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Abstract
We consider a non-preemptive singlemachine scheduling problem for a non-negative penalty
function f , where an optimal schedule satisfies the left-shifted property, i.e. in any optimal
sequence all executions happenwithout idle timewith a starting time t0 ≥ 0. For this problem,
every job j has a priority weight w j and a processing time p j , and the goal is to find an
order on the given jobs that minimizes

∑
w j f (C j), where C j is the completion time of

job j . This paper explores local dominance properties, which provide a powerful theoretical
tool to better describe the structure of optimal solutions by identifying rules that at least one
optimal solution must satisfy. We propose a novel approach, which allows to prove that the
number of sequences that respect the local dominance property among three jobs is only
two, not three, reducing the search space from n! to n!/3�n/3� schedules. In addition, we
define some non-trivial cases for the problem with a strictly convex penalty function that
admits an optimal schedule, where the jobs are ordered in non-increasing weight. Finally, we
provide some insights into three future research directions based on our results (i) to reduce
the number of steps required by an exact exponential algorithm to solve the problem, (ii) to
incorporate the dominance properties as valid inequalities in a mathematical formulation to
speed up implicit enumeration methods, and (iii) to show the computational complexity of
the problem of minimizing the sum of weighted mean squared deviation of the completion
times with respect to a common due date for jobs with arbitrary weights, whose status is still
open.
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1 Introduction

In this paper, we consider a non-preemptive single-machine scheduling problem, where an
optimal schedule satisfies the left-shifted property, i.e. in any optimal sequence all executions
happen without idle time with a starting time t0 ≥ 0. Formally, we have a set J of n jobs,
where each job j has a processing time p j ∈ N

+ and a priority weight w j ∈ Q
+ where the

objective is to find a schedule of the set J of jobs defined by a sequence S and a starting time
t0 ≥ 0 that minimizes

∑
j∈J w j f (C j ), where f is a given non-negative penalty function

and C j is the completion time of each job j ∈ J with a value equal to t0 + ∑
Si≤S j pi ,

where S j is the order of job j ∈ J in the sequence S. Consequently, all executions happen
without idle time between times t0 and tn = t0 + ∑

j∈J p j in an optimal sequence S∗. This
problem is denoted by 1|| ∑ j∈J w j f (C j ) [see Brucker et al. (2023) for notation details],
whose complexity status is strongly NP-hard (Höhn & Jacobs, 2015).

We focus on the design of exact algorithms, in particular by using dominance properties,
which provide a powerful theoretical tool to better describe the structure of optimal solutions
by identifying rules that at least one optimal solution must satisfy. This information can
be used to enhance different exhaustive algorithms to find an optimal solution by reducing
the search space of n! different schedules and pruning early ineffective partial solutions in
several problems with arbitrary (Fomin & Kratsch, 2010), convex, concave, and piecewise
linear penalty functions (Bansal et al., 2017;Vásquez, 2015), evenwhen the penalty functions
are non-monotone increasing (Díaz-Núñez et al., 2018, 2019; Falq et al., 2021, 2022; Pereira
& Vásquez, 2017).

In this setting, we consider an instance I containing two jobs i, j ∈ J and distinguish
two kinds of properties:

– We say that jobs i, j ∈ J satisfy local precedence at time t , denoted i ≺�(t) j , if
whenever in a sequence S job j starts at time t and is followed immediately by job i then
the sequence S is not optimal.

– We say that jobs i, j ∈ J satisfy global precedence in the time interval [a, b], denoted
by i ≺g[a,b] j , if whenever in a sequence S we have a ≤ C j − p j ≤ Ci − pi − p j ≤ b,
then S is sub-optimal, no matter if i, j are adjacent or not.

We use the notation i ≺g j as a shorthand for i ≺g[a,∞] j . In addition, i ≺�[a,b] j means
i ≺�(t) j for all t ∈ [a, b].

For convenience, we denote by F(S) the objective value associated with the sequence S
with a starting time t0 and define the following function on the domain t ∈ [0,∞):

νi j (t) =
(

1 − w j

wi

)

f (t + pi + p j ) + w j

wi
f (t + p j ).

