ρα,β2(W ) = CVaRα(W ) where β2 is larger than VaRα(W ).
The following proposition establishes several axiomatic properties of the risk measure.

Proposition 3 For any α ∈ [0, 1] and β ∈ R, ρα,β(W ) is

– monotone increasing: ρα,β(W ) ≤ ρα,β(Y ) for any two random variables W ≤ Y a.s.;
– concave: ρα,β(λW + (1−λ)Y ) ≥ λρα,β(W )+ (1−λ)ρα,β(Y ) for any random variables

W , Y and constant λ ∈ [0, 1];
– positive homogeneous: ρα,β(kW ) = kρα,β/k(W ) for any k ∈ R++;
– cash additive: ρα,β(W + c) = ρα,β−c(W ) + c for any c ∈ R.
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The proof of these properties can be found in Appendix A.
Compared with the classical CVaRmeasure, ICVaRmaintains the same monotonicity and

concavity properties, thus ensuring that the risk measure orders portfolios consistently, based
on their risk-aversion attitude. We also observe that when β = −∞, ρα,β(W ) is a coherent
risk measure and degenerates to CVaRα(W).

The positive homogeneity and cash additivity of the ICVaR, are associated with fluctua-
tions of the value of the benchmark. The ICVaR is proportional to the scale of the investment
when the benchmark is reduced by the same proportion. Furthermore, if a constant amount
is added to the portfolio value, the risk measure remains unchanged when the benchmark is
correspondingly reduced by the same amount.

Notice that the ICVaR cash-additivity rules out translation invariance, which is an
important property of variance as a risk measure and relevant in mean-variance portfolio
optimization. Indeed cash-additivity implies that ICVaR-based risk assessment depends lin-
early on variations of wealth. The translation invariance of the variance ensures a stable
and absolute measure of risk, which is fully consistent as decision paradigm with a portfolio
problem in which an investor intends to control the risk for given expected return. Here, how-
ever, we are considering an investor primarily concerned with outperforming a benchmark
strategy, from which the introduction of the ICVaR as reference risk measure. Furthermore,
as the CVaR, and indeed as proposed in Liu et al. (2021) for the one period problem, this risk
measure may very well be adopted in data-driven, non parametric problems. We elaborate
further on this point in Sect. 3.3.

In the context of relative portfolio optimization, based on a benchmark portfolio such
as a market index Y , we capture the risk of portfolio W with respect to Y with the ICVaR
ρα,β(WY ), where WY :=W − Y . The risk measure will then focus on the excess tail risk,
where the tail depends on a previously specified β. We further elaborate on this concepts in
Sect. 2.2.

In this article we extend the risk measure to a multi-period setting. When considering a
random wealth process W1,T :={Wt }Tt=1 over T periods, we focus on the tail risk exceeding
both the quantile and a pre-specified process {βt }Tt=1, that may be assumed to reflect the
investor’ risk preference: inwhat followswewill consider a constantβ over a short investment
horizon and focus on the tail risk exposure at the end of the investment period, with the
ICVaR measure ρα,βT (W1,T ):=ρα,β(WT ). The terminal ICVaR is monotone increasing and
concave, moreover, it is translation-invariant and positive homogeneous when the benchmark
is simultaneously adjusted (Liu et al., 2021; Chen et al., 2017).

By defining the ICVaR with respect to the returns’ distribution at the end of the planning
horizon, given normalized unit portfolio values for say W0 and Y0, we just require returns to
be compounded over the problem stages. Then WT − YT will lead to ρα,β(WT − YT ).

2 ICVaR and stochastic dominance

We generalize to generic ISD principles the relationship between the ICVaR measure and
ISD-2 established in Proposition 2, first in a one period and then in a multi-period setting.
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Fig. 2 Gap function of order 1 over different domains

2.1 Gap function of order k

Following from above, for k = 1, 2, the ISD condition in Eq. (1) is equivalent to having

inf
η≤β

[Fk(Y , η) − Fk(W , η)] ≥ 0.

On these grounds, primarily for the cases k = 1, 2, we introduce the function:

Hk(Y ,W , β):= inf
η≤β

[Fk(Y , η) − Fk(W , η)] . (4)

We refer toHk(Y ,W , β) as the gap function of order k in the domain η ≤ β. Thus, given β,
the ISD constraint in Eq. (1) is equivalent to having Hk(Y ,W , β) ≥ 0, k = 1, 2.

To capture the implications of the gap function of order k = 1, 2, as the reference point β
varies, consider the following example.

Example 1 In a security market, there exists a market index Y and a portfolio W with the
following return distributions:

– Y follows a uniform distribution on [−1, 1];
– W follows a piecewise uniform distribution on [−1, 1] with density

p(x) =
⎧
⎨

⎩

1/8, x ∈ [−1,−0.2],
2, x ∈ (−0.2, 0.1],
1/3, x ∈ (0.1, 1].

Figure2 displays the distribution functions ofW and Y and for two sub-caseswith β = 0.6
or 0, how to compute the gap function of order 1. The thin dotted blue lines between the two
distribution functions (from the dashed line to the solid line) show F1(Y , η) − F1(W , η) for
different values of η in the domain η ≤ β. The gap function from Y toW of order 1 computes
the minimal value of F1(Y , η) − F1(W , η) in the domain η ≤ β. For the case β = 0.6 on
the left: H1(Y ,W , β) = −0.15; while for the case β = 0 on the right: H1(Y ,W , β) = 0.

Figure3 shows the F2 functions of W and Y . For any β ≥ 0, we have H1(Y ,W , β) =
−0.15 and W dominates Y in the ISD-2 sense. We can see that when β = 0.6, we don’t
have ISD-1 because of a negative H1(Y ,W , η) for 0 < η ≤ 0.6. When β = 0, however
the H1(Y ,W , η) ≥ 0 for any η ≤ 0 and we have FSD over (−∞, β). A nonnegative gap
function is a sufficient and necessary condition for ISD-1 dominance over the benchmark.
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Fig. 3 Gap function of order 2

Table 1 Implication of the nonnegativity of the gap function

Condition Implication Comment

H2(Y ,W , ∞) ≥ 0 W �2 Y ISD − 2.0 (SSD)

H1(Y ,W , β) ≥ 0 ∩ H2(Y ,W , ∞) ≥ 0 W �1.β Y ISD − 1.qβ

The function, furthermore, preserves the ISD order, in the sense of the following propo-
sition.

Proposition 4 If two random variables W1 and W2 satisfy W1 �(k,β) W2, then, for k = 1, 2,
Hk(Y ,W1, β) ≥ Hk(Y ,W2, β).

Proof Since W1 �(k,β) W2. Then ∀η ≤ β, we have Fk(W1, η) ≤ Fk(W2, η) and thus
Fk(Y , η)− Fk(W1, η) ≥ Fk(Y , η)− Fk(W2, η). Taking the infimum on both sides, we have

Hk(Y ,W1, β) ≥ Hk(Y ,W2, β),

for k = 1, 2. 	

As a result of Eq. (4) and the example, we can thus establish an equivalence between the

ISD definition in Eqs. (1) and (2) and the gap function for k = 1, 2 as specified in Table 1.
The term ∞ inH2(Y ,W , .) means that the infimum in the definition of the gap function (4)
is taken for η ∈ R.

A nonnegative second-order gap function between W and Y guarantees second-order
stochastic dominance (ISD-2.0) of W with respect to Y . Together with a nonnegative first-
order gap function it implies a first-order ISD with benchmark β.

2.2 Bounds on the ICVaR function

Let now WY = W − Y be the random variable associated with the difference between the
portfolio returnW and a benchmark returnY . In Sect. 3we propose a risk-rewardmodel based
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on ICVaR, that depending on the adopted trade-off between risk and reward, as explained
later, may as a by-product enforce the stochastic dominance relationship on the tail (−∞, β):
this evidence is consistent with Propositions 5 and 6, where we show that the ICVaR of the
difference between two random variables defines indeed a lower bound on the gap function
Hk in Eq. (4), for k = 1, 2. The results are established in Propositions 5 and 6. The proofs
and technical details are in Appendix A.

Proposition 5 For 0 ≤ α < 1 and β ≤ VaRα(WY ), we have:

ρα,β(WY ) ≤ β + 1

(1 − α)
H2(Y + β,W ,∞). (5)

The condition β ≤ VaRα(WY ) in the proposition implies ρα,β(WY ) = β − 1
1−α

E[β − (Y −
W )]+, by Proposition 2. Then the property of the expected positive part function implies the
conclusion. We remark that the infinity term ∞ means that the infimum of the gap function
(4) is taken for all η ∈ R.

Remark :The inequality (5) involves three terms: the ICVaR function, the parameter β and
the second-order gap functionH2. It’s solution defines a lower bound forH2(Y +β,W ,∞)

based on the ICVaR and the β. This lower bound is given by

(1 − α)(ρα,β(WY ) − β). (6)

Thus a nonnegative lower bound implies and it is implied by an ISD-2.0 dominance of W
over the translated benchmark Y+β.

Proposition 5 establishes a relationship between the ICVaR and SSD. A connection with
first-order ISD can also be established through H1(.,W , β).

Proposition 6 For 0 ≤ α < 1 and β nonpositive satisfying β ≤ VaRα(WY ), we have a lower
bound for the first-order gap function

ρα,β(WY ) ≤ e(Y , β) + β + |β|
1 − α

H1(Y + 2β,W , β). (7)

Here, the error function e(Y , β) depends only on the benchmark Y and the parameter β, and
it is defined as

e(Y , β) = 1

1 − α
sup
η≤0

[F2(Y + β, η) − |β|F1(Y + β, η)] .

We detail the proof in Appendix A. The proof of this result relies on Chebyshev’s inequal-
ity, fromwhich we have that F2(W , η) ≥ |β|F1(W , η+β) for any η ∈ R. Since Chebyshev’s
inequality considers non-negative numbers, this explains why we include the absolute value
of β in the inequality.

