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Abstract
Targeting systemic risk, we propose a two-stage analysis of a large collection of stockmarkets
by considering their interconnections. First, we characterize the joint dynamics of stock
returns using a multivariate GARCH model in the presence of regime changes. The model
detects three regimes of volatility rising from two unknown but common endogenous breaks.
We compute filtered returns by normalizing them using the dynamic GARCH volatility.
Second, we build a Gaussian signed weighted and undirected worldwide financial network
from filtered stock returns, that evolves across regimes. The best network is built from the
partial correlationmatrix offiltered stock returns over each regimeusing regularisation and the
minimumExtendedBayesian Information Criterion. To gain insights into the resilience of the
financial network and its systemic risk over time, we then compute relevant nodal centrality
measures—including the clustering coefficient—over each regime. Thus, we characterize the
ever-changing network topology and structure by detecting group-like and community-like
patterns (e.g., clustering and community detection, network cohesion). Under the resilience
framework and depending on the studied regime, we analyse the propensity of a shock
to propagate across the network thanks to positive weights, and the network’s ability to
mitigate shocks thanks to negative weights. The balance between spreading and inhibiting
node influences drives the network’s frailty and resilience to shocks. Hence, the network
exhibits a high level of systemic risk when its connectivity is large and most edge weights
are significantly positive (i.e., strong and multiple conditional dependencies of world stock
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markets). It is of high significance to policymakers because systemic risk/financial frailty is
potentially costly (i.e., loss) while resilience is rewarding (i.e., gain).

Keywords Changepoints · Multivariate GARCH · Networks · Resilience · Financial
markets · Systemic risk

1 Introduction

In 2007, the subprime mortgage crisis and its spreading to global financial markets shed
light on systemic risk. The various interconnections across asset classes and marketplaces
put forward the need to account for the topology of financial markets as a global network and
the strength of existing linkages (Hasse, 2022; So et al., 2022). Such patterns drive potential
contagion across financial markets and financial stability (Jackson & Pernoud, 2021). In
particular, higher connectivity implies a higher risk of shock transmission and, therefore
higher risk of sharing failure (Elliott et al., 2021), which threatens the financial network’s
resilience.

We target to study the network of the world stock markets over time. Specifically, we
consider the daily1 and weekly returns of a qualified collection of relevant stock indices
worldwide in the period 2000–2022. Our analysis handles the time-varying nature of financial
markets along with their interconnections. Therefore, we identify common worldwide stock
market regimes.

It is well-known that financial data such as stock returns exhibit time-varying variance
(also known as volatility clustering) and regime changes (Connolly et al., 2007; Gatfaoui,
2013; Gatfaoui & de Peretti, 2019; Hafner et al., 2022; Kenourgios et al., 2011; Malik et al.,
2005; Strohsal & Weber, 2015). In this light, the best representation that can capture their
underlying data-generating process consists of Generalized Autoregressive Conditionally
Heteroscedastic, also called GARCH, models (Bollerslev, 1986; Engle, 2002a, 2002b). In
particular, GARCH representations handling volatility clustering and multiple change point
detections are required to capture the structural changes in the data-generating process of
financial returns (Cho & Fryzlewicz, 2015; Cho & Korkas, 2022).

In this paper, we deal with a GARCH-based framework for managing and measuring
systemic risk. There are several methodological approaches for the definition of systemic
risk. One of the most popular systemic risk measures is the CoVaR, introduced by Adrian
and Brunnermeier (2016). In this framework, the authors proposed the effect of a distress of
an institution on the others as a systemic risk measure. The grounding idea is the presence of
interconnections among institutions, so that something occurring somewhere might be able
to propagate everywhere. CoVaR is a measure that implicitly state the presence of a network
structure among the institutions without formalizing it through a mathematical model. On
the same line, Braverman and Minca (2018), Cont and Schaaning (2019) and Cerqueti et al.
(2021a) proposed a market-impact model for measuring systemic risk—i.e., they introduce
the impact of a collapse of asset prices on the market value. The idea that the links between
two institutions could be driven by the influence of a negative shock occurring on a node to

1 On a daily basis, regional stock markets exhibit a different number of structural breaks which happen at
different dates. Gathering the stock markets worldwide provides a very large number of breaks with several
short-lived regimes that build too small samples for a network analysis. Thus, we moved to weekly data to
get significant market regimes with a convenient duration and sample size. Moreover, weekly data avoid to
handle asynchronous daily closing prices by lagging relevant market prices but at the cost of dropping some
insightful informational content.
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another one is the basis of Cerqueti et al. (2022b). In the quoted paper, the authors provided a
network structure among companies on the basis of the financial interflows—hence, leading
to an influence-based analysis of systemic risk.

In the present case, we use a two-stage approach as follows.
In the first stage, we use a novel methodology developed by Cho and Korkas (2022). Such

a method is based on a multivariate GARCH representation with multiple change points to
characterize stock market returns. Such an approach allows for both identifying common
volatility regimes for world stock markets and describing the time-varying volatility and
correlation of those stock markets. The GARCH-inferred individual volatilities are then used
to normalize stock market returns. In the second stage, a robust approach is used to build
a regime-specific network of filtered stock returns. After having identified change points
in regional index returns, we estimate a Dynamic Conditional Correlation (DCC) GARCH
model over each related index returns regime and for each bundle of regional stock indices
as well as all regional indices (Engle, 2002a, 2002b).

Using the obtained networks, we compute the regime-specific centrality measures and the
nodal weighted clustering coefficient to gain insights into the resilience of the network and
the systemic risk of the overall financial framework.

As regards change point detection, the modelling scheme assumes that the studied sample
of time series exhibits the same change points and, therefore, the same regimes, which
conforms to the regional analysis of stock prices daily, but also their study at the world
scale weekly. Based on cumulative sum-type statistics (CUSUM), the authors develop a
methodology that identifies change points and captures the multivariate GARCH patterns
across the identified regimes. Specifically, the GARCH parameters are allowed to evolve
across regimes, and the multiple change points can be well-identified even when they are
close to each other. Under such a setting, the dependence structure within and between time
series is also handled, and the high-dimensionality pattern is well-managed. The two latter
features are strong added values and enhancements compared to classic change point tests and
classic multivariate GARCH representations. The previous arguments support choosing their
methodology in the prospect of a financial network analysis, which may require considering
many time series.

In the present paper, we adopt therefore a robust and genuine approach which handles
several worldwide stock markets at the same time and for which joint structural breaks are
investigated. The added value of our approach is twofold since the multivariate GARCH
setting:

(1) Handles the joint dynamics of several stock markets (i.e., multivariate GARCH process
of dimension 20),

(2) With endogenous structural breaks (i.e., multiple breakpoints that are unknown but
common to all stock marketplaces).

As a result, our approach:

• Is more powerful than Gatfaoui (2013) thanks to (1) and (2), and Gatfaoui and de Peretti
(2019) thanks to (1),

• And also improves Gatfaoui and de Peretti (2019) thanks to (2) by identifying market
regimes that are specific to the world stock market.

Moreover,we consider the instantaneous and significant non-zero correlations between the
filtered log-returns across detected global market regimes. Finally, one needs to mention that
we target a characterization of systemic risk in world stock markets. Current high frequency
trading practices and high-speed internet-flowing information processes support the study of
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instantaneous pairwise correlations across stock market returns. In this light, we are looking
at strong links and influences between nodes (i.e., stock markets), so that small edges are not
of interest (i.e., low correlated or independent stock markets).