Let S1 and S2 be sequences of the form S1 = Ai j B and S2 = Aji B, for some sets of jobs
A and B. Let t be the sum of processing times of all jobs in A. Thus, we have that i ≺�(t) j
is equivalent to:

0 < F(S2) − F(S1) =w j f (t+ p j )+wi f (t+ pi + p j )−wi f (t+ pi )−w j f (t+ pi + p j )

=wi

((

1 − w j

wi

)

f (t + pi + p j ) + w j

wi
f (t + p j ) − f (t + pi )

)
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=wi
(
νi j (t) − f (t + pi )

)
,

and then, the following equivalence holds

i ≺�(t) j ≡ 0 < νi j (t) − f (t + pi ).

Our contribution

We explore the local dominance properties in a non-preemptive single-machine scheduling
problem, extending some preliminary results presented in Jorquera-Bravo&Vásquez (2022).
In particular, we show that the total number of solutions that satisfy the local dominance
properties has an upper bound defined by n!/3�n/3�, which is a drastic improvement over the
n! different schedules of the search space. This is based on the novel approach, which allows
us to prove that the number of sequences that respect the local dominance property among
three jobs is only two, not three. In addition, we study the NP-hardness for a convex penalty
in a general framework, which allows us to model i) a machine changing its execution speed
continuously from a wear and tear effect, resulting in a machine that works less effectively
over time, and ii) the just-in-time (JIT) production ideals in which goods are manufactured
only when needed and both inventories and delays are penalized. In particular, we prove that
for any strictly convex penalty functions, an instance of n jobs with equal Smith ratio (Smith,
1956) admits an optimal schedule where the jobs are ordered in non-increasingweight, where
the Smith ratio of job i is defined bywi/pi . Finally, we provide some insights into three future
research directions: (i) to reduce the number of steps O(n2n) required by an exact exponential
algorithm for the non-preemptive single-machine scheduling problem [see Theorem 3.1 in
Fomin and Kratsch (2010)], (ii) to incorporate the dominance properties as valid inequalities,
which can be used in a mathematical formulation to speed up implicit enumeration methods
such as branch-and-cut algorithm by iteratively strengthening its linear relaxation, and iii)
to show the computational complexity of the problem of minimizing the sum of weighted
mean squared deviation of the completion times with respect to a common due date for jobs
with arbitrary weights, whose status is still open (Vásquez, 2014).

2 Search space and local dominance properties

Given an algorithm that uses some search tree procedure to solve the non-preemptive single-
machine scheduling problem, we consider a node of the search tree specified by a partial
sequence S′ into a backward branching scheme. Let i, j be two jobs not in S′, and let t be
tn − ∑

k∈S′ pk . Thus the descendants of this node include the partial right-to-left sequences
{i}//S′ and { j}//S′, where a//b indicates that the set of jobs b is ordered before the set of
jobs a in the sequence. Now except in some degenerate cases (e.g. some set of identical jobs),
we have a set of comparable jobs, for which exactly one of i ≺�(t) j , j ≺�(t) i holds for
any pair of jobs i and j belonging to the set J . Consequently, this implies that exactly one
of the sub-descendants partial right-to-left sequences {i}//{ j}//S′ and { j}//{i}//S′ exists
in the search tree. By considering the left-shifted property of any optimal schedule, note that
here we used the fact that the partial sequence was extended from right to left, and the local
precedence property between i and j were done for the same time point, which would not
have been the case, if the schedule were constructed from left to right. The effect of this
observation is that the number of nodes in the second level of the tree is upper bounded by(n
2

)
. Thus, by multiplying these numbers for all even levels, of the tree is upper bounded by
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n!/2�n/2�,(see for example
(n
2

) · (n−2
2

) · · · · · (22
)
when n is multiple of 2). Note that the upper

bound
(n
2

)
also defines the maximum number of job pairs to finish a schedule that satisfies the

local precedence property. In addition, an exact exponential algorithm for the non-preemptive
single-machine scheduling problem with a number of steps O(n2n) can be developed based
on this local precedence relation [see Theorem 3.1 in Fomin and Kratsch (2010)].

