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Abstract
This study presents a two-phase approach of Data Envelopment Analysis (DEA) and Goal
Programming (GP) for portfolio selection, representing a pioneering attempt at combin-
ing these techniques within the context of portfolio selection. The approach expands on
the conventional risk and return framework by incorporating additional financial factors
and addressing data uncertainty, which allows for a thorough examination of portfolio out-
comes while accommodating investor preferences and conservatism levels. The initial phase
employs a super-efficiency DEA model to streamline asset selection by identifying suitable
investment candidates based on efficiency scores, setting the stage for subsequent portfo-
lio optimization. The second phase leverages the Extended GP (EGP) framework, which
facilitates the comprehensive incorporation of investor preferences to determine the optimal
weights of the efficient assets previously identified within the portfolio. Each goal is tai-
lored to reflect specific financial factors spanning both technical and fundamental aspects. To
tackle data uncertainty, robust optimization is applied. The research contributes to the robust
GP (RGP) literature by analyzing new RGP variants, overcoming limitations of traditional
and other uncertain GP models by incorporating uncertainty sets. Robust counterparts of the
EGP models are accordingly developed using polyhedral and combined interval and polyhe-
dral uncertainty sets, providing a flexible representation of uncertainty in financial markets.
Empirical results, based on real data from the Tehran Stock Exchange comprising 779 assets,
demonstrate the superiority of the proposed approach over traditional portfolio selection
methods across various uncertainty settings. Additionally, a comprehensive sensitivity anal-
ysis investigates the impact of uncertainty levels on the robust EGP models. The proposed
framework offers guidance to investors and fund managers through a pragmatic approach,
enabling informed and robust portfolio decisions by considering efficiency, uncertainty, and
extended financial factors.
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1 Introduction

Modern portfolio theory (MPT) emerged from the groundbreakingwork ofMarkowitz (1952)
through the introduction of the mean–variance (MV) model for asset allocation. The classic
MVmodel primarily focuses on two criteria, i.e. return and risk. However, the intrinsic multi-
dimensionality of the portfolio selection problem has been emphasized by many scholars.
Empirical evidence shows that incorporatingmore than two factors in order to choose the best
financial portfolio mitigates reliance on any single measure that might have flaws associated
with it (Almeida-Filho et al., 2021; Colapinto et al., 2019; Doumpos & Zopounidis, 2014;
Kim et al., 2022; Rahiminezhad Galankashi et al., 2020; Spronk et al., 2016; Steuer et al.,
2007, 2008; Tamiz & Azmi, 2019; Tamiz et al., 2013; Xidonas et al., 2012). Furthermore,
contemplating factors beyond risk and return is not an unsound move in a financial port-
folio selection problem. It may facilitate a reduction in management distraction, as well as
resulting in possible improvements to other favorable attributes (Steuer et al., 2007). Con-
sequently, diversified criteria for financial portfolio selection and management align with
different investment strategies which primarily rely on investor preferences. In this regard,
portfolio optimizationmodels that includemore attributes in the selection of assets more real-
istically represent investors’ aspirations. Some of these attributes may include profitability,
liquidity, systematic and non-systematic risks, financial ratios, market ratios, non-financial
attributes (e.g. ethical, environmental, and social issues), skewness, and kurtosis, to name
but a few (Aouni et al., 2018; Ballestero et al., 2012; Boubaker et al., 2023; Colapinto et al.,
2019; Doumpos & Zopounidis, 2014; Peykani et al., 2020; Rahiminezhad Galankashi et al.,
2020; Steuer et al., 2007; Wu et al., 2022; Yu & Lee, 2011).

In the context of financial portfolio selection, fundamental analysis (FA) is a method
for evaluating a company’s investment potential. FA involves a thorough examination of a
company’s financial statements in order to assess its investment-worthiness, while technical
analysis (TA) relies on historical trajectories to predict future stock values (Edirisinghe &
Zhang, 2007, 2008). Prior research supports the integration of FA and TA, indicating that
these two techniques could be complements, rather than substitutes (Bettman et al., 2009;
Contreras et al., 2012; Kuo et al., 2021; Namdari & Li, 2018). Actually, the synergy result-
ing from simultaneously employing these two techniques has the potential to enhance the
predicting power of firms’ future financial performance, thus leading to the selection of supe-
rior portfolios. In the domain of financial portfolio selection, the risk and return attributes
of the investment are considered as technical factors (Kuo et al., 2021; Tamiz & Azmi,
2019). On the other hand, there are various ways to implement FA, one of which is Data
Envelopment Analysis (DEA) (Abad et al., 2004; Edirisinghe & Zhang, 2007, 2008; Lim
et al., 2014). DEA is a data-enabled performance evaluation technique that evaluates the
relative efficiency of decision-making units (DMUs) considering several inputs and outputs
(Emrouznejad & Yang, 2018; Zhu, 2022) and can be leveraged in the process of financial
portfolio construction to measure assets’ efficiencies, thereby specifying the best assets for
investment (Edirisinghe & Zhang, 2007, 2008; Lim et al., 2014; Peykani et al., 2020, 2022).
Consequently, DEA approaches can be used as a means of FA in the portfolio selection
context in order to fundamentally assess a firm’s investment worthiness based on compari-
son to the market as a whole, rather than evaluating it in isolation, thus contributing to the
identification of financially healthy firms.
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Multi-criteria decision making (MCDM) approaches have the potential to enable the
consideration of various factors in the portfolio selection problem, where asset screening can
be combined with portfolio construction within an integrated framework (Zopounidis et al.,
2015). The multi-objective programming (MOP) technique of Goal programming (GP) is a
prominent and powerful MCDM approach that has been applied in various areas of financial
decision-making (Andriosopoulos et al., 2019). GP reaches solutions in line with the decision
maker’s expressed goals and preferences in optimization problems with multiple objectives.
Indeed, the GP model is based on distance functions where the undesirable positive and
negative deviations between the achievement and aspiration levels of the objectives are to be
minimized (Jones & Tamiz, 2010). GP is an instrumental tool to analyze portfolio selection
problems and achieves reasonable solutions concerning the inclusion of the decision makers’
preferences (Aouni et al., 2014; Colapinto et al., 2019). Using GP, financial decision makers
(FDM) are enabled to concurrently consider various aspirational financial and non-financial
factors as distinct goals, along with exclusive preferences for each of the factors in a multi-
objective optimization framework. In thismanner, they are able to benefit from the capabilities
of this mathematical framework, including sensitivity analysis, to effectively achieve their
desired portfolios. Portfolio selection problems centered only on risk and return optimization
can be described as a GP model comprising of two principal goals (Tamiz & Azmi, 2019).
Nonetheless, as previouslymentioned, extra objectives illustrating other factors and attributes
can readily be incorporated into the versatile GP model.

Another prominent issue that should be considered in any proposed approach for portfolio
selection is the treatment of parameter uncertainty. The underlying uncertainty of financial
markets is one of their most essential characteristics (Kim et al., 2022; Sadjadi et al., 2012).
Investment decisions should be made incorporating adequate hedging against uncertainty,
otherwise the resultant portfolios would not be reliable and practical for real-world applica-
tions. However, many studies assume the input data as certain. In such cases, perturbation
in data values can lead to huge variances in the results to the extent that, in the worst-case,
infeasible solutions may be produced. Consequently, it is necessary to develop models which
meaningfully account for uncertainty while also accommodating the manifold preferences
of financial decision makers.

In the optimization literature, stochastic programming (SP) and robust optimization (RO)
are two of the widely-adopted techniques utilized to cope with the uncertainty. Both SP and
RO seek to address the same question of building an uncertainty–immunized solution to an
optimization problemwith input data uncertainty. When the uncertain data are of a stochastic
nature, the quality of SP-based decisions are associated with the type of underlying proba-
bility distribution. However, accurately ascertaining the underlying probability distribution
is usually demanding and often necessitates a massive number of observations, rendering
the SP model computationally intractable (Ben-Tal et al., 2009; Bertsimas & Sim, 2003;
Ghahtarani et al., 2022; Hanks et al., 2017). Considering the aforementioned drawbacks
associated with SP, RO, on the other hand, utilizes uncertainty sets instead of probability
distributions to account for uncertain data and does not cause intractability. It can therefore
be used as an alternative approach to address the uncertainty. RO can result in a solution
that is ensured to be robust and feasible for almost all possible realizations of the uncertain
parameters (Ben-Tal et al., 2009; Bertsimas & Sim, 2003). Furthermore, this method enables
decision makers to make a trade-off between system reliability and economic performance.
Although SP is a dynamic approach and appears to be less conservative than the worst-case
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oriented and static RO, it requires a strong set of assumptions to hold, as mentioned, whereas
RO is more pragmatic and hence, in the context of this paper, fits better with the pragmatic
ethos of the goal programming framework. Therefore, the combination of GP and RO can
result in pragmatic, flexible, and yet straightforward decision support tools for addressing
multi-objective optimization problems in uncertain environments.

From the perspective of the GP methodology applied to portfolio selection problems, in
this paper we follow the GP framework proposed by Tamiz et al. (2013) and Tamiz and Azmi
(2019), though utilizing different factors rooted in FA, besides the conventional technical
ones of risk and return, and different GP variants for the stock portfolio selection problem.
Also, we extend the GP models to account for the underlying uncertainties prevalent in the
financial market. A noteworthy objective in this study is to contribute to the expansion of the
robust GP (RGP) literature by introducing new RGP variants that address the limitations of
traditional and other uncertain GP paradigms through the incorporation of uncertainty sets.
We utilize the GP problem developed in this study as a practical application case for our intro-
duced RGP variants. In light of these advancements, we propose an innovative two-phase
approach for portfolio selection, leveraging the DEA and GP techniques. The first phase
involves an asset screening procedure, utilizing a super-efficiency DEA model to measure
the efficiency of registered assets in the stock exchange market. This step identifies potential
investment candidates based on investor-specific filtering criteria for portfolio optimization
in the subsequent phase. The amount invested in each qualified asset is decided in the second
phase where the portfolio is created. In this phase, a multi-factor extended goal programming
(EGP)model is developed, allowing for investor-specific preferences to be considered. In this
vein, each objective function represents a specific asset-related factor. Moreover, uncertainty
is incorporated into the portfolio optimization phase by extending the deterministic EGP
models to their robust counterparts in order to ensure model stability in the face of imprecise
data. To this end, two RO approaches via a polyhedral uncertainty set (Li et al., 2011) and
a combined interval and polyhedral uncertainty set (Bertsimas & Sim, 2004) are adopted
and compared with each other for the following reasons: (a) RO via polyhedral uncertainty
set guarantees maximum robustness against uncertainty while incurring a high cost, which
entices risk averse decision makers; (b) RO via combined interval and polyhedral uncer-
tainty set reaches a compromise between robustness and its cost, appealing to risk-seeking
decision makers; (c) RO via the above-mentioned uncertainty sets doesn’t contain the over-
conservatism present in classic worst-case robust models, such as Soyster’s (1973) approach,
wherein optimality is excessively sacrificed for feasibility. Instead, in the resulting robust
counterparts via the aforesaid uncertainty sets, the decision maker has complete control over
the degree of conservatism for each constraint with uncertain parameters; and (d) RO via the
aforementioned uncertainty sets retains the linearity of the nominal problem, in contrast to
certain RO approaches (e.g. Ben-Tal & Nemirovski, 2000) which convert a linear program-
ming problem into a nonlinear one. Using our approach, financial decision makers are able
to select suitable portfolios by utilizing computationally tractable models that accommodate
their specific preferences and desired levels of conservatism. Our proposed approach is val-
idated using real data from the Tehran stock exchange (TSE) and the resulting portfolios are
compared with one another, as well as with portfolios obtained from traditional benchmark
models for portfolio selection, and conclusions are drawn. Figure 1 presents a schematic
framework of all the steps of the proposed two-phase approach.

The remainder of this paper is organized as follows: In Sect. 2, we review the related
literature on applications of DEA and GP models in financial portfolio selection followed
by the robust goal programming literature and conclude by stating the research gaps and
contributions. Section 3 startswith the problemdescription and continueswith the description
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Fig. 1 The methodology of the proposed two-phase approach for the multiple criteria portfolio selection with
uncertain factors
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of the methodologies used in this paper, i.e. the super-efficiency DEA model, the extended
factors, the EGP variant, the RO approach, and the general Robust EGP framework. The
section continues with the proposed portfolio selection models by which the deterministic
model is firstly introduced, and then the resulting robust counterpart GP models via the
aforementioned uncertainty sets, are presented. Explanatory details about the data of the
case study and various scenarios designed for the experimentations along with sensitivity
analysis, results, and discussions are provided in Sect. 4. Finally, in Sect. 5 we conclude the
paper and discuss directions for future research.

2 Literature review

This paper is principally related to three streams of literature: applications ofDEA in financial
portfolio selection, GP applied to financial portfolio selection, and robust GP. In this section,
we first discuss relevant research that applies the DEA technique to the context of financial
portfolio selection. Then, we describe the related literature on GP applications in financial
portfolio selection. An overview of previous studies on robust GP (both methodological and
applicational) is presented in subSect. 2.2. Finally, we discuss the literature gaps and research
contributions.1

2.1 Contextual background

2.1.1 Applications of DEA in financial portfolio selection

In the portfolio selection context, there are typically two main aspects to consider: choosing
which stocks to include and deciding how much to invest in each. However, many studies
on portfolio selection tend to focus solely on the latter, treating it as a pure optimization
problem while overlooking the importance of selecting the right assets. Traditionally, it’s
believed that spreading investments across a wide range of assets helps reduce risk. But in
real-world investing, if a portfolio becomes too diversified, investors might end up paying
higher transaction costs, and the investment strategy may not be as effective as anticipated.
To address this issue, it is advisable for investors to concentrate their investments in a select
number of investment-worthy stocks (Zhou et al., 2021). This approach strikes a balance
between diversification and optimization, making it more practical in investment scenarios.
DEA, as a non-parametric evaluation method, is among the methods that can be employed
to effectively assess and identify the investment-worthy stocks.