The considered approach allows for eliciting time-varying financial networks and charac-
terizes their properties (e.g., topology, the strength of linkages). We can study the propensity
of the world financial stock markets to absorb external shocks based on the nature, density
and strength of their connections.

Indeed, it is well acknowledged now that financial interconnectedness is a source of insta-
bility and systemic risk (Renn et al., 2022) with an unfavourable impact on economic activity
(Simaan et al., 2020). According to Simaan et al. (2020), instability leads to a disruption in
the financial system’s functioning, coupled with harmful spillover effects across the whole
network. Such a pattern requires modelling financial markets as a network where the failure
results from an instability in the dynamical system (Markose et al., 2021). In particular, the
structure and topology of the financial network determine the risk of contagion (Hübsch &
Walther, 2017) and, therefore, the resilience of the financial network (Bastidon & Parent,
2022).

Under such a setting, systemic risk is often measured by considering a node’s centrality
and the density and connectivity of its neighbours within the financial network (Zhu et al.,
2018). For example, clustering coefficients serve as good descriptors of a network’s systemic
risk (Cerqueti et al., 2021a, 2021b).

Importantly, Cerqueti et al. (2022b) elaborate on the systemic risk as the resilience of the
underlying network—as we do in the present paper. As a further analogy with the present
study, Cerqueti et al. (2022b) can be inserted in the strand of topological-based resilience
models, where the occurrence of a microscopic shock in the system gives a variation in the
community structure of the network (see also Dong et al., 2018) or the modification of the
nodal centralities (see e.g., Ghanbari et al., 2018 and Cerqueti et al., 2021b, 2022a).

The rest of the paper is organized as follows. Section 2 outlines themethodological devices
used for the analysis. Section 3 presents the statement and the results of the empirical exercise.
Last section offers some conclusive remarks.

2 Methodology

2.1 Multivariate GARCHwith change points

ConsiderN stockmarket indices.We followCho andKorkas (2022) anddesign a time-varying
multivariate GARCH(p,q) model as follows:

ri , t � √
hi , tεi , t (1)

where

hi , t � ωi (t) +
p∑

j�1

αi , j (t)r
2
i , t− j +

q∑

k�1

βi , k(t)hi , t−k (2)

for any time t � 1,…,T , any stock index i � 1,…,N and any corresponding index return
ri , t . In the above equation of conditional variance, p is the ARCH lag, q is the GARCH lag,
ωi (t) > 0 is the unconditional variance while αi , j (t) and βi , k(t) are the positive ARCH and
GARCH coefficients.
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The vector of independent innovations εt � (
ε1, t , ..., εN , t

)
1′ has a zeromeanE(εt ) � 0N

and a finite and symmetric covariance matrix var(εt ) � �ε(t) � [
σi ,m(t)

]N
i ,m�1 with

σi , i (t) � 1 and σi ,m(t) � σm, i (t) for all 1 ≤ i , m ≤ N and t. Assuming that a number of
B change points are detected, and the corresponding change point dates are (η1 < ... < ηB)
with also η0 � 1 and ηB+1 � T . Therefore, the set of studied time series exhibits (B + 1)
regimes bounded by the identified change points. For example, the first regime runs over
the period [η0,η1], the second regime runs over the period [η1 + 1,η2] while the (B + 1)-th
regime runs over the period [ηB +1,ηB+1]. During the two-stage estimation process, a double
CUSUM binary segmentation algorithm is performed to detect and locate changepoints, and
then a bootstrap algorithm is applied to confirm the appropriate threshold used for the test
statistic in the previous algorithm. Moreover, the correlation structure between index returns
is also considered during the estimation process. Thus, the multivariate GARCH model is
updated over each regime, and its parameters are allowed to change across regimes so that we
get a piecewise stationary multivariate GARCHmodel. The corresponding set of parameters
is regime-specific (i.e., constant over each regime).

As regards DCC GARCH(1,1) modelling, letting the conditional variance be
Et−1

[
rtrt

′] � Ht � Dt Rt Dt , Engle (2002a, 2002b) introduced the following specifica-
tions for 1 ≤ i ≤ N :

rt |Ft−1 ∼ N (0, Dt Rt Dt ) (3)

D2
t � diag{ωi } + diag{α1i } ◦ rt−1r ′

t−1 + diag{β1i } ◦ D2
t−1 (4)

εt � D−1
t rt (5)

Qt � S ◦ (
11′ − A − B

)
+ A ◦ εt−1εt−1

′ + B ◦ Qt−1 (6)

Rt � diag{Qt }−1/2Qt diag{Qt }−1/2 (7)

where Ft−1 is the available information set at time t − 1, rt � (
r1, t , ..., rN , t

)′ is the vector
of returns, Et−1[.] is the expectation conditional on past information up to time t − 1,
N (., .) is the Gaussian probability distribution with given first and second moments, ◦ is
the Hadamart product of 2 matrices, S is the unconditional correlation/covariance matrix of
εt (i.e., the standardized returns), Rt is the time-varying correlation matrix. Note that Q is
a N × N symmetric positive semi-definite matrix approximation of covariances, A, B and(
11′ − A − B

)
are N × N positive semi-definite matrices, Et−1

[
εtεt

′] � D−1
t Ht D−1

t �
Rt � (

ρi j t
)
1≤i , j≤N with ρi j t the pairwise conditional correlation between the returns of

assets i and j at time t so that Ht � (
ρi j t

√
hiit h j j t

)
1≤i , j≤N . Moreover, Eq. (4) indicates

that the respective conditional variances of index returns follow univariate GARCH(1,1)
processes with ωi > 0, α1i ≥ 0, β1i ≥ 0 and α1i +β1i < 1 for 1 ≤ i ≤ N . When the number
of observations is large enough over a given regime (e.g., above or equal to 100), the DCC
GARCH(1,1) is estimated by maximizing the log-likelihood implied by Eq. (3). Differently,
when the number of observations is quite limited, we estimate the DCC GARCH(1,1) model
by considering its Bayesian version (Fioruci et al., 2014) and applying Markov Chain Monte
Carlo (MCMC) simulations with 10,000 simulations. In Sect. 3.1 we present the dataset
employed for our empirical experiment. As we will see, we will identify three regimes.
According to the arguments above, regimes 1 and 2 require a log-likelihood maximization
procedure, while regime 3 requires a Bayesian estimation of the DCC GARCH(1,1) model.
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2.2 Network construction

Targeting a study of the worldwide financial market, we set our focus on weekly data and
their common regime changes (as a joint dynamic pattern). The GARCH(1,1) representation
serves to obtain the filtered stock index returns thatwill be scrutinized as aworldwidefinancial
network. According to (1), we consider the standardized returns as follows:

εi , t � ri , t√
hi , t

(8)

All stock index returns are supposed to build a global financial network whose evolution
is studied across each regime. The network is built based on the Pearson correlation matrix
of standardized residuals from the multivariate DCC GARCH output.

The correlation matrix is treated to avoid being non-semi-definite positive (e.g., the pre-
cision matrix is used to build the network). The eigenvalues and eigenvectors are computed
to keep only orthogonal series (dimension reduction of redundant series) and solve for low
eigenvalues that are difficult to invert, e.g., regularisation process, sparse precision matrix or
Gaussian graphical models (Pourahmadi, 2011).

