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Abstract
This study investigates two popular omnichannel strategies for managing consumer returns.
The reactive strategy is online–offline return partnership, which offers eco-friendly and cost-
effective reverse logistics. The proactive strategy involves conveying fit information through
showrooms, in order to reduce returns. We apply a game-theoretic model to explore online
retailers’ optimal choice among four strategies, namely, the benchmark strategy of pure online
channel, the reactive strategy of return partnership, the proactive strategy of fit information,
and the hybrid strategy of joint implementation. Ourmain findings are as follows. First, online
retailers should not implement any omnichannel strategy on extremely low-end products.
Second, offering fit information is essential for online retailers who sell sufficiently high-end
products. Third, the single reactive strategy is optimal in terms of standardized products with
moderate valuation. Finally, implementing both omnichannel strategies simultaneously may
hurt online retailers, especially those owning an efficient logistics system.
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1 Introduction

Over the last decade, online retailing has seen increasing popularity, due to advances in
information technology. However, a crucial drawback of online retailing is the inability of
online shoppers to physically and accurately inspect the nondigital attributes of a product
before purchase (Bell et al., 2018). Thus, consumers who purchase online face great product
fit uncertainty, which may result in extensive product returns. According to a recent survey
published by the National Retail Federation, $761 billion of merchandise was returned to
retailers in 2021, and the average return rate of online purchases rose to 20.8%.

When consumer returns do occur, retailers need to collect the misfit products from cus-
tomers, ship them to the warehouse, conduct thorough examinations for grading and sorting,
and finally restock, refurbish, liquidate, or dispose of the returns (Ofek et al., 2011). These
reverse logistics activities not only impose substantial losses on online retailers but also gener-
ate substantial carbon emissions and resource consumption (De Giovanni & Zaccour, 2022).
It is reported that a courier collecting and shipping a single retuned item emit 181 g–203 g
of carbon dioxide (Khusainova, 2019). Meanwhile, Optoro, a returns solution provider, esti-
mates that returned goods of US retailers annually generate 5.8 billion pounds of landfill,
and handling these returns produces 16 million metric tons of carbon emissions each year
(Schoolov, 2022). As environmental sustainability has become a global concern, govern-
ments have issued strict regulations to cut down carbon emissions (Li et al., 2019a, 2020;
Sun & Li, 2022). Thus, it is urgent for online retailers to address the environmental problems
associated with product returns.

Digital technologies, such as mobile computing, social media, smart devices, and aug-
mented reality, have made it possible for retailers to integrate online and offline channels.
As the boundaries between physical and online retailing vanish, the retail industry is shift-
ing toward seamless “omnichannel retailing.” Technology-enabled omnichannel retailing
provides online retailers with various strategies for addressing the environmental challenges
associated with online returns. One common strategy is cooperating with third-party solution
providers who accept returns at offline locations (henceforth, return partnership). These part-
ners employ advanced digital tools to ensure an environmentally friendly and cost-effective
return process.Online retailers such asRevolve, Everlane, andRothy’s have collaboratedwith
online return portals Happy Returns and Narvar, so as to handle returns in a decarbonized
way. Online shoppers can quickly initiate returns in these portals, drop off the returning items
label-free and box-free to a nearby location, and then simply show a QR express code. Subse-
quently, returns are aggregated in reusable totes through freight consolidation and shipped to
return hubs for sorting and processing with advanced reverse logistics software. Such return
partnerships can mitigate return costs for online retailers, as it is typically much cheaper to
ship back and handle returns in bulk, compared to direct returns from individual customers
(AlixPartners, 2017). Furthermore, as paperless and boxless returns, reusable packaging, and
bulk shipping are all eco-friendly and improve environmental sustainability. Happy Returns
demonstrates that, by replacing cardboard packaging with reusable containers, it reduces
greenhouse gas emissions by 120 k lbs for each million returns (Happy Returns, 2022).

The other popular omnichannel strategy involves providing fit information via show-
rooms. Typically, these small-footprint locations do not stock inventories, so they do not
require demand forecasting or replenishment. Instead, they are always equipped with digital
components, purely for experiential purposes (Bell et al., 2018). Beyond seeing, touching,
and trying out the samples in the showrooms, customers can also scan product reviews,
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video content, and social posts through electronic screens or shelf labels. In addition, in-
store smart devices, such as intelligent fitting rooms and smart mirrors, enable customers
to see how products would fit under various circumstances. By combining online content
in the digital world with touch-and-feel information in the physical world, the technologies
in showrooms can help consumers fully resolve product fit uncertainty (Gao et al., 2021).
If a customer likes a given product after experiencing it in a showroom, they need to place
an order on the corresponding website through a smartphone or iPad. The fit information in
showrooms can prevent returns from occurring in the first place. Recognizing the potential
of this strategy, various retailers, such as Warby Parker, Bonobos, Blue Nile, Tesla, Amazon,
and JD.com, have set up showrooms to better communicate fit information.

By integrating online and offline channels with advanced technologies, the two omnichan-
nel strategies have the potential to alleviate the issues associatedwith online returns.However,
existing studies have found opposite results in terms of the impact of introducing a new chan-
nel. Some research indicates that a new channel may cannibalize the existing channels and
thus hurt firms (Gao et al., 2021; Nageswaran et al., 2020; Ofek et al., 2011), while other
work shows that there may exist complementary and synergistic effects between existing
and new channels, thereby benefiting firms (Kumar et al., 2019; Li et al., 2019c; Luo et al.,
2020). As such, it is debatable whether online retailers should adopt the above omnichannel
strategies to introduce the experience or return channels for managing returns. In reality,
some online retailers first moved forward to omnichannel retailing but subsequently aban-
doned it. For example, Microsoft opened its first store in 2009, in order to compete with
Apple’s successful retail stores, but recently announced that 83 Microsoft stores will close
permanently (Shoulberg, 2020). In contrast to smartphone firms (e.g., Samsung, Huawei,
and Xiaomi) who have expanded their flagship stores worldwide, the Chinese brand OnePlus
announced a plan to shut down its experience stores across the country in 2015 (Figuccia,
2016). Moreover, the same online retailer may employ omnichannel strategies selectively
for different product categories. For instance, not all items purchased on Amazon’s website
can be returned at its partners’ locations. Some items or locations are not eligible for in-store
return (Amazon, 2022).

In addition, the two omnichannel strategies differ in their effectiveness in managing con-
sumer returns. The return partnership can be regarded as a reactive strategy, given that it
improves the efficiency and sustainability of reverse logistics after returns occur, while fit
information is part of a proactive strategy that prevents returns fromoccurring in thefirst place,
by resolving product fit uncertainty. Intuitively, the proactive strategy may seem more effec-
tive than the reactive strategy.However, as the above examples illustrate, some online retailers
(e.g., Revolve, Everlane, and Rothy’s) offer offline return options through partnerships, while
some (e.g., Blue Nile, Tesla, and JD.com) employ showrooms. More interestingly, certain
retailers apply both omnichannel strategies simultaneously. For example, Warby Parker and
Bonobos have introduced retail locations not only to facilitate offline inspection but also
to accept returns. Given the distinct practices observed in reality, some important questions
naturally arise:

(1) When should online retailers implement these omnichannel strategies to manage online
returns?

(2) Which omnichannel strategy is more profitable for online retailers—under what condi-
tions and for what kinds of products?

(3) Is the joint implementation of both omnichannel strategies always more beneficial than
a single omnichannel strategy?
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To answer these questions, we develop a game-theoretic model in which an online retailer
sells a product to customers who face product fit uncertainty. Once the product is delivered,
consumers can decide whether they like it only by actually inspecting it. When the online
purchase results in a misfit product, the online retailer offers a full refund. Purchasing or
returning the product through the online channel incurs an online hassle cost to customers.
Traveling to the offline location to inspect or return the product incurs an offline visit cost. Ex
ante, customers are heterogeneous as regards preferences of channels. For online retailers,
receiving and processing returns through different channels incurs different costs and losses.
In particular, the offline channel results in lower handling costs and losses, due to economies
of scale. Based on the analysis of customers’ purchase and return behaviors, we investigate
the online retailer’s optimal choice among four strategies, namely, the benchmark strategy of
pure online channel, the reactive strategy of return partnership, the proactive strategy of fit
information, and the hybrid strategy of joint implementation. Moreover, we extend our main
model to examine a partial refund policy and to explore the robustness of our main results.

Our key findings are summarized as follows. First, omnichannel strategies do not always
benefit online retailers. In particular, it may be detrimental to implement omnichannel strate-
gies in the case of extremely low-end products. Given a lower per-unit loss on returns, retailers
have an incentive to reduce the retail price, in order to encourage purchases from more cus-
tomers. At the same time, a comparatively low retail price can help to fully compensate
for return losses. Although omnichannel strategies could expand market size and reduce
return losses, the advantages are insignificant for low-end products, which cannot offset
the decreased revenue due to reductions in retail price. Second, when the online retailer sells
high-end products, offering fit information proactively is an essential strategy. This is because
displaying high-end products in showrooms is effective in encouraging more customers to
purchase. Given the high prices of these high-end products, the increased demand will bring
substantial profits. Third, because fit information can prevent returns, it is more effective in
reducing return losses when the return rate is relatively high. Therefore, for relatively per-
sonalized products, only offering the return partnership will never be optimal. In contrast,
when products are relatively standardized and moderately valued, the online retailer should
adopt the single reactive strategy, since fit information may lead to a great reduction in retail
price. Fourth, online retailers may disadvantage themselves by simultaneously implementing
both omnichannel strategies. In particular, when the reduction in per-unit return loss in the
reactive strategy is insignificant, adding the reactive strategy to the proactive strategy will
be counterproductive. The reason for this lies in the trade-off between the substitution effect
and the complementary effect.

The remainder of our paper is organized as follows. Section 2 briefly reviews the relevant
literature. Section 3 describes our model. Section 4 derives and analyzes the equilibrium
solutions for each of the four strategies. Section 5 compares the above equilibrium outcomes
to ascertain the online retailer’s optimal strategy. Section 6 considers several extensions to
our basic model. Section 7 presents concluding comments and proposes directions for future
research. All proofs are relegated to the Appendix.