DEA models have been used for efficiency evaluation in many fields such as finance,
economics, education, athletics, and so on (Emrouznejad & Yang, 2018). The use of DEA
in the portfolio selection context encompasses various purposes. DEA models have been
used as a mean for efficiency estimation of portfolios post-creation. As such, various risk
measures like the variance of the portfolio and CVAR have been used as inputs and the
expected return of the portfolio has been used as the output in these approaches (Kuo et al.,
2021; Liu et al., 2015; Tarnaud & Leleu, 2018). More recently, researchers have used DEA
in the portfolio selection and creation process for performance assessment and rankings of
stocks, and identifying the investment-worthy ones. In this vein, various fundamental and

1 This paper can also inherently be categorized under the robust portfolio selection literature. Interested readers
can refer to Ghahtarani et al. (2022) and Xidonas et al. (2020) for recent surveys on different robust portfolio
selection approaches. In this paper, we are only interested in robust approaches within the GP framework.
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stock market indicators have been used as inputs and outputs in classic, cross-efficiency and
super-efficiency DEA models. For instance, Edirisinghe and Zhang (2007) and Edirisinghe
and Zhang (2008) have similar approaches of utilizing DEA as a means of FA in the portfolio
selection process. They developed generalized DEA models for evaluating and comparing
firms within their industry and market context, rather than in isolation, as is the practice
in common FA. The aim of their approach is to predict the future financial performance of
firms, arguing about its high correlation with future stock price. They computed a relative
financial strength indicator by means of analyzing a firm’s financial statements and the DEA
model to determine investment-worthy firms and then assigned weights to candidate stocks
by using the MV framework. Pätäri et al. (2012) used the constant returns-to-scale, super-
efficiency, and the cross-efficiency DEA models as a basis of selection criteria for equity
portfolios, aiming at integrating the benefits of both value investing and momentum invest-
ing. Making another attempt to use DEA as an FA tool, Lim et al. (2014) developed a DEA
cross-efficiency model utilizing financial indicators of listed companies and proposed anMV
portfolio selection model based on two statistics of the cross-efficiency matrix. They applied
their approach to stock portfolio selection within the Korean stock market and demonstrated
that the selected portfolio delivered higher risk-adjusted returns compared to other bench-
mark portfolios. Hsu (2014) proposed an integrated procedure employing DEA, artificial
bee colony (ABC) and genetic programming to address the portfolio selection problem. The
input-oriented CCR model was utilized for screening stocks based on their historical finan-
cial performance and selecting the most efficient candidates for the portfolio. The inputs for
the DEA model encompassed total assets, total equity, cost of sales, and operating expenses,
while the outputs included net sales and net income. Subsequently, the ABC algorithm was
employed to resolve a variant of the Markowitz portfolio optimization model, wherein risk
was assessed using below-target semi-variance to determine investment weights. Finally,
genetic programming was applied to develop a price forecasting model to guide the buy/sell
decisions’ timing. The approach’s feasibility and effectiveness were demonstrated using
Taiwanese semi-conductor stocks. Huang et al. (2015) introduced a portfolio construction
approach wherein stocks, pre-screened through fundamental analysis, were subjected to a
VRSDEAmodel for the selection of efficient stocks. Down-side risk andβ-coefficient served
as inputs, while return rate and Sharpe ratio were designated as outputs for the DEAmodel. A
multi-objective decision making method based on compromise programming was employed
to address the bi-objectiveMarkowitzmodel and determine investmentweights. They applied
this methodology to Taiwan’s financial market and compared it with several benchmarking
mutual funds, yielding superior results in terms of return rates and Sharpe ratios. Peykani et al.
(2020) proposed a two-phase approach for the portfolio selection and optimization problems
in which robust DEA models were used in the first phase to measure stocks efficiency and
select candidate assets for the portfolio optimization phase in the presence of uncertain data.
They then applied single-objective robust mean-semi variance-liquidity and robust mean-
absolute deviation-liquidity models to determine candidate investment weights and applied
their methodology to the Tehran stock exchange. Amin and Hajjami (2021) developed a
cross-efficiency DEA model for the portfolio selection problem and investigated the role of
alternative optimal solutions in DEA models. They found that portfolio construction with
lower risk and higher returns is possible when alternative optimal solutions are included in
the model. In an attempt to incorporate data mining techniques into the portfolio selection
and optimization scheme, Zhou et al. (2021) introduced a stock selection plan that integrated
DEA with multiple data sources, then used a support vector machine (SVM) to predict the
stock price movements and combined it with the stock selection scheme to construct the
portfolio optimization model. The potential of DEA in combination with MODM has been
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recently investigated in the context of financial instruments other than stocks. For instance,
Henriques et al. (2022) present a two-step approach for portfolio modeling, utilizing DEA
to identify efficient assets based on financial indicators and interval multi-objective portfolio
models to determine optimal portfolio compositions according to investor preferences. Their
methodology addresses computational complexities associated with portfolio optimization
and uncertainty of factors in portfolio models by using DEA and interval programming.
They applied their methodology to a sample of diversified Exchange Traded Funds (ETFs)
operating in the US energy sector. More recent applications of DEA in stock selection can be
found in the work of Hosseinzadeh et al. (2023), where the authors employed an SBM DEA
model to preselect efficient assets in large-scale portfolio problems. They introduced various
reward/risk criteria, and DEA input/output sets based on these criteria for asset pre-selection,
subsequently evaluating the impact of preselected assets in portfolio optimization strate-
gies. These strategies encompassed uniform investment among all the preselected assets,
and strategies that individually maximize the Sharpe, stable, and Pearson ratios. The study
compared DEA-based pre-selection to PCA factor models using two datasets, S&P500 com-
ponents and Fama and French 100 portfolios, demonstrating superior performance of DEA
pre-selection. Their approach offers advantages such as linear solvability for large-scale port-
folios, identifying top assets bymultiple criteria, and promising performance during systemic
risk crises.

2.1.2 Goal programming in financial portfolio selection

GP is a practical method for analyzing portfolio selection problems with several incommen-
surable and conflicting attributes, allowing for the generation of plausible solutions that align
with the FDM’s preferences. Depending on the nature of the available information, the FDM
is required to choose the appropriate GP variant to derive a solution that best aligns with
their portfolio selection preferences (Colapinto et al., 2019). Numerous studies have been
conducted on this stream of literature, and interested readers can find a recent and detailed
description ofworks in financial portfoliomanagement utilizingGP inColapinto et al. (2019).
To provide a comprehensive understanding of the leading keywords in GP-related research
for financial portfolio selection and optimization, we conduct a bibliometric analysis using
the VOS viewer software (Van Eck & Waltman, 2010), for which the result is illustrated in
Fig. 2.

Figure 2 shows the density visualization of the co-occurrence of all keywords in GP-
related research in financial portfolio selection. The experiment to obtain this result involves
134 records from theWeb of Science Core Collection with no time period limit, and the input
keywords used were “Goal Programming” and “Portfolio Selection/Management”. With a
threshold of at least 3 occurrences in all works, out of the 656 initial keywords, 59 were
selected for the bibliometric analysis. According to Fig. 2, dense areas shown in red demon-
strate the top keywords that occurred most frequently, while green areas represent keywords
with lower research density in this field. For example, “uncertainty” falls into this group,
indicating a lower number of works that considered uncertainty in modeling. Also, among
the uncertainty modeling approaches, “fuzzy goal programming” and “stochastic goal pro-
gramming” had themost occurrences, respectively. Interested readers can refer to Aouni et al.
(2014) and Colapinto et al. (2019) for surveys on stochastic and fuzzy GPmodels in portfolio
optimization problems. Another interesting point that can be deduced from the map is that a
clear separation exists between the keywords like “Analytic Network Process” or “ANP” and
“Goal Programming,” “Portfolio Selection,” “Polynomial Goal Programming,” and “Fuzzy
Goal Programming,” which could be addressed in future research. In what follows, we will
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Fig. 2 Density visualization of all the keywords with a threshold of minimum 3 occurrences

examine some relevant GP applications in financial portfolio selection and management in
more detail.

Bravo et al. (2010) developed a mean value-stochastic GP model for selecting buy-and-
hold efficient portfolios of funds, where they considered multiple benchmarks for returns as
a more realistic approach to portfolio analysis. Stoyan and Kwon (2011) formulated a mixed-
integer stochastic GP model for an integrated stock and bond portfolio problem, taking into
account uncertainty in asset prices and several major trading constraints. Bilbao-Terol et al.
(2012) proposed Weighted and MinMax GP models for selecting portfolios with socially
responsible investment (SRI)-funds, where they measured the socially responsible perfor-
mance of financial products using an index built through the application of fuzzy set theory
techniques. Tamiz et al. (2013) applied three goal programming variants—Weighted, Lexi-
cographic, and MinMax GP—to develop portfolio selection models for international mutual
funds, which enable decision-makers to incorporate their preferred factors and ideal aspi-
ration levels into the GP model for acquiring their intended portfolio. The authors selected
seven factors from three groups: ‘mutual funds specific factors,’ ‘macroeconomics factors,’
and ‘factors for regional preferences.’ Each factor was treated as an objective in their GP
models. Using data related to 20 mutual funds of equities from 10 different countries, they
compared the resulting portfolios with different combinations of weights, priority levels, and
target values in the GP models against each other in terms of return, risk, and the number of
mutual funds selected, and demonstrated and discussed the applicability of their approach.
Messaoudi et al. (2017) developed a fuzzy chance-constrained GP model to solve a finan-
cial portfolio selection problemwith three attributes. In their approach, stochastic uncertainty
pertains to the independent chance-constrained objectives, and the financial decision maker’s
preferences were considered as fuzzy values. De et al. (2018) proposed a fuzzy GP model
usingWerner’s ‘fuzzy and’ hybrid operator for a portfolio selection problem with three crite-
ria: risk, return, and liquidity. They assumed return and liquidity as fuzzy values and described
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them with triangular and trapezoidal membership functions. Tamiz and Azmi (2019) utilized
five FA-based factors, in addition to risk and return, for stock portfolio selection, with each
factor represented as an objective in a weighted goal programming (WGP) model. Various
WGPmodels with different combinations of target values and weights were developed. They
applied their models to 30 stocks from the Dow Jones Industrial Average index, and the
resulting portfolios were compared against each other, as well as against well-known bench-
mark models for portfolio selection from the literature. The results obtained supported the
use of factors utilized besides risk and return, referred to as ’extended factors,’ for addressing
portfolio selection problems. Mansour et al. (2019) formulated a GP model for the finan-
cial portfolio selection problem with three criteria: risk, return, and liquidity. In this model,
fuzzy returns were assumed, and investor preferences were incorporated using the concept
of satisfaction functions. Deng and Yuan (2021) introduced a GP model based on fuzzy
dominance for a portfolio selection problem involving fuzzy returns while simultaneously
considering systematic and non-systematic risks. More recently, Bravo et al. (2022) proposed
aGP approach that differs from the state-of-the-art uncertain GPmodels. In this approach, the
variability of parameters resulting from randomness is addressed by replacing the traditional
WGP achievement function with a new function that takes into account the decision maker’s
perception of randomness through the use of a penalty term. They applied their approach to
a mean absolute deviation (MAD) portfolio selection problem and claimed that their method
can effectively address the challenges arising from the lack of statistical information about
random events.

2.2 Robust goal programming

While GP is extensively applied in various fields, its traditional usage has relied on deter-
ministic values for model parameters, which is not always the case (Hanks et al., 2017).
Robust goal programming (RGP) is a relatively new sub-discipline of optimization that inte-
grates uncertainty modeling via the RO theory with traditionally deterministic GP to tackle
optimization problems with multiple objectives as well as uncertain parameters.

RGP was first introduced in Kuchta’s (2004) work in which parametric uncertainty is
addressed through a combination of cardinality-constrained robustness and interval-based
uncertainty sets within the GP technique. In this approach, the author assumed that uncertain
parameters are limited to the cost coefficients in the original linear objective functions. The
proposed approach allows decision-makers to find solutions for various degrees of uncer-
tainty by changing one parameter per goal, where the worst optimal total deviation from the
goals is presented.Closer to ourwork regarding the application context,Ghahtarani andNajafi
(2013) appliedKuchta’s (2004)methodology to develop a robust goal programmingmodel for
a multi-objective portfolio selection problem. Their study is the only one to date that applied
the RGP methodology to portfolio selection problems modeled as a GP. The authors applied
Kuchta’s (2004) methodology to create the robust counterpart of Lee and Chesser’s (1980)
portfolio selection GP model. According to their results, as the uncertainty budget increased,
solution conservatism also rose. Ghasemi Bojd and Koosha (2018) proposed a robust goal
programming model for the capital budgeting problem. Their model accounts for uncertainty
in cash flows and addresses multiple goals. Broadening the RGP literature, Hanks et al.
(2017) extended Kuchta’s (2004) work and introduced RGP models considering cardinality-
constrained robustness using norm-based uncertainty sets, such as L1 and L2 norms, as well
as strict robustness via ellipsoidal uncertainty sets. They compared the performance of their
proposed models with that of Kuchta’s (2004) using computational examples. The results
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Table 1 An overview of RGP studies

Study Perspective Underlying philosophy of
GP

Uncertainty set

Methodological Applicational Optimization Balance

Kuchta (2004) * * Interval + polyhedral

Ghahtarani
and Najafi
(2013)

* * Interval + polyhedral

Hanks et al.
(2017)

* * L1 & L2 norms &
ellipsoidal

Ghasemi Bojd
and Koosha
(2018)

* * Interval + polyhedral

Mensah and
Rocca
(2019)

* * Light robustness via
budget of
uncertainty &
ellipsoidal

Hendalianpur
et al. (2019)

* * Interval + polyhedral

Repetto et al.
(2019)

* * Interval + polyhedral

Wang and Li
(2019)

* * Interval + polyhedral

Hanks et al.
(2020)

* * L2-norm

Cheng et al.
(2021)

* * * Box ∩ generalized
budget

This study * * * * Polyhedral & interval
+ polyhedral

demonstrated that cardinality-constrained robustness via L2-norm uncertainty sets outper-
formed cardinality-constrained robustness using interval-based uncertainty sets. However,
the computational tractability of L2-norm-based uncertainty sets still remains challenging.
Leveraging the findings of the study of Hanks et al. (2017), Hanks et al. (2020) employed
RGPwith cardinality-constrained robustness via L2-norm uncertainty sets tomodel a specific
problem related to setting transportation shipping rates in a United States shipping line. Men-
sah and Rocca (2019), taking another step to theoretically contribute to the RGP foundation,
proposed light robust goal programming models using budget of uncertainty and ellipsoidal
uncertainty sets and compared their results with previous RGP models. They demonstrated
that the total goal deviations of the decision-maker depend heavily on the robust quality
threshold set as the trade-off between the optimality and the feasibility of the robust solution
in the light RGP framework, rather than the specific uncertainty set used. Further applications
of RGP can be seen in Wang and Li (2019) and Hendalianpur et al. (2019), focusing on sup-
plier selection and order allocation in supply chain management, as well as in Repetto et al.
(2019) for controlling the transfer pricing risk of a multi-national firm. A more recent appli-
cation of RGP emerged in Cheng et al. (2021), where the authors developed an RGP model
to optimize food distribution decisions in humanitarian relief logistics, addressing supply
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and capacity uncertainties. They developed their RGP model using a refined uncertainty set,
defined by the intersection of the box and generalized budget.

