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Abstract
Real-life applications in project planning often involve grappling with inaccurate data or
unexpected events, which can impact the project duration and cost. The delay in the project
execution can be overcome by investing in additional resources to avoid compromising the
project duration. The goal of the resource leveling problems (RLP) is to determine the optimal
amount of resources to invest in, aiming to minimize the associated complementary costs
and adhere to the fixed deadline. To tackle data uncertainty in the RLP, the literature has
predominantly focused on developing robust and stochastic approaches. In contrast, sensi-
tivity analysis and reactive approaches have received comparatively less attention, especially
concerning the generalized RLP with flexible job durations. In this problem, the duration
of each job depends on the amount of resources available for its execution. Therefore, uti-
lizing more resources may help reduce the project duration but at an additional cost. This
paper introduces a novel approach that addresses the generalized RLP with uncertain job
and resource parameters, incorporating reactive and sensitivity-based methodologies. The
proposed approach extends the concept of evaluation metrics from machine scheduling to
the domain of the RLP with flexible job durations. It is based on a metric-based function that
estimates the impact of changes in input data on the solution quality, considering both opti-
mality and feasibility for the new problem instance. The approach is tested through numerical
experiments conducted on benchmark instance sets to investigate the impact of variations in
different problem parameters. The obtained results demonstrated a meaningful accuracy in
estimating the impact on the value of the objective function. Additionally, they underscored
the importance of utilizing optimality/feasibility preservation conditions, as for a significant
portion of the tested instances, the use of these conditions gave a satisfactory outcome.
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1 Introduction

The Resource Leveling Problem (RLP) is stated as follows. There is a set of jobs that must be
implemented under a strict deadline. There are precedence relations between the jobs in a form
of an oriented and acyclic precedence graph. A set of renewable resources is available for the
project realization. Each resource is defined by a set of parameters such as available amount
and price. Each job requires the utilization of a specified amount of renewable resources,
which, in a general case, may involve several resources of different types.

Under the constraint of the project deadline, the objective functions used in the RLP
formulations are resource-oriented. These objective functions aim to optimize the resource
usage for completing the project in time (Rieck & Zimmermann, 2015). They include man-
aging total overloads over the given limit of available resources, tracking fluctuations in the
utilized amount of resources through time periods, and calculating the total aggregated cost
of resource usage. These general formulations of the RLP were proved to be NP-hard by
Neumann et al. (2002). In this paper, we consider the objective of the minimization of extra
resource costs. This problem arises when it is not possible to complete the project in timewith
a given available amount of resources. Therefore, additional resources have to be deployed
during certain periods. In addition, we relax the classic hypothesis of the RLP that each job
has a fixed duration. In our formulation, the duration of each job depends on the amount
of resources allocated to it. With more resources allocated, it is possible to finish the job
faster and thus reduce the total duration of the project. The obtained problem formulation is
referred to as the Generalized Resource Leveling Problem, or the GRLP.

Managing afixed deadline and the associated resources tomeet it is challenging in practice,
primarily due to data uncertainty and reliability issues. In the literature, various approaches
have been developed to tackle data uncertainty, including: (i) representing uncertain data as
random variables using probability theory, (ii) creating robust solutions for different sce-
narios, (iii) employing reactive re-optimization as data modifications are observed, and (iv)
conducting sensitivity analysis to estimate thresholds for data modifications that won’t com-
promise solution feasibility.

Reactive methods and sensitivity analysis techniques have been relatively poorly devel-
oped both for project planning in general and particularly for the RLP class (Hazir & Ulusoy,
2020). To help practitioners to manage unexpected changes in the input data for the RLP,
this paper proposes a novel approach based on metric estimation which can aid in managing
input data fluctuations during project execution and in evaluating the need for rescheduling.

Metric approach that has been originally developed for machine scheduling problems
(Lazarev, 2009). These NP-hard scheduling problems have known polynomially solvable
instances. The solutions that can be rapidly found for these polynomially solvable instances
can serve as a basis for finding a solution for NP-hard problem instances. Metric estimation
is employed to evaluate the theoretical deviation of the obtained objective function from its
lower bound.

For the RLP, because of the existence of precedence constraints, it is not possible to rely
on the polynomially solvable cases. Therefore, we develop a different scheme for comparison
of 2 problem instances: the initial one and modified one. The developed methods assist in
verifying whether the solution found for the initial problem instance will remain optimal
or feasible for the modified problem instance. With the use of these methods, the need for
rescheduling can be rapidly evaluated. The rest of the paper is organized as follows. In the
next Sect. 2, we provide a brief literature review on anterior studies on resource leveling
problems, on uncertainty management in project scheduling, and on the metric approach.
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In Sect. 3, we present the mathematical formulation of the considered version of the GRLP.
Further, in Sect. 4, we develop a set of metric estimations for the GRLP model and study
their performances. We discuss the results of numerical experiments in Sect. 5 and conclude
this study in Sect. 6.

2 Literature review

The objective of this section is to demonstrate the existing gap in the literature related to the
management of uncertainty in the RLP.

Several recent surveys of variants and extensions of the Resource-Constrained Project
Scheduling Problem (RCPSP) dedicated a special section to the RLP. They discussed the
difference in objective functions and constraints (Hartmann & Briskorn, 2022; Sánchez et
al., 2022).

In our study, we consider a generalized formulation of the RLP, initially introduced in
Artigues et al. (2013) then developed by Bianco et al. (2016) and Baydoun et al. (2016). In
this generalized formulation, each job does not have a fixed duration but can be performed
faster or longer depending on the amount of resources available for its execution. Thus, the
duration of a job is not a parameter, but a decision variable of the corresponding optimization
model. For example, heating process was used as an application of the RLP model in the
paper of Artigues et al. (2013). Each heating operation requires a certain amount of energy
that can be supplied with more or less power, and thus, can be completed in respectively less
or more time.

In comparison to the formulation of Artigues et al. (2013), we propose and use a different
mathematical model. If a job requires a set of resources of different types, the resources of
each type can be applied with individually defined intensity. It means that for each period
of time, the intensity of each resource can be adapted to its availability independently of
the availability of other resources. This flexible resource management allows for achieving
solutions of a better quality i.e. lower associated overload costs. We proved this fact in our
previous work (Tarasov et al., 2019) by directly comparing the baseline problem formulation
and a variant with flexible resource management on a set of RLP benchmarks. Although our
formulation requiresmore decision variables and constraints, it can provide efficient solutions
in terms of the total cost due to the developed solution methods (Tarasov et al., 2021). It was
also shown for another objective function, resource usage fluctuations, byKazemi andDavari-
Ardakani (2020). To the best of our knowledge, none of the existing models for the RLP with
flexible job duration addresses the issue of uncertainty, and in particular of the uncertainty
of the availability of the resources. Below we discuss how this issue has been dealt with in
classic formulations of the RLP.

Data uncertainty stands as a critical concern in project planning. Existing literature distin-
guishes proactive, reactive, and proactive-reactive approaches to address this issue. Proactive
methodologies, primarily stochastic and robust optimization, aim to anticipate data variations.
Reactive approaches, often employing heuristics, strive to promptly respond to effective
changes. Proactive-reactive approaches formulate a comprehensive plan with some foresight
while also incorporating reactive methods to adjust the anticipated plan based on observed
data changes. In Table 1, we compare studies sharing the most common features with our
work. Regarding themethods, GA denotes Genetic Algorithm, and PERT refers to the Project
Evaluation and Review Technique.