To obtain a robust correlation matrix—that is necessary to compute the network’s adja-
cency matrix and its weights—we apply an optimal estimation process over each period
(Foygel & Drton, 2010; Guillemot et al., 2013; van Borkulo et al., 2014). The estimation
process relies on five steps as follows:

(1) Compute the covariance matrix of standardized residuals,
(2) Compute the related precision matrix (as its inverse; Whittaker, 1990).
(3) Regularise the precision matrix by keeping only the eigenvectors with the most signifi-

cant eigenvalues through the thresholding process of Jankova and van de Geer (2018).
We get an orthogonalized precision matrix since the absolute elements of the original
precision matrix that fall below the threshold are set to zero. The threshold being ln(N(N
− 1)/2)/

√
T where T is the sample size and N is the number of nodes.

(4) Then, convert the regularised precision matrix to a partial correlation matrix (i.e., pair-
wise correlations conditional on all other network variables, Baba et al., 2004; Ghanbari
et al., 2019).

(5) Use the obtained partial correlation to infer the adjacency matrix and its weights to build
the related network of index returns.

Within the estimation process, edges are considered significant when their weights are
non-zero. Only significant weights are considered in the computation of network attributes
and related centrality measures. The rationale for such a criterion is straightforward. Given
thatwe target financial network resilience analysis, the financial network exhibits a substantial
risk of failurewhen nodes are strongly and positively linked. Indeed, they transmitmore easily
shocks to each other, with a potentially higher magnitude. Thus, financial networks exhibit
higher positive weights during crisis periods and stronger linkages impairing the global
network’s frailty. Such features contribute to describing a greater fragility of the financial
network.

Moreover, the estimation process above-mentioned is further optimized as follows:

(1) Given that several different thresholds can yield various correspondingpartial correlation
matrices (e.g., several different network structures), all possible resulting networks are
obtained using the Least Absolute Shrinkage and Selection Operator (LASSO) of Tib-
shirani (1996). However, each obtained network still depends on a fine-tuning parameter
lambda that serves as a penalization parameter disentangling useful/significant network
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parameters from useless/nonsignificant parameters (Opgen-Rhein & Strimmer, 2007;
Schäfer & Strimmer, 2005). Hence, several resulting networks can be built as a function
of a such fine-tuning parameter (Friedman et al., 2008). Such a setting raises the question
of how to choose an appropriate estimate for the fine-tuning parameter lambda.

(2) First, a wide range of lambda parameters are considered, and corresponding networks
are built. Then, a comparison between the obtained networks is performed, and the best
network representation (resulting from the most appropriate partial correlation matrix)
is selected byminimizing the ExtendedBayesian Information Criterium (EBIC) of Chen
and Chen (2012). The minimum EBIC also yields the optimal shrinkage parameter (i.e.,
the best estimate of the fine-tuning/penalization parameter).

By using filtered stock index returns, we implement the analysis of Gaussian weighted and
undirected networks that are regime-specific. Each network relies on the correlation between
stockmarket places (i.e., the correlation matrix of filtered returns describes aMarkov random
field), such correlation matrix being used to build the adjacency matrix of each network. The
values of the correlation elements are used as edges’ weights, and thus:

• (Conditionally) Independent nodes that are identified as having a zero pairwise cor-
relation, are not connected in the network;

• Only (conditionally) dependent nodes are connected in the network;
• Connected nodes that are:

• Positively correlated have a positive weight,
• Negatively correlated have a negative weight.

2.3 Centrality measures and clustering coefficient

We describe the network by computing key centrality measures and the clustering coefficient
(Mason &Watts, 2012; Ward et al., 2011). Indeed, we can use them to gain insights into the
resilience of the considered financial networks.

According to the considered model, we deal with weighted undirected networks with
the set of the nodes V � {1, . . . , N } and with weights collected in a N -square weighted
adjacency matrix W � (wik : i , j ∈ V ).

We compute centrality measures such as strength, betweenness and closeness as first
representatives of network patterns. Strength centrality (Strength) sums the weights of all
incident edges of node j (i.e., edges for which node j is an endpoint). Then, to account for
the node j’s participation in the shortest paths within the network, betweenness centrality
(Betweenness) is computed for any node j as:

Betweenness( j) �
N∑

i , k � 1
i 
� j 
� k

nik( j)

nik

where nik( j) is the number of shortest paths between nodes i and k that pass through j as
an intermediate node, nik is the number of all shortest paths between/from i and/to k. When
betweenness is high, more information and shocks flow through this node (i.e., a higher
tendency to transmit shocks on a "local" basis).
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The closeness centrality (Closeness) is computed for any node j as:

Closeness( j) � N − 1
∑N

i�1, i 
� j dist(i , j)

where dist(i , j) is the distance or length of the shortest path between nodes i and j. Closeness
is the inverse of the average distance of node j to all the other nodes of the network. The
higher the closeness, the more central to the network graph node j is.

As regards the clustering coefficient, it captures network connectivity and illustrates the
propensity of neighbour nodes to connect around a given node (i.e., the density of inter-
connections within the neighbourhood of a given node). Hence, the value of the clustering
coefficient illustrates the propensity for a shock to diffuse over the (financial) network and,
therefore, its potential vulnerability to shocks (i.e., loss in resilience).

For our weighted undirected network, we consider the clustering coefficient proposed by
Onnela et al. (2005), which is a generalization of the clustering coefficients defined in Watts
and Strogatz (1998) and Zhang and Horvath (2005). Onnela et al.’s coefficient replaces the
number of links in the neighbourhood of node j with the intensity or weights of such links,
while Zhang’s coefficient computes clustering coefficients of a matrix of weights rather than
those of an adjacency matrix.

We report here below the weighted clustering coefficient C(i) of Onnela et al. (2005) for
a generic node i ∈ V .

C(i) � 1

ki (ki − 1)

N∑

j , k�1

ŵi j ŵ jkŵik

where ki is the number of edges connected to node i, the edge weights ŵi j � wi j/max(w)
are normalized by the maximum weight in the network, and self-edges do not exist so that
wi i � 0, ∀i ∈ {1, · · · , N }.

In the following, wewill examine each centralitymeasure’s contribution and the clustering
coefficient because of their significance for resilience. In the appendix, we also display the
extension of Onnela et al. (2005) clustering coefficient to signed networks, as proposed by
Costantini and Perugini (2014). We focus on the clustering coefficient of Onnela et al. (2005)
below for comparability purposes with network centrality measures (for which only absolute
weights are considered, because of the presence of negative cycles in the networks).

3 Empirical experiment

3.1 Data

Weselect broad stockmarket indices fromworldwide stockmarkets. Such selectionwill allow
for an approximate view of the level of dependence on the world’s stock marketplaces and,
later, its consequences for the resilience of the global marketplace to shocks (e.g., systemic
risk).

