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Abstract
Industrial 4.0 (I4.0) is believed to revolutionize supply chain (SC) management and the
articles in this domain have experienced remarkable increments in recent years. However,
the existing insights are scattered over different sub-topics and most of the existing review
papers have ignored the underground decision-making process using OR methods. This
paper aims to depict the current state of the art of the articles on SC optimization in I4.0 and
identify the frontiers and limitations as well as the promising research avenue in this arena. In
this study, the systematic literature review methodology combined with the content analysis
is adopted to survey the literature between 2013 and 2022. It contributes to the literature
by identifying the four OR innovations to typify the recent advances in SC optimization:
new modeling conditions, new inputs, new decisions, and new algorithms. Furthermore, we
recommend four promising research avenues in this interplay: (1) incorporating newdecisions
relevant to data-enabled SC decisions, (2) developing data-enabled modeling approaches, (3)
preprocessing parameters, and (4) developing data-enabled algorithms. Scholars can take this
investigation as a means to ignite collaborative research that tackles the emerging problems
in business, whereas practitioners can glean a better understanding of how to employ their
OR experts to support digital SC decision-making.
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1 Introduction

Over the last decades, supply chain (SC) management has been driven by the boom of
industrial 4.0 (I4.0) toward a more efficient and greener system. The notion of I4.0 was
initially coined by the German economic development agency to represent the emerging
information and communication technologies that connect the physical and digital domains
in industry (Olsen & Tomlin, 2020). Individually and collectively, this concept encompasses
a set of future industrial developments regarding the Internet of Things (IoT), cyber physical
systems (CPS), artificial intelligence (AI), machine learning (ML), data mining (DM), cloud
computing (CC), blockchain, and big data (BD) analytics. The SC in I4.0 is also labeled
as a smart system ( Zhang et al., 2022a, 2022b) or a digital system (Agrawal et al., 2023;
Seyedghorban et al., 2020). Although different notions have been used to label the SC in I4.0,
two streams of underlying data technologies are worth noting. The first group is relevant
to data generation, such as sensors and Radio Frequency Identification (RFID), while the
second group is data analytical techniques, such as AI and ML. For SC management, I4.0
builds a data-enriched environment and offers the possibility of cost reduction, flexibility
enhancement, and delivery improvement as well as the opportunity to alleviate the inherent
tensions between these pivotal operational priorities (Nayernia et al., 2022; Taddei et al.,
2022).

The increasing significance of the data to organizational success has stimulated the SC
community to explore data-intensive SC optimization (Liu et al., 2021; Nguyen et al.,
2022a, 2022b). I4.0 also creates unprecedented modeling challenges for traditional Oper-
ation Research (OR) methodologies (Gupta et al., 2022; Hazen et al., 2018; Jabbour et al.,
2020). Although the articles in this domain have experienced remarkable increments in recent
years, the existing insights are scattered over different literature sources and there is a lack
of a structured and unbiased review methodology to systematize the OR methods for SC
optimization in I4.0. A comprehensive analysis of noteworthy contributions made in the SC
optimization domain can build better OR methods and refine the underlying theories in I4.0.

This paper aims to depict the state-of-art articles on SC optimization in I4.0 and identify
the frontiers and limitations as well as the promising research avenue in this interplay. In
this study, the systematic literature review (SLR) methodology integrated with the content
analysis is adopted to survey the literature on the topic of SC optimization and explore the
OR innovations in the context of I4.0 to realize the following: (1) The I4.0 technologies that
can be implemented for SC optimization; (2) The SC decisions that can be optimized in
I4.0; (3) Establishing the ORmethods to address the SC optimization in I4.0; (4) The current
challenges for SC optimization while implementing I4.0, and the future directions to be taken
in terms of innovations in OR methodology.

To the best of our knowledge, it is among the first efforts to review the present status of
the articles on SC optimization in I4.0 from an OR perspective. The linkage between the OR
methods and the I4.0 technologies established in this review provides valuable insights to the
academic community and industry in exploiting SC optimization at different decision levels.

The rest of the paper proceeds as follows. Section 2 analyzed the previous reviews in this
area and identified the research gaps. The research methodology is presented in Sect. 3. The
statistical observations are presented in Sect. 4. The review findings are presented in Sect. 5.
Section 6 summarizes the gaps and future research needs. Finally, in Sect. 7, we present
our conclusions as well as the main contributions. The abbreviations used in this study are
presented in Appendix 1.
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2 Previous reviews and research gaps

A set of literature reviews on I4.0 technologies and SC has been conducted by scholars. In
order to clarify the need for this study, the OR methodologies, Industrial 4.0 technologies,
topic, and the year of the review articles of the recent review studies are compared with our
paper in Table 1.

Table 1 reports that no comprehensive review analysis in SC optimization, which connects
I4.0 technologies with the OR methods, is observed in the current literature. Most of the
review papers concentrate on the potential of the I4.0 in SC management, for instance, BDA
(Kumar et al., 2023; Talwar et al., 2021) and Blockchain (Antônio Rufino Júnior et al., 2022;
Risso et al., 2023). Although the studies by Nguyen et al., (2022a, 2022b) and Agrawal et al.,
(2023) have used I4.0 and digitalization to represent the data enablers in SC, both of them fall
into the description of the potential applications as well as the associated benefits of the data
technologies. Gupta et al., (2022a) studied the role of AI in decision support systems with
OR approaches. Among all the review papers, only two studies, by Kumar et al., (2023) and
Jahani et al., (2023), have mentioned the OR methods in SC management. However, both of
them have not addressed the fundamental components in problem-solving, like the decision
variables and modeling procedure.

The current studies have paid attention to the impacts of I4.0 on SC but failed to explore
how emerging data technologies can contribute to the decision-making process in SC. More-
over, after 2020, a literature review that considers a broad perspective ofORmethods crossing
maps with the application of I4.0 is still absent. It is worth noting that academic research and
industrial engagement in this transformation have been booming in the past years. By com-
pleting an up-to-date analysis of current research published from 2013 to 2022, the present
study attempts to close this gap.

3 Researchmethodology

The SLR method and the content analysis were employed to provide an exhaustive overview
of the literature on SC optimization in I4.0. The SLR requires a comprehensive research
design and has the advantage of minimizing potential bias in collecting and extracting pub-
lished papers by bringing together the material in an explicitly structured fashion (Kim &
Fortado, 2021). The three phases of the SLR are assembling, arranging and assessing of liter-
ature, which refers to the acquisition, purification, and evaluation of the candidates (Kumar
et al., 2023). We conducted a content analysis of the selected articles during the assessing
phase in order to determine the specific categories that could encompass each of these stud-
ies. Content analysis is known as a replicable technique that allows researchers to evaluate
texts systematically by creating fewer content categories with a manual coding approach
(Kim & Fortado, 2021). Thus, the combination of the SLR method and the content analysis
enabled us to recognize and highlight the theories and techniques used and reveal similarities,
differences, original research gaps, and promising avenues for future research.

3.1 Literature collection and extraction

Literature inclusion and exclusion followed a structured screening process while confining
our search to papers published in the period 2013–2022. Figure 1 summarizes the systematic
article search and extraction processes.
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Fig. 1 Overview of search strategies and collective results

In Step 1, the scope of the target articles was delimited by focusing on SC optimization in
I4.0. Thus, two groups of keywords created 44 combinations of keyword pairs for collecting
articles between 2013 and 2022:

Group 1: Words related to industrial 4.0: “RFID”; “cyber”; “big data”; “Industrial 4.0′′;
“AI/artificial intelligence”; “data mining”; “machine learning”; “smart”; " blockchain”;
“cloud computing”; “digital/digitalization”.

Group 2: Words related to SC management: “supply chain”; “logistics”; “supplier”; “in-
ventory”.

In Step 2, the articles whose abstracts contain the combined keywords are collected from
two data sources. Data source 1 refers to the core database of the "Web of Science" (WOS),
which provides extensive coverage of peer-reviewed scientific literature (Diaz-Balteiro et al.,
2017; Wang et al., 2019). Data source 2 represents journals with star ratings above 1 on the
Association of Business School list, which are not included in the WOS, in the categories
of Operations and Technology Management and Operations Research and Management Sci-
ence. In this step, 14,847 results were obtained from the two databases.

In Step 3, the articles are examined and eliminated using three criteria. Firstly, the abstract
of the articles was examined for related content, namely, papers that failed to address SC
optimization with ORmethods were excluded. Thus, review and conceptual papers were also
removed. Secondly, since the revolutionized impact of I4.0 depends on the value extraction
from real-time data and big data, the papers that focus on the foundational value of the infor-
mation technologies, such as accuracy improvement using RFID or seniors, were excluded.
Thirdly, articles confined to AI algorithms, such as artificial bee colony algorithms, fuzzy
sets, and artificial neural networks (ANN), were also removed. Finally, we identified 212
highly related papers for further analysis.

3.2 Literature evaluation with content analysis

The content analysis ensures that the classification is trustworthy and thorough. The literature
was classified and reviewed with content analysis following the literature evaluation frame-
work in Fig. 2. Both inductive and deductive approaches in content analysis were employed
to classify the articles into a set of categories so that their characteristics and contributions
are identified and analyzed. In the deductive approach, the categories are defined in advance
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Fig. 2 Literature evaluation framework

before analyzing the contents, whereas in the inductive approach, they are identified by ana-
lyzing the sample (Abedinnia et al., 2017). The first three groups along with their sub-groups
are produced with a deductive approach based on the previous review articles in the literature
representing the characteristics of SC optimization I4.0:

1. I4.0 technologies: A group of keywords was used to represent the data enablers in I4.0;
however, not all technologieswere included in the final paper database, as shown in Fig. 2.
Most of the papers addressing sensors, digital twins, or I4.0 were conceptual analyses
and failed to fit the criteria for further analysis. Hybrid indicates the occurrence of an
industrial problem involving two or more I4.0 technologies.