2.3 Research gaps and contributions

DEA and GP techniques have been independently applied to various aspects of portfolio
selection and optimization in numerous studies. DEAmethods have demonstrated their utility
within portfolio management, serving purposes such as stock ranking in portfolio selection,
estimating portfolio efficiency, and assessing market efficiency (Kuo et al., 2021; Tarnaud
& Leleu, 2018). Similarly, GP has proven to be a pragmatic and versatile modeling and
solution approach for addressing multi-criteria portfolio optimization problems. It enables
FDMs to concurrently consider multiple incommensurable, often conflicting financial and
non-financial factors as distinct goals. These factors can include unique preferences and target
values, allowing FDMs to tailor their portfolios accordingly (Aouni et al., 2014; Colapinto
et al., 2019). However, despite its hybridization potential (Zopounidis et al., 2015), GP
has seen relatively limited integration with other approaches in the portfolio management
context. Notably, Fig. 2 does not categorize DEA, indicating a scarcity of studies exploring
the combination of DEA and GP in the portfolio selection context. To address this gap,
we propose an integrated approach that harnesses the power of DEA and GP for portfolio
selection and optimization. Furthermore, we introduce a comprehensive stock performance
evaluation framework that employs the super-efficiency DEA methodology as a means of
FA to identify investment-worthy stocks. In addition, selecting the appropriate GP variant
is a crucial aspect of implementing the GP methodology. In our work, we utilize the EGP
variant for the first time in the context of portfolio optimization to our best knowledge, as it
offers superior flexibility compared to other commonly used variants. Our research explores
the effectiveness of this choice in optimizing portfolios. Moreover, this study introduces
another novel aspect by incorporating a set of FA-based financial factors, in addition to the
TA-based factors of return and risk, as goals within the EGP models, following the concept
referred to as ‘extended factors’ introduced by Tamiz et al. (2013). This inclusion serves to
integrate and provide a more comprehensive analysis of the role of the underlying business
strength of firms during the portfolio optimization phase, all viewed through the lens of
multi-objective optimization. By encompassing a range of FA-based factors, the study seeks
to enhance the predictive capacity of firms’ future financial performance, thereby contributing
to amore nuanced and effective portfolio selection process, and allowing for the identification
of portfolios with greater potential for superior performance. The developed GP framework
readily accommodates additional goals representing other financial or non-financial factors,
providing a versatile platform for personalized portfolio optimization.

Additionally, while uncertainty within the portfolio management context is an inherent
issue which needs to be accounted for, Fig. 2 as well as the relevant GP literature reveal a
paucity of studies that model portfolio problems taking into account underlying uncertain-
ties. Also, among the non-deterministic GP approaches applied to portfolio optimization,
fuzzy GP and stochastic GP models have been the most frequently explored. These uncer-
tain GP approaches have primarily focused on goal target values to accommodate uncertain
conditions, which may not always align with practical GP applications, such as portfolio
optimization where the primary sources of uncertainty pertain to goal function coefficients,
such as return rates. To address this limitation and overcome other challenges discussed in
Sect. 1, we adopt the more versatile and pragmatic RO technique to manage uncertainties
within the GP model during the portfolio optimization phase. This approach also tackles
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the rarity of applications of RGP models in portfolio optimization. Building upon the com-
prehensive review of RGP studies in Sect. 2.2 and according to Table 1, it is noteworthy
that the majority of RGP models have been developed using WGP variant and the approach
proposed by Bertsimas and Sim (2004) (i.e. the combined interval and polyhedral uncer-
tainty set). Therefore, we introduce the robust counterpart of the EGP model, termed the
Robust EGP (REGP) variant. Given the reasons discussed in Sect. 1, we develop the REGP
models employing both pure polyhedral and combined interval and polyhedral uncertainty
sets. We then compare and validate their performance using real-world data. In doing so, we
aim to extend and promote the topic of RGP in line with the work of Hanks et al. (2017).
RGP is an under-developed topic which deserves more attention, as it has the potential to
accommodate uncertainties not only in goal function coefficients and target values but also in
system constraints—a critical feature for achieving complete robustness in problems where
both constraint parameters and goals are imprecisely defined. Overall, our proposed approach
aims to equip FDMs with computationally tractable, adaptable, and pragmatic decision sup-
port tools for portfolio selection and optimization. The proposed approach enables FDMs to
make investment decisions based on their financial preferences, including desired financial
factors, preferential weights, and goal target values, while also accommodating varying levels
of conservatism.

3 Methodology

3.1 Problem description

This paper proposes a multiple-criteria financial portfolio selection framework with the pri-
mary aim of maximizing the expected return of the investment as well as minimizing its risk.
With the aim of incorporating the underlying business strength of firms into the portfolio
selection and optimization, in the problem we consider a set of FA-based financial factors
besides the technical factors of return and risk of the assets as the criteria, whilst account-
ing for data uncertainty. Therefore, this paper adds to the literature showing the benefits of
moving beyond traditional risk-return bi-criteria approaches to portfolio selection problems
with an investor who has the preference of incorporating the fundamental financial strength
of firms into the portfolio selection and optimization process. In this vein, we put special
focus on addressing the inherent uncertainties of financial markets, as without considering
this any portfolio selection approach may be unreliable. As illustrated in Fig. 1, the proposed
framework consists of 2 phases. In the first phase, through an asset screening procedure and
utilizing a super-efficiency DEA model, the efficiency score of all the registered assets in
the stock exchange market is measured. Accordingly, for the inputs and outputs of the DEA
model, a set of financial parameters governing various aspects of the firm’s operations is
determined based on quantitative and qualitative information derived from financial state-
ments of firms, as well as relevant literature and expert advice. At the end of this phase, assets
that are potential investments are determined based on the investor’s filtering criteria (e.g.
efficient assets) as candidates for the portfolio optimization problem in the second phase.
The portfolio weights of the set of qualified risky assets resulting from the first phase are
decided in the second phase, where the portfolio is constructed. In this phase, a multi-factor
EGP model is developed which allows for the consideration of specific investor preferences.
In this regard, each goal represents a distinct asset-related financial factor, ranging from tech-
nical return and risk factors to FA-based factors derived from the first-phase DEA approach.
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Further details regarding the constraints and assumptions of the portfolio optimization mod-
els will be elaborated in Sect. 3.6. Moreover, robust optimization is employed to deal with
the inherent data uncertainty feature of financial markets during the portfolio optimization
phase. Accordingly, the deterministic EGP models are extended to robust versions in order
to ensure model stability when facing imprecise data and to strike a balance between system
cost and reliability.

3.2 The super-efficiency DEAmodel

Various decision-making units (DMUs) can have an efficiency score of 1 in the outputs of
original DEA models, such as the CCR model in Charnes et al. (1978). As a result, these
models are unable to rank the DMUs precisely. In response to these flaws in traditional
DEA models, Andersen and Petersen (1993) developed a novel method for ranking efficient
DMUs, resulting in the notion of super-efficiency. The Andersen and Petersen (1993) model
is as follows:

Minθso

S.t .

n∑

j = 1
j �= o

λjxij ≤ θsoxio i = 1, . . . ,m

n∑

j = 1
j �= o

λjyrj ≥ yro r = 1, . . . , s

λj ≥ 0 j = 1, 2, . . . , n (1)

where θso, xio, and yro are the efficiency score, input, and output values of the DMU under
evaluation, respectively. The λj variable is the weight corresponding to the DMUj, and the
model (1) evaluates the relative efficiencies of n DMUs, each with m inputs and s outputs
denoted by x1j, . . . , xmj and y1j, . . . , ysj, respectively. The super-efficiency model (1) com-
putes the efficiency score of the DMU under evaluation by removing it from constraints. It
is used to rank efficient DMUs generated by the original DEA models, but it may also be
applied to assess and rank all DMUs. Super-efficiency DEA models have been applied in
various fields of finance for performance evaluation [see e.g. Avkiran (2011), Pätäri et al.
(2012), Dutta et al. (2020), Lin and Li (2020), and Tsolas (2022) for applications in perfor-
mance appraisal within banking, equity portfolio, non-banking finance companies, mutual
funds, and exchange-traded funds, respectively]. Due to its superior discriminating power, the
super-efficiency model (1), in its variable returns to scale (VRS) version, which includes the
additional convexity constraint

∑n

j = 1
j �= o

λj = 1, is employed in this study to fundamentally

evaluate and rank all the registered assets in the stock exchange market in the first phase of
the proposed methodology for the stock portfolio selection problem. The VRS model allows
for the assessment of the relative efficiency of each firm by considering their specific scale of
operations and capturing variations in efficiencies due to differences in the firms’ financial
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structures and operational characteristics. At the end of this phase, based on criteria such
as a cardinality constraint or the efficiency level determined by the FDM, the top assets are
selected for potential investment in the second phase.

Financial ratios are widely used and accepted in the finance and accounting literature for
comparative analysis and performance evaluation purposes (Almeida-Filho et al., 2021; Wu
et al., 2022). For the inputs and outputs of the DEAmodel, we employ a range of performance
perspectives for a firm including, profitability, activity, liquidity, and leverage ratios. These
four major categories of financial ratios represent the underlying financial strengths of a firm.
Based on the literature (Edirisinghe & Zhang, 2007, 2008; Kuo et al., 2021; Lim et al., 2014;
Peykani et al., 2022; Rahiminezhad Galankashi et al., 2020; Wu et al., 2022; Xidonas et al.,
2009), expert opinions (from fund managers and financial advisors), and the Delphi method
(utilizing questionnaires), we select a total of 14 critical financial parameters that encompass
all of these perspectives to serve as inputs and outputs for our DEA model, as presented in
Table 2. In the DEA model, parameters that follow the ‘the more, the better’ principle are
used as outputs, while those adhering to ’the fewer, the better’ principle are classified as
inputs (Cook et al., 2014).

3.3 Extended factor GPmodels

We term the factors that we are going to use alongside the traditional TA-based risk and
return factors in our proposed GPmodels for the portfolio optimization problem as “extended
factors” (Tamiz &Azmi, 2019; Tamiz et al., 2013). In practice, the FDMmaywish to oversee
the construction of their portfolio by simultaneously optimizing various incommensurable
and conflicting criteria, such as rate of return, risk, liquidity, dividends, number of assets,
amount of short selling, social responsibility, financial ratios, investment inR&D, and so forth.
These factors are often considered as constraints in the portfolio selection process. However,
analysts and investors gain a comprehensive understanding of each factor’s relationship with
investment risk and return, as well as the trade-offs involved when each factor is treated as
a distinct objective (Rahiminezhad Galankashi et al., 2020; Steuer et al., 2007, 2008). In a
simple manner, all possible criteria considered as objectives can be linearly modeled (Spronk
et al., 2016). Hence, we treat each factor as a distinct linearly modeled goal function within
our proposed GP models tailored for the portfolio optimization phase.

It is important to note that the decision of whether to employ a specific set of factors
primarily depends on the investor’s preferences, strategies, and objectives. Extra goals repre-
senting other factors, financial or even non-financial, can readily be incorporated into the GP
framework for portfolio optimization. In this paper, with the aim of incorporating the funda-
mental financial strength of firms into the portfolio optimization process and leveraging the
synergy resulting from concurrently employing FA-based and TA-based factors, we define
the following six factors for the multiple-criteria portfolio selection problem:

1- Return (RE); 2- Risk (RI); 3- Liquidity (LI); 4- Leverage (LE); 5- Activity (AC); 6-
Profitability (PR);

Assuming i as the index of assets, the return and risk factors of asset i are assumed to be
the mean and the standard deviation of the rate of returns of asset i in a given construction
time period and are calculated as follows:
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Table 2 Financial parameters used as inputs and outputs of the super-efficiency DEA model

Type Parameter Description Perspective

Input Current ratio Total current assets divided by
total current liabilities

Liquidity

Quick ratio Total current assets minus
inventory divided by total
current liabilities

Debt ratio Total debt divided by total
assets

Leverage

Debt-equity ratio Long-term debt divided by
shareholders equity

Days sales outstanding Average accounts receivable
divided by the total credit
sales for the period and
multiplied by the number of
days in the period

Activity (Asset utilization)

Output Inventory turnover Revenues for the period
divided by average inventory

Working capital turnover Revenues for the period
divided by average working
capital

Fixed asset turnover Revenues for the period
divided by average net fixed
assets

Asset turnover Revenues for the period
divided by average total
assets

Net profit margin Net income divided by
revenue for the period

Profitability

Operating profit margin Operating income divided by
revenue for the period

Return on assets Net income divided by the
total assets

Return on equity Net income divided by
shareholders equity

Return on working capital Net income divided by
working capital

ri,t = pi,t_pi,t−1

pi,t−1
(2)

REi = 1

T

T∑

t=1

ri,t (3)

RI i =
√∑T

t=1

(
ri,t − REi

)2

T − 1
(4)

where pi,t and pi,t−1 are the closing prices of asset i at the end of the time periods t andt−1,
respectively. Also, ri,t is the rate of return of asset i in the time period t , T is the number
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of construction time periods and REi and RI i are the return and risk factors of asseti ,
respectively.