We extract the weekly closing values of several stock indices worldwide (see Table 1
below). The weekly frequency allows for ignoring the time zone of financial data2 and eases
the identification of common changepoints in time series at the world level. The stock indices

2 The appendix provides results for daily data for extra information.
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Table 1 Stock indices by region

Region Index name Country Label

AMERICA S&P 500 composite index U.S.A SP500

NYSE composite index U.S.A NYSE

S&P/TSX composite index CANADA TSX

BOVESPA index BRAZIL BOVESPA

IPC (Bolsa) index MEXICO IPC

EUROPE FTSE EUROTOP 100 index EMU* EURO100

DAX index GERMANY DAX

CAC 40 index FRANCE CAC40

CAC ALL-TRADABLE index FRANCE CACALL

FTSE MIB index ITALY MIB

SWISS MARKET index SWITZERLAND SMI

AEX index NETHERLANDS AEX

IBEX 35 index SPAIN IBEX35

OMX Stockholm index SWEDEN OMXS

ASIA NIKKEI 225 stock average JAPAN NIKKEI225

S&P/ASX 200 index AUSTRALIA ASX200

HANG SENG index HONG KONG/CHINA HSI

KOREA SE composite index KOREA KOSPI

TOPIX index JAPAN TOPIX

S&P BSE (Sensex) 30 index INDIA BSE30

With *, we refer to EUROPEAN MONETARY UNION countries

are gathered by region. Hence, any region’s financial data should react simultaneously to a
significant economic, financial, or geopolitical event.

We compute the percentage of the logarithmic returns of the indices considered. The
indices cover three major regions/continents such as America (five time series), Europe (nine
time series) and Asia (six time series). The returns of those 20 stock indices run weekly from
the 3rd January 2000 to the 8th July 2022, with a sample size of T � 1175 (observations per
series).

4 Results

4.1 Multivariate GARCHwith changepoints

In unreported results, individual time series of index returns exhibit the following patterns:
returns are not independent, and strongARCH(1) effects exist. The latter pattern advocates the
application of a time-varying multivariate GARCH(1,1) representation to stock index returns
(we compared ARCH(1) output with GARCH(1,1), and GARCH(1,1) was the more robust
representation). Moreover, we apply the DCC-GARCH(1,1) specification above-mentioned
by setting matrices A and B to scalar values a and b, respectively, which satisfy the conditions
a ≥ 0, b ≥ 0, and a + b < 1. The off-diagonal elements of Q approximate the correlations
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Table 2 Common multivariate GARCH(1,1) changepoints of stock indices

Number of breaks Changepoints Number of regimes Regimes (from/to)

2 2000-04-14 3 2000-01-07/2000-04-14

2001-09-14 2000-04-21/2001-09-14

2001-09-21/2022-07-08

Table 3 Estimates of DCC GARCH(1,1) parameters from 2000-01-07 to 2000-04-14

Index ,1 ,1 a b

SP500

NYSE

TSX

BOVESPA

IPC

2.9718
2.6789
7.6932
12.5084
3.6545

0.1749
0.1111
0.1480
0.4772
0.1248

0.4285
0.3273
0.2218
0.1369
0.7210

0.0044 0.3576

EURO100

DAX

CAC40

CACALL

MIB

SMI

AEX

IBEX35

OMXS

1.6145
5.8511
1.0881
0.8093
2.7591
2.6718
5.3443
5.0271
7.5270

0.0407
0.1564
0.0346
0.0702
0.0590
0.2975
0.0967
0.0457
0.1156

0.7375
0.3275
0.8550
0.8537
0.5855
0.3009
0.2778
0.5323
0.3043

NIKKEI225

ASX200

HSI

KOSPI

TOPIX

BSE30

6.0585
2.5423
11.8517
9.4816
4.5510
11.5533

0.7642
0.3434
0.1018
0.0982
0.5213
0.1870

0.1791
0.1113
0.2557
0.6366
0.2557
0.2801

Significant parameters at a 5% level are highlighted in bold. Significant parameters at a 10% level are italic and
in bold. Stationarity and mean reversion conditions of DCC GARCH(1,1) parameter estimates are satisfied

between returns.3 These correlations vary over time in response to new information on returns.
Parameters a and b govern the speed at which correlations rise above their average level for a
while when returns move in the same direction or temporarily fall below their unconditional
value when returns move in opposite directions (Engle, 2009). We can interpret parameter a
as a short-run response in correlations and parameter b as a long-run or persisting correlation
component.

The region-specificweekly results are displayed in the forthcoming tables as follows. Table
2 displays the estimated changepoints (i.e., break dates) for each region, while Tables 3, 4,
and 5 present the estimated GARCH(1,1) parameters across regimes and for each region on a
weekly basis. We find two changepoints; therefore, three regimes describe the weekly stock
returns of the worldwide financial network.

3 As an approximation, the quasi-correlation matrix Q needs to be scaled.
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Table 4 Estimates of DCC GARCH(1,1) parameters from 2000-04-21 to 2001-09-14

Index ,1 ,1 a b

SP500

NYSE

TSX

BOVESPA

IPC

0.3504
0.3821
0.2605
0.9709
0.2370

0.2192
0.2065
0.1901
0.1312
0.1014

0.7267
0.7322
0.7538
0.7925
0.8626

0.0188 0.9055

EURO100

DAX

CAC40

CACALL

MIB

SMI

AEX

IBEX35

OMXS

0.3313
0.7111
0.3667
0.3713
0.4905

0.6476
0.3866
0.2367

0.3314

0.1935
0.2272
0.1471
0.1652
0.2166
0.2424
0.2059
0.1126
0.1322

0.7728
0.7139
0.8163
0.7969
0.7542
0.6751
0.7627
0.8687
0.8286

NIKKEI225

ASX200

HSI

KOSPI

TOPIX

BSE30

1.5933
0.1902
0.2064
0.3731
1.2931
0.3516

0.2230
0.1378
0.0779
0.1850
0.2117
0.1407

0.5997
0.8216
0.8960
0.7767
0.6203
0.8167

Significant parameters at a 5% level are highlighted in bold. Significant parameters at a 10% level are italic and
in bold. Stationarity and mean reversion conditions of DCC GARCH(1,1) parameter estimates are satisfied

Over period 1, stock indices exhibit strong persistence in their volatility coupled with per-
sistence in their correlations. Period 2 exhibits globally small or medium persistence in stock
index volatilities and small persistence in correlations. Over period 3, stock indices’ individ-
ual volatilities and correlations exhibit strong persistence across all stock marketplaces.

4.1.1 Regime-specific network graphs

Wefind an optimal shrinkage coefficient lambda of 0.2363, 0.0827, and 0.0072 for regimes 1,
2, and3, respectively.Using the orthogonalized precisionmatrix of the standardized residuals’
correlation matrix (see step 3 in the estimation procedure described in Sect. 2.2), we get the
regime-specific undirected and weighted network graphs displayed below (Figs. 1, 2, and 3).
In all network graphs, the same layout prevails so that:

• Negative links are red coloured while positive ones are green coloured.
• The stronger the link, the thicker the corresponding edge.
• Only significant weights are considered in the network (i.e., nonsignificant edges are
omitted).