In this paper, we improve the above upper bound based on a novel approach, which allows
to prove that the number of sequences that respects the local dominance property among
three jobs is only two, not three. To prove this claim, we introduce the following technical
lemma.

Lemma 1 Consider three jobs i, j, k ∈ J with wi > w j and i ≺�(t+pk ) j . The following
expression holds

ν jk(t + pi ) <
wk

wi

(
w jwk + w2

i − 2wiwk

wiwk
f (t + pk + pi + p j )

)

− wk

wi

(
w j − wi

wi
f (t + pk + p j ) − f (t + pk + pi )

)

.

Proof By case assumption i ≺�(t+pk ) j , we have:

0 < νi j (t + pk) − f (t + pk + pi ) =
(

1 − w j

wi

)

f (t + pk + pi + p j )

+ w j

wi
f (t + pk + p j ) − f (t + pk + pi )

= w jwi

wk(wi − w j )

(
wk(wi − w j )

2

w2
i w j

)

f (t + pk + pi + p j )

+ w jwi

wk(wi − w j )

(
wk(wi − w j )

w2
i

f (t + pk + p j )

)

− w jwi

wk(wi − w j )

(
wk(wi − w j )

w jwi
f (t + pk + pi )

)

.

The last equality follows from the assumption wi > w j . Thus, we have

0 <

(
wk(wi − w j )

2

w2
i w j

)

f (t + pk + pi + p j ) + wk(wi − w j )

w2
i

f (t + pk + p j )

− wk(wi − w j )

w jwi
f (t + pk + pi ) (1)

We use the following equality

wk(wi − w j )
2

w2
i w j

=
(

w2
kw

2
i − 2w2

kwiw j + w2
kw

2
j + w2

i w jwk − w2
i w jwk

w2
i w jwk

)

=
(

wk

w j
− 2wkwi

w2
i

+ wkw j

w2
i

+ w2
i

w2
i

− w j

w j

)

=
(

w jwk + w2
i − 2wiwk

w2
i

−
(

1 − wk

w j

))

, (2)

replacing it in expression (1). Then, we obtain
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0 <

(
w jwk + w2

i − 2wiwk

w2
i

)

f (t + pk + pi + p j ) −
(

1 − wk

w j

)

f (t + pk + pi + p j )

+ wk(wi − w j )

w2
i

f (t + pk + p j ) − wk(wi − w j )

w jwi
f (t + pk + pi )

=
(

w jwk + w2
i − 2wiwk

w2
i

)

f (t + pk + pi + p j ) −
(

1 − wk

w j

)

f (t + pk + pi + p j )

+ wk(wi − w j )

w2
i

f (t + pk + p j ) − wk

w j
f (t + pk + pi ) + wk

wi
f (t + pk + pi ) (3)

We reorder the terms of expression (3) and have
(

1 − wk

w j

)

f (t + pk + pi + p j ) + wk

w j
f (t + pk + pi )

= ν jk(t + pi )

<

(
w jwk + w2

i − 2wiwk

w2
i

)

f (t + pk + pi + p j )

+ wk(wi − w j )

w2
i

f (t + pk + p j ) + wk

wi
f (t + pk + pi )

= wk

wi

(
w jwk + w2

i − 2wiwk

wiwk
f (t + pk + pi + p j )

)

− wk

wi

(
w j − wi

wi
f (t + pk + p j ) − f (t + pk + pi )

)

,

concluding the proof. �


We now prove that the number of sequences that respect the local dominance property
among three jobs is only two.

Theorem 1 Fix the sequences with three comparable jobs i, j and k in some consecutive
order, where t0 and t0 + (pi + p j + pk) are the starting time and completion time of them,
respectively. The number of sequences that respect the local precedence of jobs is two.

Proof Without loss of generality, we adopt t0 = 0. We know that the total of sequences
induces by three comparable jobs is 3! = 6.We denote S1, S2, S3, S4, S5 and S6 the sequences
i jk,ik j , jki , j ik,ki j and k ji , respectively.

Note that for any jobs x and y are comparable, and therefore one of x ≺�(t) y, y ≺�(t) x
holds.