Remarks (i) A nonnegative lower bound will guarantee that the constraint in Eq. (1) holds
on (−∞, β) for the translated benchmark Y + 2β. In particular, if the distribution W
stochastically dominates Y + 2β to the second-order and if the first-order lower bound
with respect to β is nonnegative, then this is sufficient to have W �1.β (Y + 2β).
However if only the second-order lower bound is nonnegative, we cannot guarantee an
ISD-1 dominance.
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Fig. 4 The error term e(Y , β) for β ∈ [−0.1, 0]

(ii) For given α, consider a β approaching 0 from the left, then the term |β|H1(Y +2β,W , β)

in Eq. (7) will tend to 0 and at the same time the error function e(Y , 0) will diverge and
depend only on F2(Y , η). In this case the lower bound on H1(Y + 2β,W , β) will also
diverge and hardly provide any information on first-order stochastic dominance.

The inequality (7) involves four terms: the ICVaR, the parameter β, the error function e(Y , β)

and the first-order gap function H1. By solving the inequality, we obtain a lower bound for
H1 that depends on the ICVaR function, on β, and on the error e(Y , β):

(1 − α)

|β| (ρα,β(WY ) − e(Y , β) − β). (8)

Equations (7) and (8) include the error term e(Y , β). By definition F1(Y ) is just the cdf of
the benchmark return distribution and the primitive of F2(Y ). For given β, an error close to
0 will then specify the support in which the two distributions agree. Then the error function
will increase. A tight bound on the first-order gap function requires a small error function.
By recursively increasing β we can thus infer, as further explained in Sect. 2.3, the prevailing
ISD order.

2.3 Error function: from one tomulti-period

We consider here next a numerical example to clarify the behaviour of the error function and
its’ implications on second and first-order stochastic dominance. Let, in particular, the error
function e(Y , β) be estimated on weekly returns of the S&P500 index from Jan 3, 2019 to
December 25, 2022 for different βs and assuming α = 0.95. In Fig. 4, we estimate the error
e(Y , β) for β ∈ [−0.1, 0].

We see, in this case, that the error e(Y , β) increases rapidly as β approaches 0 from the
left. A tolerable error, less than 1% thus an effective lower bound requires β ≤ −0.03. In
Sect. 4, we will provide evidence on the ICVaR maximization problem as β varies between
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−0.03 and 0 and show that indeed within this range the problem solution leads consistently
to ISD-1 conditions under several problems’ specification.

When β = VaRα(WY ) the ICVaR will coincide with the CVaR. Thus a β = VaRα(WY )

close to zero would imply a weak lower bound onH1. In this case a strong and tight bound on
H1(Y +2β,W , β) will depend crucially on the selection of β: we examine this issue further
in Sect. 4, devoted to computational evidence. FromProposition 5, however we see that a tight
lower bound for SSD requires a β close to 0. The error function does indeed depend on the
distance between the benchmark second and first-order distributions. Through the ICVaR, as
β approaches 0, we are then sure to control SSD and ISD-2, while the enforcement of ISD-1
conditions is not guaranteed, as it depends on the selected β and associated error function,
for given optimal portfolio distribution.

We extend the definition of the error function in Proposition 6 to several stages and
summarize the implications of the lower bounds’ evolution on amulti-period ICVaR problem
formulation. Consider the benchmark process Yt evaluated in t = 1, 2, · · · , T , then, for each
t , we define e(Yt , β) as a straightforward generalization of e(Y , β):

e(Yt , β) = 1

1 − α
sup
η≤0

[F2(Yt + β, η) − |β|F1(Yt + β, η)] . (9)

In Eq. (9) we just specify the error, stage-wise, by taking the associated distributions F2(Yt , .)
and F1(Yt , .), which will be applied in Sect. 3.1 to construct a boundary function andmeasure
the performance of an optimal dynamic portfolio.

It is worth summarizing the set of relationships adopted in the sequel to support first or
second-order ISD by maximizing the ICVaR function as detailed in Sect. 3 here next.

– The pair of functions Hk(Y ,W , β), k = 1, 2, provides relevant information on first
(k = 1) and second (k = 2) order ISD: W �k,β Y .

– For k = 2, asβ → 0−, themaximization of ICVaRρα,β(WY )will forceH2(Y ,W , β) →
0 and thus surely enforce SSD and possibly ISD-1.β dominance conditions.

– The convergence to 0 of H1(Y ,W , β), which is necessary to establish FSD, on the
other hand, due to the behaviour of the error function, may not be attained through the
maximization of the ICVaR.

– For the ISD condition W �1.β Y to be established, however it is sufficient that both
Hk(Y ,W , β) ≥ 0 for k = 1, 2 through a careful selection of β. Notice that in the
multistage model, the Hk are defined stage-wise and do not depend on the problem
dynamics.

In what follows, we apply these results to the solution of a multistage portfolio problem, in
which β is defined as a financial return.

3 Portfolio selection with ICVaR

The solution of a static, one period, portfolio problem based on ISD principles was shown in
Liu et al. (2021) to extend earlier first (FSD) and second (SSD) order stochastic dominance
results to a richer set of risk preferences. The stated equivalence in Liu et al. (2021) between
ISD-2 and the ICVaR allows the formulation of a decision problem based on the canonical
risk-return trade-off criterion, where the risk is captured by the (ISD-2 consistent) ICVaR
measure and the reward by the expected portfolio return.
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Several risk-rewardmodels including a stochastic dominance relationship are proposed by
Ogryczak and Ruszczynski (1999, 2001, 2002). In this article we consider the mean-ICVaR
trade-off problem and extend the modeling framework to a multi-period setting.

We assume a security market consisting of m risky assets, a risk-free asset and a market
index to be taken as a benchmark. The introduction of stochastic dominance constraints in
the formulation of a portfolio selection model follows naturally in the context of relative,
as opposed to absolute, performance optimization: the investor would look for a portfolio
strategy that outperforms the market index, depending on the SD order, in so many states of
the world. The introduction of ISD criteria helps generalizing such preference order through
a reference point which spans the domain of the market index and the portfolio distribution.
Relative portfolio optimization is thus associated with the so-called passive, as opposed
to active, portfolio management principle common in the fund management industry. The
latter typically, even if not necessarily, associated with mean-variance optimization.We show
however, in Sect. 4 that the multiperiod mean-ICVaR optimal portfolios show robust out-of-
sample performance in terms of risk-adjusted returns. In order to outperform a market index
or any other benchmark strategy, portfolio managers rely on an investment universe that
would typically include a subset of the index-constituent assets plus other assets that may be
negatively correlated with the benchmark. We further discuss this point in Sect. 4.

We formulate a multistage mean-ICVaR portfolio problem with a discrete and finite plan-
ning horizon t = 1, · · · , T . The decision process is specified in terms of portfolio allocations
at time t , denoted, for i = 1, 2, ..,m risk assets, by xi,t and buying x+

i,t or selling x−
i,t deci-

sions of asset i at time t . For i = 0, x0,t represents a risk-free allocation, which, in this
context, corresponds to cash. We assume a unit initial wealth. i.e.,

∑m
i=0 xi,0 = W0 = 1.

We denote the random returns of the risky assets at time t by ri,t for i = 1, 2, ..,m in Eq.
(10f) and assume a null return on the investment in the risk-free asset. We present in Sect. 3.3
a simple scenario generation method adopted to support the dynamic problem formulation
(Dupačová et al., 2000). Consistent with canonical arbitrage-free conditions as established
by Klaassen (1998, 2002), we generate the tree process for both the assets’ returns in the
investment universe and, following the same tree structure, for the benchmark returns. The
benchmark distribution relevant for the ISD analysis is thus exogenous and enters the problem
formulation through the ICVaR measure, only.

In the dynamic formulation, as previously stated, we consider a terminal ICVaR measure:
ρα,β(WT − YT ), corresponding to the terminal portfolio value WT and the terminal value of
the market index YT .

The following motivations support the adoption of a multistage, dynamic problem formu-
lation:

– The evaluation of the extra-return generated by a multi-period relative to a one period,
myopic optimal portfolio policy. The ICVaR optimization with respect to a benchmark
allows in particular the control of excess tail risk exposure over several stages.

– By solving a multistage instance, we intend to infer, for k = 1, 2, the ISD-k partial order
induced by the solution of problem (10). The evidence is of particular relevance due to
the high computational costs of a genuine multi-period ISD-k formulation.

– Validate the multi-period ICVaR problem formulation in general as a classical mean-risk
model, and specifically against a classical multistage CVaR problem formulation, under
different risk-reward trade-offs.

We denote a multistage mean-ICVaR optimization instance by L (λ, β, T ), where β

defines the terminal ICVaR risk measure, which controls the risk on the left tail at the end of
the planning horizon.
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max
x,x+,x− (1 − λ)E[WT ] + λρα,β(WT − YT ) (10a)

s.t. Wt =
m∑

i=0

xi,t , t = 1, · · · , T , (10b)

x0,0 = x̂0 + (1 − cs)
m∑

i=1

x−
i,0 − (1 + cb)

m∑

i=1

x+
i,0, (10c)

xi,0 = x̂i,0 + x+
i,0 − x−

i,0, i = 1, · · · ,m, (10d)

x0,t = x0,t−1 + (1 − cs)
m∑

i=1

x−
i,t − (1 + cb)

m∑

i=1

x+
i,t , t = 1, · · · , T , (10e)

xi,t = xi,t−1(1 + ri,t ) + x+
i,t − x−

i,t , i = 1, · · · ,m, t = 1, · · · , T , (10f)

x+
i,T = x−

i,T = 0, i = 1, · · · ,m, (10g)

xi,t , x
+
i,t , x

−
i,t ≥ 0, i = 1, · · · ,m, t = 0, 1, · · · , T − 1. (10h)

Here {Wt }Tt=1 in (10b) is the wealth process andWT :=∑m
i=1 xi,T is the wealth at the terminal

stage T . {Yt }Tt=1 is the benchmark portfolio process if all wealth was invested in the market
index. The portfolio evolution is captured by Eqs. (10d) and (10f) for the initial portfolio
allocation and subsequent buying and selling decisions, also referred to as rebalancing deci-
sions. No rebalancing is allowed at the end of the finite planning horizon T , as from (10g).
The variable x0,t in (10c) and (10e) specifies the cash balance at time t as a result of an
initial cash position x̂0 and subsequent buying and selling decisions, in this case accounting
for transaction costs cs and cb upon selling and buying, respectively. At t = 0 we also spec-
ify an input portfolio x̂i,0, if any. The optimal root node allocation, the only one under full
uncertainty, will be determined according to (10d).