2. SC optimization levels: The sample was grouped into three categories according to the
duration of the impact of the decisions on SC operations: strategic, tactical, and opera-
tional decisions, which were distinguished based on the time duration of their impacts on
the SC and were separately evaluated by years, months, weeks, or days (Barbosa-Póvoa
et al., 2018). Because low-level decisions are often synchronized with high-level deci-
sions, such as logistics flows and facility location in SC network design, the papers about
strategic decisions were grouped at the strategic level. Papers focusing on operational
decisions separately were classified into the operational category.

3. OR methods: The publications were classified based on the problem scopes, modeling
approaches, and the solution approach to solve the SC problem. The linkage among the
I4.0 technologies, SC decisions, and OR methods was identified.

The following two groups along with their sub-groups are generated using the inductive
method, the contents of the sample articles were analyzed thoroughly to identify the benefits
of the adoption of the I4.0 in SC and indicate research frontiers and opportunities for future
study.

4. Metrics: The metrics in papers indicate the objectives that can be achieved by the orga-
nizations by connecting the I4.0 technologies and OR methods.

5. Challenges and opportunities: The challenges in terms of four newmodeling components
and the future research agenda were presented.
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Fig. 3 Thematic categorization of selected papers

4 Publicationmeta-analyses

To illustrate the distribution of the reviewed articles, we have tailed the collection in the
function of publication time, epitomized the contributing journals, compiled the decision
levels, and timed the I4.0 technologies and modeling techniques.

4.1 Thematic categorization

Figure 3 shows the chronological development of the collections and their thematic scopes.
The different blocks in the figure document the allocation to the eight main I4.0 categories
that have been adopted to convey SC optimization with OR methods. The number of studies
in this domain has been continuously increasing since 2013. Specifically, the number of
articles almost tripled in 2020. Blockchain, IoT and ML are among the top three groups that
have been addressed mostly by the selected papers.

4.2 Industrial 4.0 technologies categorization

The implementation of I4.0 in the SC optimization was quite diverse (Fig. 4), and the technol-
ogy spectrum is still expanding and evolving. To avoid any misunderstanding, we coupled an
article with an I4.0 technology only when the paper specified this technology with identified
algorithms. For instance, a study investigating data mining was not tagged as a paper with
AI. Articles were grouped according to the exact algorithms if more than one I4.0 technology
have been mentioned. For instance, both AI and ML are addressed by Euchi et al., (2020),
however, it was marked as an ML paper because the proposed solution is mainly based on
the k-means clustering method (Gambella et al., 2021). A detailed analysis of the technical
terms in I4.0 is available in Dalenogare et al., (2018) and Koh et al., (2019).

Figure 4 shows that 40.1% of the I4.0 technologies were deployed in strategic decision-
making. The decisions on the investment in blockchain and IoT are the main contributors to
this category. In a similar vein, the two data technologies are also among the mainstreams
of the articles at the tactical level. Operational decisions, such as scheduling and delivery,
occupied 29.2% of the sample and mainly benefitted from ML.
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Fig. 4 Industrial 4.0 categorization of selected papers

4.3 Journals categorization

A total of 212 papers, for further analysis, were collected from 53 journals, 11 of which
contributedmore than five papers (See Fig. 5), and 28 journals encompassed one related paper
each. All the top three contributing journals, including the International Journal of Production
Research, Computers & Industrial Engineering, and Annals of Operations Research, fall into
the Management Science and Operations research spectrum (See Fig. 5). After a thorough
scrutinization, it is surprising to observe that some of the leading journals only have limited
articles in this crossing domain. For instance, Decision Sciences and Journal of Operations
Management, the former has one qualified article (Cai et al., 2020) and no article is detected
in the latter. The detailed journal categorization of the selected 212 articles is reported in
Appendix 2.

Fig. 5 Journals categorization of selected papers
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Fig. 6 Modeling methodological categorization of selected papers

4.4 Modelingmethodological categorization

The OR methods used in the reviewed articles are illustrated in Fig. 6. Although such clas-
sifications can overlap, attempts were made to place all the articles into appropriate groups.
Among these categories, the game-theoretic (GT) approach is the most frequently applied
method for assessing the cost and benefit of I4.0. Integer linear programming (ILP)- and
fuzzy-based approaches are popular methods. The former is common in vehicle routing
problems (VRP) (Chen et al., 2013; Moradi, 2020), whereas the latter is often employed in
supplier selection (Chen et al., 2020; Liou et al., 2021) and network design (Abbasi et al.,
2020; Hajipour et al., 2019). In this study, we identified a newmodelingmethod, the real-time
data-driven programming (RDP) approach, in five articles. Moreover, 47 papers, accounting
for 22.3%of the reviewed articles, developedmathematicalmodels that cannot be categorized
into one of the well-known modeling methodologies. This implies that the SC optimization
becomes more intricate in I4.0, and it is difficult to establish models following the standard
programming structure. Thus, innovation in OR approaches is required to respond to the new
SC arena.

5 Summary of review findings

5.1 Role of industrial 4.0 technologies in supply chain optimization

Internet of Things IoT is a system of objects equipped with electronics, such as RFID and
sensors, with the capability of collecting and sharing data (time, location, quantity, etc.). The
IoT allows the items to be sensed and identified remotely across the SC network, creating
opportunities for optimizing inventory levels, parcel delivery schedules, and vehicle routes in
SC. Themost recent industrial advances are related to decreasing product losses and lead time
of transportation (Hajipour et al., 2019), detecting anomalies in logistics (Cao et al., 2019;
Mejjaouli & Babiceanu, 2015; Sun et al., 2020), monitoring risks in cold chains(Tsang et al.,
2018), tracking spare parts (Karatas & Kutanoglu, 2020), screening the perishable inventory
level (Liou et al., 2021; Stefánsdóttir et al., 2022; Yang et al., 2019), and dispatching and
picking up orders of online services (Liu et al., 2019a, 2019b; Sun & Ji, 2022; Wang et al.,
2020).
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Artificial intelligence AI is a data-learning system with the ability to discover and reveal
hidden rules and patterns in business. Popular AI algorithms comprise bio-inspired algo-
rithms, such as neural networks, swarm intelligence, and algorithms for unstructured data
analysis, such as natural languages and cognitive computing. AI is competitive in dealing
with sophisticated decision-making problems, where the optimal or exact solutions are either
too expensive or difficult to be produced (Preil & Krapp, 2022). It has been integrated with
OR methods in demand management (Duan et al., 2019; Liu et al., 2022a, 2022b), inventory
control (Preil & Krapp, 2022; Tsang et al., 2020), supplier selection ( Kuo et al., 2015), and
SC design (Cai et al., 2022; Zhang et al., 2017).

Machine learningAmong the AI spectrum, ML techniques have recently gained attention
because of their high efficiency in analyzing real-time data. The widely used ML algorithms
in SC are supervised, unsupervised, and reinforcement learning (Riahi et al., 2021). Studies
have adopted ML to forecast customer demands (Ren et al., 2020; Zhu et al., 2021), analyze
production feasibility in SC design (Bhosekar & Ierapetritou, 2021), and generate vehicle
routes for product delivery (Jun & Lee, 2022; Ren et al., 2022). ML has also been combined
with the heuristic algorithm to solve OR problems (Chobar et al., 2022; Gumte et al., 2021;
Moradi, 2020).

Block chain Blockchain technology changes the power relationships in SC by allowing
organizations to manage their data in a decentralized manner via consensus-based validation
protocols and cryptographic signatures, rather than in a centralized legacy system. It is often
mentioned as a transparent, secure, efficient, confident, and immutable solution for tracking,
tracing, and verifying transactions across the SC (Chang et al., 2021; De Giovanni, 2020).
The recent progress in blockchain includes intelligent contracting (Choi et al., 2020; Zheng
et al., 2020), risk management (Choi, 2020; Lohmer et al., 2020; Niu et al., 2022), quality
verification (Shen et al., 2021; Yang et al., 2022a, 2022b), cryptocurrency payment (Yuze Li
et al., 2021), and information recording and sharing (Maity et al., 2021; Niu et al., 2021a,
2021b; Wang et al., 2021) in SC.

Data mining DM is the extraction of unexpected valuable knowledge or patterns from
large datasets. Its applications have been directed at rule mining, like dispatching rule in
logistics (W. Chen et al., 2013), purchase patterns for anticipatory shipping (Lee, 2017; Viet
et al., 2020), and rule selection for reducing the inventory level (Dev et al., 2016). Another
interesting research stream has used the DM method to preprocess the input data of the
parameters in ORmodels (Gumte et al., 2021; Li, 2019). In addition, it has also been adopted
to extract knowledge from historical data for supplier evaluation (Liou et al., 2021).

Big data analytics BD is often referred to as vast volumes and diverse datasets with
complex relations. BD has been labeled with 3 V features, namely high volume, variety, and
velocity (Lamba & Singh, 2017; Mishra & Singh, 2022) or 5 V features by adding veracity
and value (Ivanov et al., 2019). Thus, the term BD analytics is used by academia to interpret
the value extraction process (Arunachalam et al., 2018; Gholizadeh et al., 2020; Ying et al.,
2022). BD analytics serves the OR approaches by preprocessing the values of parameters,
such as customer demands (Gholizadeh et al., 2020; Mishra & Singh, 2022;Wu et al., 2020a,
2020b) and cost values (Gholizadeh et al., 2020; Peng et al., 2022) in SC optimization.