123



648 Annals of Operations Research (2024) 338:645–673

Ta
bl
e
1

A
dd
re
ss
in
g
th
e
un
ce
rt
ai
nt
y
is
su
e
in

pr
oj
ec
ts
ch
ed
ul
in
g
(P
S)

an
d
th
e
R
L
P

C
on
te
xt

Pa
pe
r

Pr
ob
le
m

U
nc
er
ta
in
ty

M
et
ho
d

R
ob
us
t

D
un

ha
m

(2
01

5)
R
L
P

R
es
ou
rc
es

G
A

L
ia
nd

D
em

eu
le
m
ee
st
er

(2
01

6)
R
L
P

Jo
bs

G
A

L
ie
ta
l.
(2
02

0)
R
L
P

Jo
bs
,r
es
ou
rc
es

M
ar
ko
v
de
ci
si
on

pr
oc
es
s

B
an
ih
as
he
m
ia
nd

K
ha
lil
za
de
h
(2
02

2)
R
L
P

Jo
bs
,r
es
ou
rc
es

H
eu
ri
st
ic

St
oc
ha
st
ic

L
ie
ta
l.
(2
01

5)
R
L
P

Jo
bs

H
eu
ri
st
ic

K
e
an
d
Z
ha
o
(2
01

7)
R
L
P

Jo
bs

H
eu
ri
st
ic

L
ie
ta
l.
(2
01

9)
R
L
P

Jo
bs

H
eu
ri
st
ic

L
ie
ta
l.
(2
02

3)
R
L
P

Pr
ec
ed
en
ce

gr
ap
h

G
A

R
ea
ct
iv
e

D
av
ar
ia
nd

D
em

eu
le
m
ee
st
er

(2
01

9)
PS

Jo
bs

R
ea
ct
iv
e
po

lic
ie
s

So
ng

et
al
.(
20

22
)

PS
R
es
ou
rc
es

H
eu
ri
st
ic

Se
ns
iti
vi
ty

H
aj
du

an
d
B
ok
or

(2
01

6)
PS

Jo
bs

PE
R
T

G
ál
ve
z
an
d
C
ap
uz
-R
iz
o
(2
01

6)
PS

Jo
bs
,p

re
ce
de
nc
e
gr
ap
h

Pa
ra
m
et
er
s
an
al
ys
is

R
ea
ct
iv
e/
se
ns
iti
vi
ty

O
ur

w
or
k

G
R
L
P

Jo
bs
,r
es
ou
rc
es

M
et
ri
cs

123



Annals of Operations Research (2024) 338:645–673 649

Dunham (2015) studied the robustness of solutions provided with a genetic algorithm
(GA). Li and Demeulemeester (2016) considered the uncertainty of job duration as well
as of time lags between the jobs. They developed a genetic algorithm for a robust version
of the RLP. Li et al. (2020) extended the consideration of uncertainties to job overlaps and
resource availability. They developed aMarkov decision process and an approximate dynamic
programming algorithm. Li et al. (2015) presented two scheduling policies for the stochastic
RLP with uncertain job times. The first one was used to solve a deterministic equivalent of
the stochastic problem, and the second one applied a tabu search directly to the stochastic
formulation. Ke and Zhao (2017) also studied uncertain job times and proposed a heuristic
approach. Li et al. (2023) addressed the RLP with a flexible precedence graph.

As it can be seen, the literature lacks of direct application of reactive scheduling and
sensitivity analysis for the RLP. Moreover, all cited robust and stochastic approaches were
developed for the original version of the RLP where the job durations are static input param-
eter. In contrast, our model (marked as the GRLP) represents the generalized problem with
flexible job durations. Our contribution aims to close this gap with the development of metric
evaluation. Its concepts are discussed here below.

The metric approach was first presented by Lazarev (2009) as an approximation scheme
that builds suboptimal schedules with guaranteed estimated accuracy in a polynomial time
for a problem that is N P-hard in general but has some polynomially solvable cases. The
metric approach has been applied to the single-machine scheduling problem (Lazarev &
Kvaratskheliya, 2010), to the total tardiness minimization problem (Lazarev et al., 2017), to
the problem of two parallel machines with precedence delays (Bukueva et al., 2022), and to
the problem of lateness minimization for scheduling on M parallel machines (Lazarev et al.,
2021) as well as to the single-track railway scheduling problem with a maximum lateness
objective (Cheng et al., 2022).

The authors of the metric approach have already noted that it is not suitable for classical
project management problems due to the impossibility of building metrics for strict resource
requirements and precedence constraints. Nevertheless, the method is partially applicable
with flexible job durations, where the form of resource requirements is different. In this
paper, we explore this direction and evaluate the applicability of the developed approach.

To summarize the literature review, two important research gaps can be observed. The issue
of unexpected changes in input parameters during project execution is under-investigated for
RLP in general and in particular for the generalized RLP (GRLP) formulation with flexible
job duration. To fill this research gap, we develop a novel approach that can be applied when
unexpected changes in input parameters are observed during the project execution. The use
of this approach can also help to determine if a rescheduling is needed when unforeseen
events modify the availability of resources.

In the next section, we present the GRLP model formulation.

3 The generalized RLP: formulation and definitions

3.1 Mathematical model

Weprovide a formal description of theMILPmodel for the considered type of the generalized
RLP that has been initially introduced in Tarasov et al. (2019). A decomposition approach for
this model was discussed in Tarasov et al. (2021). The contribution of the current paper is in
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Table 2 Instance parameters

Parameters

T Planning horizon, T = {1, . . . ,m}
d Period length

R Resources set

Lrt Availability of resource r ∈ R in period t ∈ T

er Extra resource cost

J Jobs set

Wjr Job j ∈ J work volume on resource r ∈ R

pmin, jr Job j ∈ J minimum assigned amount of resource r ∈ R

pmax, jr Job j ∈ J maximum assigned amount of resource r ∈ R

P The set of arcs in the precedence graph

Table 3 Model parameters and decision variables

Decision variables

S jt Binary, if j starts at period t , then ∀t1 < t S j t1 = 0, ∀t2 ≥ t S j t2 = 1

E jt Binary, if j ends at period t , then ∀t1 ≤ t E jt = 0, ∀t2 > t E jt = 1

d jt Duration of job j ∈ J in period t ∈ T , d jt ∈ [0, d]
c jr t Work volume of the job j ∈ J on the resource r ∈ R in period t ∈ T

ort Extra cost of the resource r ∈ R in period t ∈ T , ort ≥ 0

the development of metric estimation approach for this formulation. In Table 2, we provide
all the model parameters and notations needed for the presentation of the problem.

The planning horizon consists of m periods each having the length of d . There is a set R
of resource types. Each resource type r has a given extra resource price er and an available
resource amount Lrt for each period t . There is a set of jobs J . Each job requires work
volume Wjr from resource type r . In Table 3, we present all decision variables.

Decision variable c jrt defines the amount of resource r ∈ R used for job j ∈ J in period
t :

∑

t∈T
c jrt = Wjr , ∀ j ∈ J , ∀r ∈ R. (1)

Duration d jt of job j ∈ J in period t ∈ T is also a decision variable, its value is situated
between two limits defined by parameters pmin, jr and pmax, jr :

pmin, jr d jt ≤ c jrt ≤ pmax, jr d jt , ∀ j ∈ J , ∀r ∈ R, ∀t ∈ T . (2)

The considered objective function aims to minimize the total cost of extra resources required
to finish the project in time. Decision variable ort defines the amount of extra resource usage
for resource r ∈ R in period t ∈ T :

Minimize
∑

r∈R

∑

t∈T
erort (3)
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where

ort ≥
∑

j∈J

c jr t − Lrt , ∀t ∈ T , ∀r ∈ R. (4)

Binary variables S jt and E jt define the start and the end period of job j :

• if job j starts at period t , then ∀t1 < t S jt1 = 0 and ∀t2 ≥ t S jt2 = 1;
• if job j ends at period t , then ∀t1 ≤ t E jt = 0 and ∀t2 > t E jt = 1;

S jt ≥ E jt ; S jt ≤ S j,t+1; E jt ≤ E j,t+1; ∀ j ∈ J , ∀t ∈ T . (5)

Binary variables S jt and E jt are connected to continuous variables d jt ∈ [0, d] as follows:
d jt ≤ d (S jt − E jt ), ∀ j ∈ J , ∀t ∈ T . (6)

If job j ∈ J is not implemented in period t ∈ T , then d jt = 0. To avoid preemption, d jt = d
in any period t ∈ T after the first and before the last period where job j ∈ J is implemented:

d jt ≥ d (S jt + S j,t−1 − 1 − E jt − E j,t+1), ∀ j ∈ J , ∀t ∈ T . (7)

Precedence constraints between jobs ( j1, j2):

S j2t ≤ E j1,t+1, ∀t ∈ T , ∀( j1, j2) ∈ P. (8)

Additional constraint to manage the situations where two jobs related by a precedence con-
straint start or end in the same period:

d j1t + d j2t ≤ d, ∀t ∈ T , ∀( j1, j2) ∈ P. (9)

3.2 The criteria of instance solvability and solution applicability

This subsection introduces the essential definitions for our metric-based approach.

Definition 1 Instance I can be entirely described by the following set of parameters,

I = {d I , L I
rt , e

I
r ,W

I
jr , p

I
min, jr , p

I
max, jr , (i, j)

I
p; t ∈ T , r ∈ R, j ∈ J , p ∈ P}. (10)

In total, I is defined by N parameters (see Table 2), where

N = 1 + |R|(|T | + 1 + 3|J |) + |P|. (11)

In a general case, |P| is bounded by |J |(|J |−1)
2 .