For the calculation of other remaining factors, the following sets and notation are intro-
duced:

j : Index of financial parameters according to Table 2.
JLi : Members of the liquidity perspective factors set according to Table 2.
JLe: Members of the leverage perspective factors set according to Table 2.
JAc: Members of the activity perspective factors set according to Table 2.
JPr : Members of the profitability perspective factors set according to Table 2.
Ri j : The value of the j th financial parameter for the i th asset.
K j : The normalization constant for the j th financial parameter.
R̂i j : The normalized value of the j th financial parameter for the i th asset.
The normalized values for the financial parameters can be obtained through the following

equation:

R̂i j = Ri j

K j
∀i, j (5)

where the normalization constant K j is chosen to be the Euclidean mean of the values for
the j th financial parameter as it is a computationally robust method among the normalization
techniques (Tamiz & Azmi, 2019). Thus, we have K j for each financial parameter j as
follows:

K j =
√∑

i

R2
i j (6)

Consequently, we calculate the values of the other four factors considered in this paper
beyond risk and return, called extended factors, as the arithmetic mean of the normalized
values of the financial parameters belonging to each perspective as follows:

L I i =
∑

j∈JLi R̂i j

|JLi | (7)

LEi =
∑

j∈JLe R̂i j

|JLe| (8)

ACi =
∑

j∈JAc R̂i j

|JAc| (9)

PRi =
∑

j∈JPr R̂i j

|JPr | (10)

where |JLi |, |JLe|, |JAc| and |JPr | are the cardinalities of the liquidity, leverage, activity, and
profitability perspective factors sets according to Table 2, respectively.

It should be noted that liquidity, leverage, activity, and profitability factors represent the
fundamental financial strengths of assets in the GP models for portfolio optimization. We
further note that our choice of strategic indicator-based metrics as extended factors in the
GP models in this study, as described above, aligns with the existing correlations between
individual ratios within each perspective according to Table 2’s selection. This primarily
allows for a more streamlined and manageable set of goals in the GP models (adhering to a
maximum of seven objectives in anMCDM problem, according to Steuer et al. (2007)) while
striving for a comprehensive assessment that encapsulates the entirety of Table 2’s financial
parameters. Moreover, this approach avoids losing information and critical nuances that can
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Table 3 Summary of the extended factors used in this paper for the portfolio optimization problem

Factors Objective
function

Optimization type Desired target
value

Deviational variable
to be penalized

Return ZRE Maximization TRE nRE
Risk ZRI Minimization TRI pRI
Liquidity ZL I Minimization TL I pL I
Leverage ZLE Minimization TLE pLE
Activity ZAC Maximization TAC nAC
Profitability ZPR Maximization TPR nPR

potentially result from neglecting certain ratios within a given perspective due to the existing
correlations, which could be pivotal for a thorough assessment. The optimization type of the
extended factors in the GP models is consistent with distinguishing the DEA inputs/outputs,
as mentioned in sub-Sect. 3.2 (In the Activity perspective from Table 2, the first parameter’s
values were multiplied by -1 to maintain consistency with maximizing the AC factor). The
extended factors utilized in this paper alongwith risk and return for the portfolio optimization
problem, the desired type of optimization for each factor as an objective function, the desired
target value of each factor, and the corresponding deviational variables to be penalized in the
achievement function of the GP models are summarized in Table 3.

3.4 Extended goal programming

The extended lexicographic goal programming (ELGP) was proposed by Romero (2001) to
permit a parametric analysis of trade-offs between efficiency and balance among different
achievement levels of the target values. The ELGP formulation allows for the inclusion and
combination of the lexicographic ordering, optimization, balancing and satisficing underly-
ing philosophies of a single decisionmaking entity (Jones&Tamiz, 2010). The lexicographic
ordering philosophy is attainable through the precedence structure of the achievement func-
tion. The satisfying philosophy can be deduced from the set of goals. The optimizing
philosophy is accomplished via the minimization of the weighted sum of deviations and
the balancing philosophy is achieved through the inclusion of the maximum deviation term
(D) in each priority level. Moreover, the equilibrium between optimization (efficiency) and
balance (equity) can be controlled at each priority level through the parameter α which can
be varied between complete concentration on optimization (α = 0)(the WGP achievement
function) and complete focus on balance (α = 1) (the MinMax GP achievement function).
Lexicographic and non-lexicographic forms of the model can be formulated for the cases of
the presence and absence of a lexicographic ordering of goals, respectively. As this paper is
concerned primarily with investigations of efficiency-balance trade-offs between objectives
rather than prioritizing them, the non-lexicographic form of the extended goal programming
model is used. The single priority level (non-lexicographic) extended goal program can be
represented by the following formulation (Romero, 2004):

MinA = αD + (1 − α)

{
I∑

i=1

(
wni ni
Ki

+ wpi pi
Ki

)

}

S.t .
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wni ni
ki

+ wpi pi
ki

− D ≤ 0 i = 1, 2, . . . , I

fi (x) + ni − pi = bi i = 1, 2, . . . , I

x ∈ F

ni , pi ≥ 0 i = 1, 2, . . . , I (11)

where A is the achievement function of the goal program, ni is the negative deviational
variable of the i th goal,wni is the preferential weight associated with the minimization of ni ,
pi is the positive deviational variable of the i th goal,wpi is the preferential weight associated
with the minimization of pi , Ki is the normalization constant associated with the i th goal, bi
represents the target level for the i th goal, fi (x) is the i th objective function, F represents the
feasible region of the original multi-objective problem, I is the number of goals and finally
parameter α provides a trade-off between minimization of the weighted sum of unwanted
deviation variables and minimization of the maximum deviation from the target values.

Despite its flexibility and advantages over othermore commonlyusedGPvariants, theEGP
variant is a relatively less used variant in the literature in solvingmulti-objective optimization
problems. To date, some of the data-driven applications of the EGP in the literature include
integrated lot-sizing and cutting stock (Oliveira et al., 2021), allocation of medical robotic
devices to treatment centres (Jones et el. 2022), supply chain planning in the silk industry
(Jatuphatwarodom et al., 2018), and energy and asset management in an industrial microgrid
(Choobineh &Mohagheghi, 2016). In this research, we explore the effectiveness of the EGP
variant in the financial portfolio selection context under both deterministic and uncertain
conditions.

3.5 Robust optimization framework

Unlike stochastic optimization, robust optimization utilizes uncertainty sets instead of prob-
ability distributions to account for uncertain data. In our study, two RO approaches via
polyhedral uncertainty set (Li et al., 2011) and combined interval and polyhedral uncertainty
set (Bertsimas & Sim, 2004) are adopted to develop and compare the robust counterparts
of the deterministic extended goal programming model, due to the advantages discussed in
Sect. 1. To present these two RO approaches, let us consider a linear mathematical program-
ming model as:

Max
∑

j

c j x j

S.t .

∑

j

ãi j x j ≤ bi ∀i

x ∈ X (12)

where coefficients ãi j are subject to uncertainty. Let Ji denote the set of uncertain coef-
ficients in the ith constraint. Each uncertain parameter ãi j with a symmetric and bounded
distribution in interval

[
ai j − âi j , ai j + âi j

]
can be demonstrated as:

ãi j = ai j + ζi j âi j ∀ j ∈ Ji (13)

123



Annals of Operations Research

Fig. 3 Illustration of polyhedral
uncertainty set

where ai j is the nominal value, âi j represents the perturbation magnitude of each uncertain
parameter ãi j , and ζi j is an independent random variable taking values in range [−1, 1].
According to this definition, Ben-Tal and Nemirovski (1998) show that the set induced robust
counterpart formulation of the original ith constraint can be expressed as:

∑

j

ai j x j +
⎡

⎣max
ζ∈U

⎧
⎨

⎩
∑

j∈Ji

ζi j âi j x j

⎫
⎬

⎭

⎤

⎦ ≤ bi ∀i (14)

It is obvious that the robust formulation (14) is closely linked to the uncertainty set U
which is defined using an arbitrary norm on vector spaces. A polyhedral uncertainty set
(as shown in Fig. 3 for a 2-dimensional uncertain parameter space) is employed at first to
develop the robust counterpart models. If the uncertainty set U is chosen to be a polyhedral
uncertainty set defined by the L1 norm of the random variable ζ , it can be expressed as:

U1 = {
ζ |‖ζ‖1 ≤ �

} =
⎧
⎨

⎩ζ |
∑

j∈Ji

∣∣ζ j
∣∣ ≤ �,∀ j

⎫
⎬

⎭ (15)

where � is an adjustable parameter which controls the size of the uncertainty set. In this case,
the robust counterpart formulation (14) will be equivalent to the following set of constraints
(Li et al., 2011):

∑

j

ai j x j + �iλi ≤ bi ∀i

λi ≥ âi j y j ∀i, j ∈ ji

−y j ≤ x j ≤ y j ∀ j

λi ≥ 0 ∀i

y j ≥ 0 ∀ j (16)

where λi is a new auxiliary variable and�i , which is not necessarily an integer, can take
value from interval[0, |Ji |], where |Ji | denotes the cardinality of setJi . Parameter �i aims to

Fig. 4 Illustration of combined
interval and polyhedral
uncertainty set
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allow 	�i
 coefficients of row i to take their worst-case value and is used to adjust the trade-
off between the robustness of the model and the conservatism level of the solution. Also, it
should be noted that there will be no need to utilize the variable y j in the case thatx j ≥ 0,∀ j .

Subsequently, the behavior of the robust counterpart models is investigated via a combined
interval and polyhedral uncertainty set (Fig. 4). This uncertainty set defined by the intersection
of L∞ and L1 norms of random variable ζ is described as follows (Li et al., 2011):

U1∩∞ =
⎧
⎨

⎩ζ |
∑

j∈Ji

∣∣ζ j
∣∣ ≤ �,

∣∣ζ j
∣∣ ≤ 1,∀ j

⎫
⎬

⎭ (17)

When the uncertainty set U is defined as the Eq. (17), the equivalent formulation of the
robust counterpart (14) is exactly similar to the robust approach proposed by Bertsimas and
Sim (2004), as follows:

∑

j

ai j x j + �iλi +
∑

j∈Ji

ωi j ≤ bi ∀i

λi + ωi j ≥ âi j y j ∀i, j ∈ ji

−y j ≤ x j ≤ y j ∀ j

ωi j ≥ 0 ∀i, j ∈ Ji

λi ≥ 0 ∀i

y j ≥ 0 ∀ j (18)

where λi and ωi j are new auxiliary variables and similar to the robust counterpart for-
mulation via the polyhedral uncertainty set, a parameter�i ∈ [0, |Ji |], called the uncertainty
budget, is introduced for each constraint i to offer a mechanism to control the deterioration
effect on the objective function value against the probability of the constraint’s violation. It
is worth noting that in the aforesaid robust counterpart formulations, when �i is set equal to
zero, the constraints are equivalent to that of the nominal problem. Similarly, when �i is set
equal to |Ji |, the robust model acts as conservative as in the robust formulation of Soyster’s
(1973).

In the above-mentioned robust counterpart approaches, the decision maker can adjust the
conservatism level of constraint i by changing the value of parameter �i . Since the parameter
�i is an input of the robust formulation, the decision-maker can choose it according to his/her
risk aversion level. The larger �i is, the more risk-averse the decision maker is. If up to �i

number of uncertain coefficients perturb from their nominal values, the robust solution will
remain feasible for every change. However, the upper bound for the probability of constraint
violation can be calculated as exp

(−�2
i /2|Ji |

)
(Li & Floudas, 2012). Similar steps can also

be followed to utilize the aforementioned robust approaches for tackling uncertainty in the
right hand side (RHS) parameters.

3.5.1 General framework of the robust extended goal programming (REGP)

Assuming fi (x) as linear objective functions and goals of theminimization type in the general
non-lexicographic extended goal programming formulation given in (11), the general robust
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extended goal programming framework using the polyhedral uncertainty set is formulated
as follows:

MinA = αD + (1 − α)

{
I∑

i=1

(
wpi pi
Ki

)

}

S.t .

wpi pi
ki

− D ≤ 0 i = 1, 2, . . . , I

∑

j

ci j x j + �iλi + ni − pi = bi i = 1, 2, . . . , I

λi ≥ ĉi j x j i = 1, 2, . . . , I , j ∈ ji

x ∈ F

x j , ni , pi , λi ≥ 0 i = 1, 2, . . . , I ,∀ j (19)

where ci j represents the nominal values of the uncertain objective function coefficients,
ĉi j denotes the perturbation magnitude corresponding to the uncertain coefficient ci j , �i is
the conservatism level corresponding to the i th goal constraint, λi is the auxiliary variable of
the robust counterpart model associated with the i th goal constraint, and the significance of
all other notations and constraints remains the same as defined in formulation (11).

Under the same assumptions, the general robust extended goal programming framework
utilizing the combined interval and polyhedral uncertainty set is represented as follows:

MinA = αD + (1 − α)

{
I∑

i=1

(
wpi pi
Ki

)

}

S.t .

wpi pi
ki

− D ≤ 0 i = 1, 2, . . . , I

∑

j

ci j x j + �iλi +
∑

j∈Ji

ωi j + ni − pi = bi i = 1, 2, . . . , I

λi + ωi j ≥ ĉi j x j i = 1, 2, . . . , I , j ∈ ji

x ∈ F

ωi j ≥ 0 i = 1, 2, . . . , I , j ∈ ji

x j , ni , pi , λi ≥ 0 i = 1, 2, . . . , I ,∀ j (20)

where ωi j is the auxiliary variable of the robust counterpart model associated with the i th

goal constraint and decision variable x j , and all other notations and constraints are consistent
with those in the REGP model described earlier via the polyhedral uncertainty set.
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3.6 The proposed portfolio selectionmodels

In the second phase of the proposed methodology for the stock portfolio selection problem,
the amount to be invested in each qualifying stock resulting from the first phase is decided
and finally the desired portfolio will be constructed. To this end, a multi-factor extended goal
programming model containing all the factors introduced in Sect. 3.3 is developed. Then,
taking into account the underlying uncertainties in different factors, the robust counterparts
of the EGP models are developed utilizing the two different uncertainty sets mentioned
in Sect. 1. It is worth noting that in order to make the models general and comparable
with classic benchmark models, no additional constraints other than the budget constraint
were considered in the portfolio selection models. Naturally, such constraints like cardinality
constraint, transaction costs constraint and many other market-related constraints could be
straightforwardly added to the models according to the investors’ preferences. Furthermore,
no short-selling is allowed to make the whole problem more realistic.