2 Literature review

Our work is closely related to two streams of literature: consumer returns and omnichan-
nel retailing. In this section, we present a brief overview of each aspect and explain our
contributions.
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2.1 Consumer returns

Since product fit uncertainty is a key issue for the booming online retail sector, managing
consumer returns has garnered increasing interest among scholars of both operations man-
agement andmarketing. One stream in this literature pays close attention to how to efficiently
manage returns after they have occurred. This reactive stream of literature can be divided
into two main categories: micro return policy and macro strategy of return management.
There is an extensive body of literature that investigates firms’ return policies along different
dimensions, such as refunds (Li et al., 2019b; Liu et al., 2022a; Su, 2009), return-freight-
insurances (Lin et al., 2023), and return periods or windows (Ertekin & Agrawal, 2020; Ma
et al., 2020). Moreover, Abdulla et al. (2022) comprehensively assess the impact of return
policies on consumer behaviors, in terms of five leniency levers. From strategic perspec-
tives, Mishra and Singh (2022) approach questions regarding efficiency via cost-effective
reverse logistics network designs; Govindan et al. (2017) propose a supply chain network
for the selection and evaluation of third-party reverse logistic providers as well as forward
distribution partners from the perspective of sustainability. Our reactive strategy belongs to
this category. However, the return partnership in our work is a novel mode in the context of
omnichannel retailing. It improves the efficiency of reverse logistics by integrating the online
and the offline channel with advanced technologies. Specifically, online retailers establish
return portals which allow customers to conveniently make cross-channel returns.

In addition to improving the efficiency of reverse logistics, another stream of research
focuses on the provision of fit information as a means for preemptively reducing the number
of returns. Extant research examines the role of in-store assistance or services in reducing
returns (Ertekin et al., 2019; Ofek et al., 2011; Xiao & Shi, 2014). Moreover, several papers
investigate the usefulness of online technologies in the reduction of returns. For example,
De et al. (2013) explore the relationship between product-oriented web technologies and
product returns. Gallino and Moreno (2018) examine virtual fitting-room technology and
find that virtual fit information can decrease fulfillment costs arising from returns. Xu et al.
(2023) analyze the benefits of artificial intelligence adoption for a platform supply chain
with product returns. Taking a more theoretical perspective, Sun et al. (2022) and Yang et al.
(2022) have developed game-theoretical models to investigate the optimal virtual-reality
webroom strategy. The methods in the above papers can only partially resolve customers’ fit
uncertainty. To completely reveal product fit and quality information, Liu and Xiong (2023)
investigate whether a pure e-tailer should open traditional stores. In contrast, we study amore
immersive experience environment, i.e., showroom, by combining the digital and physical
retail worlds.

Overall, ourworkmakes two contributions to the above streams of literature. First, existing
research mainly focuses on implementing similar strategies for return management in the
same channel. We theoretically investigate and compare channel integration strategies from
both reactive and proactive perspectives in the context of omnichannel retailing. Second, we
comprehensively analyze a scenario in which these strategies are jointly employed, so as to
assess the interactions between them.

2.2 Omnichannel retailing

With the growing prevalence of advanced technologies, retailers integrate online and offline
channels in variousways in order to offer consumers a seamless shopping experience. Among
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the various omnichannel strategies, two are closely related to our paper: buy-online-and-
return-in-store and showroom.

The former strategy allows customers to returnmisfit products to physical locations. Extant
research mainly analyzes whether and when firms should adopt buy-online-and-return-in-
store. For example, Nageswaran et al. (2020) compare different return policies, including
full refunds, partial refunds, and in-store returns, to identify the conditions under which an
in-store return policy is optimal for a multichannel retailer. Subsequently, Yang et al. (2023)
examine the impact of buy-online-and-return-in-store on a retailer’s store operations and
find that this strategy may hurt the retailer owing to the large proportion of resalable returns;
Jin et al. (2020) analyze multichannel retailers’ decisions on the adoption of cross-channel
return services in a duopoly setting; Huang and Jin (2020) investigate this problem in the
context of two competitive supply chains. Moreover, some existing research compares buy-
online-and-return-in-storewith other strategies, such as buy-online-and-pick-up-in-store (Liu
et al., 2022b). However, the above literature mainly conducts analyses from the view of a
multichannel retailer who owns both online and offline channels. For a purely online retailer,
who does not have any physical stores, return partnerships constitute a growing omnichannel
practice. Under this strategy, pure online retailers partner with third-party service providers
or physical firms to offer customers offline return services. Hwang et al. (2021) empirically
examine the value of such partnerships to the offline location partner. Additionally, Jin and
Huang (2021) study the adoption of these return partnerships in the context of competition
between two e-retailers. These papers mainly emphasize the effect of return partnerships on
offline locations and customer return behaviors. In contrast, we analyze return partnerships
from the environmental view and with a focus on their efficiency in handling online returns.
To date, the existing literature on these return partnerships is scarce. We enrich this stream
of research by comparing the return partnership and showroom strategies.

The emerging practice of showrooms has spurred considerable attention in the academic
literature. Empirical research has verified that various kinds of showrooms can not only
boost sales but also reduce online returns (Bell et al., 2018, 2020). In light of the demand-
boosting effect of showrooms, Konur (2021) establishes a model to explore two competitive
online brands’ decisions on the introduction of showrooms. By contrast, we focus on the fit
information and returns-reducing effect of showroom strategy. Gao and Su (2017) establish a
monopolistic model to study an omnichannel retailer’s showroom strategy considering inven-
tory decisions; they caution that turning a store into a showroom may be unprofitable due to
the decreased inventory level. Gao et al. (2021) analyze the impact of the showroom strategy
on the number and size of a retailer’s physical stores. Zhang et al. (2021) comprehensively
examine omnichannel retailers’ advance selling and physical showroom strategies. The clos-
est paper to ours is that of Mandal et al. (2021). They compare the showroom strategy with
the brick-and-mortar store strategy. Their brick-and-mortar store strategy consists in opening
a traditional store both for selling products and for receiving returns. Our work differs from
them in that we focus on an online retailer’s price decisions under the showroom strategy
and compare this with the return partnership strategy.

In summary, none of the above papers has comprehensively analyzed and compared the
two omnichannel strategies so as to address the environmental challenges arising from online
returns. Our work differs from these studies in the following ways. First, we clearly recognize
the interaction between different channels and elaborate on the underlying mechanisms of
channel integration. Specifically, these omnichannel strategies exert two positive and one
negative effects on the retailer. The relative strengths of these effects drive the final results.
Second, we consider the scenario in which both omnichannel strategies are implemented at
the same time, in order to determine potential interactions between the two strategies.
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3 Model

We consider an online retailer who sells a product through his online channel. Ex ante, his
consumers are uncertainwhether the product fits them, due to the lack of physical access to the
product’s nondigital attributes prior to purchase. Let θ ∈ (0, 1) denote the fit probability, that
is, the probability that the product matches a particular consumer’s taste. We thereby assume
that the product only conforms to the preferences of a fraction θ of customers. Following
Mandal et al. (2021), θ can also be interpreted as the degree of product standardization.
Specifically, the product is highly standardized (personalized) given a large (small) θ . A
consumer gains a positive valuation v from the product if she likes it and a valuation of zero
otherwise. Based on the valuation v, products can be classified into different categories, e.g.,
high-end, middle-end, or low-end. We also assume that θ and v are common knowledge;
thus, they are known to the retailer and all consumers.

3.1 Online retailer’s strategies

When the online retailer only operates the online channel, customers cannot resolve their fit
uncertainty before making purchases online. They can ascertain their valuations only after
receiving the product. Consistent with previous literature (e.g., Gao et al., 2021; Xiao et al.,
2022; Zhang&Choi, 2020;McWilliams, 2012), we assume that the online retailer provides a
money-back guarantee with full refunds and that consumers prefer returning misfit products
rather than keeping them. In otherwords, if the product is fit, customerswill keep it; otherwise,
customers prefer to return it. In Sect. 6.1, we examine a partial refund scenario wherein the
online retailer may charge a restocking fee or penalty for online returns. The result shows
that omnichannel strategies may become more preferable under this situation.

For each unit returned online, the online retailer faces a net loss of co, which includes
handling costs (e.g., collecting, shipping, or restocking) and net salvage value. Generally,
co represents the operational efficiency of the online retailer’s reverse logistics system; an
efficient and responsive reverse logistics system ensures a low value for co. We assume
that the online retailer absorbs the shipping fees for online returns; shipping misfit products
back is free for customers. For example, Warby Parker offers a hassle-free return policy;
Bonobos uses prepaid return labels which allow customers to ship domestic orders back at
no cost. We relax this assumption in Sect. 6.2, where customers are instead assumed to pay
for the shipping of online returns. The result shows that our main findings continue to hold
qualitatively.

Considering the reactive strategy, each unit returned at a store generates a handling cost cs
for the online retailer. Following Gao et al. (2021), we assume cs < co, as return partners are
typically large-scale operations which handle product returns using advanced technologies
and hence tend to bemore cost-effective. For example, the third-party service provider Happy
Returns has announced that it helps online retailers save an average of 20%on reverse logistics
(Happy Returns, 2021). Regarding the proactive strategy, the online retailer may establish
a showroom to provide full fit information. In line with Gao et al. (2021) and Gao and
Su (2017), we assume that fit information can help a customer completely resolve her fit
uncertainty. Finally, the retailer can also adopt the two omnichannel strategies at the same
physical location, just as Warby Parker and Bonobos do.

To underscore the demand-side effect of omnichannel strategies and for the sake of parsi-
mony, we regard the fixed software fee in return partnerships and the setup costs of physical
locations in the showroom strategy as sunk costs and put aside considerations of them in our
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main model, which is in the spirit of previous research (Balakrishnan et al., 2014; Raj et al.,
2020). This way, we hope to help online retailers identify the pros and cons if and when
implementations become possible.