Cloud computing CC represents the on-demand computing services offered to customers
via a network in a self-service fashion, independent of the physical location of the hardware
and software.CCenhances SCcollaboration (Ivanov et al., 2022;Yu et al., 2017) and visibility
(Kochan et al., 2018) via information sharing. It also has been used for low-carbon supplier
selection by collecting the emission information (A. Singh et al., 2018a, 2018b) and SC
design by gathering the cost information (Ali et al., 2021).
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Fig. 7 Key supply chain decisions assisted by I4.0 technologies

Other data enables Leading digital technologies also include additive manufacturing,
digital twins, robotics, augmented reality, and other emerging I4.0 technologies that interact
with different businesses in SC. However, in current literature, these technologies are mostly
addressed concerning production lines, flow shops, or stock management rather than from
the SC perspective.

5.2 Data-enabled decisions at different supply chain levels

5.2.1 General overview

Figure 7 shows that strategic decisions, tactical decisions and operational decisions occupy
27.0%, 52.8% and 20.0% of all the decisions respectively. Among the strategic decisions,
technology adoption has been investigated more explicitly. At the tactical level, the decisions
are diverse and share similar occurrences. The product/service delivery (also mentioned
as vehicle routing) optimization using ML is the predominant decision-making operational
decision.

5.2.2 Strategic decisions

The most recent strategic decision-making studies also involve some tactical or operational
decisions, except for the articles dedicated to partner selection (Chen et al., 2020; Liou et al.,
2021), technology adoption ( Manupati et al., 2022), or cyber security investment (Yanhui Li
& Xu, 2021; Sawik, 2022; Schmidt et al., 2021). From a detailed content-wise classification
standpoint, we analyzed the strategy-level articles by concentrating on I4.0 and its roles, main
decisions, and OR methods, as listed in Table 2. The details of the OR aspects of the papers
are analyzed in the following subsections.

Network design SC network design often deals with facility locations with a fixed cost
consideration. Facility location using ML algorithms in forward SC was the main concern of
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the authors. Gumte et al., (2021) optimized the numbers and locations of suppliers andmanu-
facturers in biowaste SC. Similarly, for the bio-based energy SC design, the ordinary kriging
technique was used by Medina-González et al., (2020). The textual data were transformed
into inputs of the location–allocation mixed-integer linear programming (MILP) model by
Singh et al., (2018a, 2018b) for cold chain design. However, the 3 V features of big data
were absent in this study. Mishra and Singh (2022) have analyzed network configurations
in reverse SC with 3 V parameters. An ML-aided metaheuristic framework was developed
by Xiao et al., (2022) for a production/distribution system design. Liu et al., (2022a, 2022b)
established a MILP model where the ANN was adopted to predict customer demands for
E-logistics distribution network design.

Partner selectionMost studies have investigated sustainable partner evaluation problems
(Chen et al., 2020; Singh et al., 2018a, 2018b). ML was embraced by Wu et al., (2020a,
2020b) to classify partners into strategic, preference, leverage, and routine suppliers. The
SVMwas exploited by Liou et al., (2021) to extract core criteria from historical data for sup-
plier performance evaluation. Singh et al., (2018a, 2018b) surveyed the low-carbon supplier
selection problem in beef SC in a big data context; however, the data analytic approach was
absent in this study. The blockchain service platform provider selection problem was studied
by Bai et al., (2021).

Technologies adoption The implementation of I4.0 is expensive and needs to be explicitly
assessed. The investment in blockchain can be separately assessed (Liu et al., 2021; Yang
et al., 2022a, 2022b) or coupled with other SC decisions ( Manupati et al., 2022). The cost
allocation of the IoT among the SC was addressed coupled with the environmental concern
by Nativi and Lee (2012) and the social welfare consideration by Zhang and Liu (2021).
Moreover, Blockchain and IoT adoption problems are often scrutinized in two-echelon SC,
while the implementation of BD is common in three-echelon SC. Above all, the potential
barriers to I4.0 implementation have not been elaborated explicitly, with the exception of
Kazancoglu et al., (2021) and Hosseini Dehshiri et al., (2022).

Cyber security control Cyber security aims at protecting critical data facilities, such as
servers and databases, in multi-tier SC with the constraint of investment (Cheung & Bell,
2021; Sawik, 2022; Schmidt et al., 2021). Studies have focused on proactive actions by
developing robust cyber-layer networks to enhance the risk-mitigating capabilities of SC.
Popular decisions regarding cybersecurity protection include the preferred security level
(Cheung & Bell, 2021; Sawik, 2022), safeguard selection (Schmidt et al., 2021), and defense
expenditures (Cheung & Bell, 2021; Prajapati et al., 2022).

5.2.3 Tactical decisions

Unlike decision-making at the strategic level, the tactical decisions are rarely considered with
a lower level of operational decision. In a general sense, the articles can be classified into
six groups based on their main decision variables in the models: wholesale and retail pric-
ing, ordering quantity, inventory level, and SC configuration coupled with order allocation.
With similar strategic-level literature scrutinizing schemas, Table 3 documents the tactical
decision-making elements.

Wholesale and retail pricingWholesale and retail pricing can be optimized simultaneously
or separately. The first stream of literature studies the pricing decisions of wholesalers and
retailers, accompanied by order quantity. Niu et al., (2021a, 2021b) focused on the pricing
policies of medicines with blockchain for information transparency and quality trust. The
pricing rules of green products in the big data environment are explored by Liu and Zhang
(2022) and Li et al., (2022) separately. The second stream of literature includes pricing chilled
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Table 3 Tactical decisions of supply chain optimization in Industrial 4.0

Authors and
year

I4.0
technologies

Role of Data
enablers

Tactical
decisions

OR approaches Algorithms

R. Kuo et al.,
(2015)

AI Rule mining
and
artificial
immune
network in
model
solving

Supplier
selection and
order
quantity
allocation

ILP-based
approach

Artificial
immune
network
with PSO

Dev et al.,
(2016)

Machine
Learning

Decision tree
learning for
real-time
decision

Distribution
network con-
figuration,
inventory
level

Simulation
approach

/

Liu and Yi
(2017)

Big Data BD targeted
advertising

Retail and
wholesale
prices and the
green degree
of products

Stackelberg
game and
Nash
Equilibrium
game model

/

D. Li and Wang
(2017)

IoT Quality
monitoring

Pricing the
products
based on
shelf-life
information

RDP approach /

Viet et al.,
(2020), C.
Lee (2017)

Machine
Learning

Rule mining
for
anticipatory
shipping

Product and
cross-
docking
selection,
logistics
flows

Multi-agent
simulation

/

Abbasi et al.,
(2020)

Machine
Learning

Model
solving

Order quantity
of each
hospital and
the transship-
ment
quantities
between
hospitals

Two-stage
stochastic
model

ML-based
method

Gholizadeh
et al., (2020)

Big Data Avoid
information
fraud

Order
allocation
among
several
suppliers,
inventory
level, and
vehicle
selection

Robust fuzzy
stochastic
model

/
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Table 3 (continued)

Authors and
year

I4.0
technologies

Role of Data
enablers

Tactical
decisions

OR approaches Algorithms

Maity et al.,
(2021)

Blockchain Food quality
trans-
parency and
security

Logistics flows Stochastic
model

L-Shaped
algorithm

Xing et al.,
(2021)

Blockchain Information
sharing and
smart
contract
design

Level of efforts
of inventors

Principal-agent
theory

/

Niu et al.,
(2021a,
2021b)

Block chain Medicine
quality
tracking

Retail price GT approach /

M. Li and Li
(2022)

AI Ordering
automation
of the
retailer

Whole pricing
and ordering
quantity

Newsvendor
model

Customized
algorithm

Ma and Hu
(2022)

Blockchain Product
recycling
enhance-
ment

Retail and
wholesale
prices

Stackelberg
differential
game

/

Peng et al.,
(2022)

Big Data Dealing with
the uncer-
tainties of
parameters

Network con-
figuration,
retail, and
wholesale
prices

ILP-based
approach

LINGO

food with sensor data (Hu et al., 2022; Li &Wang, 2017) and products on the online platform
where the quality information is disclosed by blockchain (Ma & Hu, 2022; Xu & He, 2021).

Inventory level The inventory level was optimized isolatedly in this group. Considering
the IoT-based forecast updating demand, T.-C. Kuo et al., (2021) analyzed parts inventory
allocation policy in manufacturing SC. F. Wang and Lin (2021) addressed the optimum
replenishment path, covering inventory level and ordering quantity, for understocked spare
parts distributors. Ekren et al., (2021) discussed the re-order and up-to-inventory levels in a
lateral inventory share-based system in E-commerce food SC.

SC configuration The SC configuration covers process design and facility incorporation
decisions without considering the fixed costs. SC configuration is often determined by order
allocation among suppliers (Kaur & Singh, 2018; Kuo et al., 2015; Lin et al., 2022), third-
party logistics providers (Kaur & Singh, 2018; Ren et al., 2020), and flexible production
facilities (Bhosekar & Ierapetritou, 2021; Rajput & Singh, 2022). This decision often occurs
in the context of themanufacturing industry (Dev et al., 2016; Ivanov et al., 2022;Maity et al.,
2021), sustainable SC (Kaur & Singh, 2018; Peng et al., 2022; Rajput & Singh, 2022), e-
commerce (S. Ren et al., 2020), logistics service procurement (Kong et al., 2021), anticipatory
shipping (C. Lee, 2017; Viet et al., 2020), and hospital SC (Kochan et al., 2018). Referring
to the I4.0 technologies, all of them have been used with almost the same frequency in SC
configuration.
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Ordering The occurrence of the ordering decision was verified in both product inventory
control and service outsourcing on the cloud platform. The order quantity and re-order point
were studied by Yang et al., (2019) and Liou et al., (2021) in perishable and vendor-managed
inventories, respectively. The order quantity of hospitals and the transshipment quantities
between them were optimized by Abbasi et al., (2020) for blood SC management. Some
authors have explored the third-party logistics service provider and customer matching prob-
lem (Aghamohammadzadeh et al., 2020; Ran & Liu, 2020) and the optimum order quantity
generation in multi-echelon SC on a cloud platform (Y. Yu et al., 2017).