Here, we used the upper index I for emphasizing the fact that all parameters belong to
instance I . Here below if there is no need to emphasize the reference to the instance name,
the upper index representing it is not used.

Definition 2 Instance I is solvable if:

• the limits of all assigned resources are defined correctly for all jobs,

pmin, jr ≤ pmax, jr , ∀ j ∈ J , ∀r ∈ R; (12)

• the chain of jobs with the longest total minimal required duration in the precedence graph
is less than the total duration of the planning horizon,
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• for every job j ∈ J the minimal duration dmin, j = max
r∈R

Wjr
pmax, jr

is less than or equal to

the maximal duration dmax, j = min
r∈R

Wjr
pmin, jr

,

dmin, j ≤ dmax, j , ∀ j ∈ J . (13)

We introduce the notion of “schedule” representing a partially defined solution to a prob-
lem instance.

Definition 3 Solution σ is defined by the following decision variable values:

σ = {d jt , c jrt ; t ∈ T , r ∈ R, j ∈ J } (14)

The value of other decision variables can be calculated based on solution σ .

Definition 4 Schedule π is defined by the following decision variable values

π = {d jt ; t ∈ T , j ∈ J } (15)

Definition 5 Schedule π is applicable to instance I , if:

• instance I is solvable;
• schedule π is feasible for instance I , i.e.

∑
T
d jt ∈ [dmin, j , dmax, j ], j ∈ J ;

• schedule π satisfies all the precedence relations, i.e. if d j2t ≥ 0, then
∑|T |

k=t d j1k = 0 for
all ( j1, j2) ∈ P , t ∈ T .

Definition 6 Solution σ is applicable to instance I , if:

• the scheduling part of σ is applicable to I ;
• the following inequalities are correct

d jt pmin, jr ≤ c jrt ≤ d jt pmax, jr , j ∈ J , r ∈ R, t ∈ T ; (16)
∑

t∈T
c jrt = Wjr , j ∈ J , r ∈ R. (17)

We use the following definition and notations for amore compact explanation of themetric
approach.

Definition 7 The LP part of the RLP model is defined as a submodel PS( ¯d jt ) with

• a set of decision variables c jrt , ort ;
• all the constraints related to these variables, see equations (1), (2), (4);
• the initial objective function 3.

Submodel PS( ¯d jt ) defines the resource allocation or solution σ for the fixed scheduling part
defined by ¯d jt (schedule π ).

In our metric approach, the following notations are used:

• for a schedule π or a solution σ a superscript index A means that this solution/schedule
is optimal for instance A;

• for all estimations a superscript index σ or π means an estimation for a solution or a
schedule (for example, ρσ

e (A, B) or ρπ
e (A, B));

• σ A(π) is an optimal resource allocation found for schedule π obtained for instance A.
• V A(σ ) provides the value of the objective function for solution σ for instance A, and

V A(σ A(π)) provides the value of the objective function for solution σ obtained from
schedule π .
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4 Metric approach for the GRLP

Let us consider two similarRLP instances A and Bwith an identical number of parameters and
identical precedence constraints but different in values of some parameters. The parameters
that may differ for A and B are:

1. er – extra cost of resource r ∈ R;
2. Lrt – availability of resource r ∈ R in period t ∈ T ;
3. pmin, jr or/and pmax, jr – job j ∈ J minimal/maximal requirement per period in resource

r ∈ R;
4. Wjr – job j ∈ J work volume with resource r ∈ R.

Here below, we consider Cases 1–4. The proofs for the Lemmas and Theorem are included
in “Appendix A” for convenience.

4.1 Case 1: Difference in extra resource costs er

Lemma 1 Let instances A and B differ only in parameters er . If we apply the same solution
σ to both instances, the upper bound for the difference between the values of the objective
function for A and B defined as ρσ

e (A, B) can be calculated as follows:

ρσ
e (A, B) = max

⎧
⎨

⎩
∑

r∈R

min{eAr − eBr , 0}
∑

j∈J

W jr ,
∑

r∈R

max{eAr − eBr , 0}
∑

j∈J

W jr

⎫
⎬

⎭ (18)

Now let us consider the situation where we know σ A, the optimal solution for instance A,
but the optimal solution for instance B is unknown.

Lemma 2 Let instances A and B differ only in parameters er . If we apply σ A to instance B,
then the upper bound on the difference between the value of the objective function for the
unknown optimal solution for instance B and the value of the objective function obtained
with solution σ A applied to instance B can be calculated as follows:

�σ
e (A, B) =

∑

r∈R

|eAr − eBr |
∑

j∈J

W jr . (19)

Consequently, the decision-makers can estimate the eventual loss in the solution quality
and decide if it is worth spending time searching for the optimal solution for instance B.

4.2 Case 2: Difference in available resource levels Lrt

It is important to note that in contrast to the classic Resource Constrained Project Scheduling
Problem (RCPSP), for the RLP, Lrt has no impact on the solution feasibility since missing
resources can be acquired at additional cost.

Lemma 3 Let instances A and B differ only in parameters Lrt . If we apply the same solution
σ to the both instances, ρσ

L (A, B) can be evaluated as follows:

ρσ
L (A, B) = max

{
∑

r∈R

er
∑

t∈T
max

{
LB
rt − L A

rt , 0
}

,
∑

r∈R

er
∑

t∈T
min

{
LB
rt − L A

rt , 0
}}

(20)

We can note that this estimation does not depend on solution σ but only on the parameters
of both instances.
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Now let us consider the situation where we know σ A, the optimal solution for instance A,
but the optimal solution for instance B is unknown.

Lemma 4 Let instances A and B differ only in parameters Lrt . If we apply σ A to instance
B, then the upper bound on the difference between the value of the objective function for the
unknown optimal solution for instance B and the value of the objective function obtained
with solution σ A applied to instance B can be calculated as follows:

�σ
L(A, B) =

∑

r∈R

er
∑

t∈T
|L A

rt − LB
rt | (21)

4.3 Case 3: Difference in the job-related parameters pmin,jr or pmax,jr

In this case, it is necessary to check if a particular solution (or a schedule) is applicable to a
particular instance A or B (see Definitions 5 and 6).

Lemma 5 Let instances A and B differ only in parameters pmin, jr or (and) pmax, jr . If
solution σ is applicable to both instances, there is no change for the objective function value,
i.e.

ρpmin/max (A, B) = 0.

This also stands for the optimal solutions for instances A and B.

Lemma 6 Let instances A and B differ only in parameters pmax, jr and/or pmin, jr . Suppose
that an optimal solution σ A of instance A is applicable to instance B and an optimal solution
σ B of instance B is applicable to instance A. If we apply an optimal solution of instance A
i.e. σ A as a solution to instance B, then we obtain the same value of the objective function.

�σ
a,pmin/max

(A, B) = V B(σ A) − V B(σ B) = 0 (22)

Now, let us consider the situation with schedules for instances A and B.

Lemma 7 Let instances A and B differ only in parameters pmax, jr (or pmin, jr ). If schedule
π is applicable to both instances, the upper bound on the difference between the values of
the objective function for A and B, defined as ρπ

pmax
(A, B), can be calculated as follows:

ρπ
pmax

(A, B) = md max{
∑

r∈R

er
∑

j∈J

min{pA
max, jr − pBmax, jr , 0},

∑

r∈R

er
∑

j∈J

max{pA
max, jr − pBmax, jr , 0}}

(23)

Lemma 8 Let instances A and B differ only in parameters pmax, jr . Suppose that the optimal
solution σ A of instance A is applicable to instance B and the optimal solution σ B of instance
B is not applicable to instance A. If we apply the optimal solution of instance A, σ A, as a
solution to instance B, then the difference from the optimal value for B is bounded by the
following expression:

�σ
n,pmax

(A, B) ≤
∑

r∈R

ermd
∑

j∈J

|pA
max, jr − pBmax, jr | (24)

The same expressions can be formed for the lower limit pmin, jr .
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4.4 Case 4: Difference in work volumeWjr.

Let instances A and B differ only in values ofWjr . It is impossible to apply the same solution
σ (with the same values of c jrt ) to both instances, so the metric estimation is not applicable in
the same form but can be derived for the scheduling part using a common schedule applicable
to both instances (see Definition 5).