Prior to setting forth the various formulations we investigate, it is necessary to introduce
the associated sets, parameters, and decision variables. The notations are defined as follows:

3.6.1 Indices

i Set of assets, i = 1, 2, . . . , N
q Set of factors, q = RE, RI , L I , LE, AC, PR

3.6.2 Parameters

REi Nominal value corresponding to the return factor of the i th asset.
RI i Nominal value corresponding to the risk factor of the i th asset.
L I i Nominal value corresponding to the liquidity factor of the i th asset.
LEi Nominal value corresponding to the leverage factor of the i th asset.
ACi Nominal value corresponding to the activity factor of the i th asset.
PRi Nominal value corresponding to the profitability factor of the i th asset
vq Weight attributed to each negative deviational variable, ∀q
wq Weight attributed to each positive deviational variable, ∀q
Tq Target values for goals, ∀q
kq Normalization constant for deviational variables, ∀q
α Parameter for controlling the trade-off between efficiency and equity in the EGP achieve-
ment function

�q Level of conservatism (budget of uncertainty), ∀q
�q Maximumdeviation corresponding to eachuncertain factor (percentage of each factor),

∀q

3.6.3 Decision variables

xi Proportion of funds invested in the i th asset.
nq Negative deviational variables, ∀q
pq Positive deviational variables, ∀q
D Maximum weighted deviation from amongst the set of unwanted deviations.
ω
q
i Penalty associated with each factor and decision variable xi (auxiliary variable of the

robust counterpart model), ∀q
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λq Scalar value that takes into account ωi (auxiliary variable of the robust counterpart
model), ∀q

3.6.4 The proposed deterministic extended goal programmingmodel for portfolio
selection

Considering all the factors previously described in Table 3, the proposed multi-factor deter-
ministic extended goal programming model for the portfolio selection problem has the
following general structure:

MinZ = αD + (1 − α)

(
vRE
kRE

nRE + vAC
kAC

nAC + vPR
kPR

nPR + wRI
kRI

pRI + wL I
kL I

pL I + wLE
kLE

pLE

)
(21)

S.t .

vRE

kRE
nRE − D ≤ 0 (22)

wRI

kRI
pRI − D ≤ 0 (23)

wL I

kL I
pL I − D ≤ 0 (24)

wLE

kLE
pLE − D ≤ 0 (25)

vAC

kAC
nAC − D ≤ 0 (26)

vPR

kPR
nPR − D ≤ 0 (27)

n∑

i=1

REi xi + nRE − pRE = TRE (28)

n∑

i=1

RI i xi + nRI − pRI = TRI (29)

n∑

i=1

L I i xi + nL I − pL I = TL I (30)

n∑

i=1

LEi xi + nLE − pLE = TLE (31)

n∑

i=1

ACi xi + nAC − pAC = TAC (32)

n∑

i=1

PRi xi + nPR − pPR = TPR (33)

n∑

i=1

xi = 1 (34)

xi ≥ 0 ∀i (35)

nRE , pRE , nRI , pRI , nL I , pL I , nLE , pLE , nAC , pAC , nPR, pPR ≥ 0 (36)

where the achievement function (21) minimizes the unwanted deviations according to
the EGP philosophy, constraints (22)–(27) determine the maximal weighted, normalized
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deviation from amongst the set of unwanted deviations, constraints (28)–(33) calculate the
positive and negative deviations from the desired target value for each goal for a given
solution xi ,∀i , constraint (34) is the budget constraint in the portfolio selection problem,
constraints (35) indicates that no short-selling is allowed, and constraint set (36) ensures the
non-negativity of all the deviational variables.

3.6.5 The proposed robust extended goal programmingmodels (REGP) for portfolio
selection

This sub-section intends to extend the deterministic goal programming models to robust
counterpart models in which different financial factors are considered uncertain. This is
done via considering two different uncertainty sets previously described. The uncertain
parameters are modeled as random variables which take values according to symmetric
distributions with means equal to the nominal values. For instance, REi belongs to the inter-
val

[
REi − R̂Ei , REi + R̂Ei

]
, where REi denotes the nominal value and R̂Ei denotes the

perturbation magnitude. Also, the perturbation magnitude corresponding to each factor is
considered as a percentage (�) of the nominal value of each factor. E.g., R̂Ei = � × REi ,
where � can be different for each of the factors.

According to the aforementioned assumptions and the robust formulations expressed pre-
viously, the corresponding robust counterpart of the model (21)-(36) via the polyhedral
uncertainty set can be described as follows:

MinZ = αD + (1 − α)

(
vRE
kRE

nRE + vAC
kAC

nAC + vPR
kPR

nPR + wRI
kRI

pRI + wL I
kL I

pL I + wLE
kLE

pLE

)
(37)

S.t .

n∑

i=1

REi xi − �REλRE + nRE − pRE = TRE (38)

n∑

i=1

RI i xi + �RIλRI + nRI − pRI = TRI (39)

n∑

i=1

L I i xi + �L IλL I + nL I − pL I = TL I (40)

n∑

i=1

LEi xi + �LEλLE + nLE − pLE = TLE (41)

n∑

i=1

ACi xi − �ACλAC + nAC − pAC = TAC (42)

n∑

i=1

PRi xi − �PRλPR + nPR − pPR = TPR (43)

λRE ≥ R̂Ei xi ∀i (44)

λRI ≥ R̂ I i xi ∀i (45)

λL I ≥ L̂ I i xi ∀i (46)

λLE ≥ L̂ Ei xi ∀i (47)
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λAC ≥ ÂCi xi ∀i (48)

λPR ≥ P̂ Ri xi ∀i (49)

λRE , λRI , λL I , λLE , λAC , λPR ≥ 0 (50)

Constraints (22) to (27).
Constraints (34) to (36).
where the significance of all notations and constraints remains the same as that defined

in model (21)-(36), except that the goal constraints (28)-(33) contain an additional term,
±�qλq ,∀q , with respect to the optimization type, which accounts for the maximum vari-
ability they induce, given a conservatism level�q , andwhich is bounded for each combination
of decision variable and goal via the additional constraints set (44)-(49). Finally, constraint
set (50) enforces non-negativity restrictions on auxiliary variables λq ,∀q .

The robust counterpart formulation of the model (21)-(36) via the combined interval and
polyhedral uncertainty set (Bertsimas and Sim’s (2004) approach) can be derived in a parallel
way and is represented as follows:

MinZ = αD + (1 − α)

(
vRE
kRE

nRE + vAC
kAC

nAC + vPR
kPR

nPR + wRI
kRI

pRI + wL I
kL I

pL I + wLE
kLE

pLE

)
(51)

S.t .

n∑

i=1

REi xi − �REλRE −
n∑

i=1

ωRE
i + nRE − pRE = TRE (52)

n∑

i=1

RI i xi + �RIλRI +
n∑

i=1

ωRI
i + nRI − pRI = TRI (53)

n∑

i=1

L I i xi + �L IλL I +
n∑

i=1

ωL I
i + nL I − pL I = TL I (54)

n∑

i=1

LEi xi + �LEλLE +
n∑

i=1

ωLE
i + nLE − pLE = TLE (55)

n∑

i=1

ACi xi − �ACλAC −
n∑

i=1

ωAC
i + nAC − pAC = TAC (56)

n∑

i=1

PRi xi − �PRλPR −
n∑

i=1

ωPR
i + nPR − pPR = TPR (57)

λRE + ωRE
i ≥ R̂Ei xi ∀i (58)

λRI + ωRI
i ≥ R̂ I i xi ∀i (59)

λL I + ωL I
i ≥ L̂ I i xi ∀i (60)

λLE + ωLE
i ≥ L̂ Ei xi ∀i (61)

λAC + ωAC
i ≥ ÂCi xi ∀i (62)

λPR + ωPR
i ≥ P̂ Ri xi ∀i (63)
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ωRE
i , ωRI

i , ωL I
i , ωLE

i , ωAC
i , ωPR

i ≥ 0 ∀i (64)

Constraints (22) to (27).
Constraints (34) to (36), (50).
where all notations and constraints are in commonwith theREGPmodel via the polyhedral

uncertainty set described first, except that the term for the maximum variability each goal
constraint defined in (28)-(33) induces will include ±�qλqand±∑n

i=1 ω
q
i ,∀q , with respect

to the optimization type, leading to the subsequent changes to the constraints set (44)-(49)
which result in the new set of constraints (58)-(63), as well as the additional non-negativity
restrictions on auxiliary variables ω

q
i ,∀i, q , as defined by constraint set (64).

4 Experiments and results

4.1 Data description

The Tehran Stock Exchange (TSE) was chosen as a favorable real-world case study for the
problem investigated in this research. With over half a century of history, TSE is a major
stockmarket in Iran and theMiddle East. Recent fluctuations inmarket dynamics have height-
ened volatility within the TSE. These fluctuations often bring uncertainties in key financial
metrics of firms that inform investor portfolio decisions. Therefore, deploying robust and
resilient investment strategies that shield investors from such uncertainties becomes crucial
for investing in this market, making TSE a suitable testing ground for the proposed robust
investment approaches in this study. [see e.g. Peykani et al. (2020), (2022), andRahiminezhad
Galankashi et al. (2020) for some other relevant studies on TSE].Moreover, the inherent flex-
ibility of the proposed approach suggests confidence in its adaptability to navigate various
market conditions effectively, enhancing its potential applicability across a broader spectrum
ofmarkets. For the first phase, a total of 779 firms listed on the TSEwere investigated in order
to be evaluated and ranked by the DEA model. The data required for the inputs and outputs
of the DEA model according to Table 2 were extracted from the publicly-available financial
statements of the firms, all of which are as of June 2019. The experiments for setting up the
portfolios in the second phase used a constructing period of 12 months, fromNovember 2018
to November 2019. Besides, the out of sample performance of the resultant portfolios was
evaluated using a testing period of 6 months, from December 2019 to May 2020. Also, the
computational experiments of this study regarding the optimization models were performed
using GAMS software with the CPLEX solver.

4.2 Phase I results

Financial ratios associated with a firm’s financial performance, especially those within the
same perspective, exhibit correlations (Chen, 2008; Wu et al., 2022), which could be a
problem for DEA computations, particularly considering the parameter selection outlined
in Table 2in this study. Neglecting certain ratios within a given financial perspective due
to their correlations, on the other hand, can potentially result in a loss of information and
critical nuances that could be pivotal for a comprehensive assessment. In this study, we have
adopted an aggregation approach that takes into account both the correlations between ratios
and their significance in representing specific financial perspectives to streamline the analysis
of financial performance indicators within the context of DEA. This involves transforming
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the diverse set of financial ratios into a concise set of composite variables, each labeled to
convey its intended perspective. Specifically, we have created: (1) Input 1, termed "Liquidity
Score," as a weighted sum of the normalized values of "Current Ratio" and "Quick Ratio"
to represent the liquidity perspective; (2) Input 2, denoted as "Leverage Score," is derived
from the weighted sum of the normalized values of "Debt Ratio" and "Debt-to-Equity Ratio"
reflecting the leverage perspective; (3) Input 3, "Days Sales Outstanding (DSO)", is treated
as a standalone input, as ’the fewer, the better’ is the preferred criterion for it, in contrast to
‘the more, the better’ as the ideal principle applied to all other ratios within the activity (asset
utilization) perspective; (4) Output 1, labeled as "Asset Utilization Score," is a weighted sum
of the normalized values of "Inventory Turnover," "Working Capital Turnover," "Fixed Asset
Turnover," and "Asset Turnover"; and (5)Output 2, termed "Profitability Score," encapsulates
the normalized values of "Net ProfitMargin," "Operating ProfitMargin," "Return on Assets,"
"Return on Equity," and "Return on Working Capital." The choice of weights should reflect
the preferences and objectives of the FDMs and can be determinedwith the help of experts. To
ensure a balanced analysis, we employ an equal weighting scheme across these aggregated
variables. It should be noted that the chosen aggregation structure in the DEA model in
this study aligns with the investor-oriented objective of identifying fundamentally efficient
firms for investment, emphasizing a holistic view of financial health over specific areas of
strength or weakness. Further, with the aim of meeting the condition of homogeneity of the
DMUs, the values used in the DEA computations for the “current” and “quick” ratios are the
distance to the industry average for each asset, thereby eliminating the role of industry type.
In addition to the weighted sum approach utilized in this study, future research could explore
complementary methods, such as clustering techniques as suggested by Wu et al. (2022), for
feature reduction in this context.

After running the super-efficiency DEA model with the specifications stated above for all
779 assets registered on the TSE, the efficiency score for each asset is obtained and the assets
are ranked based on the scores. The efficiency characteristic of each asset, as determined by
the DEAmodel results, serves as the screening philosophy. Therefore, the selection criterion
is chosen to be assets with efficiency scores strictly greater than 1. In this regard, the 60
top assets are chosen. However, due to the lack of historical data necessary for calculating
risk and return factors because of permanent deregistration from the stock exchange market
during the construction period, we had to exclude 20 assets from the list of the top 60. As
a result, we identified and selected the remaining 40 assets as qualified candidates for the
portfolio optimization problem in the second phase. Table 6 includes the efficiency scores
and ranking of these 40 qualified assets resulting from phase I.