5.2.4 Operational decisions

In addition to articles that have addressed strategic or tactical decisions, several prior studies
have also focused on SC optimization at the operational level. Themain operational decisions
in logistics consist of the scheduling and delivery of products. Those decisions have been
made both in manufacturing SC (Ivanov et al., 2016; Jamrus et al., 2020; Zeng et al., 2022)
and service SC, such as logistics services (Ran & Liu, 2020;Weaver et al., 2022) and medical
services (Euchi et al., 2020). Table 4 lists some of the main elements of the selected literature
at the tactical level.

SchedulingRecent articles on scheduling in SC not only have fallen into themanufacturing
category but also the service division (Euchi et al., 2020; Weaver et al., 2022; Zahedi et al.,
2021). DM is the dominant I4.0 technology that has been implemented to refine the input
parameters of the OR models (Smith & Ehmke, 2016) and cluster the customers (M. Wu
et al., 2019). A few studies investigated the scheduling problem in the production–distribution
system (P. He et al., 2022; R. S. Kumar et al., 2016; Liao & Wang, 2019; Zeynivand et al.,
2021). The short-term scheduling in CPS-enabled SC was investigated by Ivanov et al.,
(2016). Kang et al., (2019) addressed the real-time new order assignments in crowdsourced
parcel delivery. J. Sun et al., (2020) constructed a model to determine the optimal switching
point in an intelligent production network. P. He et al., (2022) investigated the integrated
production and transportation scheduling problem in 3D-printing spare parts SC.

Delivery Product delivery management is often addressed as the VRP in literature but we
only focus on those who have addressed I4.0 technologies. In this domain, the articles can be
classified into two clusters based on whether they have specific applications. The first cluster
aimed at developing innovative algorithms to solve the classical VRP problem by introducing
ML (W. Chen et al., 2013; Ghiani et al., 2022; Moradi, 2020; Qin et al., 2021). The second
cluster focused on the routing or rerouting the vehicles with distinct applications, such as
drone-based routing (X. Chen et al., 2022; Salama & Srinivas, 2020) and real-time rerouting
under disruptions (S. Liu et al., 2019a, 2019b; Mejjaouli & Babiceanu, 2018; J. Wang et al.,
2020; K. Zhang et al., 2022a, 2022b).

5.3 Operational researchmethods for supply chain optimization in industrial 4.0

5.3.1 Modeling approaches

Game-theoretic approach The implementation of I4.0 requires cooperation between the
players in the SC to share the cost and the benefit. GT models address these advances by
creating coordination between players, hence obtaining optimum behaviors in the new data
environment. The Stackelberg game model is the most popular method, while the bargaining
game model (H. Yang & Chen, 2020), evolutionary game model (W. Liu et al., 2022a,

123



Annals of Operations Research (2024) 338:1359–1401 1377

Ta
bl
e
4
O
pe
ra
tio

na
ld

ec
is
io
ns

of
su
pp
ly

ch
ai
n
op
tim

iz
at
io
n
in

In
du
st
ri
al
4.
0

A
ut
ho

rs
an
d
ye
ar

I4
.0
te
ch
no

lo
gi
es

R
ol
e
of

D
at
a
en
ab
le
rs

O
pe
ra
tio

na
ld

ec
is
io
ns

O
R
ap
pr
oa
ch
es

A
lg
or
ith

m
s

M
ej
ja
ou

li
an
d
B
ab
ic
ea
nu

(2
01

5)
Io
T

Q
ua
lit
y
m
on

ito
ri
ng

W
he
n
an
d
ho
w
m
uc
h

pr
od

uc
ts
sh
ou

ld
be

de
liv

er
ed

R
D
P
ap
pr
oa
ch

/

Iv
an
ov

et
al
.,
(2
01

6)
H
yb
ri
d

R
ea
l-
tim

e
da
ta
co
lle
ct
io
n

Pr
od
uc
tio

n
sc
he
du
lin

g
O
th
er

m
at
he
m
at
ic
al

ap
pr
oa
ch

K
ry
lo
v–

C
he
rn
ou

sk
o

m
et
ho

d

C
.L

ee
(2
01

7)
D
at
a
M
in
in
g

di
sc
ov
er

th
e
pu
rc
ha
se

pa
tte

rn
an
d
pr
ed
ic
t

fu
tu
re

pu
rc
ha
se

A
nt
ic
ip
at
or
y
sh
ip
pi
ng

O
th
er

m
at
he
m
at
ic
al

ap
pr
oa
ch

C
lu
st
er
-b
as
ed

as
so
ci
at
io
n

ru
le
m
in
in
g
an
d
G
A

M
ej
ja
ou

li
an
d
B
ab
ic
ea
nu

(2
01

8)
Io
T

R
ea
l-
tim

e
da
ta
in

lo
gi
st
ic
s

St
op
pi
ng

tr
an
sp
or
ta
tio

n
an
d/
or

re
ro
ut
in
g
th
e

sh
ip
m
en
ts
to

a
cl
os
er

lo
ca
tio

n

IL
P-
ba
se
d
ap
pr
oa
ch

C
PL

E
X

K
oc
ha
n
et
al
.,
(2
01

8)
C
lo
ud

C
om

pu
tin

g
In
fo
rm

at
io
n
sh
ar
in
g

O
rd
er

al
lo
ca
tio

n
an
d

in
ve
nt
or
y
le
ve
l

Sy
st
em

s
dy
na
m
ic
s

si
m
ul
at
io
n

/

K
an
g
et
al
.,
(2
01

9)
M
ac
hi
ne

L
ea
rn
in
g

M
od

el
so
lv
in
g

N
ew

or
de
r
as
si
gn

m
en
ta
nd

ve
hi
cl
e
re
ro
ut
in
g

R
D
P
ap
pr
oa
ch

R
ei
nf
or
ce
m
en
tl
ea
rn
in
g

ba
se
d
al
go
ri
th
m

A
gh

am
oh

am
m
ad
za
de
h

et
al
.,
(2
02

0)
C
lo
ud

C
om

pu
tin

g
C
lo
ud

se
rv
ic
e
m
at
ch
in
g

L
og
is
tic
s
cu
st
om

er
s
an
d

pr
ov
id
er
s
m
at
ch
in
g

N
L
P-
ba
se
d
ap
pr
oa
ch

N
SG

A
-I
I

J.
Su

n
et
al
.,
(2
02

0)
Io
T

R
ea
l-
tim

e
da
ta
in

fa
ct
or
y

Sw
itc

hi
ng

po
in
to

f
m
an
uf
ac
tu
ri
ng

ta
sk
s

am
on

g
fa
ct
or
ie
s

O
th
er

m
at
he
m
at
ic
al

ap
pr
oa
ch

/

Sa
la
m
a
an
d
Sr
in
iv
as

(2
02

0)
M
ac
hi
ne

L
ea
rn
in
g

M
od

el
so
lv
in
g

T
ru
ck
-d
ro
ne

ro
ut
in
g

IL
P-
ba
se
d
an
d
M
IL
P-
ba
se
d

ap
pr
oa
ch
es

M
L
-b
as
ed

al
go
ri
th
m
s
an
d

he
ur
is
tic
s

Ja
m
ru
s
et
al
.,
(2
02

0)
H
yb

ri
d

R
ea
l-
tim

e
sc
he
du

lin
g

Pl
an
ts
el
ec
tio

n
fo
r
op

er
at
io
n

an
d
its

co
m
pl
et
io
n
tim

e
Fu

zz
y-
ba
se
d
ap
pr
oa
ch

H
yb
ri
d
PS

O
an
d
G
A

123



1378 Annals of Operations Research (2024) 338:1359–1401

Ta
bl
e
4
(c
on

tin
ue
d)