Lemma 9 Let instances A and B differ only in W jr . If we apply the same schedule π to both
instances, the upper bound on the difference in values of the objective function for instances
A and B can be estimated as follows:

ρπ
W (A, B) = max

⎧
⎨

⎩
∑

r∈R

er
∑

j∈J

max
{
W A

jr − WB
jr , 0

}
,
∑

r∈R

er
∑

j∈J

min
{
W A

jr − WB
jr , 0

}
⎫
⎬

⎭

(25)

With this schedule, an optimal resource allocation can be found for B in a polynomial
time. Secondly, we construct an estimation for an optimal schedule for instance A applied to
instance B.

Lemma 10 Let instances A and B differ only in parameters W jr . If we apply the optimal
schedule π A of instance A to instance B, then the upper bound for the difference in the values
of the objective function can be estimated as follows:

�π
W (A, B) =

∑

r∈R

er
∑

j∈J

|W A
jr − WB

jr |. (26)

4.5 Scalability of instances

Lemma 11 Suppose there are two instances A and B that differ in one of the parameters
pmin, jr , pmax, jr or W jr . Any schedule π , applicable to instance A, is also applicable to
instance B, if B is solvable and:

dB
min, j ≤ d A

min, j ; d A
max, j ≤ dB

max, j ; ∀ j ∈ J , (27)

or it can be reformulated in a linear form for the parameters of B:

W B
jr ≤ d A

min, j p
B
max, jr ; d A

max, j p
B
min, jr ≤ WB

jr ; ∀ j ∈ J ; ∀r ∈ R. (28)

4.6 Summary of contributions

In Table 4, we summarise our findings presented in the previous subsections.
It is also necessary to take into account that the fluctuations of some parameters may lead

to the infeasibility of a solution or to the infeasibility of a schedule. Here below, Theorem 1
aggregates the estimations for two instances A and E , varying in any of the listed parameters.

Theorem 1 Suppose there are two instances A and E that differ by parameters Lrt , W jr ,
pmin, jr , and pmax, jr . If we apply a schedule π A that is optimal for instance A to instance
E, the upper bound for the difference in the values of the objective function can be estimated
as follows:

�π(A, E) = �π
L (A, E) + �π

pmin
(A, E) + �π

pmax
(A, E) + �π

W (A, E). (29)
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Table 4 The summary of all
estimations

Parameter Possible to use? Metric
σ π

Lrt Any σ Any π �π
L (A, B)

pmin, jr Applicable σ Applicable π �π
pmin

(A, B)

pmax, jr Applicable σ Applicable π �π
pmax (A, B)

Wjr Impossible Applicable π �π
W (A, B)

Overall Impossible Applicable π �π (A, B)

Lemma 12 Suppose that instance B is produced from instance A by the following trans-
formation: all job-resource-related parameters are multiplied by a coefficient k > 0.
We will define it as k A = B meaning that kL A

rt = LB
rt ; ∀r ∈ R; ∀t ∈ T ; and

kpA
min, jr = pBmin, jr ; kpA

max, jr = pBmax, jr ; kW A
jr = WB

jr ; ∀ j ∈ J ; ∀r ∈ R.

In this case, both instances A and B have the same set of feasible schedules and a set of
optimal schedules with scaled solution variables

kcAjrt = cBjrt ; ∀ j ∈ J ; ∀r ∈ R; koArt = oBrt ; ∀r ∈ R; ∀t ∈ T . (30)

Thus, objective function values are also scaled:

V B(σ B) = kV A(σ A). (31)

We can use this scaling feature to improve the previous estimation. Let us consider instance
A with a known (sub)optimal schedule π A (and a solution σ A). To estimate the impact of
the application of π A (and σ A) to instance b, we calculate �(A, B) with the following two
stage-approach:

1. construct a scaled instance k A (k > 0), �(k A, B) ≤ �(A, B);
2. apply π A = πk A to B.

We illustrate this scheme in Fig. 1.We consider two points A and B of�, the space of problem
instances. A metric estimation �(A, B) can be improved, if we can find an instance k A that
is closer to B and have the same solution.

In Fig. 1, we mark two squares representing a set of instances with a fixed l1 metric, equal
to a metric between A and B, and a metric between k A and B. We define a l1 norm || · ||1 on
space � based on function �(A, B):

||A|| =
∑

r∈R

eAr

⎛

⎝
∑

t∈T
|L A

rt | + md
∑

j∈J

(
|pA

min, jr | + |pA
max, jr |

)
+

∑

j∈J

|W A
jr |

⎞

⎠ .

Norm axioms are verified for this formula:

||A|| = 0 ⇐⇒ A = 0;
||k A|| = |k| · ||A||;
||A + B|| ≤ ||A|| + ||B||;
�(A, B) = ||A − B||.

To evaluate our metric approach, we perform numerical experiments in the next section.
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Fig. 1 Representation of scaling case

5 Numerical experiments

5.1 Dataset description

For the classic RLP settings with fixed job duration, there are several known datasets, e.g.
see Kolisch et al. (1999) or Rieck et al. (2012). These instances were generated with a tool
ProGen/Max that constructs instances for project scheduling problems with minimal and
maximal time lags between jobs (Schwindt, 1998). These instances involved 10–50 jobs in
the project and 1–5 resources. However, these instances were built for the basic formulation
with fixed job duration and they lack parameters related to flexible resource allocation, e.g.
the total workload and lower/upper intensity per resource and per job. Hans (2001) and
Baydoun et al. (2016) have also created a dataset for the Rough-Cut Capacity Planning
(RCCP) problem. Similarly, they lack of such parameters such as lower limits or resource
costs.

In order to create a diverse and representative dataset for our numerical experiment, we
used the following parameters:

1. resource availability Lrt ;
2. job-resource linking parameters (Wjr , pmin, jr and pmax, jr );
3. precedence relations P .

The instances used in the numerical experiment were generated as follows:

1. construct a precedence graph P;
2. define lower and upper bounds WL and WU to generate random values for all Wjr in

range [WL ,WU ];
3. produce random values for pmin, jr and pmax, jr while keeping the solvability of the

instance, i.e.

• pmin, jr ≤ pmax, jr ;
• dmin, j ≥ d;
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Fig. 2 Two examples of precedence graph with 20 jobs and 19 precedence relations

Table 5 Parameters of datasets Group |T | d |J | |R| |P| SP

inst_j10_r3 20 2 10 3 5–15 0.2–0.8

inst_j15_r3 25 15 3 5–20

inst_j20_r5 30 20 5 5–40

• resulting job duration bounds are synchronized dmin, j ≤ dmax, j ;
• the longest path in graph |P| is inferior to the length of the planning horizon.

4. construct Lrt in range [0,
∑
j∈J

pmax, jr d

SP·|J |+1 ];
Here we define an upper bound for Lrt in the following way:

∑
j∈J

pmax, jr d is a maximal total

required amount for resource r ∈ R if we do not take into account precedence constraints.
Resource availability does not impact the feasibility of the problem instances, merely the

value of the objective function. For job-resource linking parameters, we have determined
the conditions of solvability (see Definition 2) and applicability (see Definitions 5 and 6).
Precedence relations are important both in terms of feasibility and the quality of solutions.
Basically, they are represented as a direct acyclic graph with jobs on nodes. To generate the
various precedence relations, it is important to construct formally different direct acyclic
graphs, but also vary a set of non-redundant arcs.

Our approach for the generation of precedence relations is based on the ProGen/max
procedure (Kolisch et al., 1995; Schwindt, 1998). To create a diversified dataset, we varied
the parameters used for the generation of the precedence graph: Order Strength (OS) and the
ratio between sequential and parallel arcs (SP) (Coelho & Vanhoucke, 2020; Vanhoucke et
al., 2016). To illustrate the variety of the generated instances, two different examples with
20 jobs and 19 precedence relations are shown in Fig. 2. Table 5 presents the summary of
the parameters of the generated datasets.

There are three datasets, having a different number of resources and jobs, with different
precedence graph sizes and structures. Within our numerical experiment, we first evaluate
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the frequency of original schedule π A remaining applicable to instance B and remaining
optimal. Secondly, we assess the accuracy of our upper bound on the difference of the values
of the objective function for the optimal solution found for instance B, and the value obtained
with the application of solution for instance A.