3.2 Customers’ shopping behaviors

When customers make both purchases and returns through the online channel, we call this
shopping behavior buy-online-and-return-online (BORO). Purchasing the product online
generates a corresponding online hassle cost ho to consumers, which mainly includes wait
costs, security risks of online transactions, and any inconveniences of operating on the web-
site or app (Gao & Su, 2017; Gao et al., 2021; Mehra et al., 2018). Following Balakrishnan
et al. (2014) and Jing (2018), we assume that ho is uniformly distributed in [0, 1], considering
the heterogeneity in consumers’ inclinations toward the online channel. In the benchmark
strategy, when a customer purchases the product directly through the online channel, she
can resolve her fit uncertainty only after receiving the product. Upon physically inspecting
the product, she will dislike it with probability 1−θ . If she dislikes the product, she has to
perform an extra online operation and thus incurs an extra cost, ho, to return the product.
This is in the spirit of Pun et al. (2020), who assume that purchasing and returning products
in the offline channel incur the same cost. Thus, ho also represents the customer’s hassle cost
in returning the product through the online channel. In turn, a consumer’s expected utility
for BORO is given by

uBORO � θ(v − p) − (1 − θ)ho − ho (1)

where θ (v − p) represents the expected utility if the product is satisfactory and thus kept,
(1−θ )ho reflects the expected hassle cost when the product is misfit and then returned online,
and the last term is the hassle cost of purchasing online.

In the reactive strategy, a customer can choose to return the misfit item purchased online
to the offline store. This shopping behavior is denoted by buy-online-and-return-in-store
(BORS). Traveling to the physical location incurs a uniform offline visit cost hs for customers
(Balakrishnan et al., 2014; Jing, 2018). Thus, a consumer’s expected utility for BORS is given
by

uBORS � θ (v − p) − (1 − θ )hs − ho (2)

In the proactive strategy, a customer can first travel to the showroom to experience the
product and then make a purchase online if she likes it. This shopping behavior is called
experience-in-showroom-and-buy-online (ESBO). After a customer visits the showroom,
she will buy the product with probability θ . With probability 1 − θ , she will find the product
unsatisfactory and not buy it. Thus, a consumer’s expected utility for ESBO is

uESBO � θ (v − p − ho) − hs (3)

Note that the purchase cost and return cost in the online (offline) channel are equal to
ho (hs), as purchasing and returning products in the same channel are exactly opposite
processes. Accordingly, the relative value of hs versus ho not only captures the advantages
and disadvantages of each channel in the purchase or return process but also incorporates the
heterogeneity in customers’ channel preferences. For example, when ho < hs , consumers
will prefer to purchase or return the product through the online channel rather than through
the offline channel. In Sect. 6.3, we consider the cost differences between purchasing and
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Table 1 Summary of notations

Notations Definition

B, R,P, H Superscripts, indexes for strategies

v Product valuation

θ Product fit probability

ho Online hassle cost

hs Offline visit cost

p Retail price

d Total demand

dBORO /dBORS /dESBO Demands for BORO/BORS/ESBO

c Unit procurement cost

co Retailer’s per-unit loss on a product returned online

cs Retailer’s per-unit loss on a product returned offline

π Retailer’s profit

returning the product through the same channel. The result shows that cost differences do
not affect our main results qualitatively.

Following Hu et al. (2021), we assume that the total demand in the entire market is 1.
Additionally, the product valuation v is not very large, such that the entire market is partially
covered. The unit procurement cost is c. Given that customers always place their orders
through the online channel, the retail price p holds across all channels. Finally, we use d ,
dBORO , dBORS , and dESBO to denote the total demand and the demands of BORO, BORS,
and ESBO, respectively. A summary of the notations we use is presented in Table 1.

The game sequence is as follows. In Step 1, the retailer makes a choice from the above
four strategies (i.e., the benchmark strategy, the reactive strategy, the proactive strategy, and
the hybrid strategy). In Step 2, the online retailer chooses the retail price. In Step 3, customers
determine whether to buy the product, how to purchase it, and how to return it if it is misfit.

4 Equilibrium solutions

In this section, we derive the equilibrium outcomes for each strategy through backward
induction. First,we analyze customers’ channel choices given the retail price. Then, according
to customers’ purchase and return behaviors, we pinpoint the retailer’s optimal retail price
by maximizing his profit function. Finally, all equilibrium outcomes are obtained on the
basis of the optimal retail price. We denote them with superscripts B, R, P, H to indicate the
benchmark strategy, the reactively strategy, the proactively strategy, and the hybrid strategy,
respectively. Note that we ignore anymarket condition that leads to themeaningless boundary
solution where the total market is fully covered or zero covered.

4.1 Benchmark strategy: pure online channel

In the benchmark strategy, the online retailer operates an online channel, which is the only
route for customers to buy and return the product. A customer’s expected utility for BORO is
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(a) benchmark strategy

(b) reactive strategy

BORO BORS No buy

BORO ESBO No buy

BORO ESBO No buyBORS

(c) proactive strategy

(d) hybrid strategy

10

BORO No buy

Fig. 1 Market segmentations

displayed in Eq. (1). As illustrated in Fig. 1a, when uBORO ≥ 0, consumerswith ho ≤ θ (v−p)
2−θ

will buy the product from the online channel. The remaining customers will choose not to
buy, due to their large online hassle costs. Among the total demand, a fraction θ of purchases
will eventually be kept, and the corresponding net profit margin is p−c; on average, (1−θ )d
units will be returned, and the retailer faces a net loss co for each unit returned online. Thus,
the online retailer’s expected profit in the benchmark strategy is

π (p) � θd(p − c) − (1 − θ )dco (4)

Proposition 1 structurally characterizes all equilibrium outcomes for the benchmark strat-
egy.

Proposition 1 In the benchmark strategy, the equilibrium retail price and profit are pB∗ �
v+c
2 + (1−θ )co

2θ and π B∗ � (θ (v−c)−(1−θ )co)2

4(2−θ ) , respectively.

Next, we examine the impacts of different parameters on the equilibrium results for the
benchmark strategy, as shown in Lemma 1.

Lemma 1

(i) When the product valuation v increases, the equilibrium retail price and profit both
increase.

(ii) When the product fit probability θ increases, the equilibrium retail price decreases but
the equilibrium profit increases.
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(iii) When the per-unit loss on a product returned online co increases, the equilibrium retail
price increases but the equilibrium profit decreases.

Lemma 1(i) shows that a higher v leads to a higher price and more profits for the retailer,
sincemore customers will buy the product. In contrast, Lemma 1(ii) indicates that the optimal
retail price decreases with θ , although more customers are willing to purchase at a larger θ .
The reason for this lies in the positive effect of return loss. A small θ implies a high rate of
product returns. In this case, the online retailer has an incentive to raise his retail price, in
order to reduce the market size of BORO for a small volume of total returns. In addition, with
a high total return loss, the retailer will charge a high retail price to fully compensate for it.
Therefore, when θ is low, the retail price will be large. Otherwise, the online retailer may set
a low retail price to attract more customers, considering the small return rate. Nevertheless,
the retailer’s profit always increases in θ as more customers are willing to buy. In a similar
vein, as shown in Lemma 1(iii), when the per-unit loss on a product returned online co
increases, the optimal retail price increases but the retailer’s profit decreases. In summary,
various parameters influence the retail price mainly through two effects, namely, the demand
effect and the return loss effect.

4.2 Reactive strategy: return partnership

In the reactive strategy, customers have alternative options for returning a misfit product:
(1) ship it back directly through the online channel, incurring an online hassle cost ho as
before, or (2) travel to the physical store to return it, incurring an offline visit cost hs .
The expected utilities for the two return options are given in Eqs. (1) and (2), respectively.
Furthermore, a customer can also choose not to purchase the product, which yields zero
utility. Comparing uBORO , uBORS , and 0, we obtain the market segmentations displayed in
Fig. 1b. Note that no customer will conduct BORS when the offline visit cost is very high
(i.e., hs ≥ θ(v − p) − (1 − θ )hs). Similar to Hu et al. (2021), we omit this uninteresting
situation to focus on markets where both BORO and BORS exist. On the supply side, the
online retailer faces a per-unit loss co for an average of (1 − θ )dBORO units returned online
and a per-unit loss cs for an average of (1 − θ )dBORS units returned offline. Therefore, the
retailer’s expected profit in the reactive strategy is given by

π(p) � θ(dBORO + dBORS)(p − c) − (1 − θ)dBOROco − (1 − θ)dBORScs (5)

All equilibrium outcomes in the reactive strategy are accounted for in Proposition 2. We
discuss their properties below.

Proposition 2 In the reactive strategy, the equilibrium retail price and profit are pR∗ �
v+c
2 + (1−θ )(cs−hs )

2θ and π R∗ � (θ (v−c)−(1−θ )hs )2−2(1−θ )cs (θ (v−c)−(3−θ )hs )−4(1−θ )cohs+(1−θ )2cs2

4 ,
respectively.

The following lemma shows how different parameters affect the equilibrium solutions for
the reactive strategy.

Lemma 2

(i) When the product valuation v increases or the offline visit cost hs decreases, the equi-
librium retail price and profit both increase.

(ii) When the product fit probability θ increases, the equilibrium retail price decreases if
and only if cs > hs , while the equilibrium profit always increases.
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(iii) When the per-unit loss on a product returned online co increases, the equilibrium retail
price keeps unchanged but the equilibrium profit decreases.

(iv) When the per-unit loss on a product returned offline cs increases, the equilibrium retail
price increases but the equilibrium profit decreases.

Intuitively, a larger valuation v or a lower offline visit cost hs will motivatemore customers
to conduct BORS. Consequently, both the retail price and profit increase.

An increase in θ not only generates greater demand but also means a lower rate of
product returns. Clearly, the profit will increase. However, as for the retail price, the demand-
enhancing effect is positive, whereas the return-reducing effect is negative. Therefore, there
exists a balance between the two effects. Given a low hs , the expected hassle cost of returning
an item offline, (1 − θ )hs , will decrease slightly as θ increases. Thus, a low hs weakens the
demand-enhancing effect. When cs is large, a decrease in the number of product returns
means a substantial reduction in return losses, which intensifies the return-reducing effect.
As such, when cs > hs , the return-reducing effect is more significant than the demand-
enhancing effect. It drives the retail price to decrease with θ . Otherwise, the retail price will
increase with θ .