4.1.2 Centrality measures and clustering coefficient for network resilience

We computed the centrality measures and the clustering coefficient (Onnela et al., 2005) for
the three regimes, which are displayed in Tables 6, 7 and 8.Moreover, the centrality measures
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Table 5 Estimates of DCC GARCH(1,1) parameters from 2001-09-21 to 2022-07-08

Index ,1 ,1 a b

SP500

NYSE

TSX

BOVESPA

IPC

0.3504
0.3821
0.2605
0.9709
0.2370

0.2192
0.2065
0.1901
0.1312
0.1014

0.7267
0.7322
0.7538
0.7925
0.8626

0.0188 0.9055
EURO100

DAX

CAC40

CACALL

MIB

SMI

AEX

IBEX35

OMXS

0.3313
0.7111
0.3667
0.3713
0.4905

0.6476
0.3866
0.2367

0.3314

0.1935
0.2272
0.1471
0.1652
0.2166
0.2424
0.2059
0.1126
0.1322

0.7728
0.7139
0.8163
0.7969
0.7542
0.6751
0.7627
0.8687
0.8286

NIKKEI225

ASX200

HSI

KOSPI

TOPIX

BSE30

1.5933
0.1902
0.2064
0.3731
1.2931
0.3516

0.2230
0.1378
0.0779
0.1850
0.2117
0.1407

0.5997
0.8216
0.8960
0.7767
0.6203
0.8167

Significant parameters at a 5% level are highlighted in bold. Significant parameters at a 10% level are italic and
in bold. Stationarity and mean reversion conditions of DCC GARCH(1,1) parameter estimates are satisfied

(i.e., betweenness, closeness and strength) are standardized for comparability purposes, while
the clustering coefficient is left as is.

The analysis of the network’s resilience—hence, of the systemic risk of the associated
financial framework—can be carried out based on the centrality measures and the clustering
coefficient.

Indeed, resilience refers to the tolerance of the complex dynamical system to perturba-
tions and the ability of the network system to survive component failures. It is often linked
to the network topology and geometry as represented by centrality and clustering measures.
Hence, a financial network with high connectivity and many cycles (i.e., paths or motives)
of information/shocks spreading is low resilient. The more financial markets become inter-
connected, and the more different patterns of shocks’ spreading exist, the more the fragility
of the network of stock markets increases. Of course, the link between these three features
is nonlinear.

According to the arguments above, the highest the nodal clustering coefficient, the
strongest the community structure around the considered node. Indeed, the propagation of
an exogenous shock starting from a node i ∈ V is facilitated when the adjacents of i are
strongly positively interconnected—i.e., the clustering coefficient C(i) is high. Therefore, a
network with high (low) levels of nodal clustering coefficients is weakly (highly) resilient. At
the same time, a high value of the centrality measures is associated with nodes having strong
interconnections (high strength), highly relevant nodes for flow propagation (high between-
ness) and short connection paths among the nodes (high closeness). In all these cases, we
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Fig. 1 Network of stock indices over regime 1

have an easy propagation of the shocks—i.e., a weakly resilient network. This said, we can
enter some details and examine the centrality measures and the clustering coefficient from
the resilience perspective.

Let us start with the strength.
Stylized facts assure that the concept of resilience is increasingly appearing in portfolios of

investing companies (Hua et al., 2020; Kim & Kim, 2019; Kritzman et al., 2011). Portfolios
are examined under the criterion of the amount of time that it takes to recover and the level
to which the portfolio must climb to restore what was lost (Chen & Hackbarth, 2020; Geczy,
2014). The downside protection plays a key role due to the asymmetric relationship between
losses and gains. The relevance of downside protection passes through the construction of
well-diversified portfolios. The concept of resilience then becomes quite close and overlaps
with hedging, where the risk of loss must be mitigated. A system that returns to its mean after
some shock can surely be defined as resilient. When the risk is considered as the deviation
from the mean, a hedged portfolio is resilient (Kim & Kim, 2019).
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Fig. 2 Network of stock indices over regime 2

In portfolio theory, it is well assessed that a portfolio with non-negative weights can be
hedged when negative correlations are present among its assets. Within these terms, the set
of worldwide markets considered as an equally distributed portfolio maintains at most its
stability when both positive and negative correlations are present. Such a naïve portfolio
satisfies thus the international diversification principle. This is the rationale for considering
the average of the strength as a proxy for the hedging, hence for the resilience (Barrat et al.,
2004). A lower strength average implies a good balance among positive and negative partial
correlations. On our data, the average strengths in regimes 1, 2, and 3 are, respectively, equal
to − 0.0667, − 0.0288 and 0.1699. This implies that regime 2 shows the highest resilience
and regime 3 the lowest.

For closeness, we notice that the average closeness in regimes 1, 2, and 3 is, respectively,
equal to − 0.0916, − 0.2163 and − 0.2734.

Onnela et al. (2002) show that during expansions, the distance among the assets increases
and decreases during recessions. The analysis carried out in the quoted paper is performed
only on the topology of the network without considering the weights. In Elliot et al. (2021),
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Fig. 3 Network of stock indices over regime 3

the topology of the network has been studied, and the more the nodes are close, the easier
the shock may propagate through the network. Also, Elliot et al.’s paper does not consider
the weights.

Importantly, the weights provide relevant information.
The negative sign of the closeness in each of the three regimes signals an overall prevalence

of negative partial correlation.Oncemore, this is a positive fact for resilience since itmitigates
the risk of local failures. More precisely, negative weight may not slow the propagation of
shocks but surely change their sign, contributing to overall stability in front of individual
fluctuations.Hence, it isworth considering the standard deviations of the closeness,which are,
respectively, equal to 0.35, 0.54 and 0.51 in regimes 1, 2 and 3. The lower variability in regime
1 confirms it as the best balanced with respect to the closeness, while regimes 2 and 3 have,
respectively, low closeness, but higher standard deviation and the lowest closeness and less
high standard deviation. Therefore, closeness provides information not already considered
in the strength, providing a different ranking in terms of resilience.

Let us discuss the betweenness.

123



Annals of Operations Research

Table 6 Centrality measures and clustering coefficient of the financial network over regime 1

Label Index Betweenness Closeness Strength Clustering coefficient

1 SP500 − 0.1732 0.0168 − 0.1103 1.83451988

2 NYSE 0.1620 0.2236 0.6224 − 0.7525155

3 TSX − 0.3408 − 0.3608 − 0.3822 − 0.7474981

4 BOVESPA − 0.2849 − 0.2761 − 0.2618 2.45254388

5 IPC − 0.3966 − 0.2185 0.0571 − 0.9862916

6 EURO100 − 0.0615 − 0.0943 0.0487 − 0.4387744

7 DAX − 0.3408 − 0.1584 0.0986 − 0.5373135

8 CAC40 − 0.1732 − 0.4635 − 0.2542 − 0.5392348

9 CACALL − 0.3408 − 0.5347 − 0.1435 − 0.147417

10 MIB − 0.0056 0.1462 0.0613 0.02265236

11 SMI 0.4972 0.5571 0.3457 0.34850893

12 AEX − 0.0056 − 0.1119 − 0.0561 − 1.0815812

13 IBEX35 0.3296 0.0786 0.0139 0.04847745

14 OMXS 0.0503 0.0303 − 0.0767 0.42211399

15 NIKKEI225 1.0000 1.0000 1.0000 − 0.2910012

16 ASX200 − 0.2291 − 0.0962 − 0.2826 − 0.5253032

17 HSI 0.3855 0.1325 − 0.0690 − 1.0420605

18 KOSPI − 0.0615 − 0.1114 − 0.2158 − 0.4948998

19 TOPIX 0.3296 0.4340 0.0358 1.75221368

20 BSE30 − 0.3408 − 0.1932 − 0.4314 0.70286056

The labels are needed for clarity in the reading of Fig. 4

Betweenness represents the ability of a node to drive the communication (i.e., the propa-
gation/spreading process of a shock) between a pair of nodes as a function of their location in
the network. Hence, it contributes to determining if a node is influential within the network
and whether it acts as a shock broker/mitigator or shock propagator. The more the nodes are
"in betweenness", the more they "bridge" groups which would be more distant otherwise.
Therefore, the betweenness outlines the presence of non-uniform aggregations, precursory
of groups. On our data, the average betweenness in regimes 1, 2, and 3 are, respectively,
equal to − 0.0626, − 0.1287 and − 0.0719. The more the betweenness is far from 0, the
more the coarse-grained structure emerges. Regime 2 is the one where the phenomenon is
more evident. Regimes 1 and 3 give similar results. The presence of groups on one side gives
an overall delay to the propagation of shocks; on the other side, it shows a less uniform sen-
sitivity to the shocks: whether the nodes with the highest betweenness undergo fluctuations,
the spread is faster than in-group fluctuations. Therefore, the information provided by the
betweenness does not overlap with the other centrality measures.