For each instance A, we find an optimal solution (or a suboptimal obtained with a time
limit). Instances B are generated on the basis of datasets of instances A in Table 5 with
some fluctuations in parameters Wjr and Lrt since in practice they are frequently affected
by unexpected changes. The value of the magnitude of generated changes in instances B
is measured with |δ|. Firstly, we vary workload Wjr . With a fixed magnitude of changes
|δ| = 5.0 (equal to 10% ofWU ), we increase the number of changes from 1 to 30, that is the
maximal value, as Nmax = |J | · |R| = 30. For each group and each pair magnitude-quantity
of changes, we test 200 different instances. We use the MILP model described in Sect. 3 and
solver CPLEX 12.10 to solve all instances A and B for comparison. The LP subproblem (see
Definition 7) is used to obtain an optimal solution σ B(π A) based on given schedule π A. We
measure the accuracy G(A, B) of our estimation with the following indicator:

G(A, B) = V B(σ B(π A)) − V B(σ B(π B))

�π(A, B)
. (32)

We note that G(A, B) = 0 when V B(σ B(π A)) = V B(σ B(π B)), meaning that schedule π A

remains optimal and provides an optimal solution for instance B in polynomial time. The
obtained results are discussed in the following subsection.

5.2 Results

We start with dataset inst_j10_r3. The results are presented in Table 6. As we can observe,
the accuracy is predictably decreasing with the amplitude of changes. A real value of the
difference in the objective function is between 0.18 and 0.3 in our estimation. We note that
the schedule is quite stable in terms of optimality for one change. For about 30–40% of
instances, it is possible to reconstruct the solution for a modified instance with an existing
schedule and keep it optimal. With variations in the given available resource amount Lrt

values, we can make the same conclusion. A lot of variations of low magnitude gradually
reduce the percentage of schedules remaining optimal, with a relative accuracy decreasing
from 0.3 to 0.1.

We increase the number of jobs in the second dataset inst_j15_r3. The results are reported
in Table 7. For this dataset, we also note that the schedule is more stable in the case of a single
change. Finally, the results for the third dataset inst_j20_r5 are presented in Table 8. For this
last dataset, we note that with an increased scale of instances, the mean relative accuracy has
been increased.

Experimental results demonstrate that a schedule had significant stability in terms of
optimality in many considered cases. The reallocation of resources within the same schedule
works better for a single change, but it is also possible for some instances with multiple
changes. The value of relative accuracy G(A, B) for the cases where the optimality has not
been reached is gradually decreasing with a number and a magnitude of changes. As can
be shown, the increase of the problem scale with additional jobs and resource types does
not reduce the accuracy of the method, as a consequence, the method can be also applied to
large-scale problem instances.

The realized tests provide important information for the decision-makers. First of all, it
can be observed that the solution or schedule optimality can be kept for the modified problem
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Table 6 Results for dataset group inst_j10_r3

Variations N changes |δ| % Cases π A = π B

(remains optimal)
Other cases: G(A,B)

Min Mean Max

Wjr , with Nmax = 30 1 5.0 40 0.0001 0.3267 0.7826

5 15 0.0009 0.2713 0.7679

10 3 0.0011 0.2239 0.6551

20 0 0.0466 0.1971 0.4700

30 0 0.0351 0.1817 0.4592

1 10.0 41 0.0222 0.4505 1.0

15.0 28 0.0013 0.3324 0.9310

20.0 39 0.0046 0.3156 0.9756

Lrt , with Nmax = 60 1 5.0 60 0.0047 0.3132 0.9636

5 17 0.0012 0.1727 0.5015

10 3 0.0049 0.1554 0.3975

20 0 0.0110 0.1312 0.3099

30 1 0.0017 0.1257 0.2933

40 0 0.0169 0.1096 0.2783

1 10.0 45 0.0015 0.2871 0.9297

20.0 35 0.0009 0.2059 0.6129

30.0 41 0.0001 0.1539 0.6507

40.0 49 0.0028 0.1822 0.6147

instance in many cases, up to 60% of problem instances of a dataset. Therefore, with a simple
check with the developed Lemmas, the decision makers can receive information about the
stability of the existing solution even if the parameters of the problem instance change (e.g.
some costs increase or decrease, or the availability of resources ismodified). This is extremely
important in practice, since all changes in the established schedule may bring unexpected
consequences in terms of disruptions or quality problems, especially if they imply changes
in the information communicated to the human operators that usually can decrease their
performances in the situation of frequent changes.

The second important managerial insight is that the quality of the accuracy estimation
does not decrease with the increase of the scale of the problem in terms of jobs or the number
of resources. As a consequence, the proposed method remains applicable and even more
useful for large-size projects where the exact resolution of a new problem instance can take
considerable time.

6 Conclusions

Uncertainty management plays an important role in the efficient project scheduling. In this
paper, we considered the generalized formulation of the resource leveling problem with
flexible job duration under the uncertainty of input data. The analysis of the literature showed
that neither reactive nor sensitivity analysis methods have been previously developed for
this problem. In this paper, to fill this gap, we elaborated a new approach based on metric
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Table 7 Results for dataset inst_j15_r3

Changed N changes |δ| % Cases π A = π B

(remains optimal)
Other cases: G(A,B)

Min Mean Max

Wjr , with Nmax = 45 1 5.0 47 0.0047 0.3809 0.9686

10 5 0.099 0.1923 0.4879

20 1 0.0038 0.1691 0.3641

30 0 0.0002 0.1440 0.3606

40 0 0.0103 0.1233 0.2813

1 10.0 40 0.0008 0.2746 0.8242

20.0 31 0.0123 0.3633 0.8714

30.0 36 0.0031 0.3356 0.9300

40.0 28 0.0001 0.3401 0.8933

Lrt , with Nmax = 75 1 5.0 55 0.0026 0.3539 0.9305

20 1 0.0051 0.1226 0.4231

40 0 0.0096 0.1218 0.2371

60 0 0.0124 0.1035 0.2101

1 10.0 42 0.0047 0.3404 1.0

20.0 46 0.0001 0.3043 0.8946

30.0 36 0.0032 0.2947 0.9681

40.0 37 0.0157 0.2493 0.9301

estimation of the impact of the fluctuations in the input parameters on the final solution and
the objective function which minimized the total cost of extra resources required to finish the
project in time.

The main idea behind this approach was to use a known solution of one instance to
estimate the value of the objective function for another instance not solved yet on the basis
of the analysis of the differences in the parameters between these two instances. We have
demonstrated the applicability of our approach for the GRLP instances having the same
dimension and same precedence constraints through an extended numerical experiment. The
fluctuations in all resource-job parameters have been analyzed with this method in order
to estimate their impact on the value of the objective function and on the applicability of
the known solution for the scheduling part of the new problem and the resource allocation
part. We have shown the conditions to be respected to conduct such an analysis and we have
developed the estimation method for each type of input data fluctuations.

The obtained results showed that the developed approach could be used to apply the same
baseline schedule for a large variety of instances and even to guarantee optimality in some
cases. Due to our approach, it became possible to estimate for each fluctuation in input
parameters, if the initially found solution remains feasible, optimal, or partially optimal (i.e.
if the original schedule can be kept but the resource allocation should be recalculated). It
became also possible due to our approach to estimate the gap in the value of the objective
function for the cases where the known solution loses its optimality. These contributions
form a basis for an efficient reactive re-optimization approach that can be completed in a
consequent study.
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Table 8 Results for dataset inst_j20_r5

Variations N changes |δ| % Cases π A = π B

(remains optimal)
Other cases: G(A,B)

Min Mean Max

Wjr , with Nmax = 100 1 5.0 39 0.0015 0.3880 1.0

2 35 0.0024 0.3509 0.9219

3 27 0.0105 0.2896 0.9789

4 22 0.0009 0.2355 0.8836

5 22 0.0014 0.2271 0.9314

6 12 0.0070 0.1976 0.8712

7 14 0.0010 0.1586 0.8450

8 17 0.0003 0.1740 0.8093

9 9 0.0081 0.1577 0.8290

10 9 0.0018 0.1847 0.9628

20 4 0.0021 0.1299 0.6112

30 4 0.0015 0.1121 0.6652

40 3 0.0081 0.1067 0.6300

1 10.0 37 0.0052 0.4120 0.9511

20.0 33 0.0150 0.3929 0.9639

30.0 33 0.0113 0.4455 1.0

40.0 23 0.0073 0.4002 1.0

Lrt , with Nmax = 150 1 5.0 53 0.0033 0.4043 1.0

2 32 0.0014 0.3621 0.9964

3 23 0.0034 0.2541 0.9452

4 21 0.0097 0.2257 0.9905

5 15 0.0035 0.2047 0.9604

6 20 0.0083 0.1714 0.6456

7 12 0.0006 0.1842 0.7771

8 10 0.0002 0.1530 0.4659

9 7 0.0051 0.1449 0.5921

20 2 0.0001 0.1124 0.3250

40 0 0.0044 0.1033 0.2825

60 0 0.0218 0.0907 0.1834

1 10.0 41 0.0057 0.3906 1.0

20.0 35 0.0091 0.3502 0.9911

30.0 30 0.0005 0.3309 0.9991

40.0 24 0.0047 0.3052 0.9577

There are also other perspectives for further research. In our study, we considered the
precedence constraints unchangeable. In a general case, modifications in precedence con-
straints will imply important changes in the structure of feasible and optimal solutions, but
it will be interesting to investigate the existence of particular cases with possibly a less sig-
nificant impact. Also, the present study was dedicated to the RLP, but a similar approach
can be developed for other problems belonging to the project scheduling class with flexi-
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ble resource requirements and aggregated linear objective functions. However, an original
RCPSP with strict resource limits seems to be very difficult for the application of a metric
approach because of its high sensitivity to the changes in resource availability that make
easily an instance unfeasible.
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Appendix A. Lemmas with proofs