4.2.1 DEAmodel validation and sensitivity analysis

A sensitivity analysis of the super-efficiency DEAmodel was conducted to assess the internal
and external validity of the Phase I findings (Parkin &Hollingsworth, 1997; Habib&Kayani,
2023). The internal validity test involves the elimination of input and output variables to
examine their effects on the DEA efficiency scores. In the current study, the input and output
variables of the basic DEA model were removed from the efficiency model sequentially.
To gain insights into the distribution of the super-efficiency scores derived from the original
DEAmodel, theAnderson–Darling normality test is conducted (Fig. 5), which reveals that the
data are not normally distributed. The test was also conducted for the modified DEAmodels,
which similarly showed that the modified super-efficiency scores did not follow a normal
distribution. Hence, a Mann–Whitney U test and the Kruskal–Wallis test are conducted to
compare the efficiency scores resulting from the modified DEA models with the original
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Fig. 5 Anderson–Darling normality test of the basic super-efficiency scores

scores to determine whether the removal of the variables resulted in a statistically significant
difference in efficiency scores (at a significance level of 0.05). Additionally, the Spearman
rank correlation coefficients were calculated to determine whether the rankings of the firms
changed within the DEA models. The results of the super-efficiency DEA models with
modified specifications are presented in Table 4. As indicated in Table 4, the removal of either
input 2 (Leverage Score) or input 3 (DSO) had a significant impact on the model results in
terms of the general distribution of the efficiency scores, as evident by the notable drop in
average efficiency. However, it had a lesser effect on the rankings of firms, as evidenced by the
high and significant Spearman rank correlation coefficients. This outcome is expected, given
that either input measure two distinct resource categories. Consequently, removing either
one would result in significant information loss. On the output side, none of the outputs
(Asset Utilization and Profitability scores) appeared to significantly alter the model results
when individually removed, as evidenced by the results of the Mann–Whitney U-test and the
significant and high coefficients of the Spearman correlation. Such findings are in line with
expectations, as the model is input-oriented.

To assess the external validity of the super-efficiency DEA model, a longitudinal analysis
is conducted aimed at examining the consistency of the results over time. The original super-
efficiency model was re-applied using data from a year before and a year after the original
data set, for which the results are presented in Table 5. Subsequently, the efficiency scores
were compared to the original results. The Mann–Whitney U-test revealed no statistically
significant difference in the distribution of efficiency scores across the study years, as all
P-values exceeded the significance level of 0.05. Furthermore, The Kruskal–Wallis test also
supported the results of Mann–Whitney U-test, indicating no statistically significant differ-
ence in the efficiency score distribution over the years (P-value = 0.480). Additionally, The
Spearman rank correlation coefficients between each year were also high and significant.
This suggests that neither the overall distribution of efficiency scores nor the rankings of
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Table 4 Sensitivity analysis of the super-efficiency DEA model

Variable removed Average efficiency
score

P-value(Mann–Whitney
U test)

Spearman rank
correlation coefficient
(significance)

None 0.907 - -

Input 2 0.456 0.000 0.844 (0.000)

Input 3 0.761 0.000 0.920 (0.000)

Output 1 0.690 0.125 0.972 (0.000)

Output 2 0.819 0.289 0.980 (0.000)

P-value(Kruskal–Wallis
test)

0.000

Table 5 Longitudinal analysis of the super-efficiency DEA model

Year P-value(Mann–Whitney U test) Spearman rank correlation coefficient
(significance)

2018–2019 0.961 0.657 (0.000)

2018–2020 0.341 0.432 (0.000)

2019–2020 0.254 0.484 (0.000)

P-value (Kruskal–Wallis test) 0.480

assets displayed substantial variation from one year to the next. These results underscore the
coherence and consistency of the efficiency model employed in this study.

4.3 Phase II results

In order to implement the portfolio selection models in the second phase, the monthly returns
of the 40 qualified assets resulted from the first phase are extracted from the TSE using
the constructing period mentioned (a total of 520 observations). Also, the out of sample
information were obtained using the testing period mentioned (a total of 280 observations).
The final data regarding the return and risk factors of the qualified assets as well as the data
of the other factors introduced in Sect. 3.3 are presented in Table 6.

Without loss of generality, it is assumed that vq = wq = 1,∀q in all the experiments
(i.e. each goal is of equal importance). Also, the target values are considered to be the
optimal objective function value of the individual single objective models, with each factor
considered as the single objective. Moreover, the trade-off parameter in the EGP models (α)
is considered to be 0.5 in all of the experiments as a fair trade-off between optimization
and balance underlying philosophies of the EGP structure (Jatuphatwarodom et al., 2018).
With these descriptions, the results of different robust EGP models for the multiple criteria
portfolio selection problem are presented in the following sections. Also, the weights of the
assets in the optimal portfolios are provided in Tables 10, 11 and 12.
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4.3.1 Effects of conservatism and perturbation levels in the REGPmodels

To have a better understanding of how the conservatism degree and data perturbation
affect the GP achievement functions and the resultant portfolios, several risk levels have
been established based on possible linked combinations of conservatism levels with data
perturbations, which can nearly encompass optimistic, realistic and pessimistic decision
making approaches. Toward this end, the perturbation range (i.e. �) is assumed to be
5%, 10% and 20% while the uncertainty budget is set to 0, 1, 2, 3, 4, 5, 10, 20, and 40.
The conservatism level is considered to be the same for all of the uncertain factors (i.e.
�RE = �RI = �L I = �LE = �AC = �PR = �) and it is assumed that the uncertain
parameters vary concurrently.

According to the results presented in Tables 8 and 9 for the multi-factor REGP models,
the achievement (objective) function value of the robust models is higher than that of the cor-
responding deterministic models due to the costs incurred for improving the model stability,
which is consistent with similar applications of RGP models such as Ghahtarani and Najafi
(2013), Hanks et al. (2017), and Ghasemi Bojd and Koosha (2018). This becomes more
tangible when the level of conservatism or perturbation increases. For instance, a highly
conservative and risk-averse version of the robust model (i.e., a conservatism level equal
to 40 and a perturbation level of 20%) gives us decisions that lead to a 15.8% [= 100 *
(0.578 -0.499/0.499)] higher achievement function value for REGP via combined interval
and polyhedral uncertainty set and a 52.7% higher achievement function value for REGP via
polyhedral uncertainty set. Lower uncertainty levels, on the other hand, increase the stability
of the solutions at a more plausible achievement function value by balancing robustness and
cost. Figures 6 and 7 depict how the value of the achievement function is affected by different
degrees of conservatism and variations in uncertain parameters for the multi-factor REGP
models via combined interval and polyhedral and polyhedral uncertainty sets, respectively.
The normalized deviation ZR−ZD

ZD
of the optimal value of the achievement function is used

in all experiments where ZR and ZD are the optimal value of achievement function for the
robust and deterministic models, respectively. In addition to the changes in the value of the
achievement function, Fig. 6 also shows the probabilities of constraint violation for different
conservatism degrees.

Figure 6 reveals that the worst-case objective function value of the REGP models via
combined interval andpolyhedral uncertainty set (Bertsimas andSim (2004) approach) results
when the conservatism levels of the uncertain parameters are less than their extreme values,
i.e. � = 4 < |Ji | = 40 for � = 5% and � = 10%, and � = 10 < |Ji | = 40 for � = 20%.
Therefore, � does not need to be adjusted to values greater than 4 and 10 to obtain the most
conservative results. On the other hand, Fig. 7 depicts that the worst-case objective function
value of the REGP models via polyhedral uncertainty set is reached when the conservatism
levels of the uncertain factors reach their highest values, i.e. � = |Ji | = 40. The initial
implications are now apparent. The higher the conservatism level of uncertain parameters is
in the REGP model via the polyhedral uncertainty set, the greater the impact will be on the
value of the achievement function. This is not the case for variations in parameters in the
REGP model via combined interval and polyhedral uncertainty set, where an increase in the
level of conservatism causes less impact on the achievement function value.

According to the sensitivity analysis depicted in Figs. 6 and 7, a second insight can be
drawn by comparing the extent of achievement value deterioration caused by variations in
uncertain parameters. When � = 20%, variation in parameters has a high deterioration
impact of 52.7% on the value of achievement function, for the multi-factor REGP model
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Fig. 6 Sensitivity of the achievement function to variations in factors for the multi-factor REGP model via
combined interval and polyhedral uncertainty set

Fig. 7 Sensitivity of the achievement function to variations in factors for the multi-factor REGP model via
polyhedral uncertainty set

via polyhedral uncertainty set. For the same situation of � = 20% for the multi-factor
REGP model via combined interval and polyhedral uncertainty set, the impact on the value
of achievement function imposed by parameters variation is approximately 15.8%. There-
fore, the primary focus of the FDM should be placed on more accurate estimation of input
parameters data when utilizing the robust models via polyhedral uncertainty set, as variations
in parameters can have the highest influence on overall achievement function value.

It should be noted that the trends of variations in the achievement functions of the 2-factor
REGP models (i.e., considering only return and risk), as a sample of an REGP model with
two goals, compared to their deterministic equivalents are the same as the multi-factor REGP
models via both uncertainty sets. Hence, they aren’t discussed here.

The results also demonstrate that despite increasing the problem size by introducing new
variables and constraints, the robust approaches retained the computational tractability of the
original problem as all of the robust models were solved in less than a second.
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Fig. 8 Achievement function values of multi-factor REGP models via polyhedral and combined interval and
polyhedral uncertainty sets for different conservatism & data perturbation levels

4.3.2 Comparison between the achievement functions of the REGPmodels
under the two uncertainty sets

Asgraphically depicted inFig. 8, under the same conservatism level, the achievement function
values of the REGP model via the polyhedral uncertainty set are greater than or equal to
those of the REGP model via the combined interval and polyhedral uncertainty set. The
gap between the two models is relatively small for low � values but widens as � increases.
In other words, the robust solutions obtained using the polyhedral uncertainty set exhibit
a higher deterioration in individual objective function values and distance from the target
levels compared to the REGP model using the combined interval and polyhedral uncertainty
set. This suggests that the REGPmodel via the combined interval and polyhedral uncertainty
set can offer robust solutions at a lower cost. The observation that the solution based on the
polyhedral set is equal or worse than the solution based on the “interval + polyhedral” set
can be attributed to the fact that combining the polyhedral set with the interval set results in
a smaller uncertainty set, leading to a less conservative outcome. In terms of �, it can also
be seen that the gap between the two models gets slightly wider as � increases.

4.3.3 Out-of-sample portfolio performance

To gain insight into the impacts of considering uncertainty on out-of-sample portfolio per-
formance, the results of the deterministic EGP models with two factors (i.e., only return and
risk) and with multiple factors (all the extended factors) with preferential weights and target
values as previously described, as well as the results of the Markowitz model are firstly pre-
sented in Table 7. We also note that, as an ideal choice consistent with the goal target value
scenarios we selected for the EGP models, we opted for the maximum return value among
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Table 7 The results of the deterministic models

Performance metric Markowitz 2-factor EGP Multi-factor EGP

RP 0.109 0.130 0.208

σP 0.223 0.172 0.212

SR 0.490 0.752 0.980

Nx 2 2 2

Nz N.A 0 0

Obj 0.090 0.127 0.500

RP Out of sample portfolio return, σP Out of sample portfolio standard deviation, SR Sharpe ratio, Nx

Number of stocks selected for investment, Nz Number of objectives achieved, Obj Objective function value
of the corresponding mathematical model, N.A. Not Applicable

the 40 candidate assets, which is equal to 0.267 according to Table 6, as the lower bound of
the expected portfolio rate of return for the Markowitz model experiment.

The performance metrics used for assessing the results include the following: out-of-
sample portfolio return, out-of-sample portfolio standard deviation, Sharpe ratio, number of
stocks selected for investment, number of objectives achieved, and the objective function
value of the corresponding mathematical model. Among these performance metrics, the
Sharpe ratio (Sharpe, 1966), one of the most commonly used measures for evaluating out-
of-sample performance, is defined as follows:

SR = E
(
Rp

) − R f

σ(Rp)
(65)

where E
(
Rp

)
, R f , and σ(Rp) denote the average out-of-sample portfolio return, risk-free

return, and out-of-sample standard deviation of portfolio return, respectively.
Tables 8 and 9 present the extensive out-of-sample results of the multi-factor REGP

models via combined interval and polyhedral and polyhedral uncertainty sets, respectively.
These tables provide the results for each performance metric across various combinations of
conservatism levels and data perturbation scenarios.

4.3.4 Discussion of the phase II results

Inwhat follows,we discuss the results in light of the performancemetrics, while also conduct-
ing a comparative analysis between nominal (deterministic counterpart) and robust models
to elucidate disparities. Additionally, we undertake a meticulous comparison between the
multi-factor and two-factor models, both nominal and robust, aiming to derive insights into
the significance of considering multiple financial factors. According to Table 7 for the deter-
ministicmodels results, and having taken into account the consistency of the number of stocks
selected for investment (i.e. 2) across all three models, our observations show that the EGP
models with multiple factors clearly outperformed the two-factor models. This performance
disparity, notably evident against the Markowitz model, becomes most apparent in terms of
out-of-sample portfolio rate of return and Sharpe ratio, to the extent that the corresponding
Sharpe ratio of the multi-factor EGP model (i.e. 0.980) is twice the corresponding Sharpe
ratio of the Markowitz model (i.e. 0.490).

According to Tables 8 and 9, featuring the results of the multi-factor robust models which
are our main focus in this research, as expected, with � = 0 the results of the two REGP
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models are the same and equal to the nominal model. This could be seen as a sign of robust
model validation. Notably, a � of 0 indicates absence of uncertainty consideration, thereby
rendering the model susceptible to variations in input parameters. For � = 1, it is observed
that the “polyhedral” and the “combined interval and polyhedral” set-based solutions are
also identical in terms of all performance metrics, as observed earlier in subSect. 4.3.2
regarding achievement function values. This is because the corresponding uncertainty sets
are also identical when � ≤ 1, as shown in Fig. 4 . As � ≥ 1, the solutions based on the
combined uncertainty set outperform those based on the pure polyhedral set in terms of the
achievement function. This superiority arises from the smaller uncertainty sets associated
with the combined set, because of the imposition of the bounded box constraint, in contrast
to the pure polyhedral set, where the corresponding achievement function values deteriorate
rapidly. In terms of portfolio returns, bothmodels generally lead to portfolios having relatively
high returns across all uncertainty settings, surpassing the portfolio return obtained from the
Markowitz model (with RP = 0.109). As far as the out-of sample risk values are concerned,
both of the REGP models consistently yield portfolios with lower risk compared to the
Markowitz model (with σP = 0.223). Comparing the REGP models via both uncertainty
sets against their nominal counterparts (for which the results are presented in the last column
of Table 7 or in Tables 8 and 9 with � = 0) in terms of out-of-sample risk and return
performance unveils intriguing dynamics. While both higher and lower returns are realized
by robust models (compared to their nominal counterpart model with RP = 0.208), risk
values consistently favor robust models (compared to their nominal counterpart model with
σP = 0.212) across all uncertainty levels. Also, under varying degrees of conservatism,
we observe a reduction in returns for both of the REGP models relative to their nominal
counterpart, particularly pronounced in the highly conservative versions of themodels, which
is more notable for the REGP model via polyhedral uncertainty set. In this regard, it is also
observed that the REGP model utilizing the polyhedral uncertainty set consistently produces
portfolios with significantly lower risk values compared to the nominal model, particularly
with its highly conservative and risk-averse versions (marked by higher linked levels of �

and �). This could be attributed to the issue that as we increase the level of conservatism
in robust optimization models, they become more risk-averse, aiming to protect against
worst-case scenarios. This increased aversion to risk may lead to the selection of assets with
lower expected returns but lower associated risk, resulting in reduced overall portfolio returns.
Consequently, the observed changes in out-of-sample risk and return values for REGPmodels
via both uncertainty sets result in portfolio Sharpe ratios that consistently surpass those of
the Markowitz model (SR = 0.490) and the nominal EGP model (SR = 0.980) across all
uncertainty levels.