Additionally, the demand for BORO only depends on the relative value of hs vs ho and
is irrelevant to the retail price. Therefore, the retail price is irrelevant to co. But, the profit
decreases in co because of more return loss. According to the return loss effect illustrated in
Lemma 1, the retail price increases with cs but the profit decreases with cs .

4.3 Proactive strategy: fit information

Similarly, the proactive strategy provides customers with two distinct channels for purchases.
If a customer chooses to buy the product directly from the online channel, the expected utility
is uBORO , given in Eq. (1). Alternatively, she can first travel to the showroom to resolve fit
uncertainty, which generates the corresponding expected utility uESBO , given in Eq. (3). By
comparing these expected utilities with zero, we can obtain a customer’s optimal shopping
behavior. As illustrated in Fig. 1c, the market is divided into three parts. We only analyze
the scenario where ESBO exists. Based on customers’ purchasing behaviors, the retailer’s
expected profit in the proactive strategy is

π(p) � θ(dBORO + dESBO )(p − c) − (1 − θ)dBOROco (6)

The first term is the total expected revenue that the retailer gains from the effective
demands. The second term is the expected return loss from BORO. Proposition 3 accounts
for all equilibrium outcomes in the proactive strategy.

Proposition 3 In the proactive strategy, the equilibrium retail price and profit are pP∗ �
v+c
2 − hs

2θ and π P∗ � θ2(v−c)2−2θhs (v−c+co)+hs2

4θ , respectively.

Lemma 3 presents the properties of equilibrium outcomes for the proactive strategy.

Lemma 3

(i) When the product valuation v increases or the offline visit cost hs decreases, the equi-
librium retail price and profit both increase.

(ii) When the product fit probability θ increases, the equilibrium retail price and profit both
increase.
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(iii) When the per-unit loss on a product returned online co increases, the equilibrium retail
price keeps unchanged but the equilibrium profit decreases.

(iv) When the per-unit loss on a product returned offline cs increases, the equilibrium retail
price increases but the equilibrium profit decreases.

Similar to the reasoning for the preceding lemmas, the equilibrium retail price and profit
are increasing in v but decreasing in hs , as shown in Lemma 3(i).

Since the purchase choice between BORO and ESBO is irrelevant to the retail price,
it is easy to see that the amount of product returns that comes only from BORO will not
change with the retail price. Thus, θ and co do not influence the retail price through the return
loss effect. Moreover, the demand-enhancing effect of θ drives the retail price and profit to
increase, and the profit decreases in co owing to more return losses, as illustrated in Lemma
3(ii) and (iii).

Similar to the above lemmas, Lemma 3(iv) shows that as cs increases, the return loss effect
drives the retail price to increase but the profit to decrease.

4.4 Hybrid strategy: joint implementation

In the hybrid strategy, customers will choose from BORO, BORS, and ESBO to achieve
the highest utility. The comparisons of Eqs. (1), (2), and (3) yield the market segmentations
for this strategy. As shown in Fig. 1d, no customer will conduct BORS if the return rate is
high (i.e., θ ≤ 0.5). The reason for this is that, at a high return rate, ESBO is preferable to
BORS if ho is high, and BORO outperforms BORS if ho is low. We omit this uninteresting
situation and focus only on the effective area where both BORS and ESBO exist. According
to customers’ shopping behaviors, the online retailer’s expected profit in the hybrid strategy
is

π(p) � θ (dBORO + dBORS + dESBO )(p − c) − (1 − θ )dBOROco − (1 − θ )dBORScs (7)

Following the same solution procedure, we derive a unique equilibrium for the hybrid
strategy. The following Proposition and Lemma present the equilibrium outcomes for the
hybrid strategy and their properties, respectively.

Proposition4 In the hybrid strategy, the equilibrium retail price andprofit are pH∗ � v+c
2 − hs

2θ

and πH∗ � θ2(v−c)2−2θhs (v−c+2(1−θ )co+2(2θ−1)cs )+hs2

4θ , respectively.

Lemma 4

(i) When the product valuation v increases or the offline visit cost hs decreases, the equi-
librium retail price and profit both increase.

(ii) When the product fit probability θ increases, the equilibrium retail price and profit both
increase.

(iii) When the per-unit loss on a product returned online co increases, the equilibrium retail
price keeps unchanged but the equilibrium profit decreases.

(iv) When the per-unit loss on a product returned offline cs increases, the equilibrium retail
price increases but the equilibrium profit decreases.

It is easy to see from Fig. 1 that the volume of product returns is irrelevant to the retail
price in both the hybrid strategy and the proactive strategy. This means that the return loss
exerts no influence on the retail price. Since the total demands in both strategies are only
determined by the market size of ESBO, the hybrid strategy has the same retail price and
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total demand as those in the proactive strategy. Thus, Lemma 4 is line with Lemma 3, i.e., the
properties of the equilibrium retail price and profit are consistent with those in the proactive
strategy.

5 Optimal strategy

Based on the equilibrium outputs of the different strategies, we now examine the first stage
of the game in which the online retailer determines his strategy. To better understand the
managerial insights of our results, we first explore the relationships across the four strategies
in terms of the retail price and demand. The lemmas below provide a comparison of their
results.

Lemma 5 The retail prices and total demands under the four strategies have the following

orders: pH∗ � p
P∗

< pR∗ < pB∗ and dH∗ � dP∗ > dR∗ > dB∗.

Lemma5 reveals that the benchmark strategy yields the highest retail price, followed by the
reactive strategy and lastly the proactive and hybrid strategies. The order of the total demands
is the exact opposite. Obviously, omnichannel strategies will motivatemore customers to buy,
due to the lower expected shopping costs. Nonetheless, the retail prices finally decrease. To
see the intuition behind this, note that the retail price is positively influenced by the return
loss in addition to the demand, as discussed in the above lemmas. In comparison to the
benchmark strategy, the omnichannel strategies may help the retailer reduce his return losses
through various mechanisms. Specifically, the reactive strategy reduces the per-unit loss on
returns, whereas the proactive strategy avoids returns from occurring in the first place. The
latter is more aggressive than the former in reducing return losses. Therefore, the return loss
in the benchmark strategy is the highest, followed by that of the reactive strategy and finally
that of the proactive strategy. Although a higher demand may raise the retail price, the effect
of decreased return loss dominates. In addition, the retailer in the hybrid strategy and the
proactive strategy has equal retail prices and total demands, since the volume of product
returns is irrelevant to the retail price in both strategies. Thus, the results in Lemma 5 are
straightforwardly obtained.

From the above discussions, we can easily see that omnichannel strategies exert three
effects on the online retailer. First, the return loss obviously declines when the shopping
behavior shifts from BORO to BORS or ESBO. This impact is referred to as the “return loss

reduction effect.” Second, the result pH∗ � p
P∗

< pR∗ < pB∗ implies a price disadvantage
for omnichannel strategies. Therefore, given equal base demand, omnichannel strategies yield
lower revenues than the benchmark strategy. We call this the “price decrease effect.” Finally,
the result dH∗ � dP∗ > dR∗ > dB∗ indicates that omnichannel strategies can attract new
customers. These increases in demand bring net profits, a positive effect we refer to as the
“demand expansion effect.” In comparison to the reactive strategy, the proactive strategymay
generate more “BORO” customers when θ is large. Nevertheless, the overall return loss in
the proactive strategy will still be smaller, due to the large market size of ESBO. Thus, the
proactive strategy also has the above three effects, in contrast to the reactive strategy. Taking
the benchmark strategy and the proactive strategy as examples, Fig. 2 graphically illustrates
the above three effects between them.

Since the hybrid strategy and the proactive strategy have the same retail price and total
demand, the above price decrease and demand expansion effects do not obtain between them.
As for return loss, Lemma 6 gives the comparison of market segmentations between them.
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Lemma 6 dP∗
ESBO − dH∗

ESBO � dP∗
BORO − dH∗

BORO � (2θ−1)hs
2(1−θ ) .

Figure 3 graphically demonstrates Lemma 6. As shown in Fig. 3, adding the reactive
strategy into the proactive strategy results in a substitution effect as well as a complementary
effect. As ho increases, BORO’s expected utility decreases at the highest rate, followed by
BORS’s and ESBO’s. Therefore, a proportion of customers (i.e., dP∗

ESBO − dH∗
ESBO ) who

initially prefer ESBO under the proactive strategy now switch to BORS under the hybrid
strategy, resulting inmore returns—whichwe refer to as the “substitution effect.”Meanwhile,
a proportion of customers (i.e., dP∗

BORO − dH∗
BORO ) who initially choose BORO under the

proactive strategy now also shift to BORS under the hybrid strategy, leading to a lower per-
unit loss on returns—which we refer to as the “complementary effect.” Moreover, since the
differences in expected shopping costs across BORS, BORO, and ESBO are identical, the
demand changes for the two effects are equal to (2θ−1)hs

2(1−θ ) .
Next, we compare the retailer’s profits in the hybrid strategy and the proactive strategy to

conduct a preliminary analysis. Note that the profit comparison assumes a common feasible
domain shared by the two strategies, as is explained in the Appendix. Proposition 5 presents
the result of our profit comparison between the two strategies.

Proposition 5 πH∗ ≤ π P∗ if co ≤ 2cs and πH∗ > π P∗ if co > 2cs .

Proposition 5 shows that the result depends only on the relative values of co and cs .
When co is much larger than cs , the hybrid strategy is more beneficial. Otherwise, it is more
profitable to employ the single proactive strategy. The underlying logic is as follows. The
substitution effect generates a per-unit loss cs when shopping behavior shifts from ESBO
to BORS, while the complementary effect decreases the per-unit loss by co − cs . As stated
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above, the demand changes in both effects are equal. Given these identical demand changes,
the substitution effect will exceed the complementary effect when the marginal loss cs is
larger than the marginal gain co − cs (i.e., co < 2cs). This ultimately leads to a negative net
effect. In contrast, when co is very large, it is worthwhile to simultaneously implement both
omnichannel strategies, so as to further reduce return losses.