Let
←→
b and ←→e be the exclusion relations between two sequences with the same pair of

jobs ordered in inverse form at the beginning and the end, respectively. These two exclusions
capture the fact that a single order is possible between two comparable jobs at the same point

in time, e.g., i jk
←→
b jik as jobs i and j are ordered in inverse form at the beginning of the

two sequences.
By using the exclusion relations, we have:

S1
←→e S2

←→
b S5

←→e S6
←→
b S3

←→e S4
←→
b S1
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Fig. 1 Exclusion relations among all possible sequences for three jobs i , j and k

Therefore, the sequences that respect the exclusion relations can be partitioned in two sets,
grouping in each set those sequences that do not maintain exclusion relationships among
themselves (see Fig. 1):

A = {S1, S3, S5} or B = {S2, S4, S6}
In addition, we distinguish six priority weight orders among the jobs defined as follows:

o1 : {wi > w j > wk} o2 : {wk > wi > w j }
o3 : {wk > w j > wi } o4 : {w j > wi > wk}
o5 : {wi > wk > w j } o6 : {w j > wk > wi }.

Now, we prove by contradiction that only 2 of 3 sequences of each set respect the local
precedence among the jobs. First, we consider the setA = {S1, S3, S5} and wi > w j , which
covers the order priority weights o1, o2 and o5.

Formally, suppose the sequence S1, S3 and S5 with wi > w j respect the local precedence
among the jobs. Then, we observe the job pairs with the same local precedence for two
particular sequences (in bold font) and have:

1. S1 = ijk ∧ S3 = jki imply j ≺�(t) k for t = {pi , 0}
2. S1 = ijk ∧ S5 = kij imply i ≺�(t) j for t = {pk, 0}
3. S3 = jki ∧ S5 = ki j imply k ≺�(t) i for t = {p j , 0}
In particular,

f (pi + p j ) <ν jk(pi ) :=
(

1 − wk

w j

)

f (p j + pi + pk) + wk

w j
f (pi + pk) (4)

f (pk + pi ) <νi j (pk) :=
(

1 − w j

wi

)

f (p j + pi + pk) + w j

wi
f (pk + p j ) (5)

f (p j + pk) <νki (p j ) :=
(

1 − wi

wk

)

f (p j + pi + pk) + wi

wk
f (p j + pi ) (6)
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We use two of the three above inequalities. Without loss of generality, we consider Expres-
sions (5) and (6). Thus, we have

f (pk + p j ) + f (pi + pk)

< νi j (pk) + νki (p j ) =
(

1 − w j

wi

)

f (pi + p j + pk)

+
(

1 − wi

wk

)

f (pi + p j + pk) + w j

wi
f (pk + p j ) + wi

wk
f (p j + pi )

=
(

2 − w j

wi
− wi

wk

)

f (pi + p j + pk) + w j

wi
f (pk + p j )

+ wi

wk
f (p j + pi ) =

(
−w jwk − w2

i + 2wiwk

wiwk

)

f (pi + p j + pk)

+ w j

wi
f (pk + p j ) + wi

wk
f (p j + pi ) (7)

We reorder the Expression (7) and have
(

w jwk + w2
i − 2wiwk

wiwk

)

f (pk + pi + p j ) + f (pk + p j ) − w j

wi
f (pk + p j )+ f (pk+pi )

<
wi

wk
f (p j + pi ). (8)

Finally, expression (8) is regrouped, obtaining

wk

wi

((
w jwk + w2

i − 2wiwk

wiwk

)

f (pk + pi + p j )

)

− wk

wi

(
w j − wi

wi
f (pk + p j ) − f (pk + pi )

)

< f (p j + pi ),

where the left-term is greater than ν jk(pi ) by Lemma 1. This implies that k ≺�(pi ) j , which
contradicts the case assumption given by Expression (4).

For the case wk > wi , which covers the order priority weights o2, o3 and o6, the proof
considers Expressions (4) and (6) in a similar way, which contradicts Expression (5). To end
the analysis for the set A, we have w j > wk covering order priority weights o1, o4 and o6.
Here, the proof is also by contradiction. Expressions (4) and (5) contradict Expression (6).
Thus, we have that the number of sequences that respect the local precedence of jobs is two.