A
ut
ho

rs
an
d
ye
ar

I4
.0
te
ch
no

lo
gi
es

R
ol
e
of

D
at
a
en
ab
le
rs

O
pe
ra
tio

na
ld

ec
is
io
ns

O
R
ap
pr
oa
ch
es

A
lg
or
ith

m
s

Z
.W

an
g
et
al
.,
(2
02

1)
B
lo
ck
ch
ai
n

D
at
a
ex
ch
an
ge

D
at
a
pr
ic
in
g

O
th
er

m
at
he
m
at
ic
al

ap
pr
oa
ch

O
th
er

cu
st
om

iz
ed

al
go

ri
th
m

Z
ah
ed
ie
ta
l.,

(2
02

1)
Io
T

G
at
he
rs
in
fo
rm

at
io
n
fr
om

su
sp
ec
te
d
C
ov
id
-1
9

ca
se
s

R
ou

tin
g
of

am
bu
la
nc
e

M
IN

L
P
an
d
M
IL
P
m
od

el
H
yb

ri
d
m
et
a-
he
ur
is
tic

s

Fe
ng

et
al
.,
(2
02

2)
M
ac
hi
ne

L
ea
rn
in
g

N
ew

al
go

ri
th
m
s
fo
r
m
od

el
so
lv
in
g

V
eh
ic
le
ro
ut
in
g
fo
r
de
liv

er
y

IL
P-
ba
se
d
ap
pr
oa
ch

M
ac
hi
ne

le
ar
ni
ng

ba
se
d

al
go

ri
th
m

Y
an
ka
iW

an
g
et
al
.,
(2
02

2)
C
lo
ud

C
om

pu
tin

g
cl
ou

d
m
an
uf
ac
tu
ri
ng

Se
rv
ic
e
co
m
po

si
tio

n
ex
ce
pt
io
n
ha
nd

lin
g

N
L
P-
ba
se
d
ap
pr
oa
ch

A
nt

co
lo
ny

al
go

ri
th
m

A
hm

ad
ia
nd

G
ha
se
m
i

(2
02

2)
A
rt
ifi
ci
al

In
te
lli
ge
nc
e

D
em

an
d
fo
re
ca
st
in
g

H
ot
el
pr
ic
in
g

G
T
ap
pr
oa
ch

an
d
IL
P-
ba
se
d

ap
pr
oa
ch

/

123



Annals of Operations Research (2024) 338:1359–1401 1379

2022b; W. Liu et al., 2021; Wan & Qie, 2020), differential game model (Ma et al., 2021; M.
Xu et al., 2022), and Nash game model (Choi, 2020; Liu & Yi, 2017; Zheng et al., 2020) are
also utilized. However, current studies are confined to static games where players make side
payments or form coalitions.

More than half of the reviewed papers in this arena have evaluated the investment in
IoT (Ben-Daya et al., 2022; X. Li, 2020; H. Yang & Chen, 2020), BD (Liu & Yi, 2018a;
H. Song et al., 2022a, 2022b), and blockchain (Choi, 2020; M. Liu et al., 2021; Niu et al.,
2021a, 2021b). There is a huge scope to study the investment involving the remaining I4.0
technologies using the GT approach.

The coordination in two-echelon SC has been analyzed explicitly, but is limited to manu-
facturers and retailers, such as stated by Choi (2020); DeGiovanni (2020); Liu andYi (2018a,
2018b);Ma andHu (2022), with nomention ofmanufacturer-supplier SC. A few studies have
extended the discussion to multi-player games in two-echelon SC. Liu and Yi (2018a) estab-
lished a Stackelberg game model, in which a data company is the game leader and sells the
BD of consumer preferences to the manufacturer. X.-Y. Wu et al., (2021) defined a Stackel-
berg game, in which the manufacturer decides the wholesale prices of the fresh product and a
third-party logistics provider decides the service price afterward. Only one article considers
a multi-echelon SC, where a supplier, manufacturer, and retailer are in a Stackelberg game
(Fan et al., 2022).

The multiplayer platform SC is a new application area of game theory. Wan and Qie
(2020) analyzed cooperative games between cooperatives and smart SC platforms. W. Liu
et al., (2021) defined a three-party evolutionary game to investigate BD discriminatory pric-
ing behavior in platform SC. X. Li (2020) designed a Stackelberg game where the platform
SC acts as a connector between manufacturers and consumers in agency selling practices.
W. Liu et al., (2022a, 2022b) adopted the evolutionary game theory to analyze smart logis-
tics ecological cooperation with data sharing and platform empowerment. A Stackelberg
differential game model is developed by Ma and Hu (2022) to optimize the combination of
“blockchain & sales format” in closed-loop SC. This study shows that platform recycling
can be improved by building consumer trust with the adoption of blockchain.

Integer linear programming-based approaches The ILP-based approach represents a set
of optimization methods, in which both the objective and constraints are integral and linear.
TheMILPmodel is the most well-known and widely used ILP-based approach for SC design
and VRP problems. ILP-based methods are the main modeling techniques for VRP problems
with time windows (Euchi et al., 2020; Moradi, 2020; Yong Wang et al., 2018; Worawat-
tawechai et al., 2022). Most recent studies in this domain aim at deriving efficient algorithms,
whereas only a few of them are conducted in a real-world context. The routes of synchronized
home healthcare visits were investigated by Euchi et al., (2020) using the MILP technique.
Zahedi et al., (2021) established two models for transferring the suspected COVID-19 cases
in IoT-enabled relief SC. The first NLP-based model aims at promising an earlier visit to the
suspected casewith the lowest priority,whereas the second ILP-basedmodel aims atminimiz-
ing the total response time. A MILP model was established by Gopalakrishnan et al., (2021)
to optimize the quantity of solid waste traded between supplier and consumer companies in
a blockchain-based waste recycling SC.

ILP-basedmodels are also used to maximize profit (Gopalakrishnan et al., 2021; Rahman-
zadeh et al., 2022) or minimize costs (Euchi et al., 2020; Rajput & Singh, 2022; A. K. Singh
et al., 2018a, 2018b; Xiao et al., 2022) of a SC. However, only a few studies have extended
the single-objective problem to multi-objective optimization. Medina-González et al., (2020)
considered the three objectives of net present value and environmental and social aspects to
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design a bio-based energy SC. The fleet size and total traveling distance were simultaneously
optimized byMoradi (2020) for theVRP problemwith timewindows. The environmental and
economic objectives are considered by Chobar et al., (2022) to design a hub-spoke network
of perishable tourism products.

Non-linear programming-based approaches NLP-based approaches contain nonlinear
terms in the objectives or constraints. The intricate relations among the variables and param-
eters are common in SC optimization. In this subsection, we only analyze articles with
NLP-based models that failed to be grouped into other modeling techniques, such as stochas-
tic programming or fuzzy-based methods. A two-objective NLP-based model was developed
byH. Lee et al., (2018) tominimize the fuel cost andmaximize the service level by optimizing
the vessel speed using a weather archive BD.

If the decision variables are confined to the integer values, the NLP-based approach is
also mentioned as mixed integer nonlinear programming (MINLP). Vijaya KManupati et al.,
(2020) developed a MINLP model to design a blockchain-based SC to minimize cost and
emissions. Similarly, a MINLPmodel was established by Hajipour et al., (2021) to maximize
the number of undamaged delivered items in an IoT-enabled relief SC design. Bhosekar and
Ierapetritou (2021) also adopted theMINLP approach to analyze the feasibility of configuring
a modular manufacturing system. The MINLP method was borrowed by Prajapati et al.,
(2022) to determine the optimum configuration of the blockchain and IoT-embedded closed-
loop SC network in E-commerce. Similarly, the network configuration of an E-commerce
SC is investigated by Rahmanzadeh et al., (2022) to maximize the total net profit.

Stochastic and robust programming Ignoring the uncertainties in SC optimization leads
to less realistic results. The availability of real-time and big data contributes to foreseeability
but can not eliminate all the impacts of unforeseen events. Three modeling techniques—s-
tochastic programming, robust optimization, and fuzzy programming—are widely used to
deal with uncertain parameters in this domain.

In stochastic programming, uncertain events are assumed to occur with known probabili-
ties, which is practical in strategic decision-making in SC. Hajipour et al., (2019) established
a stochastic MINLP model to optimize the configuration of a traceable closed-loop SC net-
work. Flores andVillalobos (2020) provided a two-stage stochastic framework to optimize the
schedule of agricultural production. In this study, the farming technologies were selected for
each identified region, and operational decisions were made under various discretized yield
and market scenarios. The main ambiguous sources of cybersecurity risks are the occurrence
of cyber attacks and the effectiveness of alternative controls. Thus, another application of
stochastic programming is to obtain optimal investments in SC by selecting a portfolio of
cybersecurity safeguards (Sawik, 2020, 2022; Schmidt et al., 2021). Considering the uncer-
tain demand of customers, two-stage stochastic mathematical models were used by Maity
et al., (2021) and Abbasi et al., (2020) to separately allocate the inventory along the SCs. The
former aims at determining the quantities of raw materials used in the facilities (first stage)
and logistics flows (second stage) in a blockchain-enabled food SC. The latter investigates the
transshipment of the blood among the healthy centers by minimizing the cost of the medical
SC.

Robust optimization seeks premium results in the worst case when the probabilities of
the uncertain parameters are undisclosed. As a popular ambiguity-averse method in SC
optimization, it has been undertaken within a limited scope in the context of I4.0, with
only a few exceptions. Gumte et al., (2021) considered the worst-case realizations of the
uncertain demand and the supply of biomass feed in a biowaste SC network design. Polo et al.,
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(2019) employed the hybrid robust fuzzy stochastic method to generate optimal sustainable
procurement and transportation decisions. Z. Cai et al., (2022) adopted the graph theory to
design a robust logistics network by building amulti-objective robustness function, including
relative robustness, betweenness robustness, edge robustness, and closeness robustness.

Fuzzy-based approach Fuzzy-based approaches represent quantitative models where the
fuzzy set theory provides details of vague information in the decision-making process. Trian-
gular fuzzy numbers are the dominant methods to assess the best alternatives (A. Singh et al.,
2018a, 2018b; C. Wu et al., 2020a, 2020b) and capture the uncertainties in mathematical
programming (Coppolino et al., 2021; Jamrus et al., 2020).

Fuzzy numbers are often integratedwith the roughmethod (Z.Chen et al., 2020) or analytic
hierarchy process (AHP) (A. Singh et al., 2018a, 2018b) to mitigate internal and external
uncertainties. C. Wu et al., (2020a, 2020b) defined a fuzzy ensemble learning model to
classify sustainable partners by considering both qualitative and quantitative inputs. Belhadi
et al., (2021) established an AI-based decision framework to identify patterns in the SC
resilience strategies. Y. Tsang et al., (2020) adopted the fuzzy triangular method to describe
the ambiguous inputs and outputs of the dynamic routing model. Fuzzy trapezoidal numbers
were used by Jamrus et al., (2020) to represent the epistemic makespan of the coordinated
scheduling in smart production.