The objective function (10a) employs the mean-risk model with a trade-off determined by
λ varying between 0 and 1.Here the reward is represented by the expected terminalwealth and
the risk measure by the ICVaR. For given α and β, parameter λ helps spanning alternative
risk-reward trade-offs in terms of convex combinations between the two measures. As β

varies, however, different shortfall distributions will be considered. Following the definition
of the risk measure, an increasing β would restrict the shortfall domain progressively. We are
particularly interested to the case λ = 1 to validate the resulting stochastic dominance orders
of W with respect to Y . Based on this formulation, after solution, we may assess, as time
evolves, the resulting performance per unit tail risk, this latter represented by the ICVaR, or
per unit volatility risk, as common in classical portfolio analysis, on the generated probability
distributions. As already motivated, the adoption of the ICVaR is related to its relationship
with SSD. We clarified in Sect. 2 and will provide supporting numerical evidence in Sect. 4
that a mean-CVaR problem formulation can be established just by equating, for given α, the
β to the VaRα(.).

Problem (10) simplifies naturally to the one period case for T = 1, by just considering
only the root node investment decision and no rebalancing then after. The one-period problem
is a static mean-ICVaR problem, denoted by L (λ, β, 1). We can define the multi-period
mean-CVaR model G (λ, T ) as the solution ofL (λ, VaRα, T ). We also denote a one-period
mean-CVaR model by G (λ, 1):=L (λ, VaRα, 1). Both the mean-CVaR model (Rockafellar
& Uryasev, 2002) and the mean-ICVaR model can be formulated as linear programming
problems when the return rate vector r and the benchmark y are discretely distributed.
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Table 2 Implication of the non-negativity of the lower bound function ζk,t (λ, β, T ) for k = 1, 2

Condition Implication Comment

ζ2,t (λ, β, T ) ≥ 0 Wt �2 (Yt + β) ISD- 2.0 (SSD)

ζ2,t (λ, β, T ) ≥ 0 ∩ ζ1,t (λ, β, T ) ≥ 0 Wt �1.β (Yt + 2β) ISD- 1.β

Following the stochastic program (10), for λ = 1, given a tolerance α, as β increases the
portfolio manager will look for the portfolio composition that maximizes the ICVaR of the
difference between the portfolio and the benchmark returns. In the computational section we
present an extended set of results for different λ and β values. The case λ = 0, as we will
see, is of limited interest resulting simply in an optimal corner solution with all the wealth
invested in the asset with highest expected return. The equivalence between the CVaRα and
the ρα,VaRα problems will be validated numerically.

3.1 Performancemeasurement based on lower boundary functions

Following the problem formulation (10), we introduce in Eqs. (11) and (12), two functions
instrumental to develop in Sect. 4 a specific solution analysis.

Let, in particular,L (λ, β, T )be an instance of themultistage problem (10)with risk-return
trade-off parameter λ, reference point β and investment horizon T . {Wt }Tt=1 is the optimal
wealth process generated by the solution of L (λ, β, T ) and {Yt }Tt=1 is the benchmark value
process. For t = 1, · · · , T , we define two boundary functions of the second and first-order
between Wt and Yt , respectively, as:

ζ2,t (λ, β, T ) := (1 − α)(ρα,β(Wt − Yt ) − β), (11)

ζ1,t (λ, β, T ) := (1 − α)

|β| (ρα,β(Wt − Yt ) − e(Yt , β) − β). (12)

The two functions are clearly inspired by the assumptions of Propositions 5 and 6, and are
characterized by: (i) the trade-off parameter λ ∈ [0, 1]; (ii) the reference point β associated
with the shortfall distribution; (iii) t ≤ T to specify the stage to which the bounds refer to,
with T end of the investment horizon; (iv) k = 1, 2 in ζk,t to denote the ISD order, and (v) the
wealthWt in stage t generated by the optimal solution ofL (λ, β, T ) and Yt the comparative
value in stage t of an investment in the market index.

Relying on the two boundary functions in Eqs. (11) and (12), we can now reconsider in
Table 2, the summary evidence on the theoretical relationships established so far.

Table 2 summarizes the following evidence:

(i) A nonnegative ζ2,t (λ, β, T ) guarantees second-order stochastic dominance (ISD-2.0)
ofWt with respect to Yt +β. In particular, by continuity, when β is small, a nonnegative
function ζ2,t (λ, β, T ) enforces the ISD-2.0 condition over the benchmark Yt .

(ii) If the ISD-2.0 condition holds and ζ1,t (λ, β, T ) ≥ 0, thenWt �1.β (Yt +2β). In the last
row of the table, the positivity of ζ2,t is used only to guarantee the ISD-2.0 condition.

(iii) It may occur that ζ1,t (λ, β, T ) is nonnegative and even if close to 0, ISD-2.0 conditions
cannot be guaranteed, in which case ISD-1 conditions cannot be guaranteed either.

From the evidence in Tables 1 and 2 focusing respectively on the gap functions and
the boundary functions, we see that in particular for k = 2, after solving the optimization
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problem (10), the non-negativity of H2(Yt ,Wt ,∞) and of ζ2,t (λ, β, T ) should guarantee
ISD-2.0 (SSD) and possibly ISD-1.qβ orders between the portfolio and the benchmark. Even
if negative, the greater the value of ζ2,t (λ, β, T ), the closer the performance of portfolio Wt

to that of benchmark Yt according to SSD order. In this respect the boundary function may
be interpreted as a performance measure of the optimal portfolio relative to the benchmark.
By just maximizing the ICVaR in (10), based on the introduced mathematical relationship,
we should then induce as a by-product at least ISD-2 and maybe ISD-1, which explains the
rationale behind the objective function in (10). In what follows, after introducing a scenario
based formulation of problem (10), we will develop the computational section relying on the
functions discussed so far.

3.2 Scenario-based formulation

To solve the optimization problem, we use the scenario tree approach. Let T still be the
investment horizon. We denote the scenario tree nodes in stage t by n ∈ Nt , t ≤ T . Every
non-root node n has a unique ancestor node n− ∈ Nt−1. For each non-leaf node n ∈ Nt ,
t ≤ T − 1, we denote the set of its children nodes by n+ ⊆ Nt+1. For each node n ∈ NT ,
a scenario is a path n, n−, n−−, · · · , n0 where n0 is the root node. The number of possible
scenarios is equal to |NT |. Every node carries a probability of occurrence given by pn ,
such that

∑
n∈N t

pn = 1 and for every non-terminal node n ∈ Nt , t ≤ T − 1 satisfies
pn = ∑

j∈n+ p j . For the node n ∈ Nt , the realization of the asset returns is denoted by

rn = (r1,n, r2,n, · · · , rm,n),

where ri,n is the return of the i-th asset in node n. In the model specification, let the input
portfolio position at the root node n0 be denoted by [x̂1,n0 , x̂2,n0 , · · · , x̂m,n0 ]. Problem (10)
can be written as the following linear programming problem.

max
x,x+,x−,η,φ

(1 − λ)
∑

n∈NT

pn Wn + λη − λ

1 − α

∑

n∈NT

pn φn (13a)

s.t. Wn =
m∑

i=0

xi,n, ∀n ∈ NT , (13b)

x0,n0 = x̂0,n0 + (1 − cs)
m∑

i=1

x−
i,n0

− (1 + cb)
m∑

i=1

x+
i,n0

, (13c)

x0,n = x0,n− + (1 − cs)
m∑

i=1

x−
i,n − (1 + cb)

m∑

i=1

x+
i,n, ∀n ∈ Nt , t = 1, · · · , T ,

(13d)

xi,n0 = x̂i,n0 + x+
i,n0

− x−
i,n0

, i = 1, · · · ,m, (13e)

xi,n = xi,n−(1 + ri,n) + x+
i,n − x−

i,n, ∀n ∈ Nt , t = 1, · · · , T , i = 1, · · · ,m,

(13f)

xi,n, x
+
i,n, x

−
i,n ≥ 0, ∀n ∈ Nt , t = 0, 1, · · · , T − 1, i = 1, · · · ,m, (13g)

βT ≥ η, (13h)

φn ≥ η − (Wn − Yn), ∀n ∈ NT , (13i)

φn ≥ 0, x+
i,n = x−

i,n = 0, ∀n ∈ NT , i = 1, · · · ,m. (13j)
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The two inequalities βT ≥ η in (13h) and φn ≥ η − (Wn − Yn) in (13i) are defined at the
end of the planning horizon and enforce the ICVaR optimization relative to the benchmark
distribution.

Consider the case λ = 1 in Eq. (13a): based on the two inequalities (13h) and (13i), the
decisionmaker will maximise in expectation the differenceWn−Yn at the end of the planning
horizon: this should be sufficient, according to Propositions 5 and 6, to enforce second or
first-order ISD, without including explicitly stochastic dominance constraints in the problem
formulation. In this setting, due to the scenario formulation of the problem, the stochastic
order between the probability distributions ofWn and Yn , would be defined for n ∈ Nt in each
stage t = 1, 2, ..., T . This approach is for this reason, referred to as stage-wise ISD ordering,
to be distinguished from the case in which the SD conditions are evaluated conditionally in
every sub-tree of the multistage problem.

Theother set of constraints from (13b) to (13g) are easily understood following the scenario
tree formulation of the corresponding constraints introduced in problem (10). The instance
L (0, β, T ) reduces to a simple expected terminal wealth maximization problem, or growth
model relevant for a risk-neutral investor. Under the given assumptions, the optimal portfolio
strategy takes the form of a tree process or optimal contingency plan, whose first stage,
root-node decision defines the implementable optimal here-and-now portfolio allocation.

We complete this section by summarizing the scenario generation algorithm adopted to
support the multistage formulation.