Lemma 1 Let instances A and B differ only in parameters er . If we apply the same solution
σ to the both instances, the upper bound for objective function values difference is

|V A(σ ) − V B(σ )| ≤ ρσ
e (A, B), (A.1)

where ρσ
e (A, B) is represented in the following form

ρσ
e (A, B) = max

⎧
⎨

⎩
∑

r∈R

[eAr − eBr ]−
∑

j∈J

W jr ,
∑

r∈R

[eAr − eBr ]+
∑

j∈J

W jr

⎫
⎬

⎭ . (A.2)

We use [..]− and [. . .]+ to define [x]− = min{x, 0}, and [x]+ = max{x, 0}.
Proof

|V A(σ ) − V B(σ )| = |
∑

r∈R

∑

t∈T
eAr o

A
rt −

∑

r∈R

∑

t∈T
eBr o

B
rt |,

here ort = max{0, ∑
j∈J

c jr t − Lrt },

|V A(σ ) − V B(σ )| =
∑

r∈R

|eAr − eBr |
∑

t∈T
max

⎧
⎨

⎩0,
∑

j∈J

c jr t − Lrt

⎫
⎬

⎭ .

The right side is still solution-dependent, for each resource type the extra cost difference is
multiplied by actual overload volume in the solution σ .We can form the solution-independent
estimation with an upper bound for each r ∈ R

∑

t∈T
max

⎧
⎨

⎩0,
∑

j∈J

c jr t − Lrt

⎫
⎬

⎭ ≤
∑

j∈J

W jr .

Then we have a solution-independent aggregated upper bound:

|V A(σ ) − V B(σ )| ≤
∑

r∈R

|eAr − eBr |
∑

j∈J

W jr . (A.3)

Moreover, we note that with this objective function form the aggregated positive and negative
values of the difference eAr − eBr compensate each other. If there exist two resource types
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r1, r2 ∈ R, and eAr1 < eBr1 , e
A
r2 > eBr2 , then the total objective function values difference will

be in a range
⎡

⎣(eBr2 − eAr2)
∑

j∈J

W jr2 , (e
B
r1 − eAr1)

∑

j∈J

W jr1

⎤

⎦ .

In a general case with an arbitrary set R, we can estimate the difference as

ρσ
e (A, B) = max

⎧
⎨

⎩
∑

r∈R

min
{
eAr − eBr , 0

} ∑

j∈J

W jr ,
∑

r∈R

max
{
eAr − eBr , 0

} ∑

j∈J

W jr

⎫
⎬

⎭ .

�	

Lemma 2 Let instances A and B differ only in parameters er . If we apply the optimal solution
of instance A σ A as a solution to instance B, then the upper bound for objective function
values difference is

V B(σ A) − V B(σ B) ≤ �σ
e (A, B) =

∑

r∈R

|eAr − eBr |
∑

j∈J

W jr . (A.4)

Proof We note that V B(σ A) ≥ V B(σ B) and V A(σ B) ≥ V A(σ A) for any pair of cases A
and B, so there exist six options of ordering these values:

1. V A(σ A) ≤ V A(σ B) ≤ V B(σ B) ≤ V B(σ A);
2. V B(σ B) ≤ V B(σ A) ≤ V A(σ A) ≤ V A(σ B);
3. V A(σ A) ≤ V B(σ B) ≤ V A(σ B) ≤ V B(σ A);
4. V B(σ B) ≤ V A(σ A) ≤ V B(σ A) ≤ V A(σ B);
5. V B(σ B) ≤ V A(σ A) ≤ V A(σ B) ≤ V B(σ A);
6. V A(σ A) ≤ V B(σ B) ≤ V B(σ A) ≤ V A(σ B);

Here in cases 1–4, we can use lemma 1 to prove that considered difference is less than the
right side of inequality (A.3). In this inequality, the same solution is applied to both instances,
so this is correct for the values of V B(σ A) and V B(σ B) within the bounds of a similar form
(for example, in the first case it is bounded by V A(σ A) and V B(σ A)).

We prove the same for case 5 in the following way. We use the same approach as in
Lemma 1. Firstly, we show that the difference

V A(σ A) − V B(σ B) ≤
∑

r∈R

[eAr − eBr ]+
∑

j∈J

W jr .

The changed instance B can provide a better solution only with a reduction of cost. Secondly,
we estimate this difference

V B(σ A) − V A(σ A) ≤
∑

r∈R

[eAr − eBr ]−
∑

j∈J

W jr .

In instance B,the same solution σ A may provide a worse objective function value, with the
difference up to the total reduction of resource amount. These two components are bounded
and form the initial difference V B(σ A) − V B(σ B), in total the upper bound is the same as
in inequality (A.4). The same logic can be applied for case 6. �	
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Lemma 3 Let instances A and B differ only by parameters Lrt . If we apply the same solution
σ to the both instances, the upper bound for objective function values difference can be
evaluated as follows:

|V A(σ ) − V B(σ )| ≤ ρσ
L (A, B), (A.5)

where ρσ
L (A, B) is a particular metric estimation,

ρσ
L (A, B) = max

{
∑

r∈R

er
∑

t∈T
[LB

rt − L A
rt ]+,

∑

r∈R

er
∑

t∈T
[LB

rt − L A
rt ]−

}
. (A.6)

Proof

|V A(σ ) − V B(σ )| = |
∑

r∈R

∑

t∈T
eAr o

A
rt −

∑

r∈R

∑

t∈T
eBr o

B
rt |, (A.7)

here ort = max{0, ∑
j∈J

c jr t −Lrt }, and taking into account that costs are equal eAr = eBr = er

and |max{a, b} − max{c, d}| ≤ max{|a − c|, |b − d|},

|V A(σ ) − V B(σ )| ≤
∑

r∈R

∑

t∈T
|eAr

⎛

⎝
∑

j∈J

c jr t − L A
rt

⎞

⎠ − eBr

⎛

⎝
∑

j∈J

c jr t − LB
rt

⎞

⎠ |. (A.8)

For identical solutions, we obtain the following result:

|V A(σ ) − V B(σ )| ≤
∑

r∈R

er
∑

t∈T
|L A

rt − LB
rt |. (A.9)

As in Lemma 1, we propose a precise upper estimation ρL(A, B).
In instance B, several resources are available differently from instance A, each difference

�Lrt 
= 0 leads to a limited possible impact on the value of the objective function.
Suppose that the first difference is positive, i.e. �L1 > 0. Then the objective function

difference lieswithin [0,�V1],where�V1 is�L1 multiplied by corresponding extra resource
usage cost er . If there is another�L2 > 0, then the impact on the objective is [0,�V1+�V2].
If �L3 < 0, then the range left bound is shifted: [�V3,�V1 + �V2]).

If we take into account all k differences, aggregated range for the objective function value
variation is

⎡

⎣
k∑

i=1

min {�Vi , 0} ,

k∑

j=1

max
{
�Vj , 0

}
⎤

⎦ ,

i.e. here bounds are formed by the sum of all negative and positive changes. More precisely,
�Vx = er�Lx if �Lx = LB

rt − L A
rt (it was applied at period t for resource r ). Then we

can represent the range of possible differences in the values of the objective function in the
following way

[
∑

r∈R

er
∑

t∈T
min

{
(LB

rt − L A
rt ), 0

}
,
∑

r∈R

er
∑

t∈T
max

{
(LB

rt − L A
rt ), 0

}]
.