Simulation approach Many complex systems cannot be represented using accurate and
convenient mathematical models. The advantage of a simulation method is that it mimics the
behaviors and intricate inactions of the individuals in the business while avoiding sophis-
ticated problem breakdown or algorithm development. Compared with the models in other
categories, the results of simulation-based optimization are built on the assumptions and
simulation framework (Illgen & Höck, 2019). Thus, it is essential to validate the findings by
repeating the experiments independently several times under various situations (i.e., param-
eter combinations). However, only a few studies have verified the reliability of simulation
results by statistical analysis (L.-M. Chen & Chang, 2021; Nativi & Lee, 2012; Weißhuhn &
Hoberg, 2021) or sensitivity analysis (Alqahtani et al., 2022; Dev et al., 2016; Kong et al.,
2021).

The discrete-event (DE) simulation has been the mainstay of the simulation community
to derive the optimum replenishment policies (Weißhuhn & Hoberg, 2021) and cyber risk
mitigations (L.-M. Chen & Chang, 2021; Shi et al., 2021). The ARENA simulation software
package with the OptQuest optimizer was used by Ekren et al., (2021) and Nativi and Lee
(2012) to conduct DE simulation-based optimization in IoT-empowered SC.

Multi-agent systems (MAS) contain decision-making entities with autonomous behaviors.
The cooperation of the agents within a MAS enables it to deal with the uncertainties and
dynamics in SC optimization (Dev et al., 2016; Kong et al., 2021; F. Wang & Lin, 2021; X.
Xu et al., 2021; Y. Yu et al., 2017). Studies have used the ML technique, such as decision tree
learning (Dev et al., 2016; Jelen et al., 2022), Q-learning algorithm (F. Wang & Lin, 2021),
and reinforcement learning (Alqahtani et al., 2022), to derive the rules of agent behavior in
the MAS.

Real-time data-driven programming Some structural models that share the following
characteristics are observed in SC optimization in I4.0: (1) they follow the mathematical
programming regimen, for instance, optimization objectives are subject to a set of con-
straints, but difficult to be grouped into a well-known modeling technique exactly; (2) they
have time-dependent decision variables and real-time inputs; and (3) the state of the model
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is dynamic, similar to the model solving process. Thus, the term RDP technique was used to
refer to this approach in this review.

The RDPmodel is mainly used in VRP problems with real-time data generated by the IoT.
S. Liu et al., (2019a, 2019b) developed an RDP model to optimize the costs of task delivery
of smart vehicles. A multi-objective RDP model was established by J. Wang et al., (2020)
to coordinate customers, order-picking robots, and cloud technology dynamically. Mejjaouli
and Babiceanu (2015) constructed an RDP model to determine whether the producer should
deliver fresh products to retailers when the spoilage of products is reported by the IoT during
transportation. D. Li and Wang (2017) analyzed dynamic pricing policies in light of the
identified quality features of the on-shelf products with sensors.

Other mathematical approach The permeation of the I4.0 technologies into SC opti-
mization requires decision-makers to deconstruct the problems in a new pattern and form
unstructured analytical models. The modeling process does not follow any fixed rules but
serves specific optimized objectives, for example, BC-empowered data sharing (Z. Wang
et al., 2021; Q. Xu & He, 2021) and anticipatory shipping with data mining (C. Lee, 2017)
in SC. In addition, three recent studies have been dedicated to the newsvendor model in
inventory optimization with blockchain (Chang et al., 2021), AI (M. Li & Li, 2022), and
deep learning (S. Ren et al., 2020).

5.3.2 Solution methodologies

Common observations The solution methodologies were deployed based on modeling
techniques. For instance, the primary models of the simulation approaches, fuzzy-based
approaches, and GTmodels are the analysis and precision. Exact solution generation is often
synchronized with state updating in the RDPmodel. For exact solutions, commercial solvers,
such as CPLEX, Gurobi, and LINGO, are also utilized. Nevertheless, heuristic algorithms
are efficient in generating a reasonably good solution of the ILP- and NLP-based models for
large-scale problems. Surprisingly, ML-based algorithms are becoming popular in solving
ILP-based models, but not in NLP-based problems, as they open a completely unexplored
research avenue. Another fast-growing aspect of the solution methodologies is the use of
Python as the programming environment for Genetic algorithm (GA) (Y. Tsang et al., 2020),
ML-based algorithms (Furian et al., 2021; Salama & Srinivas, 2020; Xiao et al., 2022), and
Gurobi solver calling (de Carvalho et al., 2022; Schmidt et al., 2021), because it can be
extended easily with new functions and data types.

Commercial solvers For small- or medium-scale problems, a commercial solver can gen-
erate an optimal or near-optimal exact solution within a reasonable computation time. The
literature shows that the Gurobi is preferred to find the portfolio of the cybersecurity miti-
gations in SC (Sawik, 2022; Schmidt et al., 2021), while the CPLEX works at all three SC
decision levels. In contrast, LINGO was only applied to solve the ILP-based models (Mishra
& Singh, 2022; Rajput & Singh, 2022) and NLP-based models (Pitakaso et al., 2022; Pra-
japati et al., 2022). Although some optimization solvers, such as CPLEX and Gurobi, are
capable of dealing with the integer quadratic programming model, they have been observed
only in one study by Karatas and Kutanoglu (2020).

Remarkably, most commercial solvers are directly exploited for ILP-based models. Only
a few studies have deployed commercial solvers to deal with NLP-based models after lin-
earization, for instance, stochastic models (Mishra & Singh, 2022; Sawik, 2022). To avoid
nonlinearity in the objective function, new variables and constraints were introduced by
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Bhosekar and Ierapetritou (2021) and Sawik and Sawik (2022). For the nonlinear terms in
the constraints, the binary equivalents and first-order Taylor series approximation were used
by Mishra and Singh (2022) and Sawik (2022), respectively. However, the linearization of
LP-base models relies on the nature of the objective and constraint expressions, as well as
the structure of the optimization problem. As a vital step to use commercial solvers to solve
the NLP-based models, linearization approaches need to be investigated in future studies.

Heuristic algorithms For large-scale and complex problems, we cannot expect to obtain the
optimal solution within a limited CPU time. Therefore, the authors have exploited heuristic
algorithms like GA (Ali et al., 2021; V. K. Manupati et al., 2022; Y. Yang et al., 2019),
particle swarm algorithm (PSO)(R. S. Kumar et al., 2016; H. Lee et al., 2018), and physarum-
based algorithm (Z. Cai et al., 2022; X. Zhang et al., 2017), to derive reasonably good
solutions. Since the heuristic algorithms are diverse and evolving, they should be selected
and adapted based on the characteristics of the models. Different heuristic algorithms can be
used separately or in combination to exploit their search strengths in solution generation.

GA is one of the most adaptive heuristic algorithms and is preferred by the authors to
solve mathematical models individually. Y. Tsang et al., (2020) developed a two-phase
multi-objective GA to solve a fuzzy-based programming model where the dynamic delivery
schedules are optimized. Using a cluster-based association for purchase pattern mining, C.
Lee (2017) modified the GA to optimize anticipatory shipping plans. The neuro-fuzzy C-
means clustering method was adopted by Gumte et al., (2021) to convert a large problem
to a small one to more efficiently solve the input data of the MILP roust model by the GA.
The GA-based approach is adopted by V. K. Manupati et al., (2022) to derive the optimal
recovery strategies for a disrupted SC network.

PSO-based hybrid heuristic algorithms have been used in recent studies to solve complex
large-scale problems. Hajipour et al., (2019) combined the PSO algorithm and the greedy
randomized adaptive search procedure to solve an NLP-based model. The PSO algorithm is
integrated with the ANN by R. Kuo et al., (2015) to allocate the order quantity. Initialed by
heuristics procedures, theKrylov–Chernouskomethod of successive approximation approach
was exploited by Ivanov et al., (2016) to optimize short-term scheduling in smart SC. The
robustness of a logistics network design is analyzed by Z. Cai et al., (2022) with the help of
the artificial physarum swarm algorithm. Zahedi et al., (2021) compared the performances of
different combinations of the simulated annealing (SA) algorithm, PSO, and social engineer-
ing optimization (SEO). Their analysis shows that the hybrid SA and SEO outperforms others
in solving a MINLP model in relief SC design. However, studies evaluating the efficiency
and effectiveness of individual or hybrid heuristics are scarce and should be explored more
explicitly in the future.

Machine learning-based algorithms ML has been recognized as a computational counter-
part to decision-makers in identifying patterns based on experience (Furian et al., 2021).
Although both supervised and unsupervised learning algorithms are leveraged, they are
unable to directly construct solutions for mathematical models and are often integrated with
other algorithms, such as heuristic algorithms (Abbasi et al., 2020; Chobar et al., 2022),
branch and price algorithms (Furian et al., 2021), and the cutting plane algorithm (Flores &
Villalobos, 2020).