Proposition 5 has the following implications for retailers who have already set up show-
rooms. If they do not have large logistics systems and thus incur high losses of online returns,
it may be more profitable to add the return partnership into the function of showrooms. Oth-
erwise, they should only exploit the fit information in showrooms since the initial loss of
online returns is not high. This supports the recent practices of online retailers such as JD.com,
Warby Parker, and Bonobos. Warby Parker and Bonobos do not have their own logistics sys-
tems, and they allow customers to return online purchases at their physical showrooms. In
contrast, JD.com owns an efficient logistics team and does not accept online returns at its
experience stores.

In accord with the results in Proposition 5, we discuss the retailer’s optimal strategy for
two cases below. When θ ≤ 0.5, only the hybrid strategy is meaningless. When θ > 0.5 and
co ≤ 2cs , the proactive strategy is superior to the hybrid strategy. Under these situations,
we compare the proactive strategy with the benchmark strategy and the reactive strategy, to
derive the optimal strategy. On the other hand, for θ > 0.5 and co > 2cs , we compare the
hybrid strategy with the other two strategies, as the hybrid strategy outperforms the proactive
strategy.

5.1 Comparisons among the three single strategies

We now compare the retailer’s profits among the benchmark strategy, the reactive strategy,
and the proactive strategy. Note that the profit comparisons assume the common feasible area
of the three strategies. Proposition 6 presents the main result.

Proposition 6 For θ ≤ 0.5 or θ > 0.5 and co ≤ 2cs , there exist thresholds v̂PB , v̂PR , v̂RB ,
and ̂θ , such that the online retailer’s optimal strategy is:

(1) the proactive strategy of fit information, if v ≥ max (̂vPB , v̂PR);
(2) the reactive strategy of return partnership, if θ > ̂θ and v̂RB < v < v̂PR ;
(3) the benchmark strategy of pure online channel, if v ≤ min(̂vRB , v̂PB ).

Proposition 6 demonstrates that the online retailer’s optimal choice depends mainly on
two factors: product valuation v and product fit probability θ . As depicted in Fig. 4, when
v is sufficiently large, the proactive strategy is optimal. When v is extremely small, the
benchmark strategy is optimal. When v is medium and θ is relatively large, the reactive
strategy is optimal. The reason for all of this lies in the relative strengths of the three effects
depicted above.

The proof of Lemma 5 shows that all demand gaps between strategies become greater as
v increases. Note that a customer will not buy the product when her online hassle cost ho
exceeds a certain threshold. A larger v generates a higher threshold of ho, which is more
likely to exceed the offline visit cost hs . The relatively lower hs motivates more customers to
conduct ESBO rather than BORO or BORS as v increases. Therefore, demand gaps between
the proactive strategy and the other two strategies will become greater with larger values for
v. For a similar reason, as v increases, the demand gap between the reactive and benchmark
strategies becomes much greater. In addition, the above lemmas show that the retail price
always increases with v. A greater demand gap, together with a higher retail price, will
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Fig. 4 Online retailer’s optimal strategy (hs � 0.3, co � 0.2, cs � 0.1, and c � 0.1)

bring more additional profits. Thus, the demand expansion effect is extremely significant at a
large v. Obviously, the return loss reduction effect and the price decrease effect also become
intensified as v increases. When v is very large, the combined intensity of the demand
expansion effect and the return loss reduction effect far exceeds the negative price decrease
effect. Eventually, omnichannel strategies lead to a higher profit for the retailer. When v is
extremely small, the total positive effect of omnichannel strategies cannot offset the revenue
loss associated with the negative price decrease effect. In a similar vein, the proactive strategy
outperforms the reactive strategy when v exceeds a certain threshold. Therefore, when v is
significantly large, the proactive strategy is optimal. When v is very small, the benchmark
strategy is optimal.

Moreover, Fig. 4 shows that the reactive strategy will never be optimal when θ is lower
than a certain threshold. This is because, when θ is small, the return loss reduction effect
plays an important role, since there is a greater number of returns. Obviously, the proactive
strategy is more effective than the reactive strategy in reducing return losses, as it prevents
returns from occurring in the first place. Under these circumstances, when v is sufficiently
large for adopting an omnichannel strategy, the proactive strategy will be the first choice.

Finally, when θ is relatively large and v is intermediate, the reactive strategy is the best
strategy. Given a low return rate, the advantage of the proactive strategy in reducing return
loss is insignificant. Meanwhile, at a medium value of v, the reactive strategy will easily
outperform the benchmark strategy, but the proactive strategymay not outperform the reactive
strategy.
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Proposition 6 entails the following managerial insights. First, regarding firms selling low-
end products, it is pointless to open a showroom or implement a return partnership. Second,
online retailers who sell high-end products could benefit from establishing showrooms. This
supports the launches of showrooms for the high-end products of Blue Nile, Tesla, and
JD.com. Finally, online retailers should use the software and services of Happy Returns or
Narvar to handle returns of standardized and middle-end products. Proposition 6 also offers
a possible explanation for the decisions of Microsoft and OnePlus, both of whom ultimately
closed their experience stores. This is because the product portfolio of Microsoft has evolved
to digital offerings and OnePlus’s entire product line contains only a few kinds of products
and thus the fit uncertainty of their products is minor. Instead, we recommend that these firms
could implement return partnerships for their standardized and middle-end products.

5.2 Comparisons of the benchmark, reactive, and hybrid strategies

When θ > 0.5 and co > 2cs , the hybrid strategy ismore profitable than the proactive strategy.
In this case, we compare the hybrid strategy with the benchmark strategy and the reactive
strategy, so as to identify the optimal strategy. Proposition 7 presents the comparison results,
which are similar to those of Proposition 6.

Proposition 7 For θ > 0.5 and co > 2cs , there exist thresholds v̂HB , v̂HR , v̂RB and̂θ1, such
that the online retailer’s optimal strategy is:

(1) the hybrid strategy of joint implementation, if v ≥ max (̂vHB , v̂HR);
(2) the reactive strategy of return partnership, if θ > ̂θ1 and v̂RB < v < v̂HR ;
(3) the benchmark strategy of pure online channel, if v ≤ min(̂vRB , v̂HB ).

Figure 5 graphically demonstrates Proposition 7. The profit relationships are similar to
those described in Proposition 6. When co > 2cs , adding the reactive strategy into the
proactive strategy only enhances the return loss reduction effect, while the demand expansion
effect and price decrease effect remain unchanged. Thus, similar to the reasons in Proposition
6, all three effects will become intensified as v increases. Meanwhile, the total strength of the
two positive effects—the demand expansion effect and the return loss reduction effect—will
exceed the strength of the negative price decrease effect at large values of v. Therefore,
as v increases, the hybrid strategy gradually surpasses the benchmark strategy and even
outperforms the reactive strategy. Moreover, the reactive strategy will never be the best at
high return rates, because the fit information under the hybrid strategy is more efficient in
reducing return losses. The reactive strategy is optimal only when θ is relatively large and v is
intermediate. Compared to the proactive strategy, the hybrid strategymore easily outperforms
the other two strategies, due to its greater return loss reduction effect.

6 Extensions

In this section, we study several additional extensions of our main model by relaxing some
assumptions. In Sect. 6.1, we investigate a partial refund policy. In Sect. 6.2, we analyze a
scenario where customers are responsible for the shipping fees of online returns. In Sect. 6.3,
we consider the differences between return costs and purchase costs in both online and offline
channels. The solution procedure in this section is the same as that of the main model. For the
equilibrium outcomes, we add r , f , or d into the superscripts to indicate the corresponding
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Fig. 5 Optimal strategy considering joint implementation (hs � 0.3, co � 0.4, cs � 0.1, and c � 0.1)

extensions. The results of the latter two extensions reveal that the key managerial insights of
our main model are not significantly altered.

6.1 Partial refund

Some online retailers charge restocking or penalty fees for products returned online. To
capture such cases, we extend our main model to consider a partial refund scenario wherein
the online retailer not only sets the retail price but also makes a penalty decision. Let r denote
the penalty, so that the corresponding refund amount is p− r . Thus, a customer’s hassle cost
of making an online return and the retailer’s unit loss on online returns are modified to ho + r
and co − r , respectively. Other parameters remain the same. Following solution procedure
of the main model, we derive the equilibrium outcomes for this extension, as displayed in
Table 2 in the Appendix.

In the benchmark strategy, the presence of the penalty not only decreases the total demand
but also implies a low per-unit loss on online returns. Table 2 shows that the impact of the
penalty can be offset by the retail price. In other words, the online retailer can adjust both
the retail price and the penalty to balance the total demand: formally, p � v+c

2 + (1−θ )(co−2r )
2θ .

Thus, the retailer in this extension attains the same demand and profit as those gained in the
main model. For simplicity, let r � 0, so that all equilibrium outcomes for the benchmark
strategy in this extension are the same as those of the main model.

Regarding omnichannel strategies, the equilibrium prices and total demands remain the
same as the corresponding ones in the main model. Note that the retail price is determined
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by two effects, namely, the demand effect and the return loss effect. Since the penalty has no
impact on the expected utilities for BORS or ESBO, the total demand in each omnichannel
strategy stays the same. In addition, the penalty only influences the market size of BORO.
As stated in Lemmas 1–4, the return loss from BORO does not influence the retail price,
as the number of consumers who conduct BORO in each omnichannel strategy is irrelevant
to the retail price. So, the effects of the total demand and return loss on the retail price do
not change with the penalty. As the retailer’s decision on the retail price is irrelevant to the
penalty, the equilibrium price and total demand do not change for any of the omnichannel
strategies.

Comparing the retailer’s profits across the four strategies, we have the following proposi-
tion.

Proposition 8 In the case of partial refunds, the proactive strategy of fit information is optimal
when v ≥ v̂PRr ; otherwise, the reactive strategy of return partnership is optimal.