3.3 Scenario generation

Let ri,n be the return of the i-th asset in node n. Given an initial state ri,0, we assume a rather
simple mean-reverting auto-regressive return model (Campbell et al., 1997) to be estimated
relying on OLS:

ri,n = ri,n− + αi (r̂i − ri,n−)	tn− + σi

m∑

j=1

ci, j e j,n, (14)

where 	tn− = tn − tn−, with tn to denote the time associated with node n, and the matrix
C = {ci, j }1≤i, j≤m is theCholesky decomposition of an estimated correlationmatrix. The e j,n
are then independent samples from a standard normal distribution. Under these assumptions
we are considering a Gaussian vector return process, that may clearly be rather simplistic
in general and, as we see in Sect. 4, specifically for ETF’s, but that we assume sufficient to
establish the properties and evidence central to this study. Alternative and more advanced
market models may be employed following for instance (Campbell et al. 1997; Valle et al.
2017; Consigli et al. 2020).

The coefficients αi , r̂i and σi define the mean reversion coefficient, the return equilibrium
and the standard deviation, respectively, of each return process, to be estimated fromhistorical
data. Observe that Eq. (14) can be rewritten as

	ri,n− = αi r̂i	tn− − αi ri,n−	tn− + σi

m∑

j=1

ci, j e j,n, (15)

where 	ri,n− = ri,n − ri,n−. Thus, with ai = αi r̂i	tn−, bi = −αi	tn−, Eq. (15), for each
i , takes the form

	ri,n− = ai + biri,n− + σi

m∑

j=1

ci, j e j,n . (16)
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Equation (16) can then be estimated through linear regression model with error term
∑m

j=1 ci, j e j,n . Following Eqs. (14) and (15), due to the assumption on the residuals e j,n , we
consider a Gaussian model for the ETFs adopted in the case-study. We will see in Sect. 4.1
that the stylised evidence of the ETFs hardly carrying a Gaussian distribution is actually con-
firmed in our setting. Same for the market portfolio, actually. In Sect. 4, however, we present
evidence that despite this simple statistical assumption, the model, in practice, effectively
enforces SD conditions with respect to a market portfolio. It may also be argued that indeed,
specifically when considering a partial order between probability distributions, the Gaussian
assumption has clear limitations. Our aim, however, is very much on the comparison of an
exogenous benchmark distribution with the portfolio return distribution generated by the
solution of the optimization problem.

The asset return vector processmust satisfy so-called arbitrage-free conditions. Following
Klaassen (1997, 1998, 2002), these can be enforced along the tree in each node n by checking
recursively through the simulation process the dual variables associated with the children
nodes n+ in every sub-tree: for every t ≤ T − 1 and n ∈ Nt , we verify the existence of a
strictly positive solution vs to the system:

∑

s∈n+
vs(1 + ri,s) = 1, ∀ 1 ≤ i ≤ m.

We see that for a compatible system of equations, to validate the arbitrage free condition,
we require a set of arcs at least equal to the number of assets in the portfolio (Geyer et al.,
2010). We apply the algorithm proposed in Barro et al. (2022) to generate the scenarios
and check for the absence of arbitrage. We denote the branching structure of a symmetric
4-stage scenario tree by [S1 − S2 − S3 − S4], where St+1 defines the number of children for
each node in n ∈ Nt . We are here not going into further details and refer the reader to the
references quoted above.

In Sect. 4 we present a set of results based on a rich 4-stage scenario tree with branching
degree [40 − 8 − 6 − 6], resulting into 11520 scenarios at the end of the investment horizon.
This scenario structure represents a good compromise between:

– The computational tractability of the resulting multistage stochastic program which is
subject to the curse of dimensionality and

– the generation stage by stage of a sufficiently well defined benchmark distribution whose
ISD conditions we wish to assess.

We provide the required numerical evidence in Sect. 4.

4 Computational evidence

We present an extended set of results to analyse the main implications of adopting the pro-
posed multistage ICVaR model (13) for portfolio selection. This section includes:

4.1 The definition of the dataset adopted in the project and we anticipate the analysis devel-
oped in the following sections.

4.2 The analysis of the evidence emerging from the solution of one instance of a multistage
ICVaR problem and the associated ISD evidence.

4.3 The extension of the results to validate their consistency over 2 years, from 2021 to
2022, and thus complete the model in-sample validation.

4.4 The evidence collected over those 2 years in terms of out-of-sample results.
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4.1 Data input and experimental set-up

We present an extended set of results for a 4-stage problem with scenario branching
[40 − 8 − 6 − 6] resulting in 11520 scenarios. This specific tree structure, with a high
first stage branching degree and a rich set of scenarios, aims on one hand at deriving suffi-
ciently reliable stochastic dominance results at the end of the first stage (when comparing the
one period against the multi-period solutions) let’s refer to this as an SD requirement, and on
the other hand to preserve computational tractability and in-sample stability when solving
the multistage problems (Dempster et al., 2011), name this computational requirement. Fol-
lowing the evidence in Liu et al. (2021), we consider a minimum of 40 possible realizations
of the benchmark portfolio to be sufficient to evaluate ISD conditions. Given this, we wish
to determine the number of stages and the associated number of scenarios.

As for the computational requirement, consider in Table 3 the evidence from different
instances of the mean-ICVaR problem as the planning horizon increases T = 1, 2, 3, 4 and
5. We consider here the case L (λ, β, T ) with λ = 1 and β = 0. Every instance is solved
on a laptop with Intel i5 9400 4.1 GHz processor and 16 GB of RAM. The implementation
was done in Python version 3.8 with the Gurobi version 9.0.3 solver and the adoption of
the dual simplex algorithm.

We see that the 5-stage problem, when maintaining the same tree expansion scheme
would lead to a very large and unsolvable stochastic program. The column L2-norm refers to
the Euclidean distance between (a) the first four moments of the generated weekly returns’
distributions for every asset class plus the benchmark and (b) the same moments collected
from past data and displayed in Table 4.

The branching degree in the second to the fourth stages needs to consider the arbitrage-
free condition we discussed at the end of Sect. 3.3 resulting in a number of branches at least
equal to the number of assets Geyer et al. (2010). This is the key motivation for the relatively
small set of investment opportunities considered in this case study. The investment universe
and the number of stages may be increased by reducing the root node branching degree. This
however would worsen the approximation of the wealth and the benchmark distributions
needed at the end of the first stage to validate the ISD-based partial order. The adoption of
an importance sampling approach would be desirable in this context.

The asset universe in this application includes the following five exchange traded funds
(ETF). The first two are representative of the energy (XLE) and the technology sector (XLK)
within the S&P500. These twoETFs are based on the industry partition of SPY, adopted as the
benchmark in the optimization problem. Other three ETFs, poorly or negatively correlated
with the benchmark, are also considered to facilitate portfolio diversification: the SPDR gold
shares (GLD) which tracks the performance of gold bullion, an ETF for long-term (7 to
10 years) treasury bond investments (IEF), and finally an ETF constructed to track the US
dollar performance (USDU). Plus we have a cash account with null return. We assume no
transaction costs in this section, so all results are generated with cb = cs = 0 in the problem
specification. The benchmark is the S&P500 market index (SPY).

Table 4 provides a set of descriptive statistics of weekly returns over the 2019-2022 period
based on this legend: the columns refer to each asset here above. In the rows: Mean is for
the historical average weekly return of the asset class. Std for weekly standard deviation
of the returns, Max for the maximum weekly return over the period, Min for the minimum,
Skewness and Kurtosis are the third and fourth moments and the Sharpe ratio is the ratio
between the weekly average return and standard deviation. Same notation applies to Tables
5 and 6. The same assets’ labels are adopted in the following tables of this section.
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Table 4 Statistics of assets’ weekly return rates between 01/01/2019 and 31/12/2022

XLE XLK GLD IEF USDU SPY

Mean % 0.35 0.41 0.18 −0.03 −0.01 0.25

Std % 5.18 3.47 2.26 0.97 1.18 2.73

Max % 15.83 9.44 9.5 3.26 6.43 11.15

Min % −23.43 −13.32 −10.24 −2.84 −7.2 −13.91

Skewness −0.52 −0.54 −0.17 0.25 −0.1 −0.64

Kurtosis 6.48 4.3 5.88 4.36 14.62 7.22

Sharpe ratio % 6.7 11.67 8.03 −3.54 −0.89 9.17

KS test 0 0 0 0 1 0

Table 5 Correlation matrix of
weekly return rates between
01/01/2019 and 31/12/2022

XLE XLK GLD IEF USDU SPY

XLE 1 0.37 0.03 −0.25 −0.22 0.59

XLK 0.37 1 0.1 0.09 −0.28 0.91

GLD 0.03 0.1 1 0.34 −0.27 0.08

IEF −0.25 0.09 0.34 1 −0.22 0.01

USDU −0.22 −0.28 −0.27 −0.22 1 −0.36

SPY 0.59 0.91 0.08 0.01 −0.36 1

The rationale for including the ETFs of precious metals (GLD), medium term bonds (IEF)
and the US currency (USDU: relative to a basket of convertible currencies) comes from their
correlationwith the benchmark portfolio SPY, as shown in Table 5, resulting into anti-cyclical
and greater diversification potential of a dynamic strategy. Following the remark in Sect. 3.3,
we see in Table 4 that, consistently with canonical financial evidence, the ETF’s as well as the
benchmark’s historical data are not Gaussian, as assumed in the statistical model. We address
this issue in two ways: first by showing in Table 6 the error induced by such assumption in
the L2 norm and by relying on the Kolmogorov-Smirnov (KS) test. Second, by presenting in
the final section in- and out-of-sample evidence of the performance of optimal investment
strategies under the given statistical assumptions. A more accurate statistical calibration and
model development would likely lead to improved financial performance and amore effective
risk control. We will see, however, that even under such simplifying assumption, the core
contribution of this work will stand.

To further motivate the adopted scenario tree, as for the SD requirement, we show in
Table 6 the outcome of the scenario generation for every asset. Given the adopted Gaussian
assumptions, at least the first two moments of the historical distributions are sufficiently
well approximated by the simulated distributions. The aggregate evidence on the L2-norm
in Table 3 is now decomposed for each asset.

A null value of the KS leads to accepting the null hypothesis that the residuals come
from a standard normal distribution. We are comparing the returns’ standardised historical
distribution and the standardised simulated returns distribution.