Some authors have employed the reinforcement learning (RL) technique to develop an
end-to-end solution to the VRP problems with real-time data. To reduce the CPU time to
build the solutions, a deep RL algorithm was used by J. J. Q. Yu et al., (2019) to tailor the
parameters of an offline neural network model. The RL with a function approximation was
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utilized by Kang et al., (2019) to determine the admission of new order requests and dynamic
routes of vehicles. The ANN, random forest, classification, and regression tree (CART), and
multilayer perceptron (MLP) techniques were adopted by Abbasi et al., (2020) to disclose
the relations between the input parameters and decision variables in a stochastic model.
Their analysis shows that the MLP model outperforms the other ML techniques in terms
of the efficiency of obtaining the optimum order quantities in the blood SC. L. Ren et al.,
(2022) developed a multi-agent RL approach to optimize the route length and the vehicle’s
arrival time for VRP problems. In order to extract scalable heuristics from the best feasible
solutions, Jun and Lee (2022) proposed an ML-based approach to improve the heuristics by
an evolutionary neural network for pickup-and-delivery problems.

TheML-based algorithms have contributed to the generation of programming-basedmath-
ematical solutions by integrating them with various heuristics. The k-means clustering has
been adopted to derive high-quality initial solutions by decomposing the space into smaller
zones in the VRP (Euchi et al., 2020; Salama & Srinivas, 2020). To govern the evolutionary
process in the decision tree, the non-Darwinian-type operators were introduced by Moradi
(2020). Their analysis shows that the multi-objective discreet learnable evolution model with
the new heuristic operators outperforms classical and meta-heuristics. The MLP classifier
was embedded by Gutierrez-Rodríguez et al., (2019) to select the best meta-heuristic for the
VRP with time windows. Similarly, as the high-level selection strategy, the RL was adopted
by Qin et al., (2021) to select meta-heuristics at the low level. Five supervised learning algo-
rithms, including CART, Gaussian Naive Bayes, and SVM, were applied by Dauer and de
Athayde Prata (2021) to reduce the size of the time–space network in variable fixing heuris-
tics by predicting the arcs that a vehicle will be allocated to in multiple depot VRP problems.
A learning enhanced golden ball algorithm was used by Worawattawechai et al., (2022) for
VRP problems with backhauls.

Random forest classifiers were used by Furian et al., (2021) to predict the values of the
binary decision variables and branching scores for fractional variables in a reliability-based
branching algorithm. The SVM was adopted and coupled with the cutting plane algorithm
by Flores and Villalobos (2020) to identify the relationship between first-stage solutions and
yield scenarios in the second stage of the agricultural SC design.

6 Frontiers and research needed for SC optimization in I4.0

6.1 Research frontiers bymapping the newmodeling components

The recent advance in the OR methods for SC optimization in I4.0 can be summarized
as four new modeling components: new modeling conditions, new inputs of models, new
decisions, and new algorithms for model solving, as mapped graphically and numerically
in Fig. 8. The four components connect I4.0 technologies and OR modeling approaches at
all SC optimization levels. The main streams of the literature and under-examined areas are
analyzed in the following subsections.

6.1.1 Newmodeling conditions

Almost one-third of the articles have treated I4.0 as the modeling condition, for instance,
one of the main streams of literature starts from the blockchain and covers GT models at the
strategic level (See Fig. 8). These studies assume that the utilization of blockchain would
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Fig. 8 Research frontiers by mapping the new modeling components

build a new data-sharing SC where the competition or cooperation of the firms would be
impacted by the quality monitoring (Chang et al., 2021; He et al., 2021; Shen et al., 2022) or
cost tracking (Vijaya K Manupati et al., 2020), but failed to address the process of achieving
data sharing using blockchain. Similar observations were also observed in other studies in
the context of IoT, BD, AI, or CC.

6.1.2 New inputs

Figure 8 shows the main literature streams related to the new inputs that comprise the IoT,
BD, and DM, and serve various OR models except those with GT approaches. The I4.0
reforms the inputs of the OR models by introducing the real-time data, BD, and the shared
data as well as preprocessing those data to adapt to the mathematical methods.

The real-time updating inputs enabled by IoT require the ORmodels to run dynamically to
obtain time-dependent solutions. Unfortunately, real-time data are used for periodic decision-
making (Ekren et al., 2021; Yang et al., 2019; Zahedi et al., 2021), rather than for data-driven
decision-making processes in literature.

BD is well known for its 3 V or 5 V features. However, only a few studies have elaborated
on the adaption of parameters with 3 V or 5 V characteristics. Most of the reviewed articles
claimed to have conducted the study in a BD environment or considered big data parameters
without addressing these significant features. Fast-growing digitalization provides massive
amounts of random data that can be used for SC optimization. However, most of the data
are unstructured or semi-structured. Despite the widespread acceptance of BD analytics as a
knowledge extraction technique, its implementation is still scarce in SC optimization.
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6.1.3 New decisions

The adoption of I4.0 is expensive and requires an initial investment and incurs variable costs,
such as the blockchain (Chang et al., 2021; De Giovanni, 2020; Y. Song et al., 2022a, 2022b)
and BD (Liu & Yi, 2017; Liu & Zhang, 2022). Only a few studies have evaluated firms’
decisions to invest in data technologies.

In addition to the direct investment of I4.0, exploiting these techniques can lead to other
new decision-making problems, such as cybersecurity mitigations (Sawik & Sawik, 2022),
blockchain-enabled data-sharing strategies (Z.Wang et al., 2021;M.Xu et al., 2022), and data
technology provider selection (Bai et al., 2021; Coppolino et al., 2021). More recent papers
have focused on optimizing investments in I4.0 and cybersecurity. However, the integration
of the two decisions in SC optimization is still under-examined.

6.1.4 New algorithms

Organizations have rich experience in daily practices in SC. The knowledge in the histor-
ical data can be extracted by DM, ML, or AI to serve as a basis for initially achieving
optimal/near-optimal solutions (W. Chen et al., 2013). Moreover, the solution generation
procedures of many algorithms, for example, heuristic algorithms, are also data generation
processes that can be guided by these data analytical techniques. However, only limited
articles have exploited these techniques in solution generation.

TheML-based algorithms are competitive in terms of computation time, convergence rate,
and solution quality. However, most of the ML-based algorithms are problem-specific and
substantially focused on ILP-based models, and more innovations are needed to solve the
sophisticated models, for instance, the stochastic MINLPmodel (Flores &Villalobos, 2020).
As an emerging and evolving algorithm, ML-based algorithms are not perfect and exhibit
a few shortcomings, such as the risk of missing the optimal solution (Flores & Villalobos,
2020) and the dependence on the knowledge of the domain (Moradi, 2020). Furthermore, it is
worthwhile to compare the performance of the hybrid algorithms with the exact approaches,
heuristic methods, or individual ML algorithms.

6.2 Future research agenda

6.2.1 Incorporating new decisions relevant to data-enabled SC optimization

Joint decisions: The development of the data collection and value extraction capability of an
organization requires long-term investment in hardware, software, and technicians. Simulta-
neously, the benefits brought by I4.0 are manifold, rather than limited to SC integration (T.-C.
Kuo et al., 2021; J. Sun et al., 2020) or any other individual aspect. Thus, future research
should evaluate the investment in I4.0 along the multi-tier SC in terms of costs, benefits, and
cyber risk.

Decisions related to data centers Data centers offering cloud computing services and data
management are a vital part of an SC network (Ali et al., 2021). More effort is required to
address the process configuration, data backup scheduling, and network design in this area.

Service vendor selection The evaluations of professional service providers and cloud
service vendor platforms for data utilization, such as cloud service vendor platforms and
professional service providers for AI andBD analytics, are still absent and should be explored
in the future.
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Risk management The global SC is under severe strain not only owing to COVID-19,
military conflicts between Russia and Ukraine, and their secondary disruption but also due
to direct and indirect cyber-related attacks. It is difficult to decouple the physical flow from
cyber flow (Shi et al., 2021). The scientific community should assist the decision-makers in
identifying and evaluating the risks and optimizing the preparations in the global SC.

Decentralized scheduling One of the main shortcomings of centralized and hierarchical
scheduling is its complementary response to disturbances (Y. Liu et al., 2019a, 2019b; J. Sun
et al., 2020). Future research can examine decentralized scheduling to realize flexible and
real-time decision-making in smart SC.

Spare parts SC with 3D printing Additive manufacturing has shown great potential in
spare parts offering because constructing a new manufacturing facility with 3D printers is
much more efficient than adding conventional production lines (Muhammad et al., 2022;
Tosello et al., 2019). Thus, the dynamic optimization of the spare part inventory and the
associated SC configurations can be further studied.

6.2.2 Developing data-enabled modeling approaches

Modeling automation The adoption of I4.0 technologies creates fragmented SC optimization
scenarios with specific settings, as the organizations are required to construct customized
models. To save the resources (money, machines, energy) of the SC optimization and shorten
the customization process, more efforts are needed to acclimate the general OR modeling
approaches, for example, MILP, to fit customized operational requirements by learning the
rules of mathematical representations to support the automatic decision making in SC. The
scholars are encouraged to achieve the OR Modeling automation by taking advantage of
the Large Language Models, like the Chat Generative Pre-trained Transformer (ChatGPT)
model and the Pathways Language Model (PaLM) model.

Self-tuning models Future OR models should be capable of coping with the dynamics by
learning from the BD and the real-time data in the background. The self-tuning capability
allows the models to reconstruct quantitative relations between the variables and parameters
in objectives and constraints to adapt to the changing decision-making environment, for
example, moving from single objective to multi-objective optimization.

Real-time data-driven programming One of the main challenges of SC optimization in
I4.0 is building and leveraging dynamic interactions between customers, robots, and systems
with real-time data-driven processes. It is necessary to continuously run themodel to generate
real-time decisions by updating input data (Speranza, 2018). The RDP technique needs to be
extended and implemented not only in theVRP problem but also in other SC decision-making
scenarios, such as scheduling.