Symmetrically, we prove the case when the set B = {S2, S4, S6} is considered. Suppose
S2, S4 and S6 with respect to the local precedence among the jobs, then we have:

1. S2 = ikj ∧ S6 = kji imply k ≺�(t) j for t = {pi , 0}.
2. S2 = ik j ∧ S4 = j ik imply i ≺�(t) k for t = {p j , 0}.
3. S4 = jik ∧ S6 = kji imply j ≺�(t) i for t = {pk, 0}.
In particular,

f (pi + pk) < νk j (pi ) :=
(

1 − w j

wk

)

f (p j + pi + pk) + w j

wk
f (pi + p j ) (9)

f (p j + pi ) < νik(p j ) :=
(

1 − wk

wi

)

f (p j + pi + pk) + wk

wi
f (p j + pk) (10)
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f (pk + p j ) < ν j i (pk) :=
(

1 − wi

w j

)

f (p j + pi + pk) + wi

w j
f (pk + pi ) (11)

Here, we analyze the different cases. For the case where wi > wk , we have Expressions (10)
and (11) that contradict Expression (9), covering the order priority weights o1, o4 and o5. For
the case w j > wi , we consider Expressions (11) and (9), which contradict Expression (10).
This covers the order priority weights o3, o4 and o6. Finally, the order priority weights o2,
o3 and o5 are covered by the case wk > w j . This uses Expressions (9) and (10), with respect
to Expression (11). Thus, we also have that the number of sequences that respect the local
precedence of jobs is two.

Therefore, only two of three sequences of set respect the local precedence among the jobs.
Specifically, the pairs sequences are:

{S1, S3} {S1, S5} {S3, S5} {S2, S4} {S2, S6}
{S4, S6} {S1, S6} {S2, S3} {S4, S5},

which concludes the proof. �


From Theorem 1, we obtain the following corollaries.

Corollary 1 Consider three jobs i, j, k consecutively executed. The local precedence property
is satisfied at most for two pairs of jobs at any time into the interval [t0, t0 + pi + p j + pk],
t0 ≥ 0.

Note that Corollary 1 is to be easily observed from the pairs sequences that respect the
local precedence among the jobs defined by Theorem 1.

Corollary 2 The maximum number of three jobs consecutively executed at the end of a sched-
ule that satisfies the local precedence property has an upper bounded equal to 2

(n
3

)
.

Finally, Corollary 3 shows a new upper bound, which represents a drastic improvement
over the n! different schedules of the search space.

Corollary 3 Given an algorithm, which uses some search tree procedure to solve the schedul-
ing problem. The total number of leaves of the tree is upper bounded by n!/3�n/3�

Proof The proof follows the observation from Theorem 1, which implies that the number of
nodes in the third level of the tree is upper bounded by 2

(n
3

)
and for a multiplying argument,

the total number of leaves of the tree is upper bounded by n!/3�n/3�. �


3 Penalty functions where the problem becomes polynomially solvable

In this section, we study the penalty functions where the problem becomes polynomially
solvable. We show that for any strictly convex penalty functions, an instance of n jobs with
equal Smith ratios, i.e. wi/pi equal to a constant for all job i = 1, . . . , n, admits an optimal
schedule where the jobs are ordered in non-increasing weight.

Theorem 2 Consider a strictly convex penalty function f (t) and two jobs i, j ∈ J . If
wi/pi = w j/p j and pi > p j , then i ≺�[0,∞) j

123
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Proof Let A, B be two arbitrary job sequences. Suppose that i, j ∈ J are adjacent in an
optimal schedule and let t be the largest completion time of the jobs in A. The claim states
that the order i, j generates a cost strictly smaller than the order j, i , i.e.

F(Aji B) > F(Ai j B)

≡ w j f (t + p j ) + wi f (t + pi + p j ) > wi f (t + pi ) + w j f (t + pi + p j )

≡ (wi − w j ) f (t + pi + p j ) + w j f (t + p j ) > wi f (t + pi )

≡
(

1 − w j

wi

)

f (t + pi + p j ) + w j

wi
f (t + p j ) > f (t + pi )

≡
(

1 − p j

pi

)

f (t + pi + p j ) + p j

pi
f (t + p j ) > f (t + pi )

≡ νi j (t) > f (t + pi ),

which holds for pi > p j and f strictly convex for all t ∈ [0,∞). �

From Theorem 2, we obtain the following statement.