Finally, we explore the clustering coefficients.
To this aim, we present some bar plots having as an x-axis the indices label of Tables 6,

7 and 8 in the same order (see Figs. 4, 5 and 6 for regimes 1, 2 and 3, respectively).
Regimes 1 and 3 present a small number of nodes with high positive clustering coefficients

and a large set of indiceswith small andnegative clustering coefficients. This implies that a few
nodes bring amajor part of the network community structure, which arewell counterbalanced
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Table 7 Centrality measures and clustering coefficient of the financial network over regime 2

Label Index Betweenness Closeness Strength Clustering coefficient

1 SP500 0.5000 0.4113 0.6712 − 0.0101852

2 NYSE − 0.2143 0.1602 − 0.0773 0.3037973

3 TSX 0.0000 − 0.0443 − 0.1723 − 1.2073662

4 BOVESPA − 0.5714 − 0.3966 − 1.0000 − 0.8939121

5 IPC 0.9286 1.0000 0.4821 − 0.4943505

6 EURO100 1.0000 0.3086 0.3489 0.76746921

7 DAX 1.0000 0.6537 0.1795 − 1.0575405

8 CAC40 − 0.6429 − 0.7554 − 0.0740 1.85385778

9 CACALL − 0.5714 − 0.8234 0.0137 1.34222163

10 MIB − 0.3571 − 0.0733 − 0.2383 0.69904768

11 SMI − 0.5000 − 0.1102 − 0.4164 0.2603697

12 AEX 0.0000 0.3492 0.3820 − 0.9317407

13 IBEX35 − 0.4286 0.2462 − 0.0347 − 1.1039547

14 OMXS 0.7143 0.9343 0.3334 − 1.5286511

15 NIKKEI225 0.5000 − 0.5416 0.5503 − 0.9596563

16 ASX200 − 0.5714 − 0.4328 − 0.4289 0.63092418

17 HSI − 0.1429 0.2083 − 0.2060 0.53159187

18 KOSPI 0.2857 0.1901 0.4466 − 0.3304183

19 TOPIX − 0.5000 − 0.7806 − 0.1767 1.56651795

20 BSE30 − 0.4286 − 0.5037 − 0.5831 0.56197822

The labels are needed for clarity in the reading of Fig. 5

by most nodes having negative correlations around them. In these circumstances, resilience
is strongly affected by the identification of the nodes where an external shock appears. If
the shock to be absorbed involves one of the high-value clustering coefficient nodes, then its
propagation is rapid and not easy to be stopped. We notice that regime 3 has a node with an
exceptional positive clustering coefficient, pointing to a strong community structure around
that node and a weakly resilient network in the presence of a shock related to that node.
Regime 2 shows a fair proportion between clustering coefficients in terms of size and sign
of the values.

In general, the clustering coefficient does not provide a clear response to the resilience of
the network. Specifically, it highlights a strong dependence on the ability to absorb a nodal
shock on the node where it appears, leading to a heterogeneous role of the stock indices in
this context.

5 Conclusions

This paper analyses the world’s main stock indices as connected entities, with a specific focus
on the resilience of the resulting network models. The indices are assumed to be connected
through their correlation structure. We also detect the presence of regimes over a large period
and discuss the regime-based resilience of the financial model.
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Table 8 Centrality measures and clustering coefficient of the financial network over regime 3

Label Index Betweenness Closeness Strength Clustering coefficient

1 SP500 − 0.3827 − 0.1112 0.3309 − 0.8889208

2 NYSE − 0.0321 0.0567 1.0000 − 0.9753989

3 TSX 0.3379 0.4441 − 0.2716 − 0.6940446

4 BOVESPA − 0.1490 − 0.0508 − 0.3102 0.17706017

5 IPC − 0.2658 − 0.3263 − 0.6163 − 0.1644174

6 EURO100 0.8442 0.5335 0.8374 − 0.0905757

7 DAX − 0.3827 0.2072 − 0.2227 0.21672128

8 CAC40 − 0.2074 − 0.1532 0.5150 1.28032643

9 CACALL − 0.2463 − 0.1973 0.8476 − 0.0760571

10 MIB − 0.3437 − 0.7666 − 0.2950 1.10521336

11 SMI 0.8832 0.7441 − 0.3554 − 0.305108

12 AEX − 0.3827 0.0234 − 0.2569 − 0.0438613

13 IBEX35 − 0.1295 − 0.6021 − 0.4117 0.50738984

14 OMXS − 0.1100 0.5607 − 0.1502 − 0.6701282

15 NIKKEI225 − 0.0321 − 0.6718 0.4815 − 0.5090631

16 ASX200 1.0000 1.0000 − 0.3004 − 0.6866504

17 HSI 0.0263 0.1097 − 0.0187 − 0.586589

18 KOSPI 0.3379 0.4178 − 0.1404 − 0.4778651

19 TOPIX − 0.3827 − 0.7612 0.1853 − 0.5005574

20 BSE30 − 0.3827 − 0.4565 − 0.8482 3.38252598

The labels are needed for clarity in the reading of Fig. 6
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Fig. 4 Clustering coefficients of the considered stock indices over regime 1
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Fig. 5 Clustering coefficients of the considered stock indices over regime 2
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Fig. 6 Clustering coefficients of the considered stock indices over regime 3

The proposed worldwide scale analysis is useful for studying and diagnosing financial
integration’s implications across stock marketplaces. Highlighting the frailty of the global
financial market will help policy makers identify key weaknesses and take preventive actions
in the case of the occurrence of a financial crisis.

In this respect, we are in line with a large strand of literature. A prominent contribution
is due to Ben Bernanke, who was awarded the 2022 Nobel Memorial Prize in Economic
Sciences and was the former chairman of the Federal Reserve. Quoting Bernanke (2010):
“In discussing the causes of the crisis, it is essential to distinguish between triggers (the
particular events or factors that touched of the crisis) and vulnerabilities (the structural
weaknesses in the financial system and in regulation and supervision that propagated and
amplified the initial shocks)”. In this respect, we mention also Mynhardt et al. (2014), who
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discussed the long-run properties of financial markets performance before and after the crisis
in 2007 and show the differences in markets efficiency before and after systemic collapses.
Longstaff (2010) showed that the subprime crisis was predicted by the (negative) variation of
some financial market performance indicators. Differently, Junior and Franca (2012) showed
that high volatility of markets is associated with a high level of positive correlation among
them—hence, pointing to a concrete connection between some aspects of financial frailty
and the occurrence of a crisis.