We can compare absolute values of these bounds to estimate the absolute value of the differ-
ence:
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ρσ
L (A, B) = max

{
∑

r∈R

er
∑

t∈T
[LB

rt − L A
rt ]−,

∑

r∈R

er
∑

t∈T
[LB

rt − L A
rt ]+

}
.

�	
Lemma 4 Let instances A and B differ only in parameters Lrt . If we apply optimal solution
of instance A σ A to instance B, then the upper bound for the difference in the value of the
objective function can be evaluated as follows:

V B(σ A) − V B(σ B) ≤ �σ
L(A, B) =

∑

r∈R

er
∑

t∈T
|L A

rt − LB
rt | (A.10)

Proof We consider the same cases as for Lemma 2. For cases 1–4, we can again use Lemma 3
to prove that the considered difference is less than the right side of inequality (A.9).

A special case 5 is considered in the same way. Instance B can provide a better solution
only with additional amount of resources:

V A(σ A) − V B(σ B) ≤
∑

r∈R

er
∑

t∈T
[LB

rt − L A
rt ]+

For instance B, the same solution σ A may provide a worse value of the objective function,
in this case, the difference can be estimated as follows:

V B(σ A) − V A(σ A) ≤
∑

r∈R

er
∑

t∈T
[LB

rt − L A
rt ]−

These two components form the initial difference in the inequality (A.9). �	
Lemma 5 Let instances A and B differ only in parameters pmin, jr or (and) pmax, jr . If a
solution σ is applicable to both instances, there is no change for the objective function value,
i.e.

V A(σ ) = V B(σ ), ρpmin/max (A, B) = 0.

Proof These parameters limit the amount of workload and resource r ∈ R utilized by job
j ∈ J , but do not modify directly the value of the objective function. As it was mentioned
above,

|V A(σ ) − V B(σ )| = |
∑

r∈R

∑

t∈T
oArt −

∑

r∈R

∑

t∈T
oBrt |,

and ort = max{0, er ( ∑
j∈J

c jr t − Lrt )}. If σ is applicable to A and B, then

dσ
j t p

A
min, jr ≤ cσ

jr t ≤ dσ
j t p

A
max, jr , j ∈ J , r ∈ R, t ∈ T ;

dσ
j t p

B
min, jr ≤ cσ

jr t ≤ dσ
j t p

B
max, jr , j ∈ J , r ∈ R, t ∈ T ;

the values of cσ
jr t will not be changed, as any other part of |V A(σ ) − V B(σ )|. �	

Lemma 6 Let instances A and B differ only in parameters pmax, jr and/or pmin, jr . Suppose
that an optimal solution σ A of instance A is applicable to instance B and an optimal solution
σ B of instance B is applicable to instance A. If we apply an optimal solution of instance A
i.e. σ A as a solution to instance B, then we obtain the same value of the objective function.

�σ
a,pmin/max

(A, B) = V B(σ A) − V B(σ B) = 0 (A.11)
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Proof With the condition that both solutions are applicable to both instances, we can
directly use Lemma 1, as we can estimate all the components (ρp,max (A, B, sigmaA),
ρp,max (A, B, sigmaB), as well as the same values for pmin, jr ).

If both solutions are applicable to both instances, it means that it is not necessary tomodify
solution σ A if it is applied to instance B to reach the optimal value of the objective function,
and the same for σ B applied to instance A.

We can also show that the difference can be more than zero if either σ A is not applicable
to B, or σ B is not applicable to A, as a consequence, it is impossible to use Lemmas 1 and 5.
For pmax, jr , if �pmax (A, B) > 0, it means that solution σ A applied to instance B must be
modified to achieve an optimal solution. If pA

max, jr < pBmax, jr , then in some period t we

allocate cBjrt > pA
max, jr d

B
jt of resource r to a job j , so a resulting σ B is not applicable to

instance A. If there is a difference pA
max, jr > pBmax, jr , then it means that in some period

t we have to reduce an allocation of resource r to a job j , as cAjrt > pBmax, jr d
B
jt , so σ A is

not applicable to instance B. It is possible to formulate a similar statement for parameters
pmin, jr . �	

Lemma 7 Let instances A and B differ only in parameters pmax, jr (or pmin, jr ). If a schedule
π is applicable to both instances, there is an upper bound for the difference in the values of
the objective function can be estimated as follows:

|V A(σ A(π)) − V B(σ B(π))| ≤ ρπ
pmax

(A, B) (A.12)

where

ρπ
pmax

(A, B) = md max

⎧
⎨

⎩
∑

r∈R

er
∑

j∈J

[pA
max, jr − pBmax, jr ]−,

∑

r∈R

er
∑

j∈J

[pA
max, jr − pBmax, jr ]+

⎫
⎬

⎭

(A.13)

Proof If pA
max, jr < pBmax, jr for some r ∈ R and j ∈ J in instances A and B, the difference

in the values of their objective function will be within the following range:

[er (pA
max, jr − pBmax, jr )md, 0],

If pA
max, jr > pBmax, jr , the range will be

[0, er (pA
max, jr − pBmax, jr )md],

Any arbitrary set of fluctuations will form the following range representing an estimation
of ρπ

p,max (A, B):

⎡

⎣
∑

r∈R

ermd
∑

j∈J

[
pA
max, jr − pBmax, jr

]−
,
∑

r∈R

ermd
∑

j∈J

[
pA
max, jr − pBmax, jr

]+
⎤

⎦

�	

Lemma 8 Let instances A and B differ only in parameters pmax, jr . Suppose that an optimal
solution σ A of instance A is applicable to instance B and an optimal solution σ B of instance
B is not applicable to instance A. If we apply the optimal solution of instance A σ A as a
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solution to instance B, then the objective function values difference is bounded above by the
following expression

�σ
n,pmax

(A, B) = V B(σ A) − V B(σ B) ≤
∑

r∈R

ermd
∑

j∈J

|pA
max, jr − pBmax, jr | (A.14)

Proof We note that in our case any fluctuation in values pmax, jr (and/or pmin, jr ) does not
impact the objective function, as it was shown in Lemma 5, i.e. V A(σ A) = V B(σ A). We
can use the same approach as in the proof of Lemma 4 to compare V A(σ A) and V B(σ B).
Firstly, the absolute value of the difference has the form:

|V A(σ A) − V B(σ B)| ≤
∑

r∈R

er
∑

t∈T

∑

j∈J

|cAjrt − cBjrt |.

Secondly, taking into account the limits for c jrt ,

pA
min, jr d

A
jt ≤ cAjrt ≤ pA

max, jr d
A
jt

pBmin, jr d
B
jt ≤ cBjrt ≤ pBmax, jr d

B
jt ,

we can provide an upper estimation

|V A(σ A) − V B(σ B)| ≤
∑

r∈R

erm
∑

j∈J

|pA
max, jr − pBmax, jr |d,

as d jt ∈ [0, d] and there are m periods inside the planning horizon. �	
Lemma 9 Let instances A and B differ only by W jr . If we apply the same schedule π to the
both instances, the upper bound for the difference in values of the objective function can be
estimated as follows:

|V A(σ A(π)) − V B(σ B(π))| ≤ ρπ
W (A, B), (A.15)

where

ρπ
W (A, B) = max

⎧
⎨

⎩
∑

r∈R

er
∑

j∈J

[
W A

jr − WB
jr

]+
,
∑

r∈R

er
∑

j∈J

[
W A

jr − WB
jr

]−
⎫
⎬

⎭ . (A.16)

Proof We can refer to the proof of Lemma 3. In this case, it is also possible to evaluate an
upper bound for the difference in the values of the objective function and to consider it as an
independent sum of estimations for fluctuations W A

jr 
= WB
jr .

Each fluctuation W A
jr > WB

jr may lead to the difference in the values of the objective

function within the following range [WB
jr − W A

jr , 0]. An upper bound for an aggregation of
all these changes can be represented with the following range

⎡

⎣
∑

r∈R

er
∑

j∈J

min
{
(WB

jr − W A jr), 0
}

, 0

⎤

⎦ .