Regarding the influence of perturbation levels (�) of the uncertain parameters on the
aforementioned performance metrics, it is observable that while changes in return, risk, and
Sharpe ratio values remain relativelymodest for the REGPmodel using the combined interval
and polyhedral uncertainty set at constant conservatism degrees, the influence of � value
variations is more pronounced for the REGP model employing the polyhedral uncertainty
set. From the above observations, it can be concluded that the sensitivity of the REGP model
via the pure polyhedral uncertainty set is higher in terms of changes in performance metric
values against changes in uncertainty levels. This heightened sensitivity was shown in sub-
Sects. 4.3.1 and 4.3.2 concerning the achievement function values, and it can be seen from
the results that it also extends to other metrics such as Nx .

Concerning the number of selected stocks (Nx ), two general viewpoints prevail. A smaller
number of selected stocks will result in lower transaction costs and easier portfolio man-
agement. On the other hand, a larger number of stocks also brings with it the benefits of
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diversification (Georgantas et al., 2021). It is evident from the results that the deterministic
models, i.e. the Markowitz and the nominal EGP models, along with some conservative ver-
sions of the REGP model employing the combined interval and polyhedral uncertainty set
lead to the sparsest portfolios, each consisting of 2 assets. In stark contrast, The REGPmodel
employing the pure polyhedral uncertainty set results in the largest and most diversified port-
folios, comprising 33 assets in the highly conservative and risk-averse version of the model.
Moreover, in terms of portfolio diversification, we observe that the difference between the
nominal and robust models is more trivial in the REGP model via combined interval and
polyhedral uncertainty set, with a few exceptions for certain levels of conservatism degree.
This phenomenon is not unusual since the application of RO does not mean increased diver-
sification compared to the nominal model. Instead, it tries to create immunization against the
worst-case realizations of the uncertain input parameters. In this respect, if a trade-off is made
with high return potentials with low risk potentials in nominal models, it will happen with the
worst-case return and risk potentials in the robust counterpart problem (Xidonas et al., 2020).
Therefore, if the nominal model generates portfolios that are not initially diversified, then
the robust model might not necessarily improve diversification and, under certain conditions
involving undesirable large perturbations in uncertain parameters like return values, might
even lead to less desirable diversification. However, it is seen from the results that the REGP
model via the polyhedral uncertainty set offers diversification benefits when compared to the
nominal model and also to the REGP models via combined interval and polyhedral uncer-
tainty set, which is especially pronounced in the highly conservative and risk-averse version
of this robust model.

Additionally, regarding the number of goals achieved, both models fell short of meeting
all the target values. This outcome can be explained through the additional costs incurred in
stabilizing the model and making it robust against infeasibility. As the achievement function
of the GP models comprises the summation of deviations from targets and the maximum
deviation, an increase in this value indicates either a deterioration of objective functions or a
deviation of previously achieved goals from their respective targets within the robust model.
As the number of goals achieved in the deterministic models is also zero, the first case has
occurred—wider gaps between objective functions and their designated targets in the robust
models. It should be noted that Nz is an important parameter in the output of GP models as
it may account for the Pareto efficiency or inefficiency status of the resulting solution. If all
targets were met (E.g. Nz = 6 in the case of multi-factor models), this would most likely
indicate a Pareto inefficient solution, and a Pareto efficiency restoration technique may need
to be employed in order to restore Pareto efficiency to the solution (Jones & Tamiz, 2010).
Therefore, with Nz = 0, there is less concern about possible Pareto inefficiency within the
solutions. It can hence give us the assurance that we are dealing with well-constructed GP
models for both deterministic and uncertain conditions.

Altogether, it can be deduced from Table 7, 8, and 9 that both multi-factor REGP models
consistently outperformed thewell-establishedMarkowitzmodel across all of the uncertainty
levels. Furthermore, these multi-factor REGP models demonstrated superiority over their
deterministic counterpart, the multi-factor EGP model, in many of the uncertainty levels,
underscoring their efficacy in navigating financial uncertainties. It’s worth noting that the
REGPmodel via polyhedral uncertainty set achieved this aimwhile incurring a higher degree
of deviation from the target values compared to its counterpart that utilized the combined
interval and polyhedral uncertainty set (Bertsimas and Sim (2004) approach).

To derive insight into the impact of multiple factors (the extended factors) considered on
portfolio performance, we conducted an extensive comparison of out-of-sample performance
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metrics in terms of returns and risks between the multi-factor REGP models via both uncer-
tainty sets, and their corresponding 2-factor models, which considered only return and risk
factors, as well as the classic Markowitz model. Figures 9, 10, 11 and 12 provide a visual
representation of these comparisons, with a reminder that the bars with � = 0 indicate the
deterministic equivalent of each robust model in these assessments.

As evidenced by the charted results, the findings clearly demonstrate the superiority of
the deterministic equivalent models, and both the multi-factor and 2-factor REGP models
via both uncertainty sets over the traditional Markowitz model in terms of out-of-sample
portfolio returns and standard deviations across all designed uncertainty levels. This sub-
stantiates the effectiveness of the proposed GP approaches, encompassing both multi-factor

Fig. 9 Out-of-sample portfolio returns for multi-factor (left) and 2-factor (right) REGP models via interval +
polyhedral uncertainty set

Fig. 10 Out-of-sample portfolio standard deviations for multi-factor (left) and 2-factor (right) REGP models
via interval + polyhedral uncertainty set

Fig. 11 Out-of-sample portfolio returns for multi-factor (left) and 2-factor (right) REGPmodels via polyhedral
uncertainty set
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Fig. 12 Out-of-sample portfolio standard deviations for multi-factor (left) and 2-factor (right) REGP models
via polyhedral uncertainty set

and two-factor nominal and robust models, in addressing the complexities of stock portfolio
selection compared to the classic Markowitz model. Moreover, it is evident that the multi-
factor REGP models, irrespective of the uncertainty set used, delivered higher returns and
exhibited relatively lower standard deviations when compared to their 2-factor counterparts
across various combinations of uncertainty levels. The outperformance of the multi-factor
models, which in this study incorporate a broader range of fundamental financial factors
in addition to traditional risk and return factors, over their 2-factor counterparts could be
attributed to several reasons. The inclusion of fundamental financial factors adds an addi-
tional layer of diversification potential to the portfolio. These factors can capture nuances in
the financial health and stability of assets that may not be fully reflected in simple risk and
return metrics. This diversification could help mitigate risks associated with individual assets
and enhance the overall stability of the portfolio. Moreover, fundamental financial factors
often provide insights into the intrinsic value and financial stability of assets. During periods
of market volatility or economic downturns, assets with strong fundamental characteris-
tics tend to be more resilient. By including these factors, the multi-factor models are better
equipped for turbulent market conditions, leading to more stable returns and lower standard
deviations. Further, fundamental financial factors are often associated with the long-term
financial health and performance of assets. By taking a longer-term perspective, the multi-
factor models can identify assets that are not only attractive in the short term but also have
the potential for sustained performance over time. This long-term view could contribute to
more consistent returns and lower standard deviations. Also, regarding the comparison of
the REGPmodels against their nominal counterparts, as discussed earlier, out-of-sample risk
values consistently favored robust models for the multi-factor REGP models. The extent of
this superiority is not observed in the robust 2-factor models compared to their deterministic
equivalents.

Overall, the results mentioned above align closely with the findings of Tamiz and Azmi
(2019), affirming the advantages of incorporating additional financial factors rooted in fun-
damental analysis alongside conventional technical risk and return factors within the EGP
framework for optimizing stock portfolios. Importantly, these benefits are evident not only
in deterministic settings but also when confronted with the inherent uncertainties of financial
markets, a facet notably lacking in Tamiz et al. (2013) and Tamiz and Azmi (2019). From
the perspective of applying the GP methodology to portfolio selection, Tamiz et al. (2013)
introduced a practical and effective approach, allowing decision-makers to incorporate their
preferred factors, termed extended factors, and ideal aspiration levels into their choice of GP
model to construct their desired portfolios, particularly in the context of international mutual
funds. This framework was subsequently adapted for stock portfolio selection in Tamiz and
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Azmi (2019), yielding promising outcomes. In our study, we have taken this framework fur-
ther, applying it to a different market dataset, incorporating distinct factors, and employing
a unique GP variant, the EGP. Importantly, we have extended its application to encompass
scenarios where financial market uncertainties are significant, making our framework more
realistic for real-world use compared to prior works. Furthermore, the choice of the EGP
variant, with its parametric analysis capabilities for trade-offs between efficiency and bal-
ance, offers flexibility and advantages over GP variants used in Tamiz et al. (2013) and Tamiz
and Azmi (2019). This choice of GP variant is pivotal, as various GP variants yield different
trade-offs between objectives, target values, and the penalization of unwanted deviational
variables, which may lead to the construction of better and more diverse portfolios. The posi-
tive findings presented here underscore the framework’s practicality and suggest its potential
applicability to a range of other financial instruments, such as bonds, ETFs, and more. Also,
extending the framework to incorporate various factors, which could characterize today’s
world and favorably influence investors’ investment preferences, holds promise.

RGP is a relatively underdeveloped, less widely researched, and less applied topic, espe-
cially when considering the various robust concepts and variants of the GP technique (Hanks
et al., 2017; Mensah & Rocca, 2019). Our study contributes to the growing literature on RGP
by developing and analyzing the REGP framework, highlighting its potential as a versatile
tool that offers a pragmatic, flexible, and straightforward approach to tackling complexmulti-
objective optimization problems in uncertain environments. EGP underpins REGP, enabling
a parametric analysis of trade-offs between efficiency and balance among target values,
which makes REGP highly flexible. Our proposed REGP framework in this study features
two uncertainty sets—polyhedral and combined interval and polyhedral, which yields robust
optimal decisions while preserving linearity and computational tractability, distinguishing it
from previous works. It adapts solutions across a spectrum from worst-case to deterministic
outcomes based on adjustable parameters associated with the uncertainty sets. The find-
ings illustrated that total deviations from decision makers’ set targets are dependent on the
type of the uncertainty set used, unlike the findings of Mensah and Rocca (2019). Further-
more, REGP excels by accommodating uncertainties not only in goal function coefficients
and target values but also in system constraints—a critical feature for achieving complete
robustness in problems where both constraint parameters and goals are imprecisely defined.
Additionally, REGP can be seamlessly extended and combinedwith other uncertaintymodel-
ing techniques, depending on the nature of the uncertainty source, all within a single coherent
framework. In this study, REGP was applied to portfolio selection, a context well-suited due
to its inherent multi-criteria nature and the presence of uncertainties. REGP can address both
dimensions effectively, offering advantages over the classic MV framework, which cannot
handle uncertainties or diverse investor preferences. However, the REGP framework has
potential applications in other contexts as a versatile tool for robust multi-objective decision
making, which is strongly recommended.

5 Conclusions

This paper has proposed an innovative framework tailored for constructing asset portfolios
under conditions of data uncertainty. Comprising two distinct phases, the proposed frame-
work harnesses the power of two prominent decision analytical methods of DEA and GP
to achieve its objective. The initial phase employs a super-efficiency DEA model to stream-
line asset selection by identifying suitable investment candidates based on the efficiency
characteristic of the assets. An extensive set of financial parameters was utilized as inputs
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and outputs of the DEA model for efficiency evaluation. This phase demonstrates its merit
through a dual advantage: firstly, it mitigates the computational complexity of the Portfolio
selection problem through eliminating the need to deal with an extensive pool of assets.
Secondly, a thorough assessment of assets has been carried out by the end of this phase and
investments with promising potential are selected. Subsequently, the second phase lever-
ages a multi-objective mathematical model to determine the optimal asset weights within the
portfolio, with each objective tailored to reflect specific financial factors spanning both tech-
nical and fundamental aspects. The multi-objective problemwas then handled using the EGP
methodology, affording investors the flexibility to accommodate their nuanced preferences
pertaining to both financial considerations and the underlying philosophies of weighted or
MinMax GP variants. Furthermore, acknowledging the intrinsic volatility of financial market
parameters, the study pioneers the development of robust counterparts for the EGP models.
These robust models, developed via a polyhedral and a combined interval and polyhedral
uncertainty sets, offer optimal decisions which are robust against parameter inaccuracies and
slight fluctuations. Remarkably, this robustness is achieved while preserving linearity and
tractability. The proposed framework enables investors to encompass their unique preferences
and conservatism levels, whilst optimizing portfolios amid data uncertainty.