From the evidence in Tables 4 and 6we can anticipate that the returns of the ETFsXLE and
XLK show higher standard deviation (volatility) than the S&P500, and in this restricted asset
universe may be considered risky assets. On the other hand, GLD shows similar volatility
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Table 6 Simulated weekly asset returns distributions at the last stage. Scenario tree [40 − 8 − 6 − 6]
XLE XLK GLD IEF USDU SPY

Mean % 0.115 0.414 0.208 0.148 0.114 0.279

Std % 5.076 3.07 2.212 0.734 1.038 2.484

Max % 20.597 13.261 9.541 2.921 3.674 10.237

Min % −20.42 −10.11 −9.624 −2.695 −3.694 −8.928

L2-norm 4.773 3.820 0.055 0.293 2.757 0.916

Skewness 0.002 0.075 0.001 −0.061 −0.091 0.03

Kurtosis 2.999 2.977 3.058 2.979 3.017 3.008

KS test 0 0 0 0 0 0

and Sharpe ratio, while finally the ETFs: IEF and USDU may be considered the less risky
investments, which are also the least correlated with the benchmark.

As a compromise between SD and computational requirements, wewill thus focus on a set
of 4-stage mean-ICVaR problem instances. By varying the trade-off parameter, the β and the
planning horizon, we recall that every instance is specified as L (λ, β, 4), where the mean-
CVaR problems, for β = 0, will sometimes be denoted as G (λ, T ). Following the evidence
in Fig. 4, the parameter β, specified in terms of weekly returns, is assumed tobe greater or
equal to −0.03. The β = 0.01 was indeed in any experiment reported to be equivalent to the
classical CVaR formulation, which holds for β = 0. In all instances, we leave α = 0.95 to
define the ICVaR tolerance.

Section4.2 is structured in two parts: one discussing the financial properties and main
evidence emerging from the optimal solution of problem instances L (λ, β, T ) for different
specifications of the arguments. The second focusing mainly on the evidence linking the
solution of the ICVaR problem to the ISD conditions. These are estimated ex-post as a result
of the solution of problem (13) by estimating the k.qβ for which W �k.qβ Y .

In what follows we refer to in-sample validation as including those analyses aimed at val-
idating computationally the set of properties laid down in Sects. 2 and 2.2. In particular, with
reference to the ISD-based formulation and the classical mean-CVaR problem formulation
proposed by Rockafellar and Uryasev (2002), Consigli et al. (2016), Chen et al. (2016). We
also wish to verify the advantages, if any, of undertaking a dynamic approach.Out-of-sample
validation will instead simply refer to the results collected when replacing the random asset
returns with those actually realized in the market, so mainly to assess the effectiveness of the
optimal portfolios in terms of market performance and risk control.

4.2 In-samplemodel validation

We consider in this section only one instance of an optimal portfolio problem defined at
the beginning of January 2021 to collect qualitative information on a four stage problem
L (λ, β, 4) (T = 4 weeks). By varying λ and β, we collect a rich set of results including,
for β = 0, the mean-CVaR solutions. In Sect. 4.2.1, we examine the diversification of the
root portfolio and some key statistical evidences. In Sect. 4.2.2, we validate the established
relationship between the ICVaR measure and stochastic dominance by examining the gap
function and bound functions established in Sects. 2.2 and 3.1.
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Table 7 Optimal root node portfolio of L (λ, β, 4) for different λ and β

Model Cash XLE XLK GLD IEF USDU HHI SE

L (1, −0.03, 4) 0.09 0.07 0.73 0 0.11 0 0.56 0.46

L (1, −0.02, 4) 0.17 0.13 0.66 0 0.04 0 0.48 0.54

L (1, −0.019, 4) 0.11 0.12 0.65 0 0.11 0 0.47 0.54

L (1, −0.01, 4) 0.04 0.12 0.65 0 0.18 0 0.48 0.55

L (1, 0, 4) 0.04 0.12 0.65 0 0.18 0 0.48 0.55

G (1, 4) 0.04 0.12 0.65 0 0.18 0 0.48 0.55

L (0.75,−0.03, 4) 0 0.01 0.8 0 0.19 0 0.67 0.4

L (0.75,−0.02, 4) 0 0.09 0.7 0 0.21 0 0.54 0.53

L (0.75,−0.019, 4) 0 0.09 0.69 0 0.22 0 0.53 0.54

L (0.75,−0.01, 4) 0 0.1 0.68 0 0.22 0 0.52 0.54

L (0.75, 0, 4) 0 0.1 0.68 0 0.22 0 0.52 0.54

G (0.75, 4) 0 0.1 0.68 0 0.22 0 0.52 0.54

L (0.5,−0.03, 4) 0 0 0.87 0 0.13 0 0.77 0.28

L (0.5,−0.02, 4) 0 0.03 0.78 0 0.2 0 0.64 0.44

L (0.5,−0.019, 4) 0 0.03 0.76 0 0.2 0 0.63 0.45

L (0.5,−0.01, 4) 0 0.03 0.76 0 0.2 0 0.62 0.46

L (0.5, 0, 4) 0 0.03 0.76 0 0.2 0 0.62 0.46

G (0.5, 4) 0 0.03 0.76 0 0.2 0 0.62 0.46

L (0.25,−0.03, 4) 0 0 1 0 0 0 1 0

L (0.25,−0.02, 4) 0 0 0.99 0 0.01 0 0.98 0.02

L (0.25,−0.019, 4) 0 0 0.99 0 0.01 0 0.99 0.02

L (0.25,−0.01, 4) 0 0 0.99 0 0.01 0 0.98 0.02

L (0.25, 0, 4) 0 0 0.99 0 0.01 0 0.98 0.02

G (0.25, 4) 0 0 0.99 0 0.01 0 0.98 0.02

L (0, β, 4) 0 0 1 0 0 0 1 0

4.2.1 ICVaRmodel validation

We first analyse the evidence on the optimal root node portfolios of a 4 stage mean-ICVaR
problemL (λ, β, 4), mainly to analyse their diversification properties. As a comparison, we
also study as special case, the multistage mean-CVaR solution of G (λ, 4). We present results
for λ = {1, 0.75, 0.5, 0.25, 0} to rule the trade-off between the expected wealth and the
ICVaR measure in the objective function, and for β = {−0.03,−0.02,−0.019,−0.01, 0}
to specify the shortfall distribution in the tail. The rationale for β = −0.019 will be given
below.

Table 7 shows the optimal root-node solution ofL (λ, β, 4) and G (λ, 4) for each problem
instance. In the last two columns we display the values of the Herfindal-Hirschman index
(HHI) and the Shannon entropy (SE) associated with the optimal portfolio in node n0. For
λ = 0, as expected, the optimal portfolio is always defined by a fully concentrated corner
solution with all the wealth allocated in the asset with highest expected return XLK: this
evidence is independent of β.

We can summarize the following evidence from Table 7.

123



Annals of Operations Research

– For any λ, when β = 0 the optimal solution fully agrees with the mean-CVaR solutions
denoted by G (λ, 4). We can also notice that indeed for every λ as β → 0− from below
the portfolio composition converges to that and displays a higher diversification.

– As λ decreases to 0, as a result of a decreasing relevance of the ICVaR in the objective
function, we see a progressive reduction of the optimal portfolio diversification and an
increasing concentration in the XLK asset, which carries the highest expected return as
shown in Table 6. This is the main reason for limiting the analysis in Table 8 to the cases
with λ ≥ 0.5.

– For λ ≤ 0.5 furthermore we see that the root node solution is pretty insensitive to β, with
minimal variations of the optimal portfolio composition.

– The set of results for λ = 1 is in our context of specific interest: the focus is entirely
on the terminal ICVaR measure estimated on the portfolio return distribution and the
S&P500 distribution. We see that in this case the root node portfolio is well diversified
and relatively stable with a high weight of the S&P500 industry subsectors. We show in
Table 8 that the case λ = 1 is also the one that leads to the strongest in-sample ISD-1
order.

In Table 8, we present a set of results for each problem instance, now however restricting
the evidence to λ = {1, 0.75, 0.5}, β = {−0.03,−0.02,−0.019,−0.01, 0} and considering
jointly the one stage and the multistage problems: T = {1, 4}.

The set of instances with T = 1 implies the solution of a one period problem based on the
first branching only, thuswith 40 leaf nodes (a scenario fan). The following notation is adopted
in the Table: for each λwe denote withW1, W1.4 and W̄4, respectively, the portfolio statistics
in T = 1 when solvingL (λ, β, 1), in t = 1 (end of the first stage) when solvingL (λ, β, 4),
and finally the weekly statistics over 4 stages, again as solution of the 4 stage problem. Here
W̄4 is specified as a geometric mean wealth, to account for stage-by-stage compounding
effects. The numerical evidence in Table 8 is thus all based on one homogeneous weekly
stage with the only exception, discussed below, of the ISD information at T = 4. We report
the average E(W ), the standard deviation σ(W ), their ratio to define the popular Sharpe ratio
(SR) and the 95% CVaR. When λ = 1 we add in every section evidence on the ISD-k.qβ

estimated on the portfolio against the benchmark distributions after the problem solution.
Table 8 provides the core information we rely upon to motivate the multistage formulation

from a financial as well as an SD-related perspectives. We said already that all the statistics
refer to weekly stages and we always have an initial endowment of 1 monetary unit. The
S&P500 benchmark portfolio also carries a normalised unit value in t = 0.

– Consider the first set of evidence for λ = 1.

– For T = 1 as β increases the risk adjusted returns (Sharpe ratio) do also increase.
Furthermore when checking the stochastic dominance of the portfolio against the
benchmark distribution at the end of the first stage, as expected we see that indeed
second-order stochastic dominance is guaranteed as β → 0− and for β = −0.019
we have the strongest ISD-1 order.

– For T = 4, here but also for λ = 0.75 and 0.5, we see that the first stage statistics
based on W1,4 confirm the T = 1 evidence, but once we consider the average risk-
adjusted returns and the ISD partial order computed in T = 4 the results improve
significantly relative to the cases T = 1. Furthermore as β increases to 0 we see
that the ISD order decreases. We show in the next subsection that such evidence is
consistent with the properties of the lower bounds.