Proposition 8 reveals that either the proactive strategy or the reactive strategy is best for
the retailer. In addition, as was the case in the main model, the proactive strategy will outper-
form the reactive strategy if v is very large. Obviously, no change is exhibited in any of the
price decrease effects or demand expansion effects, due to the unaltered retail price and total
demand in each strategy. Only the return loss reduction effect changes. Specifically, a higher
penalty means a lower return loss for each online return. In comparison to the main model,
omnichannel strategies in this extension more significantly reduce return losses. This greater
return loss reduction effect makes the proactive strategy and the reactive strategy uniformly
superior to the benchmark strategy, as reported in the proof of Proposition 8. Meanwhile, as
was the case for the main model, the proactive strategy will outperform the reactive strat-
egy when v is enough large to generate a high retail price and high total demand. Finally,
in the presence of a penalty, more customers will conduct ESBO in the proactive strategy,
whereas the market size of ESBO in the hybrid strategy remains unchanged. Hence, the com-
plementary effect between the two strategies exceeds the substitution effect; consequently,
the proactive strategy always outperforms the hybrid strategy. Comparing the main model
with this extension, we can easily observe that implementing a partial refund policy is more
profitable for the online retailer, if it is possible.

6.2 Consumers absorbing the shipping fees for online returns

In our main model, the online retailer absorbs the shipping fees for online returns, which
is included in co. Here, we consider another scenario where customers pay for the shipping
of online returns, as is the case for JD.com and Taobao customers. Let the shipping fee be
denoted by f . Then, the hassle cost for returning the product online and the per-unit loss on
online returns are modified to ho + f and co − f , respectively. This modification is similar to
that of Sect. 6.1. In contrast to the endogenous penalty r , the shipping fee f is exogenous in
this extension. Substituting them into the corresponding expected utility functions and profit
functions, we derive the equilibrium outcomes presented in Table 3 in the Appendix. The
profit comparisons in the Appendix show that our key insights continue to qualitatively hold
for this extension.

In this extension, the retail price and total demand for each omnichannel strategy remain
unchanged. The explanation here is similar to that of Sect. 6.1. On one hand, the shipping fee
imposes no impact on the expected utilities for BORS or ESBO; hence, there are no changes
to demand. On the other hand, the shipping fee influences the market size of BORO, but
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the return loss from BORO does not influence the retail price. This means that the shipping
fee cannot influence the equilibrium retail price through the effects of the total demand and
return loss for any of the omnichannel strategies.

In the case of the benchmark strategy, the retail price decreases, whereas the total demand
remains unaltered. Our explanation for this is as follows. First, an increase in the hassle cost
formaking an online return only decreases customers’ purchase inclinations in the benchmark
strategy; it has no impact on the expected utilities forBORSorESBO.Thus, the demand effect
only drives the retailer to decrease his retail price in the benchmark strategy. Second, with a
smaller per-unit loss on online returns, a relatively lower retail price can fully compensate for
it under the benchmark strategy. Overall, the retail price in the benchmark strategy will fall.
In turn, this price adjustment leaves the total demand unchanged in the benchmark strategy.
Although the retailer’s total revenue drops, his net profit in the benchmark strategy remains
the same, as he does not pay the shipping fees for online returns.

The unaltered prices and demands in omnichannel strategies yield the same price decrease
effects and demand expansion effects as those of the main model. Since the retail price in
the benchmark strategy decreases, the price decrease effect between the benchmark strategy
and each omnichannel strategy will become much weaker. As for the return loss reduction
effect, it may become weaker, given that the per-unit loss on online returns declines by f .
Moreover, the reactive strategy may even increase return losses when cs is extremely large
(e.g., cs > co− f ). Nevertheless, omnichannel strategies will still outperform the benchmark
strategy when v is very large, because the strength of the demand expansion effect always
increases with v. It may outweigh the total of the other two effects at extremely large values
for v. The profit comparisons among omnichannel strategies follow a similar logic to those
in the main model. Thus, regardless of which party pays for the shipping of online returns,
our main findings continue to hold qualitatively.

6.3 Differences between return costs and purchase costs

Our main model assumes that the hassle costs of purchasing and returning the product online
(offline) are equal toho(hs).Wenowextend themainmodel to consider the differencebetween
purchase and return costs in each channel. For example, consumers may face more risks or
may experience less wait sensitivity for returning an item online than for purchasing it online.
Let αo and αs denote the cost differences in the online and offline channels, respectively.
Then a consumer’s expected utilities for BORO and BORS can be rewritten as follows:

uBORO � θ(v − p) − (1 − θ)(ho + αo) − ho (8)

uBORS � θ(v − p) − (1 − θ)(hs + αs) − ho (9)

Note that the cost differences can be positive or negative. This reflects the fact that the
return cost may be higher or lower than the corresponding purchase cost in the same channel.
Following the same solution procedure used for the main model, we derive the equilibrium
outcomes for this extension, which are given in Table 4 in the Appendix. As demonstrated
in the Appendix, the cost differences do not alter our key insights qualitatively.

Note that the values of all parameters are in the common feasible domain for all strategies.
First,when co ≤ (>)2cs , the proactive strategy is still superior (inferior) to the hybrid strategy.
This is because the substitution effect and the complementary effect in Fig. 3 also obtain in
this extension. Moreover, both of these effects become more significant when αo is far larger
than αs (i.e., αo > 2αs). Second, in comparison to the main model, the retail prices and the
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total demands in the benchmark and reactive strategies fall, due to the higher expected hassle
costs of BORO and BORS. However, the total demands in other strategies remain the same.
The reasons once again resembled those of previous subsections. No matter how the three
effects depicted in Fig. 2 change in this extension, the demand expansion effect still increases
with v. Meanwhile, the total of the two positive effects cannot always exceed the negative
price decrease effect. Therefore, all our results still hold qualitatively.

7 Conclusion

As omnichannel retailing has increasingly become the norm in the retail industry, online
retailers more and more frequently resort to channel integration strategies for managing
online returns. This paper focuses on two popular omnichannel strategies that involve the
management of online returns, namely, the reactive strategy of return partnerships and the
proactive strategy of fit information. Our game-theoretic model is designed to examine an
online retailer’s optimal choice across four strategies. The comparison results reveal three
effects between strategies: the return loss reduction effect, the price decrease effect, and the
demand expansion effect.Moreover, we note a substitution effect and a complementary effect
that obtain between the hybrid strategy and the proactive strategy. Finally, our results show
that a product’s fit probability and valuation jointly determine the relative strengths of the
above three effects. They ultimately shape the preference areas for distinct strategies.

With three key levers, namely, the extent of product standardization, product valuation,
and the operational efficiency of reverse logistics systems, our results not only can provide
explanations for real practices but also can offer more profound managerial implications
for operation managers. First, our results justify the recent practices we observe in various
industries, e.g., the launches of showrooms for the high-end products of Blue Nile, Tesla,
and Nike. Second, our study highlights the importance of choosing the right product cate-
gory for the implementation of omnichannel strategies. For JD.com, which has already set
up showrooms, we suggest that displaying premium products in its showrooms is more effi-
cient. As regards return partnerships, we recommend that online retailers use the software
and services of Happy Returns or Narvar to handle returns of standardized and middle-end
products. Third, we also explain why some retailers, such as Microsoft and OnePlus, ulti-
mately chose to shut down their experience stores. Since the product portfolio of Microsoft
has evolved to digital offerings and OnePlus’s entire product line contains only a few kinds
of products, the fit uncertainty of their products is minor. In this case, the advantage of fit
information in reducing return losses is insignificant. Instead, we recommend that such firms
consider implementing return partnerships. Finally, our results also support recent practices
in relation to the joint implementation. JD.com, Warby Parker, and Bonobos have set up
physical stores for customers to inspect and experience products. Warby Parker and Bonobos
do not have their own logistics systems, and they allow customers to return online purchases
at their physical stores. In contrast, JD.com owns an efficient logistics team and does not
accept online returns at its experience stores.

Our paper admits of several limitations. First, we only examine a monopoly retailer’s
omnichannel strategies for managing online returns. One could extend the analysis to a mul-
tiplayer model which accounts for competition between retailers. Second, we only emphasize
the price decision of an online retailer across different strategies. A promising direction for
future research is to explore other decisions, such as the leniency of return windows, return
shipping services, or inventory. Third, taking the role of the manufacturer into consideration
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may generate valuable additions to our results. In a multi-echelon supply chain, product
returns can be handled in a number of distinctive ways. The manufacturer may not accept
product returns from the retailer, in which case returns may be handled and salvaged by
the online retailer. Alternatively, products sold through the online retailer may be directly
returned to the manufacturer if they are misfit items. Thus, it would be interesting to allow
for the reverse process of handling returns.
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Appendix: Proofs for main results

Proof of Proposition 1

With Eq. (1), UBORO ≥ 0 ⇐⇒ ho ≤ θ (v−p)
2−θ

⇐⇒ d � θ (v−p)
2−θ

. Substitute d into the

profit function in Eq. (4). Thus, we have π (p) being concave in p, since ∂2π
∂p2

� 2θ2
−2+θ

≤ 0.

Using the first order condition (FOC), we can obtain pB∗ � c+v
2 + (1−θ )co

2θ . Then dB∗ �
dB∗
BORO � θ (v−c)−(1−θ )co

2(2−θ ) , and π B∗ � (θ (v−c)−(1−θ )co)2

4(2−θ ) . The condition 0 ≤ dB∗ ≤ 1 yields

the feasible area vB ≤ v ≤ vB , where vB � c + (1−θ )co
θ

and vB � c + 4+(1−θ)co
θ

− 2.

Proof of Lemma 1

Clearly, we have ∂pB∗
∂v

� 1
2 ,

∂π B∗
∂v

� θ (θ (v−c)−(1−θ )co)
2(2−θ ) ≥ 0, ∂pB∗

∂θ
� − co

2θ2
< 0,

∂π B∗
∂θ

� (θ (v−c)−(1−θ )co)((4−θ)(v−c)+(3−θ )co)
4(2−θ )2

≥ 0, ∂pB∗
∂co

� 1−θ
2θ ≥ 0, and ∂π B∗

∂co
�

−(1−θ )(θ (v−c)−(1−θ )co)
2(2−θ ) ≤ 0. Thus, Lemma 1 is true.