Differently with the quoted paper, we identify critical elements under a multifocal per-
spective by firstly creating a novel market network model and then by exploring its critical
elements on the basis of several nodal centrality measures. The identification of a stochas-
tic dependence structure among the assets through a multivariate GARCH process and the
inclusion of critical change points in the considered framework let the proposed setting be a
new contribution in the systemic risk management and measurement—thus, motivating and
supporting the worthiness of the presented model.

We link resilience with some meaningful nodal centrality measures and clustering coef-
ficients, which describe a network’s connectivity and information spreading patterns.

Focusing on financial networks, centrality measures help identify critical stock market-
places.

They are useful to stock investors to identify risk sources and contagion risks within their
international stock portfolios. Moreover, they are handful devices to implement investment
strategies and diversify stock portfolios. As additional evidence, centrality metrics are useful
to policymakers to prevent or mitigate volatility spillovers from one marketplace to another,
avoiding thus the well-known domino effect in financial markets. For example, theymay help
identify influential marketplaces acting as volatility shock propagators. And policymakers
may use such information to set up strategies to minimize the contaminating influence of
these critical marketplaces within the financial network. Concomitantly, policymakers may
also build strategies maximizing the influence of balancing marketplaces that act as volatility
mitigators in the process of financial shock propagation.

In the considered paradigmatic empirical instance, the propagation process may rely on a
set of nodes, making the network vulnerable to shock propagation because they may spread
the shocks significantly. A set of counterbalancing nodes may mitigate such a propagation
process. Specifically, positive weights highlight the reinforcing pattern of nodes’ interrela-
tionships, while negative weights stress the balancing impact nodes can have on one another.
Clustering refers to the density and connectivity features of a node’s neighbourhood.

By embedding several robust and efficient stages of study and estimation, our robust
approach is flexible enough to be applied to any other similar topic, such as studying the
financial dependence between various asset classes across the world and the economic depen-
dence across the world, among others. From the point of view of big or institutional investors,
our approach can be applied to large portfolios of assets from the same market segment, var-
ious market segments and/or worldwide exchanges. It provides a useful tool to diagnose and
measure such portfolios’ resilience to financial shocks over time. In particular, the underlying
regime-specific analysis of portfolios allows for describing the dependence of asset returns
over time, which is especially useful to help build active management strategies. Such active
management strategies focus on the regular mitigation of returns’ dependence and improve-
ment of portfolio performance over time to establish/revise the composition of the optimal
portfolios and resulting asset allocation (i.e., the distribution of wealth across assets, which
maximizes the performance and reduces the risk of the portfolio).
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Appendix: Daily GARCH estimates

From the 3rd January 2000 to the 8th July 2022, the daily sample size is T � 5875 (obser-
vations per series). The region-specific daily results are displayed in the forthcoming tables
as follows. Table 9 displays the estimated changepoints (i.e., break dates) for each region,
while Tables 10, 11 and 12 present the estimatedGARCH(1,1) parameters across regimes and
for each region on a daily basis. We find different regimes for stock returns across regional
marketplaces.

See Tables 9, 10, 11 and 12
In America, stock market indices exhibit (strong) persistence in volatility over time except

for IPC index during period 3. Correlations persist over all periods except period 3. In Europe,
individual volatilities of indices are strongly persisting across periods except for the following
cases. CACALL index exhibits weak volatility persistence over period 2, while DAX, SMI,
AEX, IBEX35, and OMXS indices exhibit small volatility persistence over period 3. Periods
1 and 2 exhibit almost no correlation persistence, while a low correlation persistence arises
over period 3, giving then rise to strongly persisting correlations from period 4 to period 6.
In Asia, stock market indices globally exhibit small persistence in volatility over periods 1,

Table 9 Regional multivariate GARCH(1,1) changepoints

Region Number of breaks Number of regimes Changepoints

AMERICA 4 5 2001-02-14

2001-08-27

2001-09-20

2020-07-06

EUROPE 5 6 2000-05-31

2001-03-23

2001-04-18

2003-03-14

2007-10-08

ASIA 7 8 2000-02-16

2000-04-21

2002-06-24

2004-04-21

2004-05-17

2007-07-24

2009-11-25
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Table 10 Regime-specific estimates of DCC GARCH(1,1) parameters for America

Regime (from/to) Index , , a b

2000-01-03/

2001-02-14

SP500

NYSE

TSX

BOVESPA

IPC

0.0486

0.0189

0.1545

0.0021

0.1176

0.0893

0.0967
0.0908

0.0000

0.0349

0.8866
0.8894
0.8516
0.9990
0.9361

0.0202 0.9088

2001-02-15/

2001-08-27

SP500

NYSE

TSX

BOVESPA

IPC

0.0540

0.0317

0.0000

0.0671

0.0000

0.0679

0.0726
0.0174

0.0307

0.0000

0.8977
0.8949
0.9710
0.9445
0.9979

0.0214 0.8856

2001-08-28/

2001-09-20

SP500

NYSE

TSX

BOVESPA

IPC

0.8198
1.3872
1.2181
5.3099
2.3450

0.2076
0.2513
0.2321
0.3536
0.1375

0.7049
0.5087
0.3919
0.3211
0.3041

0.1435 0.1415

2001-09-21/

2020-07-06

SP500

NYSE

TSX

BOVESPA

IPC

0.0202
0.0173
0.0095
0.0617
0.0187

0.1107
0.1074
0.1053
0.0697
0.0846

0.8719
0.8784
0.8861
0.9073
0.9020

0.0237 0.9611

2020-07-07/

2022-07-08

SP500

NYSE

TSX

BOVESPA

IPC

0.0730
0.1009
0.0814
0.1093

0.0337

0.1854
0.2098
0.2115
0.0391

0.0437

0.7574
0.6941
0.6630
0.8930
0.9248

0.0627 0.7146

Significant parameters at a 5% level are highlighted in bold. Stationarity and mean reversion conditions of
DCC GARCH(1,1) parameter estimates are satisfied

2 and 5, while volatilities exhibit strong persistence over remaining periods 3, 4, 6, 7 and 8.
Periods 1, 2 and 5 exhibit a small persistence in correlations, while the remaining periods 3,
4, 6, 7 and 8 strong exhibit persistence in correlations.

Clustering coefficient for signed networks

We apply the extension proposed by Costantini and Perugini (2014). The corresponding
clustering coefficients per regime are displayed in the table below.