– As λ decreases to 0.5, as expected, we observe that:
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Table 8 Instances L (λ, β, 4): key evidence, comparison with one period solution

Model β − 0.03 − 0.02 − 0.019 − 0.01 0

E(W1) 1.0008 1.0021 1.0023 1.0044 1.0044

σ(W1) 0.0122 0.0178 0.0186 0.0243 0.0243

L (1, β, 1) SR(W1) 0.0683 0.1174 0.1242 0.1811 0.1811

CVaR0.95(W1) 0.9825 0.9738 0.9725 0.9625 0.9625

ISD-k.qβ(T = 1) 2.025 2.0125 1.6125 1.8875 1.8875

E(W1,4) 1.0047 1.0033 1.0034 1.0036 1.0036

σ(W1,4) 0.0267 0.0257 0.0252 0.0251 0.0251

L (1, β, 4) SR(W1,4) 0.1759 0.1296 0.1359 0.1424 0.1424

CVaR0.95(W1,4) 0.9588 0.9618 0.9623 0.9624 0.9624

ISD-k.qβ(t = 1) 1.913 2.538 1.913 1.913 1.913

E(W̄4) 1.003 1.0029 1.0029 1.0031 1.0031

σ(W̄4) 0.01 0.0107 0.0107 0.011 0.011

L (1, β, 4) SR(W̄4) 0.2954 0.2706 0.2757 0.279 0.2771

CVaR0.95(W̄4) 0.9836 0.9819 0.9817 0.9812 0.9811

ISD-k.qβ(T = 4) 1.395 1.381 1.373 1.314 1.317

L (0.75, β, 1) E(W1) 1.007 1.006 1.006 1.0044 1.0044

σ(W1) 0.0332 0.0286 0.0281 0.0243 0.0243

SR(W1) 0.2116 0.2118 0.2117 0.1811 0.1811

CVaR0.95(W1) 0.9481 0.9567 0.9575 0.9625 0.9625

L (0.75, β, 4) E(W1,4) 1.0061 1.0044 1.0042 1.0041 1.0041

σ(W1,4) 0.0282 0.026 0.0258 0.0257 0.0257

SR(W1,4) 0.2143 0.1684 0.1644 0.1605 0.1605

CVaR0.95(W1,4) 0.9556 0.9602 0.9608 0.961 0.961

L (0.75, β, 4) E(W̄4) 1.0076 1.0063 1.0062 1.0058 1.0058

σ(W̄4) 0.0142 0.0135 0.0135 0.0133 0.0133

SR(W̄4) 0.5313 0.4682 0.459 0.4383 0.4383

CVaR0.95(W̄4) 0.9798 0.9799 0.9799 0.9798 0.9798

L (0.5, β, 1) E(W1) 1.007 1.006 1.006 1.0045 1.0045

σ(W1) 0.0332 0.0286 0.0281 0.0241 0.0241

SR(W1) 0.2116 0.2118 0.2117 0.1853 0.1853

CVaR0.95(W1) 0.9481 0.9567 0.9575 0.9628 0.9628

L (0.5, β, 4) E(W1,4) 1.0067 1.0057 1.0056 1.0055 1.0055

σ(W1,4) 0.0305 0.0276 0.0272 0.0272 0.0272

SR(W1,4) 0.2185 0.2075 0.2043 0.203 0.203

CVaR0.95(W1,4) 0.9519 0.9568 0.9574 0.9575 0.9575

L (0.5, β, 4) E(W̄4) 1.0078 1.0069 1.0068 1.0068 1.0068

σ(W̄4) 0.0146 0.0138 0.0137 0.0137 0.0137

SR(W̄4) 0.5324 0.5032 0.4979 0.4958 0.4958

CVaR0.95(W̄4) 0.9794 0.9799 0.98 0.98 0.98
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– For T = 1 the expected return increases as well as the risk adjusted returns and the
CVaR95% worsen.

– For T = 4, similar evidence as before with the first stage statistics mostly confirming
those collected when T = 1 and a significant improvement of weekly statistics for
W̄4.

– Essentially for any λ and β when comparing the evidence of the second (W1,4) and
third (W̄4) subsections, we see that the extension to a multi-period model leads jointly
to higher subperiods financial performance and stronger ISD-orders. This is the primary
motivation to consider a multistage rather than a one period problem formulation.

In the next Sect. 4.2.2 we will concentrate on the ICVaR-ISD relationship for λ = 1, then
in Sect. 4.3 we verify the general consistency of a set of evidences analysed so far.

4.2.2 ICVaR problem solution and ISD evidence

The purpose of this section, based on the solution of problem13 is to verify the implications of
the ICVaR maximization on the stochastic dominanceWt �k.qβ Yt relying on the introduced
gap and boundary functions. In Sect. 2 the non-negativity of the gap function was put in
direct relationship with SD partial orders. Furthermore the lower bound ζ2,t was linked to
the ICVaR through Eq. (6), so that ISD-2 dominance should come up as a by-product when
solving the optimization problem.

The analysis below relies on the following variables, that we summarize briefly.

– We introduce for the gap functionsHk(Yt ,Wt , β) a new notation to ease the comparisons
and to associate the analysis more explicitly with the problem instance: namely for
k = 1, 2 the gap functions are now denoted by δk,t (λ, β, T ). This notation includes t ≤ T
based on the benchmark Yt and portfolio evolution Wt evaluated in t and generated by
the solution of problemL (λ, β, T ). We recall from Sect. 2 that the gap functions capture
the divergence between the portfolio and benchmark distributions. Through the dynamic
extension, we can monitor the evolution in each stage t ≤ T of the distance between
those distributions.

– To verify the implication on the ISD order of alternative specifications of β, we com-
pute ζk,t (1, β, T ) for k = 1, 2 and derive ISD-k.qβ information from the solution of
L (1, β, T ) with β = {−0.03, −0.02,−0.019,−0.01, 0}.
In Table 9, given λ = 1 and T = 4 we show the numerical results for different values of

β as t increases to T .
Table 9 allows several remarks. For our purposes it does provide the key information we

are after: the solution of problem L (1, 0, 4) guarantees a very tight lower bound to SSD, a
null difference F2(Yt )−F2(Wt ) for every t = 1, 2, 3, 4 and it is sufficient to lead to first-order
ISD conditions in each stage.

– The lower bound ζ2,t (1, β, 4) decreases when t increases, suggesting that the bounds at
terminal stage t = 4 control the lower bounds over the previous stages.

– The function δ2,t (1, β, 4) is mostly null for any t and β. This shows that SSD conditions
are effectively enforced in a multi-period framework.

– The ISD order improves generally when moving from t = 1 to t = 4. This suggests that
in a multi-period model, the stochastic dominance order is refined over the stages.

– The previous results show that the ISD-2 relationship holds through the nonnegativity
condition of the function δ2,t . For the first-order case k = 1, we see that the δ1,t are
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Table 9 Bounds behaviour and ISD conditions for several problems specification

Model t = 1 t = 2 t = 3 t = 4

ζ2,t (1,−0.03, 4) − 1.5 ×10−3 − 1.5 ×10−3 − 1.5×10−3 − 1.501×10−3

ζ2,t (1,−0.02, 4) − 1×10−3 − 1.033×10−3 − 1.063 ×10−3 − 1.075 ×10−3

ζ2,t (1,−0.019, 4) − 0.95×10−3 − 0.994×10−3 − 1.03 ×10−3 − 1.047×10−3

ζ2,t (1,−0.01, 4) − 0.692 ×10−3 − 0.872×10−3 − 0.962×10−3 − 0.987×10−3

ζ2,t (1, 0, 4) − 0.692×10−3 − 0.872×10−3 − 0.962×10−3 − 0.987×10−3

δ2,t (1,−0.03, 4) 0 0 0 0

δ2,t (1,−0.02, 4) − 0.04×10−3 0 0 0

δ2,t (1,−0.019, 4) 0 0 0 0

δ2,t (1,−0.01, 4) 0 0 0 0

δ2,t (1, 0, 4) 0 0 0 0

δ1,t (1, −0.03, 4) 0 0.003 0.001 0

δ1,t (1, −0.02, 4) − 0.05 − 0.022 0.001 0

δ1,t (1, −0.019, 4) − 0.05 − 0.022 0.001 0

δ1,t (1, −0.01, 4) − 0.05 − 0.006 0.001 0

δ1,t (1, 0, 4) − 0.05 − 0.006 0.001 0

ISD-k.q−0.03 1.913 1.073 1.232 1.395

ISD-k.q−0.02 2.538 1.858 1.308 1.381

ISD-k.q−0.019 1.913 1.842 1.185 1.373

ISD-k.q−0.01 1.913 1.839 1.048 1.314

ISD-k.q0 1.913 1.836 1.048 1.317

generally non-positive for t = 1, 2 but non negative afterwards and always nonnegative
for β = −0.03: this is a sufficient condition for Wt �1.qβ Yt , which is indeed confirmed
in the lowest part of the table for t = 3, 4.

To complement this analysis we plot in Fig. 5 the ISD-k.qβ order after solving a sequence
of optimization problems L (1, β, T ) as β varies when T = {1, 4}. For T = 1 we evaluate
the ISD order for β = [−0.03, 0; 0.003] with 0.003 steps. Observe that the SSD condition
mostly holds over the specified domain and for β ∈ (−0.019,−0.017) the strongest ISD-1
order is attained, which motivates the inclusion of L (λ,−0.019, T ) as problem instance in
several results. Interestingly, for T = 4, when increasing the β, here β = [−0.03, 0; 0.0015],
L (1, β, 4) the strongest ISD is attained around the same values. Surprisingly as β → 0−
the ISD-1 remains very low. The evidence confirms that the error functions gives sufficient
but not necessary conditions for ISD-1.