Corollary 4 Consider a strictly convex penalty function f (t) and jobs with equal Smith ratio,
i.e wi/pi equal to a constant for all job i = 1, . . . , n. This problem admits an optimal
schedule where the jobs are ordered in non-increasing weight.

Note that Corollary 4 applies to the problem of minimizing the sum of weighted mean
squared deviation of the completion times with respect to a common due date, where the
penalty function is strictly convex.

4 Future research

Based on our results, we provide some insights into three future research directions. First,
we observe that a reduction of the number of steps O(n2n) required by an exact exponential
algorithm for the non-preemptive single-machine scheduling problem [see Theorem 3.1 in
Fomin and Kratsch (2010)] could be possible by using Corollary 1. In particular, we leave
open the question about the use of this result in the recursive formof algorithm cost described
in Fomin and Kratsch (2010) for sets of three jobs, which can be reduced to 2

(n
3

)
from 3

(n
3

)
.

Second, we note that the dominance properties introduced in this work can be translated
to valid inequalities, which can be used in a mathematical formulation to speed up implicit
enumeration methods such as branch-and-cut algorithm by iteratively strengthening its linear
relaxation [see Bansal et al. (2017), Pereira and Vásquez (2017), Díaz-Núñez et al. (2018)
for models and implementation examples].

Third, we present an idea to show the computational complexity of the problem of mini-
mizing the sum of weighted mean squared deviation of the completion times with respect to
a common due date, whose status is open for jobs with arbitrary weights, in the sense that
neither polynomial time algorithms nor NP-hardness proofs are known (Vásquez, 2014).
This follows previous NP-hardness proofs for the scheduling problem with some convex
and concave penalty functions, which had involved almost equal Smith ratio instances [see
Jinjiang (1992); Vásquez (2014) for example]. Specifically, we are focused on the definition
of a particular instance based on dominance properties, which allows us to reduce the search
space and restrict the cases to be analyzed. Formally, we define an instance IC as follows:
Consider the strictly convex penalty function f (t) := (t − d)2 with due date d ∈ N

+ and
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Fig. 2 Graphical representation of instance IC

a set J with 2n + 1 jobs where B ⊆ J with B = {1, . . . , 2n} with equal Smith ratios and
pi < pi+1 for i = 1, . . . , 2n − 1 and a job k = 2n + 1 with wk > pk , pk ≥ maxi∈B pi ,
and

√
wk mini∈B pi ≥ pk . By considering the global properties from Corollary 1 in Pereira

and Vásquez (2017) and Theorem 1 in Bansal et al. (2017), and Theorem 1, in the opti-
mal solution of these instances IC , the completion time of job k belongs to the interval
(d − pk −mini∈B pi , d +mini∈B pi ), all jobs preceding k are scheduled in a non-decreasing
processing time, and all jobs following k are scheduled in a non-increasing processing time.

Based on Theorem 2, we focus on the necessary condition so that the problem does not
become easy given by the sequence of three jobs that respect the local precedence among
them, which is defined as follows: the job k and two jobs i ′ + 1 and i ′(pi ′ < pi ′+1), which
are immediately executed before and after job k, respectively. Given the above sequence,
we consider Theorem 1 and have that at most one of these job sequences defined by (a)
i ′, k, i ′ + 1, (b) k, i ′ + 1, i ′, or (c) i ′ + 1, i ′, k, respects the local precedence among them.
We consider the case (a) i ′, k, i ′ + 1 in order to have a partition among the jobs with equal
Smith ratio, excluding the sequence (b) by choosing sequence (c), and vice-versa based on
Corollary 1. This result allows us to investigate systematically the configuration of an optimal
solution of instances IC focused on these cases (see Fig. 2). Numerical experiments show
that the resolution might depend on where the jobs lie in the schedule and also on the value
of due date d .
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