Modeling uncertainties The I4.0 technologies are useful in reducing uncertainties, but
they cannot be eliminated, especially at the strategic and tactical SC levels. Future studies
should concentrate on robust and stochastic approaches when making new decisions, such
as data center network design.

Data-related service vendors Professional data-related service vendors, such as the CC
platform (Coppolino et al., 2021) and blockchain platform (Y. Cao et al., 2022), have become
the pivotal players of the SC. The GT models can be extended by incorporating the dynamic
behaviors of data-related service vendors into games in the analysis.
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6.2.3 Preprocessing of parameters

Adapting the parameters of big data The classical OR methods have shown weaknesses in
dealing with 3 V or 5 V big data, in terms of computational time and solution generation
(Gholizadeh et al., 2020; Kaur & Singh, 2018). In future studies, it is essential to convert the
huge and unstructured information into a small volume and refined but high-value dataset by
BD analytics, like ML and DM, so that it can be adapted to the OR methods to better support
SC optimization.

Uncertainty alleviation and elimination Constrained by the availability of the inputs,
many previous studies have been built on delicate assumptions, such as estimating customer
demands with optimistic and pessimistic outlooks. The data-rich environment creates an
opportunity to eliminate or alleviate the uncertainties in SC optimization, such as customer
demand (Liu & Yi, 2018b; Peng et al., 2022). It is imperative to utilize data analytical
techniques to alleviate and eliminate the uncertainties of parameters of the OR models by
predicting their precise changes.

6.2.4 Developing data-enabled algorithms

Self-adaptive and evolutionary algorithms I4.0 allows decision-makers to construct more
realistic models, which also complicates their solution generation. The scientific community
should develop self-adaptive and evolutionary algorithms by integrating ML, AI, and DM
techniques into the meta- and hyper-heuristics.

Learning-based heuristics Future studies should explore both online and offline learning
processes to obtain near-optimal solutions from historical data and ongoing data. To improve
the efficiency and the effectiveness of the traditional heuristic algorithms, it is advisable to
be integrated with ML by guiding the parameters selection of the heuristics, for example,
the mutation and crossover rates in GA, and by developing the operators, for example,
neighborhood search strategies.

Hybrid exact algorithms The combination of the data analytical techniques and the exact
algorithms, such as the branch-and-price, branch-and-bound, and column generation algo-
rithms, is another worthy research direction.

7 Conclusions

7.1 Main contributions

The contribution of this investigation is trifold:methodological, theoretical, and practical. For
the methodological contribution, our proposed SLRmethodology integrated with the content
analysis as well as the literature evaluation framework are scalable and adaptable, which
means it can be tailored for future review research concerning the multi-discipline, multi-
topic, and multi-method article collections. In addition, the graphical and numerical mapping
approach for the new modeling components provides a way to quantify the innovations and
the complicated relations among various elements when deconstructing high-quality articles.

From theoretical perspective, it contributes to the literature by identifying the four OR
innovations to typify the recent advances in SC optimization: new modeling conditions, new
inputs, newdecisions, and newalgorithms.ORprofessionals have long been at the forefront of
solving SC problems by using mathematical models. The four newmodeling components are
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supposed to serve as a foundation for building new ORmethods. Furthermore, four potential
future research avenues are recommended for SC optimization in I4.0: (1) incorporating new
decisions relevant to data-enabled SC optimization, both in I4.0 adoption and SC decision
aspects; (2) developing data-enabled modeling approaches, such as modeling automation,
self-tuning models, and RDP models; (3) preprocessing of parameters, including adapting
the parameters of big data and uncertainty elimination and alleviation; and (4) developing
data-enabled algorithms, such as self-adaptive and evolutionary algorithms, learning-based
heuristics, and hybrid exact algorithms. The set of directions elaborated in the thematic
analysis is a starting point to guide the development of upcoming research works and provide
directions for further literature reviews to be produced.

From practical perspective, this study contributes to a better understanding of the role of
OR approaches for SC practitioners who are struggling to find new solution approaches for
business success in their own domains. The description of the new operations models and the
rich context in which the models are adapted will guide practitioners to select appropriate
OR methods to incorporate a variety of decision-making dimensions at different SC levels.
The identification of the exciting opportunities that fuse and cross the boundaries of SC and
I4.0 paves the way for managers to achieve a decisive competitive advantage by developing
more realistic models.

7.2 Concluding remarks

The growing implementation of I4.0 equips the SC as a data-driven system to deliver prod-
ucts and services in a more accessible and affordable manner. It is believed that I4.0 will
revolutionize the SCmanagement. The potential benefits of integrating I4.0 and ORmethods
have been widely reported by both academics and practitioners. However, due to the frag-
mentation of the results and the lack of a review perspective on OR methodologies, a clear
and systemic analysis of the SC optimization in I4.0 is still missing. In this study, the existing
literature was systematically reviewed to survey the recent advances in SC optimization in
I4.0. More than 14,000 articles were refined and 212 were examined, classified, and analyzed
in terms of the: (1) role of I4.0 technologies, (2) SC decisions, (3) modeling approaches, and
(4) solution methodologies. The research frontiers, gaps, and promising future perspectives
in different domains of SC optimization in I4.0 are presented.

It is observed that AI, blockchain, ML, and IoT are the most addressed I4.0 technologies
in current studies. The OR methods have been implemented innovatively in four aspects for
SC optimization in I4.0. GT methods are the most popular, whereas robust and stochastic
methods are still under investigation. A new modeling form, the RDP model, was identified
and elaborated in this analysis. Future research should take advantage of the big data and real-
time data offered by I4.0 to enhance the performance of the SC. The deep analysis of the OR
methods and the rich I4.0 contextwould provide valuable insights to the academic community
and industry in exploiting the value of the data generated along the SC. Scholars can take this
investigation as a means to ignite collaborative research that tackles the emerging problems
in business, whereas practitioners can glean a better understanding of how to employ their
OR experts to support digital SC decision-making.

Although the methodology adopted was carefully structured, this study has several limita-
tions that we outline here. The findings of this review are applicable based on the limitations
of the data sources, which is the core database of WOS. The combinations of the few key-
words are used to collect published papers, which may lead to missing of some publications
due to the choice of the keywords. In addition, the analysis of the selected papers is based
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on our interpretation and thus dependent upon our perceptions and categorizations of the
collected documents.
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Appendix 1. Abbreviation

No. Abbreviation Description

1 AHP Analytic hierarchy process

2 AI Artificial intelligence

3 ANN Artificial neural network

4 BD Big data

5 CART Classification and regression tree

6 CPS Cyber-physical systems

7 DE Discrete-event

8 DM Data mining

9 GA Genetic algorithm

10 GT Game theory

11 I4.0 Industrial 4.0

29 ILP Integer linear programming

14 IoT Internet of Things

15 LP Linear programming

16 MILP Mixed integer linear
programming
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No. Abbreviation Description

17 MINLP Mixed integer nonlinear
programming

18 ML Machine learning

19 MLP Multilayer perceptron

20 OR Operation research

21 PSO Particle swarm algorithm

22 RDP Real-time data-driven
programming

23 RFID Radio frequency identification

24 RL Reinforce learning

25 SA Simulated annealing

26 SC Supply chain

27 SEO Social engineering optimization

28 SLR Systematic literature review

29 SVM Support vector machines

30 VRP Vehicle routing problem

31 WOS Web of science

Appendix 2. Journals categorization of the articles

No. Journals Number of
articles

1 International Journal of Production Research 30

2 Computers & Industrial Engineering 24

3 Annals of Operations Research 22

4 International Journal of Production Economics 16

5 Transportation Research Part E: Logistics and Transportation
Review

12

6 Journal of Cleaner Production 9

7 European Journal of Operational Research 8

8 Sustainability 7

9 Computers & Operations Research 6

10 IEEE Transactions on Intelligent Transportation Systems 5
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No. Journals Number of
articles

11 Production and Operations Management 5

12 Applied Soft Computing 4

13 Expert Systems with Applications 4

14 Soft Computing 4

15 Transportation Research Part C: Emerging Technologies 4

16 IEEE Transactions on Engineering Management 3

17 Industrial Management & Data Systems 3

18 International Journal of Logistics Research and Applications 3

19 Journal of Manufacturing Systems 3

20 Applied Mathematical Modelling 2

21 Computers & Chemical Engineering 2

22 Discrete Dynamics in Nature and Society 2

23 Manufacturing & Service Operations Management 2

24 OR Spectrum 2

25 Reliability Engineering & System Safety 2

26 Applied Mathematics and Computation 1

27 Arabian journal for science and engineering 1

28 Computers in Industry 1

29 Decision Sciences 1

30 Engineering Applications of Artificial Intelligence 1

31 EURO Journal on Transportation and Logistics 1

32 IEEE Transactions on Industrial Informatics 1

33 IISE Transactions 1

34 Information Sciences 1

35 INFORMS Journal on Computing 1

36 International Journal of Computer Integrated Manufacturing 1

37 Journal of Computational and Applied Mathematics 1

38 Journal of Computing and Information Science in
Engineering

1

39 Journal of Industrial and Management Optimization 1

40 Journal of Industrial Information Integration 1

41 Journal of Intelligent Manufacturing 1

42 Kybernetes 1

43 Mathematics 1
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No. Journals Number of
articles

44 Omega 1

45 Operational Research 1

46 Optimization Letters 1

47 RAIRO-Operations Research 1

48 Resources, Conservation and Recycling 1

49 Socio-Economic Planning Sciences 1

50 Soft Computing volume 1

51 Technological Forecasting and Social Change 1

52 Technology Analysis & Strategic Management 1

53 Waste Management 1
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