We wish to further substantiate the claim that indeed, when extending the investment
horizon, the first stage SD conditions won’t be jeopardized: consider for this purpose Fig.6
and the behaviour of ζ2,1(1, β, T ) and δ2,1(1, β, T ) for increasing β and T = 1, 2, 3, 4. Left
to right: the left plot clearly shows that the first-stage lower bound is increasingly tight as β

increases to 0 and this result does not depend on T . The right plot furthermore, shows that
indeed for β ≥ −0.019, SSD is surely supported at the end of the first stage by the solution
and actually for T = 4 it won’t even depend on β. This shows that when increasing the
investment horizon, the ICVaR maximization enforces SSD, and actually, as shown in Table
9, may lead to ISD-1 conditions already at the end of the first stage.
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Fig. 5 ISD-order associated with two ICVaR models. Left: L (1, β, 1) and right: L (1, β, 4). Here, for β,
we consider on the left 100 evaluations and on the right 20 evaluation with sample points equally spaced in
[−0.03, 0]

Fig. 6 Estimates of ζ2,1(1, β, T ) (left) and δ2,1(1, β, T ) (right) for β = {−0.03,−0.02,−0.019,−0.01, 0}
and T = {1, 2, 3, 4}. Here, the branching structure for T = 1 is [40], for T = 2 is [40 − 8], for T = 3 is
[40 − 8 − 6] and for T = 4 is [40 − 8 − 6 − 6]

Finally in Fig. 7 we plot the second and first-order probability distributions induced by
the solution of problemsL (1,−0.03, T ) for T = 1, 2, 3, 4 at the end of the first period and,
respectively, at the horizon. The plots on the left thus allow the comparison of the second-
order SD always in t = 1 as the planning horizon is extended. Both second and first-order
distributions in the first row refer to the one period case, T = 1 and for this case problem
from Table 8 we have ISD−k.qβ = 1.6125 for T = 1. For T = 2, 3, 4 we show row-wise
the second and first-order distributions of respectively W1,T and WT . For each pair we see
that essentially as the investment horizon is extended the ISD orders strengthen and when
T = 4 we have left an ISD−k.qβ = 1.913 and right ISD−k.qβ = 1.373 at the horizon.
In general the end of first stage stochastic order is mostly preserved as T increases and the
stochastic order at the horizon improves.

4.3 Consistency analysis, multistage problem solution

In this section we select a set of sub-problems and present evidence on the consistency over
time of the key conclusions reached in Sects. 4.2.1 and 4.2.2. We wish to support the main
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Fig. 7 second-order (left column) distribution for the first stage and First-order (right column) cumulative
distributions for the t = T stage varying T = 1, 2, 3, 4, for the modelL (1, −0.019, T )
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Fig. 8 HHI index associated with the root node portfolio of L (1, −0.03, 4) model (left) and G (1, 4) model
(right) over 104 weeks from January 2021 until December 2022

results presented in Sect. 4.2, specifically devoted to the financial and the ISDproperties of the
solutions. To this aim we develop a rolling window procedure based on 3 years (152 weeks)
of data for statistical model estimation and scenario generation and solve the optimization
problem (13) over the following T weeks, for T = {1, 4}. Starting from the first sample
based on 2018/01/07-2021/01/03 data, we repeat the process with weekly steps and fixed
152 weeks’ rolling windows to derive and test a sequence of 104 optimal solutions. Always
based on a 4-stage scenario tree with structure [40 − 8 − 6 − 6].

4.3.1 Risk-reward analysis and portfolio diversification

Consider the following problem instances:L (λ, β, T ) for λ = {0.5, 1}, β = {−0.03, 0} and
T = {1, 4}. When computing the one-stage models, we take the 40 branches in the first stage
of the scenario tree as input data.

For each test-problem, we display in this case the time-averages of the variables already
introduced in Table 8. In summary: for T = 1 we derive the end-of-the-week wealth dis-
tribution and statistics there upon, while for the multistage models L (λ, β, 4) and G (λ, 4),
we compute end-of-the-first-week evidence denoted by W1.4 and the weekly average wealth
W̄4 and statistics there upon. In the last section, based on the 4 stage weekly mean W̄4,
as for the ISD-k.qβ evidence we display the end of the month evidence that jointly with
ISD-k.qβ(W1,4) helps assessing the advantages of considering the multistage formulation.
In general ISD estimates are only considered when λ = 1. We focus on a subset of problem
instances, namely for β = {−0.03, 0}, λ = {0.5, 1} and T = {1, 4} sufficient to our purposes
and compute the ISD conditions over the entire dataset and conditional on the gap functions
δ2,t ≥ 0 for t = 1, 4.

For λ = 1, T = 4 and β = {−0.03, 0} we also show in Fig. 8 the HHI values associated
with the optimal root node portfolios, to confirm the good diversification properties of these
model instances over the 2021–2022 period.

The evidence in Table 10 essentially confirms the results collected in Sect. 4.2.1. We
remind that over the 2 years we are considering average results from weekly data:

– For given T , reducing λ and increasing β leads to higher Sharpe ratios on average
and lower diversification. From Fig.8 we see that indeed over the 2 years the optimal
portfolios’ HHI remains above 0.3.
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Table 10 Time-average statistics of optimal portfolios from 104 test-problems, January 2021 to December
2022

L (1,− 0.03, 1 ) G (1,1 ) L (0.5,− 0.03,1 ) G (0.5,1 )

E(W1) 1.0032 1.0042 1.0084 1.0058

σ(W1) 0.0228 0.0262 0.0281 0.0272

SR(W1) 0.1394 0.1611 0.2996 0.2129

CVaR0.95(W1) 0.9597 0.9535 0.9517 0.9528

HHI 0.5461 0.5059 0.7035 0.5490

ISD−k.qβ(W1) 2.3987 2.4728 − −
δ2,1 ≥ 0(%) 28.84 38.46 − −
ISD−k.qβ(W1|δ2,1 ≥ 0) 1.4532 1.6911 − −

L (1,− 0.03, 4 ) G (1,4 ) L (0.5,− 0.03,4 ) G (0.5,4 )

E(W1,4) 1.0075 1.0055 1.0098 1.0078

σ(W1,4) 0.0285 0.0272 0.0287 0.0283

SR(W1,4) 0.2613 0.2016 0.3401 0.2752

CVaR0.95(W1,4) 0.9526 0.9540 0.9539 0.9537

HHI 0.5108 0.5054 0.6274 0.6019

ISD−k.qβ(W1,4) 2.0763 2.1933 − −
δ2,1 ≥ 0(%) 49.03 42.30 − −
ISD−k.qβ(W1,4|δ2,1 ≥ 0) 1.3171 1.2984 − −
E(W̄4) 1.0037 1.0035 1.0085 1.0072

σ(W̄4) 0.0118 0.0125 0.0160 0.0153

SR(W̄4) 0.3089 0.2793 0.5308 0.4719

CVaR0.95(W̄4) 0.9798 0.9779 0.9772 0.9772

ISD−k.qβ(W4) 1.8179 1.9584 − −
δ2,4 ≥ 0(%) 59.61 52.88 − −
ISD−k.qβ(W4|δ2,4 ≥ 0) 1.0934 1.1116 − −

– When increasing T the first stage and average Sharpe ratios do increase both at the end
of period 1 and on average for any λ and β.

– For λ = 1 as T increases the ISD-k.qβ improves significantly and the strongest degree
is reached ex-post on average for β = −0.03.

– When conditioning on problem instances for which δ2,1 ≥ 0, furthermore, for T = 1 or
4 we see first that the condition holds with higher frequency when extending the planning
horizon and then that the ISD evidence improves significantly.

– In the 4-stage problem, furthermore, we see that the gap function nonnegativity condition
is met with higher frequency and indeed the resulting average ISD order are close to FSD
under either β = −0.03 or β = 0.

We analyse further the relationship between the ICVaR maximization and the ISD in the
following section.

4.3.2 ICVaR-ISD consistency

Figures 9 and 10 help extending a relevant set of remarks raised in Sect. 4.2.2 for a single
problem instance to the several instances of the 2021–2022 period. We also complement the
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Fig. 9 Cumulative distribution over 2021–2022, 104 weeks for δ2,1 (blue) and δ2,4 (red), different ICVaR
models

Fig. 10 Cumulative distributions over 2021–2022, 104 weeks, for ISD-k.qβ(W1,4) (blue) and ISD-k.qβ(W4)
(red) for different models

evidence discussed in Sect. 4.3.1. In particular we assess the relationship between the evolu-
tion of δ2,t for t = {1, 4} and the I SD conditions estimated after the problem solution. We
limit the evidence to the instancesL (1, β, 4) for β = {−0.03, 0} and display the probability
distributions of δ2,1 and δ2,4 in Fig. 9 and of ISD-k.qβ(W1,4) and (W̄4) in Fig. 10.

The left and right plots of δ2,t in Fig. 9 differ only for β = −0.03 on the left and β = 0 on
the right. In this latter case we are thus considering the CVaR0.95 function: the blue lines are
associated with the end of stage 1 while the red with the end of stage 4. Then for β = −0.03
we see that given the problem solution after 1 week the second-order distributions agree
in more than 50% of the cases, a percentage that increases to 70% for t = T = 4. The
probability that the two distributions differ more than 1.5% at the horizon is 0 and more than
7% after 1 stage is null as well. Similar evidence when β = 0. In either cases we see that the
condition for SSD and possibly ISD-1 is met at the end of the planning horizon and improves
significantly stage-by-stage. Consider now Fig. 10. Similar pattern with the left plot slightly
better than the right.

For β = −0.03 we see that ISD-1 is attained at the horizon in 60% of the cases and with
probability 50% the solution leads to W �1.2 Y . After 1 period with probability 50% we
haveW �2.0 Y . On the left we see that out of all the experiments in roughly 22% of the cases
we have TSD only in the case of β = −0.03 and this probability increases to roughly 30% if
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β = 0. On the opposite side of the distribution when β = −0.03 we see on the left plot that
FSD is attained with 25% probability and for β = 0 with probability 32% at the horizon.

Summarizing the ICVaR maximization induces ISD-1 dominance with high probability
both at T = 4 and at the end of the first stage.

4.4 Out-sample analysis

The same rolling window approach described in Sect. 4.3 is adopted to derive a set of optimal
root nodeportfolioswhoseperformance is back-tested against actually realizedmarket returns
out-of-sample over the 2021–2022 period. These 2 years are well characterized in the US
market by the 2021 rebound and very positive trend after the 2020 pandemic-related crisis, and
by the 2022 negative and volatile trend due to tight monetary policy resulting into increasing
interest rates as a response to growing inflationary pressures.