Proofs of Propositions 2–4

The derivations of equilibrium outcomes for other strategies follow in a similar way. For
brevity, we omit the similar analysis. In the reactive strategy, we have dR∗

BORO � hs , dR∗
BORS �

θ (v−c)−(3−θ )hs−(1−θ )cs
2 and dR∗ � θ(v−c)−(1−θ )(cs+hs )

2 . The conditions dR∗
BORS ≥ 0 and dR∗ ≤

1 yield the feasible area vR ≤ v ≤ vR , where vR � c + (1−θ)cs+(3−θ )hs
θ

and vR � c +
2+(1−θ)(cs+hs )

θ
. Furthermore, vR ≤ vR requires hs ≤ 1.

In the proactive strategy, we have dP∗
BORO � hs

2(1−θ ) , d
P∗
ESBO � v−c

2 − hs
2θ (1−θ ) and d

P∗ �
v−c
2 − hs

2θ . The feasible area for the proactive strategy is vP ≤ v ≤ vP , where vP � c+ hs
(1−θ )θ

and vP � c + hs
θ
+ 2. Moreover, vP ≤ vP requires hs ≤ 2(1 − θ).
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In the hybrid strategy, we have dH∗
BORO � hs , dH∗

BORS � (2θ−1)hs
1−θ

, dH∗
ESBO � v−c

2 −
(1−θ+2θ2)hs

2θ (1−θ ) and dH∗ � v−c
2 − hs

2θ . Moreover, dH∗
BORS � (2θ−1)hs

1−θ
> 0 requires θ > 0.5, and

0 ≤ dH∗ ≤ 1 yields vH ≤ v ≤ vH , where vH � c +
(

1−θ+2θ2
)

hs
(1−θ )θ and vH � c + hs

θ
+ 2.

Moreover, vH ≤ vH requires hs ≤ 1−θ
θ

.

Proofs of Lemmas 2–4

The proofs are similar to that of Lemma 1. For brevity, we omit the similar analyses.

Proof of Lemma 5

First, we have pB∗ − pR∗ � (1−θ)(co−cs+hs )
2θ > 0, pB∗ − pP∗ � (1−θ)co+hs

2θ > 0, and

pR∗ − pP∗ � (1−θ)cs+θhs
2θ > 0. Obviously, pH∗ � p

P∗
< pR∗ < pB∗.

Second, we have �dRB � dR∗ − dB∗ � dR∗
BORO + dR∗

BORS − dB∗ �
(1−θ)(θ(v−c)−(2−θ)(cs+hs )+co)

2(2−θ)
, �dPB � dP∗ − dB∗ � dP∗

BORO + dP∗
ESBO − dB∗ �

2θ(1−θ)(v−c)+θ(1−θ)co−(2−θ)hs
2θ(2−θ)

, and �dPR � dP∗ − dR∗ � dP∗
BORO + dP∗

ESBO − dR∗
BORO −

dR∗
BORS � θ(1−θ)(v−c+cs )−(1−θ+θ2)hs

2θ .
Obviously, all of the demand differences above increase with v. Since �dRB

(

vR
) �

(1−θ)(co−cs+hs )
2(2−θ)

> 0, �dPB
(

vP
) � (1−θ)co+hs

2(2−θ)
> 0, and �dPR

(

vP
) � (1−θ)(cs+hs )

2 > 0, it

follows that �dRB , �dPB , and �dPR are always positive. Finally, we have dH∗ � d
P∗

>

dR∗ > dB∗.

Proof of Proposition 5

The common feasible domain for the two strategies is θ > 0.5, hs ≤ min(2(1 − θ), 1−θ
θ

)

and max(vP , vH ) ≤ v ≤ min(vP , vH ). Given that πH∗ − π P∗ � (2θ−1)hs (co−2cs )
2 , we have

πH∗ ≤ π P∗ if co ≤ 2cs and πH∗ > π P∗ if co > 2cs in the common feasible domain.

Proof of Proposition 6

The common feasible area of the three strategies is hs ≤ min(2(1 − θ), 1) and

max
(

vB , vR , vP
) ≤ v ≤ min(vB , v

R
, vP ).

The profit differences are π R∗ − π B∗ � (1−θ )
4(2−θ ) A1, π P∗ − π B∗ � A2

4θ(2−θ)
, and

π P∗ − π R∗ � A3
4θ , where A1 � θ2(v − c)2 + 2θ(co − (2 − θ)(cs + hs))(v − c) −

(2 − θ)
(

4cohs − 2cshs(3 − θ) − (

cs2 + hs2
)

(1 − θ)
) − (1 − θ)co2, A2 �

2(1 − θ)θ2(v − c)2 + 2θ((1 − θ)θco − hs(2 − θ))(v − c) − co2θ + (2 − θ )(hs − coθ )2,
and A3 � (1 − θ)θ2(v − c)2 + 2θ

(

(1 − θ)θcs − hs(1 − θ + θ2)
)

(v − c) − cs2(1 − θ )2θ +
2hsθ (co(1 − 2θ ) − cs(3 − θ )(1 − θ )) − hs2((1 − θ )2θ − 1).

Obviously, A1, A2, and A3 are convex in v. Letting A1 � 0 yields vRB1 �
c + (2−θ)(cs+hs )−co−

√
2−θ(co−cs+hs )

θ
and vRB2 � c + (2−θ)(cs+hs )−co+

√
2−θ(co−cs+hs )

θ
. Since

vRB1 − vR � − (co−cs+hs )
(

1+
√
2−θ

)

θ
< 0, we have A1 ≤ 0 if v ≤ vRB2, and A1 > 0 if
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v > vRB2. Denote vRB2 with v̂RB . We then have π R∗ ≤ π B∗ if v ≤ v̂RB , and π R∗ > π B∗
if v > v̂RB in the common feasible domain.

In a similar way, we obtain thresholds v̂PB � c+ (2−θ)hs−θ(1−θ)co+
√

θ (2−θ )((1−θ)co+hs )
2(1−θ )θ and

v̂PR � c + (1−θ+θ2)hs−θ (1−θ )cs+
√

θ (cs2(1−θ )2+2cshs (2−5θ+3θ2)+hs (θ2hs+2(3θ−2θ2−1)co))
(1−θ )θ , such that

π P∗ ≤ π B∗ if v ≤ v̂PB and π P∗ ≤ π R∗ if v ≤ v̂PR in the common feasible domain.
Given that ∂v̂RB

∂θ
� (−4+2

√
2−θ+θ )(co−cs+hs )−2

√
2−θcs−6

√
2−θhs

2
√
2−θθ2

< 0, v̂RB is decreasing in θ .

Meanwhile, ∂2 v̂PB
∂θ2

� (1−θ)3θ(3−2θ)co+(3θ−12θ2+21θ3−12θ4+2θ5+(8−28θ+36θ2−16θ3+2θ4)
√
(2−θ )θ )hs

2(1−θ )3θ2((2−θ )θ )3/2)
> 0, which indicates that v̂PB is convex in θ . Moreover, v̂RB(θ � 0) � +∞ �
v̂PB(θ � 0), v̂RB(θ � 0.1) � 3.78co + 5.21cs + 32.78hs > v̂PB(θ � 0.1) � 1.68co +
12.98hs , and v̂RB(θ � 1) � c + 2cs < v̂PB(θ � 1) � +∞. Thus, there exists a
unique ̂θ for v̂RB � v̂PB , which is the root of 2cs(1 − θ)

(√
2 − θ + θ − 2

) − 2hs +

hs
((√

θ − 2
)√

2 − θ +
(

5 + 2
√
2 − θ − 2θ

)

θ
)

−(1−θ )(2
√
2 − θ−2+θ−√

(2 − θ )θ )co �
0.

When θ < ̂θ , we have v̂RB > v̂PB ; otherwise, we have v̂RB ≤ v̂PB . If v̂RB > v̂PB ,
we have π P∗ > π B∗ > π R∗ for v̂PB < v < v̂RB , which indicates that v̂PB > v̂PR .
Therefore, v̂RB > v̂PB > v̂PR always holds when θ < ̂θ . Adversely, when v̂RB ≤ v̂PB ,
we have π R∗ ≥ π B∗ ≥ π P∗ for v̂RB ≤ v ≤ v̂PB , which indicates that v̂PB ≤ v̂PR . Thus,
v̂PR ≥ v̂PB ≥ v̂RB always holds when θ ≥ ̂θ . In summary, v̂PR < v̂PB < v̂RB if θ < ̂θ ,
and v̂PR ≥ v̂PB ≥ v̂RB if θ ≥ ̂θ .

Therefore, for θ ≤ 0.5 or θ > 0.5 and co ≤ 2cs in the common feasible domain, when
v ≥ max(̂vPB , v̂PR), the proactive strategy is optimal for the retailer; when θ > ̂θ and
v̂RB < v < v̂PR , the reactive strategy is optimal; when v ≤ min(̂vRB , v̂PB ), the benchmark
strategy is optimal.

Proof of Proposition 7

The common feasible area of the three strategies is θ > 0.5, hs ≤ min( 1−θ
θ

, 1), and

max
(

vB , vR , vH
) ≤ v ≤ min(vB , v

R
, vH ).

The profit differences are πH∗ − π B∗ � B1
4(2−θ )θ , πH∗ − π R∗ � B2

4θ , where B1 �
2(1 − θ)θ2(v − c)2 − 2θ ((2 − θ)hs − (1 − θ)θco)(v − c) − θco2 + (2 − θ )(hs2 + θ2co2 −
4θhs((2θ − 1)cs + (1 − θ)co)) and B2 � (1 − θ)θ2(v − c)2 − 2θ (hs − (1 − θ)θ (hs +
cs))(v − c) + hs2 − (hs + cs)2θ (1 + θ2) + 2(cs2 + hs2)θ2.

Obviously, B1 and B2 are convex in v. Letting B1 � 0 yields vHB1 � c +
(2−θ)hs−θ(1−θ)co−

√
θ (2−θ )(co2(1−θ)2+2cohs (3−7θ+4θ2)+hs (hs+8(3θ−2θ2−1)cs ))

2(1−θ )θ and vHB2 � c +

(2−θ)hs−θ(1−θ)co+
√

θ (2−θ )(co2(1−θ)2+2cohs (3−7θ+4θ2)+hs (hs+8(3θ−2θ2−1)cs ))
2(1−θ )θ . Since vHB1 − vH �

− θ(1−θ)co+θ(4θ−1)hs+
√

θ (2−θ )(co2(1−θ)2+2cohs (3−7θ+4θ2)+hs (hs+8(3θ−2θ2−1)cs ))
2(1−θ )θ < 0 for θ > 0.5,

we have B1 ≤ 0 if v ≤ vHB2 and B1 > 0 if v > vHB2. Denote vHB2 with v̂HB . We then
have πH∗ ≤ π B∗ if v ≤ v̂HB , and πH∗ > π B∗ if v > v̂HB in the common feasible domain.