5.1 Implications

The applicability and efficacy of the proposed approach have been illustrated through a
comprehensive case study of the Tehran stock exchange. The empirical investigation yielded
several implications. Firstly, the implementation of the super-efficiency DEA approach in the
initial phase displayed the capacity to efficiently identify optimal investment candidates. This
capability not only assists investors and portfolio managers in reducing the computational
complexities and distractions in stock markets where a large number of assets are registered,
but also offers insights into the underlying business strength of the firms, thus facilitating
deeper analysis. Furthermore, the integration of multiple factors (called extended factors),
encompassing both fundamental analysis-based metrics and traditional technical risk-return
factors, within the portfolio optimization framework led to the formulation of portfolios that
exhibited superior out of sample performance compared to conventional and two-factor strate-
gies. This performance superiority extended across deterministic scenarios and situations
marked by uncertainty, underscoring the strength and resilience of the proposed approach.
Additionally, the flexibility of the framework was underscored by its ability to incorporate
a diverse array of factors, ranging from financial to non-financial, alongside customizable
preference weights in the corresponding GP model’s achievement function, goal target val-
ues, and conservatism levels. This adaptability ensures the alignment of the approach with
the specific preferences and utilities of investors in curating their optimal asset portfolios.
Also, the EGP variant along with its robust counterparts proved to be a promising tool in
portfolio selection decisions under both deterministic and uncertain conditions. The robust
EGP portfolio optimization models generally outperformed their nominal counterpart and
the deterministic Markowitz models, highlighting their robustness and dependability under
varying market circumstances. Moreover, a detailed comparison between the REGP model
via polyhedral and combined interval and polyhedral uncertainty sets revealed intriguing
insights. While the former displayed higher total deviations from set targets, it concurrently
offered diversification benefits and more favorable out-of-sample risk values. This revelation
underscores the importance of well-informed model selection according to the investors’
preferences. The findings illustrated that in the context of the REGP with uncertainty sets,

123



Annals of Operations Research

total deviations from decision makers’ set targets are dependent on the type of the uncertainty
set used. The observation regarding the disparity in total deviations from target values within
the REGP models employing the two distinct uncertainty sets could offer a generalizable
guideline applicable to various scenarios across different application domains where linear
robust counterparts are to be employed for given linear EGP problems, involving the men-
tioned uncertainty sets. The analysis also leads to the conclusion that for bounded uncertainty,
it is advisable to combine the uncertainty set with the interval set to prevent overly conser-
vative solutions. Conversely, all the models possess the adaptability to fine-tune the solution
along a spectrum from the worst-case scenario to the deterministic solution. This adaptability
relies on the choice of adjustable parameters associated with their respective uncertainty set.
Overall, the findings of the study collectively accentuate the approach’s utility in addressing
the intricacies of portfolio selection. The integration of DEA and GP, fortified by extended
financial factors and robust optimization techniques, surpasses conventional methods. It pro-
vides a comprehensive toolkit for informed investment decision-making, tailored to address
themultifaceted considerations and uncertainties inherent in contemporary financial markets.

5.2 Future research directions

For future studies, there are several directions that researchers and practitioners can consider.
The EGP framework offers opportunities for investigating various priorities for the goals, as
well as exploring the inclusion of other meta-objectives, like the number of goals achieved
(Jones & Jimenez, 2013). Additionally, other GP variants, like meta-GP (Urı́a et al., 2002)
and multi-choice GP (Chang, 2007), could be examined, accompanied by the development
of their robust counterpart models via appropriate uncertainty sets. The versatility of REGP
as a robust multi-objective decision-making methodology makes it highly promising for
addressing data-driven problems in diverse contexts. Moreover, the combination of DEA
and GP in the portfolio selection context can extend beyond the current study’s scope, with
potential for innovative integration methods. The scope can also be extended to the incorpo-
ration of robust DEA models, allowing the formulation of robust combined methodologies
(Peykani et al., 2020). Another avenue for investigation is the expansion of GP models to
include various factors like market ratios (e.g., EPS, P/E, dividends) for effective portfo-
lio optimization. Furthermore, the proposed approach’s applicability could be tested using
data from different financial markets to assess its broader utility. Also, the interface between
MCDM and Artificial intelligence/Machine Learning techniques, such as clustering, can be
scrutinized to explore how it can enhance portfolio diversity while considering market uncer-
tainties. Lastly, another avenue to explore involves evaluating the performance of portfolio
optimization models under conditions involving cardinality constraints, transaction costs and
multi-period time horizons.
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Appendix

Weight of the Selected Assets from Phase 1 in the Optimal Portfolios:
See (Tables 10, 11 and 12).

Table 10 Weight of the assets in
the optimal portfolios resulted
from the deterministic models

Asset Markowitz 2-factor EGP Multi-factor EGP

X1 0 0 0.499

X10 0 0.409 0

X17 0.994 0.591 0.501

X30 0.006 0 0
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Table 11 Weight of the assets in the optimal portfolios resulted from the multi-factor REGP models via
combined interval and polyhedral uncertainty set

Asset Perturbation
level (�)

Conservatism degree (�)

0 1 2 3 4 5 10 20 40

X1 5% 0.499 0.354 0.358 0.328 0.248 0.248 0.248 0.248 0.248

10% 0.499 0.356 0.330 0.328 0.250 0.250 0.250 0.250 0.250

20% 0.499 0.311 0.322 0.343 0.346 0.336 0.255 0.255 0.255

X6 5% 0 0 0 0 0 0 0 0 0

10% 0 0 0 0 0 0 0 0 0

20% 0 0 0 0.073 0.077 0.069 0 0 0

X10 5% 0 0.229 0.245 0.229 0.752 0.752 0.752 0.752 0.752

10% 0 0.208 0.197 0.167 0.750 0.750 0.750 0.750 0.750

20% 0 0.195 0.160 0.089 0.084 0.119 0.745 0.745 0.745

X12 5% 0 0.172 0.134 0.163 0 0 0 0 0

10% 0 0.212 0.164 0.170 0 0 0 0 0

20% 0 0.199 0.129 0.091 0.086 0.077 0 0 0

X13 5% 0 0 0 0 0 0 0 0 0

10% 0 0 0 0 0 0 0 0 0

20% 0 0 0 0 0.030 0.029 0 0 0

X15 5% 0 0 0 0 0 0 0 0 0

10% 0 0 0 0 0 0 0 0 0

20% 0 0 0 0.062 0.056 0.053 0 0 0

X16 5% 0 0 0 0 0 0 0 0 0

10% 0 0 0 0 0 0 0 0 0

20% 0 0 0 0 0 0 0 0 0

X17 5% 0.501 0.107 0.115 0.092 0 0 0 0 0

10% 0.501 0.098 0.080 0.078 0 0 0 0 0

20% 0.501 0 0.060 0.042 0.040 0.036 0 0 0
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Table 11 (continued)

Asset Perturbation
level (�)

Conservatism degree (�)

0 1 2 3 4 5 10 20 40

X23 5% 0 0 0 0.086 0 0 0 0 0

10% 0 0 0.125 0.151 0 0 0 0 0

20% 0 0.177 0.101 0.081 0.076 0.068 0 0 0

X29 5% 0 0 0 0 0 0 0 0 0

10% 0 0 0 0 0 0 0 0 0

20% 0 0 0 0.058 0.052 0.050 0 0 0

X30 5% 0 0.138 0.148 0.103 0 0 0 0 0

10% 0 0.126 0.103 0.107 0 0 0 0 0

20% 0 0.118 0.077 0.054 0.051 0.050 0 0 0

X35 5% 0 0 0 0 0 0 0 0 0

10% 0 0 0 0 0 0 0 0 0

20% 0 0 0.152 0.107 0.101 0.090 0 0 0

X37 5% 0 0 0 0 0 0 0 0 0

10% 0 0 0 0 0 0 0 0 0

20% 0 0 0 0 0 0.023 0 0 0

Table 12 Weight of the assets in the optimal portfolios resulted from the multi-factor REGP models via
polyhedral uncertainty set

Asset Perturbation
level (�)

Conservatism degree (�)

0 1 2 3 4 5 10 20 40

X1 5% 0.499 0.354 0.356 0.302 0.311 0.266 0.189 0.023 0.015

10% 0.499 0.356 0.311 0.273 0.291 0.189 0.023 0.015 0.008

20% 0.499 0.311 0.291 0.179 0.030 0.023 0.015 0.008 0.005

X2 5% 0 0 0 0 0 0 0 0 0

10% 0 0 0 0 0 0 0 0 0

20% 0 0 0 0 0 0 0 0 0.043

X5 5% 0 0 0 0 0 0 0 0 0

10% 0 0 0 0 0 0 0 0 0

20% 0 0 0 0 0 0 0 0 0.009

X6 5% 0 0 0 0 0 0 0 0.080 0.066

10% 0 0 0 0 0 0 0.080 0.066 0.036

20% 0 0 0 0 0.106 0.080 0.066 0.036 0.028

X8 5% 0 0 0 0 0 0 0 0 0

10% 0 0 0 0 0 0 0 0 0.052

20% 0 0 0 0 0 0 0 0.052 0.047
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Table 12 (continued)

Asset Perturbation
level (�)

Conservatism degree (�)

0 1 2 3 4 5 10 20 40

X9 5% 0 0 0 0 0 0 0 0 0

10% 0 0 0 0 0 0 0 0 0

20% 0 0 0 0 0 0 0 0 0.008

X10 5% 0 0.229 0.208 0.198 0.195 0.276 0.210 0.093 0.073

10% 0 0.208 0.195 0.273 0.267 0.210 0.093 0.073 0.040

20% 0 0.195 0.267 0.217 0.122 0.093 0.073 0.040 0.031

X11 5% 0 0 0 0 0 0 0 0 0

10% 0 0 0 0 0 0 0 0 0

20% 0 0 0 0 0 0 0 0 0.039

X12 5% 0 0.172 0.212 0.202 0.199 0.208 0.158 0.047 0.037

10% 0 0.212 0.199 0.206 0.201 0.158 0.047 0.037 0.020

20% 0 0.199 0.201 0.150 0.063 0.047 0.037 0.020 0.018

X13 5% 0 0 0 0 0 0 0 0 0

10% 0 0 0 0 0 0 0 0 0.019

20% 0 0 0 0 0 0 0 0.019 0.017

X14 5% 0 0 0 0 0 0 0 0 0

10% 0 0 0 0 0 0 0 0 0.050

20% 0 0 0 0 0 0 0 0.050 0.045

X15 5% 0 0 0 0 0 0 0 0.068 0.056

10% 0 0 0 0 0 0 0.068 0.056 0.036

20% 0 0 0 0 0.090 0.068 0.056 0.036 0.028

X17 5% 0.501 0.107 0.098 0 0 0 0 0 0

10% 0.501 0.098 0 0 0 0 0 0 0.019

20% 0.501 0 0 0 0 0 0 0.019 0.015

X18 5% 0 0 0 0 0 0 0 0.097 0.080

10% 0 0 0 0 0 0 0.097 0.080 0.047

20% 0 0 0 0 0 0.097 0.080 0.047 0.043

X20 5% 0 0 0 0 0 0 0 0 0

10% 0 0 0 0 0 0 0 0 0.038

20% 0 0 0 0 0 0 0 0.038 0.033

X22 5% 0 0 0 0 0 0 0 0 0

10% 0 0 0 0 0 0 0 0 0.066

20% 0 0 0 0 0 0 0 0.066 0.056

X23 5% 0 0 0 0.179 0.177 0.250 0.190 0.084 0.056

10% 0 0 0.177 0.247 0.242 0.190 0.084 0.056 0.029

20% 0 0.177 0.242 0.196 0.111 0.084 0.056 0.029 0.020

X24 5% 0 0 0 0 0 0 0 0 0

10% 0 0 0 0 0 0 0 0 0

20% 0 0 0 0 0 0 0 0 0.019
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Table 12 (continued)

Asset Perturbation
level (�)

Conservatism degree (�)

0 1 2 3 4 5 10 20 40

X25 5% 0 0 0 0 0 0 0 0 0.058

10% 0 0 0 0 0 0 0 0.058 0.032

20% 0 0 0 0 0 0 0.058 0.032 0.025

X26 5% 0 0 0 0 0 0 0 0 0

10% 0 0 0 0 0 0 0 0 0.044

20% 0 0 0 0 0 0 0 0.044 0.038

X27 5% 0 0 0 0 0 0 0 0 0

10% 0 0 0 0 0 0 0 0 0.061

20% 0 0 0 0 0 0 0 0.061 0.047

X28 5% 0 0 0 0 0 0 0 0 0

10% 0 0 0 0 0 0 0 0 0

20% 0 0 0 0 0 0 0 0 0.040

X29 5% 0 0 0 0 0 0 0 0 0.048

10% 0 0 0 0 0 0 0 0.048 0.026

20% 0 0 0 0 0 0 0.048 0.026 0.020

X30 5% 0 0.138 0.126 0.119 0.118 0 0 0.056 0.044

10% 0 0.126 0.118 0 0 0 0.056 0.044 0.024

20% 0 0.118 0 0 0 0.056 0.044 0.024 0.019

X32 5% 0 0 0 0 0 0 0 0.090 0.075

10% 0 0 0 0 0 0 0.090 0.075 0.047

20% 0 0 0 0 0 0.090 0.075 0.047 0.033

X33 5% 0 0 0 0 0 0 0 0 0

10% 0 0 0 0 0 0 0 0 0

20% 0 0 0 0 0 0 0 0 0.031

X34 5% 0 0 0 0 0 0 0 0 0

10% 0 0 0 0 0 0 0 0 0.074

20% 0 0 0 0 0 0 0 0.074 0.063

X35 5% 0 0 0 0 0 0 0.252 0.111 0.087

10% 0 0 0 0 0 0.252 0.111 0.087 0.044

20% 0 0 0 0.259 0.146 0.111 0.087 0.044 0.030

X36 5% 0 0 0 0 0 0 0 0 0.067

10% 0 0 0 0 0 0 0 0.067 0.042

20% 0 0 0 0 0 0 0.067 0.042 0.036

X37 5% 0 0 0 0 0 0 0 0.093 0.073

10% 0 0 0 0 0 0 0.093 0.073 0.040

20% 0 0 0 0 0.122 0.093 0.073 0.040 0.031

X38 5% 0 0 0 0 0 0 0 0.044 0.035

10% 0 0 0 0 0 0 0.044 0.035 0.028

20% 0 0 0 0 0.058 0.044 0.035 0.028 0.024
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Table 12 (continued)

Asset Perturbation
level (�)

Conservatism degree (�)

0 1 2 3 4 5 10 20 40

X39 5% 0 0 0 0 0 0 0 0.114 0.092

10% 0 0 0 0 0 0 0.114 0.092 0.051

20% 0 0 0 0 0.150 0.114 0.092 0.051 0.039

X40 5% 0 0 0 0 0 0 0 0 0.039

10% 0 0 0 0 0 0 0 0.039 0.027

20% 0 0 0 0 0 0 0.039 0.027 0.020
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