In Table 11, we show out-of-sample return statistics for a selected set of 1 and 4 period
optimal portfolios, for λ = {0.5, 1}, β = {−0.03,−0.19, 0} and for T = {1, 4} again just
to compare static, one period with multi-stage results. We assume a unit initial wealth at
the beginning of the out-of-sample period and compute the cumulative wealth process by
compounding the out-of-sample portfolio returns.We show the terminalwealth of eachmodel
in column W2 of Table 11 and the associated portfolio dynamics in Fig. 11. Here, W0.5, W1,
W1.5 andW2 denote the portfolio wealth after half year, at the end of the first year, then at the
one and half and two years ends, respectively. In the last three columns we display for every
week in the case study, in columnWR, the proportion of weeks in which the optimal portfolio
outperforms the benchmark S&P500, and in E(ER)+ and E(ER)− the weekly average out-
sample excess returns above and below the benchmark S&P500, respectively. We rely on this
last set of evidence to convey the statistical significance of the results.

The evidence fromTable 11, see the Fig. 11 plots as well, is interesting and can be analysed
by considering the one against multistage results first, then the risk-reward trade-offs and
finally looking at the reference point β. In the bottom row we have the S&P500: roughly
22% return the first year, that goes to 0 in the first semester of 2021 and then increases slightly
during a volatile period:

– In general the extension to 4 stages is beneficial on every model instance and we see that
the mean-CVaR optimal portfolios are those who track closely the benchmark dynamics
both during the positive 2021 but also during the negative 2022.

– For T = 1 we see that in 2021 either a few optimal portfolios track the S&P500 or they
do not exploit the positive market year while in 2022 essentially neither of them avoids
the increasing volatility and negative trend. This evidence changes when considering the
optimal first stage portfolios associated with T = 4: most optimal portfolios track the
index in 2021 and a significant subset of the even if volatile, do now loose during 2022.

– For λ = 0.5 and decreasing β we see that indeed in the multistage model, the optimal
portfolios significantly outperform the mean-CVaR solutions G (0.5, 4). Same for λ = 1
and the optimal portfolios fromL (λ,−0.03, 4) are those with the best performance and
hedging effectiveness out-of-sample.

– From the last three columns, we see that, unlike in the one period case, the multistage
formulation leads to the outperformance of the control portfolio relative to the benchmark
significantly above 50% in all instances and 50%when themean-CVaRproblem is solved.
Furthermore under any problem formulation the expected positive excess returns exceed
in absolute value the expected negative excess returns.
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Fig. 11 Out-of-sample evidence over 104 weeks from January 03 2021 until December 25 2022, several
selected problem instances

5 Conclusion

This article provides an in-depth analysis of the relationship between a multistage mean-risk
portfolio selection problem and the resulting stochastic dominance relationships between
the optimal portfolio and a benchmark market portfolio. As a risk measure, we propose
the terminal interval Conditional Value-at-Risk, whose relationship with interval stochastic
dominance is exploited throughout to analyse in- and out-of-sample evidence and support
the proposed modeling framework.

We show that without explicitly introducing stochastic dominance constraints in the prob-
lem formulation, thanks to the established theoretical relationships between the ICVaR and
ISD orders, depending on the adopted mean-ICVaR problem formulation, we are able to
enforce strong SD conditions in every stage by solving amultistage stochastic linear program-
ming problem. This research is motivated from modelling and computational perspectives,
and it does entail several steps that we wish here to summarize and frame in view of possible
extensions and colleagues’ contributions.

– We extend a classical mean-CVaR optimization problem to several stages and, through
the ICVaR, to instances deeper in the tail, whose relationship with underlying stochastic
dominance principles is analysed thoroughly and validated computationally. The advan-
tages and implications of the multi-period extension are discussed in detail.

– ISD ordering allows by definition a continuous spanning of partial orders from FSD
to TSD and, in our context, it has been instrumental, after solution and depending on
the problem formulation, to infer the resulting stage-dependent dominance relationship
between the optimal portfolio and benchmark return distributions.

– In a comprehensive computational study, the proposed lower bounds on the gap functions,
consistently with the sufficient conditions proven in the article, are shown to enforce first
and second-order ISD principles under several problem specifications.

– The adopted discrete representation of the mean-ICVaR problem relies on a rich scenario
tree with several thousands of scenarios over a very short-planning horizon, namely 1
month: this resulted in a very large-scale problem. The root node branching degree was
kept in our experiments rather high mainly to help studying the SD implications in the
first stages.

– The results rely on a relatively standard scenario tree generation method applied to a
mean-reverting Gaussian vector return process adopted both for the assets’ return vector
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process and the benchmark: these are inputs to the stochastic optimization problems,
whose SD results do inevitably depend on the adopted stochastic assumptions. We have
shown in the computational results, that, however such assumption does not jeopardise
the effectiveness of the mean-ICVaR trade-off paradigm.

Starting from this last point above, in consideration of the statistical properties of the
adopted data set, either a more advanced stochastic model or, as in Barro and G.Consigli
(2019), a scenario generation based on a data-driven approach, possibly over more extended
stages, would provide relevant way forwards in this context. The extension of the investment
universe to further refine and calibrate the resulting portfolio distribution relative to the
benchmark is also a desirable research path. In this respect, our project has been limited
to just five asset classes and the S&P500 as the benchmark. A more extended investment
universe would also allow the development of portfolio efficiency analysis based on expected
wealth and ICVaR as relevant reward and risk measures, as in classical portfolio theory.

From a financial perspective, stochastic dominance principles are also relevant when
taking as the benchmark a given pre-specified portfolio strategy or decision rule. From a
modeling viewpoint, preserving the ISD-based stage-wise dominance approach, specifically
in a multistage framework we have seen that the reference point β is indeed varying across
stages resulting in different shortfall distributions, whose implications are worth further
analysis.

Finally from a theoretical perspective the adoption of the terminal risk measure and stage-
wise SD conditions in our context has proven sufficient to determine a rich set of evidence
but further analysis is needed to verify the optimal strategy time-consistency.
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A Proof of Propositions 3, 5 and 6

We present the proof of Proposition 3.

Proof of Proposition 3 – The monotonicity follows naturally by the monotonicity of the
positive part operator, expected value operator as well as the supremum operator.

– To show the concavity, for any λ ∈ [0, 1], we have
ρα,β(λW + (1 − λ)Y )

= sup
η≤β

{η − 1

1 − α
E[η − λW − (1 − λ)Y ]+}

≥ sup
η=λη1+(1−λ)η2,η1≤β,η2≤β

{η − 1

1 − α
E[η − λW − (1 − λ)Y ]+}
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= sup
η1≤β,η2≤β

{λη1 + (1 − λ)η2 − 1

1 − α
E[λ(η1 − W ) − (1 − λ)Y ]+}

≥ sup
η1≤β,η2≤β

{λη1 + (1 − λ)η2 − λ

1 − α
E[η1 − W ]+ − 1 − λ

1 − α
E[η2 − Y ]+}

= sup
η1≤β

{λη1 − λ

1 − α
E[η1 − W ]+} + sup

η2≤β

{(1 − λ)η2 − 1 − λ

1 − α
E[η2 − Y ]+}

= λρα,β(W ) + (1 − λ)ρα,β(Y ).

– The positive homogeneity comes from the fact for any k ∈ R++ that

ρα,β(kW ) = sup
η≤β

{η − 1

1 − α
E[η − kW ]+} η=kη̃= sup

kη̃≤β

{kη̃ − 1

1 − α
E[kη̃ − kW ]+}

= k sup
η̃≤β/k

{η̃ − 1

1 − α
E[η̃ − W ]+} = kρα,β/k(W ).

– The cash additivity can be derived from the fact for any c ∈ R that

ρα,β(W + c) = sup
η≤β

{η − 1

1 − α
E[η − W − c]+

η=η̃+c= sup
η̃+c≤β

{η̃ + c − 1

1 − α
E[η̃ + c − W − c]+

= c + sup
η̃≤β−c

{η̃ − 1

1 − α
E[η̃ − W ]+ = ρα,β−c(W ) + c.

	


We show now the technical details of the proof of Propositions 5 and 6. First, we prove
the following auxiliary result. Consider the random variable WY = (W − Y )

Proposition 7 For 0 ≤ α < 1, ζ ≤ β, and η ∈ R, we have

1

1 − α
E[ζ − WY ]+ ≥ F2(W , η) − F2(Y + ζ, η)

(1 − α)

Proof of Proposition 7 Since for all z ∈ R, the positive part is given by |z|+ = z+|z|
2 , then for

any ζ ≤ β

1

1 − α
E[ζ − WY ]+ = E[ζ − (W − Y ) + |ζ − (W − Y )|]

2(1 − α)

= E[(η − W ) − (η − (Y + ζ )) + |(η − W ) − (η − (Y + ζ ))|]
2(1 − α)

≥ E[(η − W ) + |η − W |] − E[(η − (Y + ζ )) + |η − (Y + ζ )|]
2(1 − α)

= F2(W , ζ ) − F2(Y + ζ, η)

(1 − α)
(17)
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A.1 Lower bound for the second-order gap function

A relevant implication of Proposition 7 is that the ICVaR function ρα,β provides a lower
bound for the second-order gap function H2 as established in Proposition 5. Now, we show
the technical details of the proof.

Proof of Proposition 5 Using the closed form for the ICVaR risk measure as in Proposition 1
and the inequality in Proposition 7, we have that for η ∈ R

ρα,β(WY ) − β = − 1

1 − α
E[β − (WY )]+

≤ F2(Y + β, η) − F2(W , η)

(1 − α)

The result follows taking the infimum. 	

In addition, the result of Proposition 7 gives a lower bound for the first-order gap function

as stated in Proposition 6. Using the results of this section, we prove the Proposition 6. The
proof involves Chebyshev’s inequality which allows dominating the cumulative distribution
using the L1 norm.

Proof of Proposition 6 ByChebyshev’s inequality,we have that forη ≤ 0 andβ a non-positive
number.

F2(W , η) ≥ |β| × P(η − W ≥ β|)
= |β| × F1(W , η + β) (18)

Combining Proposition 7 and Eq.(18), we obtain that for η ≤ 0

ρα,β(WY ) − β ≤ F2(Y + β, η) − |β|F1(W , η + β)

(1 − α)
.

Thus,

ρα,β(WY ) − β ≤ F2(Y + β, η) − |β|F1(Y + β, η)

(1 − α)
+ |β|

(1 − α)
(F1(Y + β, η) − F1(W , η + β)) .

Since F1(Y+β, η) = F1(Y+2β, η+β), the result follows taking supremum and infimum
on the respective terms. 	
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