Following a similar line of reasoning, we can obtain πH∗ ≤ π R∗ if v ≤ v̂HR , and
πH∗ > π R∗ if v > v̂HR in the common feasible domain, where v̂HR � c − cs +
(

1−θ+θ2
)

hs+(cs−csθ+hsθ )
√

θ

(1−θ )θ .
With a proof similar to that of Proposition 6, we can see that v̂RB is decreasing in θ and

v̂HR is convex in θ , since ∂2 v̂HR
∂θ2

� 3
√

θ(1−√
θ )

3
cs+(8−24

√
θ+24θ−9θ

√
θ−3θ2)hs

4θ3(1−√
θ)

3 > 0. Moreover,
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we have v̂RB(θ � 0) � +∞ � v̂HR(θ � 0), v̂RB(θ � 0.5) � 0.44co + 0.55cs + 5.44hs >

v̂HR(θ � 0.5) � 0.42cs + 4.42hs , and v̂RB(θ � 1) � c + 2cs < v̂HR(θ � 1) � +∞.
Thus, there exists a unique ̂θ1 for v̂RB � v̂HR , which is the root of (1 − √

2 − θ − √
θ +√

(2 − θ)θ )co − (2 − √
2 − θ − 3

√
θ + θ +

√
(2 − θ)θ )cs − (1 +

√
2 − θ − √

θ − θ −√
(2 − θ)θ )hs � 0. Consequently, for 0.5 < θ < 1, we have v̂HR < v̂HB < v̂RB if θ < ̂θ1,

and v̂HR ≥ v̂HB ≥ v̂RB if θ ≥ ̂θ1.
In summary, for θ > 0.5 and co > 2cs in the common feasible domain, when v ≥

max(̂vHB , v̂HR), the hybrid strategy is optimal; when θ > ̂θ1 and v̂RB < v < v̂HR , the
reactive strategy is optimal; when v ≤ min(̂vRB , v̂HB ), the benchmark strategy is optimal.

Proof of Proposition 8

Let us define �πHPr∗ � πHr∗ − π Pr∗ � 1
8 ((1 − θ)co2 + 2co(2(cs + hs)θ − (2cs + hs)) +

2(cs + hs)2− hs2

1−θ
−2(cs2+6cshs+hs2)θ ), which is convex in co. Letting�πHPr∗ � 0 yields

co1 � 2cs +
(1−2θ)hs−

√
2(cs−θcs+θhs )

1−θ
and co2 � 2cs +

(1−2θ)hs+
√
2(cs−θcs+θhs )
1−θ

. Table 2 shows

that the feasible domain for the hybrid strategy is co< hs + cs and co > cs − (3θ−1)hs
1−θ

. Since

co1−cs +
(3θ−1)hs

1−θ
� −

(√
2−1

)

((1−θ)cs+θhs )

1−θ
< 0, and co2−(hs + cs) � hs+

(3+2
√
2)(1−θ)cs
θ

1−θ
> 0,

both roots are outside of the feasible domain. Therefore, we have πHr∗ < π Pr∗ in the
common feasible domain.

The profit differences among other strategies are:

π Rr∗ − π Br∗ � (1−θ)(co−2(cs+hs )+(cs+hs+v−c)θ)2

4(2−θ)
> 0,

π Pr∗ − π Br∗ � ((co+2(v−c))(1−θ)θ−hs (2−θ ))2

8(2−θ )(1−θ )θ > 0, and

π Pr∗−π Rr∗ � 1
8(1−θ)θ

(2θ2(1 − θ)2(v−c)2−4(1 − θ)θ(hs − (cs + hs)(1 − θ)θ)(v − c)+

(1 − θ)2θ
(

2cs2θ − (co − 2cs)2
)

+ hs2(2 − θ)
(

1 − 2(1 − θ)2θ
) − 2hs(1 − θ )θ (2cs(2 −

θ )(1 − θ ) + co(2θ − 1))).
Letting π Pr∗ � π Rr∗ yields v � c + 1

2(1−θ)θ
(2(hs − (cs + hs)θ +

(cs + hs)θ2) ±
√

2θ (hs(1 − 2θ) − (1 − θ)(co − 2cs))2). Since the smaller root minus

vPr � − θ(hs (1−2θ)−(1−θ)(co−2cs ))
√

2θ(hs (1−2θ)−(1−θ)(co−2cs ))2

2(1−θ)θ
< 0, we have π Pr∗ ≤

π Rr∗ if v < v̂PRr , and π Pr∗ > π Rr∗ otherwise, where v̂PRr � c +
1

2(1−θ)θ
(2

(

hs − (cs + hs)θ + (cs + hs)θ2
)

+
√

2θ (hs(1 − 2θ) − (1 − θ)(co − 2cs))2).
In summary, when v ≥ v̂PRr , the proactive strategy is optimal; otherwise, the reactive

strategy is optimal.

Equilibrium outcomes and comparisons for extensions

See Tables 2, 3, and 4.
The procedure of profit comparisons in extensions is similar to those of the main model.

For brevity, we omit the detailed analyses. The final results are as follows.

Consumers absorb shipping fees of online returns

For co ≤ 2cs+ f , in the common feasible domain, when v ≥ max(̂vPB f , v̂PR f ), the proactive
strategy is optimal; when θ > ̂θ f 1 and v̂RB f < v < v̂PR f , the reactive strategy is optimal;
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when v ≤ min(̂vRB f , v̂PB f ), the benchmark strategy is optimal. For co > 2cs + f , in
the common feasible domain, when v ≥ max(̂vHB f , v̂HR f ), the hybrid strategy is opti-
mal; when θ > ̂θ f 2 and v̂RB f < v < v̂HR f , the reactive strategy is optimal; when
v ≤ min(̂vRB f , v̂HB f ), the benchmark strategy is optimal. The thresholds are:̂vRB f � c +
(cs+hs )(2−θ )−co+

√
(co−cs+hs−2 f )2(2−θ )
θ

, v̂PB f � c + coθ (1−θ )−hs (2−θ )+((co−2 f )(1−θ )+hs )
√
(2−θ )θ

2(1−θ )θ ,

v̂PR f � c +

⎛

⎜

⎜

⎝

hs
(

1 − θ + θ2
) − cs θ(1 − θ)

+
√

(2(co − f )( f − hs ) + cs 2 (1 − θ)2 + 2(3hs − 2 f )(co − f )θ +
(

hs 2 + 4hs f − 2 f 2 + 2co ( f − 2hs )
)

θ2 − 2cs (1 − θ)(2 f (1 − θ) + hs (3θ − 2)))θ

⎞

⎟

⎟

⎠

(1−θ )θ , v̂HR f � c +
hs

(

1−θ+θ2
)−csθ(1−θ)+(cs−csθ+hsθ )

√
θ

(1−θ )θ , and

v̂HB f � c +

⎛

⎝

coθ(1 − θ) − hs (2 − θ)

+
√

(2 − θ )θ (hs 2 − 8hs f + 8 f 2 + co2(1 − θ)2 + 16(hs − f ) f θ + 8 f ( f − hs )θ2 − 8cs (1 − θ)(hs − (1 − θ) f − 2hs θ) − 2co (1 − θ )(4(1 − θ ) f + hs (4θ − 3)))

⎞

⎠

2(1 − θ )θ

In addition, ̂θ f 1 and ̂θ f 2 are the roots for v̂RB f � v̂PB f and v̂RB f � v̂HB f , respectively.

Cost differences

For co ≤ 2cs , in the common feasible domain, when v ≥ max(̂vPBd , v̂PRd ), the proac-
tive strategy is optimal for the retailer; when θ > ̂θd1 and v̂RBd < v < v̂PRd , the
reactive strategy is optimal; when v ≤ min(̂vRBd , v̂PBd ), the benchmark strategy is
optimal. For co > 2cs , in the common feasible domain, when v ≥ max(̂vHBd , v̂HRd ),
the hybrid strategy is optimal for the retailer; when θ > ̂θd2 and v̂RBd < v < v̂HRd ,
the reactive strategy is optimal; when v ≤ min(̂vRBd , v̂HBd ), the benchmark strategy

is optimal. The thresholds are:̂vRBd � c + (2−θ)(cs+hs+αs )−co−αo+
√
2−θ(co−cs+hs−αo+αs )

θ
,

v̂PBd � c + (2−θ)hs−θ(1−θ)(co+αo)+
√

θ (2−θ )((1−θ)(co−αo)+hs )
2(1−θ )θ , v̂PRd � c +

⎛

⎝

(

1 − θ + θ2
)

hs − θ(1 − θ)(cs + αs )

+
√

θ(cs2(1 − θ)2 + 2co(1 − θ)((αo − 2αs )(1 − θ) + hs (2θ − 1)) + (αo(1 − θ) − hs θ)2 + 2cs (1 − θ)((3αs − 2αo)(1 − θ) + hs (2 − 3θ))

⎞

⎠

(1−θ)θ ,

v̂HBd � c +

⎛

⎜

⎝

(2 − θ)hs − θ(1 − θ)(co + αo )

+
√

θ(2 − θ)((hs + αo (1 − θ))2 + co 2 (1 − θ)2 − 8cs (1 − θ)(hs − (αo − 2αs )(1 − θ) − 2hs θ) + 2co (1 − θ)((4αs − 3αo )(1 − θ) + hs (3 − 4θ)))

⎞

⎟

⎠

2(1−θ )θ , and v̂HRd �
c + (1−θ+θ2)hs−θ (1−θ )(cs+αs )+

√
θ ((cs−αs )(1−θ )+hsθ )2

(1−θ )θ .

In addition, ̂θd1 and ̂θd2 are the roots for v̂RBd � v̂PBd and v̂RBd � v̂HBd , respectively.
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