See Table 13
Obviously, consideringweights’ signs yields narrower standardized clustering coefficients

because of the interplay between negative and positive node influences. Indeed, positive
edges illustrate amplifying connections (e.g., risk frailty) within the network, and interact
with negative edges that reflect inhibiting connections (e.g., risk resistance). Such interplay
balances the network (shock spreading versus shock mitigation).
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Table 11 Regime-specific estimates of DCC GARCH(1,1) parameters for Europe

Regime (from/to) Index ,1 ,1 a b

2000-01-03/

2000-05-31

EURO100

DAX

CAC40

CACALL

MIB

SMI

AEX

IBEX35

OMXS

0.1373

0.0000

0.2253

0.3153

0.4789

0.0000

0.0000

0.1041

0.0089

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.9216

0.9979
0.9157
0.8748
0.8168
0.9958
0.9965
0.9515
0.9990

0.0322 0.0000

2000-06-01/

2001-03-23

EURO100

DAX

CAC40

CACALL

MIB

SMI

AEX

IBEX35

OMXS

0.0778

0.0619

0.0043

1.1596

0.0178

0.0243

0.1016

0.0629

0.0055

0.1128

0.1058
0.0054

0.1821
0.0720
0.1301
0.1525
0.0737
0.0000

0.8351
0.8693
0.9936
0.0000

0.9232
0.8629
0.7532
0.9047
0.9990

0.0131 0.0000

2001-03-24/

2001-04-18

EURO100

DAX

CAC40

CACALL

MIB

SMI

AEX

IBEX35

OMXS

0.9560
4.6516
0.4937
0.3559
0.2016
1.5515
2.3929
2.5414
6.7310

0.0806
0.1708
0.0684
0.0656
0.1525
0.2869
0.1540
0.2787
0.2832

0.7368
0.3763
0.8423
0.8612
0.8048
0.1946
0.3436
0.1986
0.1708

0.0198 0.4012

2001-04-19/

2003-03-14

EURO100

DAX

CAC40

CACALL

MIB

SMI

AEX

IBEX35

OMXS

0.0438
0.0478

0.0513
0.0439

0.0587
0.0395
0.0405

0.0700
0.2180

0.1325
0.1130
0.1091
0.1151
0.1084
0.1604
0.1280
0.0853
0.0845

0.8638
0.8860
0.8862
0.8798
0.8794
0.8386
0.8710
0.8961
0.8404

0.0265 0.8704

2003-03-15/

2007-10-08

EURO100

DAX

CAC40

CACALL

MIB

SMI

AEX

IBEX35

OMXS

0.0216
0.0269
0.0273
0.0276
0.0233
0.0235
0.0239
0.0542
0.0506

0.0832
0.0804
0.0795
0.0834
0.0714
0.0849
0.0968
0.1137
0.1001

0.8843
0.8937
0.8891
0.8802
0.8917
0.8804
0.8761
0.8139
0.8447

0.0202 0.9468

2007-10-09/

2022-07-08

EURO100

DAX

CAC40

CACALL

MIB

SMI

AEX

IBEX35

OMXS

0.0282
0.0353
0.0399
0.0354
0.0594
0.0346
0.0252
0.0492
0.0162

0.1276
0.0981
0.1210
0.1238
0.1075
0.1304
0.1150
0.1171
0.0895

0.8562
0.8839
0.8620
0.8602
0.8716
0.8403
0.8716
0.8644
0.9018

0.0298 0.9293

Significant parameters at a 5% level are highlighted in bold. Significant parameters at a 10% level are italic and
in bold. Stationarity and mean reversion conditions of DCC GARCH(1,1) parameter estimates are satisfied
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Table 12 Regime-specific estimates of DCC GARCH(1,1) parameters for Asia

Regime (from/to) Index ,1 ,1 a b

2000-01-03/

2000-02-16

NIKKEI225

ASX200

HSI

KOSPI

TOPIX

BSE30

1.1076
0.7065
3.2819
5.3658
1.6842
2.0053

0.1726
0.4201
0.3996
0.2451
0.1715
0.1654

0.3025
0.3159
0.2586
0.2879
0.3329
0.2553

0.0720 0.2553

2000-02-17/

2000-04-21

NIKKEI225

ASX200

HSI

KOSPI

TOPIX

BSE30

0.6640
0.9277
3.9171
5.9086
2.4569
3.4711

0.1573
0.3761
0.1147
0.0735
0.2629
0.2452

0.6298
0.1996
0.3323
0.3975
0.1940
0.4087

0.0285 0.3596

2000-04-22/

2002-06-24

NIKKEI225

ASX200

HSI

KOSPI

TOPIX

BSE30

0.1414
0.0342
0.0594
0.7119

0.0991
0.2765

0.0704
0.0744
0.0687
0.0694
0.0660
0.2058

0.8764
0.8573
0.9086
0.7892
0.8798
0.6969

0.0081 0.9091

2002-06-25/

2004-04-21

NIKKEI225

ASX200

HSI

KOSPI

TOPIX

BSE30

0.0444
0.0026

0.0008

0.0308

0.0491
0.0358

0.0328
0.0508
0.0000

0.0460
0.0381
0.0889

0.9436
0.9415
0.9990
0.9400
0.9287
0.8863

0.0204 0.8394

2004-04-22/

2004-05-17

NIKKEI225

ASX200

HSI

KOSPI

TOPIX

BSE30

0.2314
0.1186
1.2969
3.9320
0.8056
15.5237

0.2936
0.0869
0.4208
0.3722
0.3485
0.3165

0.6898
0.5170
0.2668
0.4087
0.5221
0.2800

0.1019 0.2625

2004-05-18/

2007-07-24

NIKKEI225

ASX200

HSI

KOSPI

TOPIX

BSE30

0.0202
0.0063

0.0122
0.0413
0.0225
0.0677

0.0644
0.0628
0.0305
0.0547
0.0761
0.0946

0.9154
0.9258
0.9527
0.9115
0.8996
0.8553

0.0134 0.9457

2007-07-25/

2009-11-25

NIKKEI225

ASX200

HSI

KOSPI

TOPIX

BSE30

0.0971
0.1301
0.1866
0.0444

0.0919

0.1667

0.1108
0.1180
0.1253
0.0757
0.1061
0.1183

0.8651
0.8332
0.8459
0.9107
0.8678
0.8614

0.0140 0.9299

2009-11-26/

2022-07-08

NIKKEI225

ASX200

HSI

KOSPI

TOPIX

BSE30

0.0701
0.0207
0.0242
0.0243
0.0622
0.0195

0.109
0.0965
0.0536
0.0873
0.1172
0.0725

0.8491
0.8783
0.9287
0.8858
0.8388
0.9096

0.0168 0.9657

Significant parameters at a 5% level are highlighted in bold. Significant parameters at a 10% level are italic and
in bold. Stationarity and mean reversion conditions of DCC GARCH(1,1) parameter estimates are satisfied
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Table 13 Extension of Onnela
et al. (2005) clustering
coefficients to signed networks

Stock Index Regime 1 Regime 2 Regime 3

SP500 0.0617 0.0145 − 0.0022

NYSE 0.0079 0.0182 0.0061

TSX 0.0237 − 0.0065 0.0322

BOVESPA 0.0428 0.0053 0.0275

IPC 0.0207 0.0030 0.0512

EURO100 0.0340 0.0539 0.0538

DAX 0.0302 0.0253 0.0648

CAC40 0.0377 0.0767 0.1030

CACALL 0.0396 0.0698 0.0544

MIB 0.0408 0.0372 0.0967

SMI 0.0049 0.0122 0.0461

AEX 0.0341 0.0324 0.0555

IBEX35 0.0072 0.0204 0.0753

OMXS 0.0436 0.0137 0.0331

NIKKEI225 0.0086 0.0049 0.0388

ASX200 0.0342 0.0423 0.0325

HSI 0.0171 − 0.0162 0.0257

KOSPI 0.0137 0.0176 0.0400

TOPIX − 0.0104 − 0.0178 0.0391

BSE30 0.0222 0.0302 0.1783
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