The same approach can be applied for the case where W A
jr < WB

jr . The difference in the
values of the objective function caused by all fluctuations of Wjr :

⎡

⎣0,
∑

r∈R

er
∑

j∈J

max
{
(WB

jr − W A jr), 0
}
⎤

⎦ .
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If we regroup the two previous cases, we obtain the following range:
⎡

⎣
∑

r∈R

er
∑

j∈J

min
{
(WB

jr − W A jr), 0
}

,
∑

r∈R

er
∑

j∈J

max
{
(WB

jr − W A jr), 0
}
⎤

⎦ ,

and the following estimation

ρπ
W (A, B) = max

⎧
⎨

⎩
∑

r∈R

er
∑

j∈J

max
{
(W A

jr − WB
jr ), 0

}
,
∑

r∈R

er
∑

j∈J

max
{
(WB

jr − W A
jr ), 0

}
⎫
⎬

⎭

�	
Lemma 10 Let instances A and B differ only in parameters W jr . If we apply the optimal
schedule π A of instance A to instance B, then the upper bound for the difference in the values
of the objective function can be estimated as follows:

V B(σ B(π A)) − V B(σ B(π B)) ≤ �π
W (A, B) =

∑

r∈R

er
∑

j∈J

|W A
jr − WB

jr |. (A.17)

Proof As in the proof of Lemma 4, we consider the following cases V A(σ A(π A));
V B(σ B(π B)); V A(σ A(π B)); V B(σ B(π A)).

For the cases 1–4 and 6, we use Lemma 9, concluding that the considered difference is
less than the right side of inequality (A.16), that is less than (A.17).

We prove the same for case 5 in the following way. We use the same approach as in
Lemma 9. Firstly, we show that the difference

V A(σ A(π A)) − V B(σ B(π B)) ≤
∑

r∈R

er
∑

j∈J

max
{
(W A

jr − WB
jr ), 0

}

Instance B can provide a better solution only with additional amount of resource. Secondly,
we estimate the difference

V B(σ B(π A)) − V A(σ A(π A)) ≤
∑

r∈R

er
∑

j∈J

max
{
(WB

jr − W A
jr ), 0

}

In instance B, the same schedule π A may provide a worse objective function value, with
the difference up to the total reduction of the resource amount. These two components are
bounded and form the initial difference V B(σ B(π A)) − V B(σ B(π B)), therefore, the upper
bound is the same as in inequality (A.16). �	
Lemma 11 Let instances A and B differ in one of parameters pmin, jr . pmax, jr or W jr . Any
schedule π , applicable to instance A, is also applicable to instance B, if B is solvable and:

dB
min, j ≤ d A

min, j ; d A
max, j ≤ dB

max, j ; ∀ j ∈ J , (A.18)

or it can be reformulated in a linear form for the parameters of B:

W B
jr ≤ d A

min, j p
B
max, jr ; d A

max, j p
B
min, jr ≤ WB

jr ; ∀ j ∈ J ; ∀r ∈ R. (A.19)

Proof From Definition 5, we see that a schedule π must guarantee that
∑

t∈T
d jt ∈

[
dB
min, j , d

B
max, j

]
; ∀ j ∈ J .
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If is is applicable to A, then
∑

t∈T
d jt ∈

[
d A
min, j , d

A
max, j

]
; ∀ j ∈ J .

Basically, we can guarantee thatπ is applicable to B if range [d A
min, j , d

A
max, j ] is fully included

in [dB
min, j , d

B
max, j ], so

dB
min, j ≤ d A

min, j ; d A
max, j ≤ dB

max, j ; ∀ j ∈ J .

A linear condition for B is obtained from the definition of dmin, j and dmax, j . If we consider
d A
min, j and d A

max, j given and fixed, we rewrite the conditions (27):

max
r∈R

W B
jr

pBmax, jr

≤ d A
min, j ; d A

max, j ≤ min
r∈R

W B
jr

pBmin, jr

; ∀ j ∈ J ,

and reformulate these conditions without a maximum:

WB
jr

pBmax, jr

≤ d A
min, j ; d A

max, j ≤ WB
jr

pBmin, jr

; ∀ j ∈ J ; ∀r ∈ R.

�	
Theorem 1 Let instances A and E differ by parameters Lrt , W jr , pmin, jr , and pmax, jr . If
we apply a schedule π A that is optimal for instance A to instance E, the upper bound for
difference in the values of the objective function can be estimated as follows:

V E (σ E (π A)) − V E (σ E ) ≤ �π(A, E); (A.20)

and

�π(A, E) = �π
L (A, E) + �π

pmin
(A, E) + �π

pmax
(A, E) + �π

W (A, E). (A.21)

Proof It is possible to separate this function:

• B, all parameters equal to instance A except Lrt , and LB
rt = LE

rt ;
• C , all parameters equal to instance B except pmin, jr , pCmin, jr = pEmin, jr ;

• D, all parameters equal to instance E except pmax, jr , pDmax, jr = pEmax, jr ;

We note that instances D and E differ only in parameters Wjr .
As each expression includes a sumof absolute values,�π(A, E)has an addictive property:

�π(A, E) ≤ �π(A, B) + �π(B,C) + �π(C, D) + �π(D, E).

We take into account that �π(A, B) = �π
L (A, B), �π(B,C) = �π

pmin
(B,C), �π(C, D) =

�π
pmax

(C, D), �π(D, E) = �π
W (D, E), so

V E (σ E (π A)) − V E (σ E ) ≤ �π
L (A, B) + �π

pmin
(B,C) + �π

pmax
(C, D) + �π

W (D, E),

and as the parameters of all instances B, C , D are either equal to parameters A or E ,

V E (σ E (π A)) − V E (σ E ) ≤ �π
L (A, E) + �π

pmin
(A, E) + �π

pmax
(A, E) + �π

W (A, E).

�	
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Lemma 12 Suppose that instance B is produced from instance A by the following trans-
formation: all job-resource-related parameters are multiplied by a coefficient k > 0.
We will define it as k A = B meaning that kL A

rt = LB
rt ; ∀r ∈ R; ∀t ∈ T ; and

kpA
min, jr = pBmin, jr ; kpA

max, jr = pBmax, jr ; kW A
jr = WB

jr ; ∀ j ∈ J ; ∀r ∈ R.

In this case, both instances A and B have the same set of feasible schedules and the set
of optimal schedules with scaled solution variables

kcAjrt = cBjrt ; ∀ j ∈ J ; ∀r ∈ R; koArt = oBrt ; ∀r ∈ R; ∀t ∈ T . (A.22)

Thus, objective function values are also scaled:

V B(σ B) = kV A(σ A). (A.23)

Proof Firstly, this transformation does not change any parameter involved in the definition of
a schedule, applicable to an instance (see Def. 5). It does not change precedence relations nor
values of minimal and maximal duration. These values equal to a ratio of required workload
Wjr and a maximal or a minimal amount of allocated resource (pmax, jr or pmin, jr ), both
multiplied by k. Thus, such a transformed instance is still solvable.

Secondly, we consider the solutions. If schedule π A with variables d A
jt is optimal for

instance A, providing a solution σ A(π A) with variables cAjrt , then this schedule is also

applicable to instance B. It produces a scaled optimal solution σ B(π A) with variables cBjrt .
This solution is also optimal, as the solution variables c jrt are defined on a base of a schedule
(i.e. variablesd jt ), that are connected by the constraints (2).We can represent these constraints
with parameters of instance A:

kpA
min, jr d

A
jt = pBmin, jr d

B
jt ≤ cBjrt

cBjr t ≤ pBmax, jr d
B
jt = kpA

max, jr d
A
jt ,

}
∀ j ∈ J , ∀r ∈ R, ∀t ∈ T ;

and by Wjr with constraints
∑

t∈T
cBjrt = WB

jr = kW A
jr , ∀ j ∈ J , ∀r ∈ R.

All these linear constraints are scaled for instance B, and it keeps the same ratio between all
these parameters. Finally, objective function (3) involves variables: ort ∈ [0,∞)

Minimize
∑

r∈R

∑

t∈T
erort ,

defined by constraints (4):

ort ≥
∑

j∈J

c jr t − Lrt , ∀t ∈ T , ∀r ∈ R;

where both c jrt and Lrt are multiplied by k in instance B:

∑

j∈J

cBjrt − LB
rt = k

⎛

⎝
∑

j∈J

cAjrt − L A
rt

⎞

⎠ , ∀t ∈ T , ∀r ∈ R.

Asweminimize ort , then there is no reason to change neither the structure of the schedule nor
the solution in the changed instance B. That is why the solution with variables cBjrt is optimal,

as well as schedule π A providing it with variables d A
jt . Therefore, there exists solution σ B
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with variables cBjrt = kcAjrt based on the same schedule and it is optimal with the following
objective value

V B(σ B) = kV A(σ A).

�	
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