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Abstract
In recent years, academia’s attention has gradually shifted toward non-point-valued time
series volatility forecasting models in the finance big data environment. This paper uses
random set theory to define the random fuzzy sets-valued assets returns and propose a new
Generalized Autoregressive Conditional Heteroskedasticity (GARCH)-type model named
the Set-GARCH model, which describes the evolution of sets-valued returns time series
volatility.We conceptualize such amodel in both cases of correlated and uncorrelated returns.
We discuss the subtraction operation rule, the model specification, and the maximum likeli-
hood estimation method for the Set-GARCH model and its derivative model. We also define
how to convert the volatility of fuzzy sets-valued returns to the volatility of real returns. Using
long timespan daily/weekly/monthly oil, S&P500, and gold returns data, both in-sample and
out-of-sample empirical applications demonstrate that the volatility prediction ability of
the Set-GARCH model and its derivative outperforms the point-valued GARCH-type mod-
els, conditional autoregressive range-type models, and two hotly debated interval-valued
volatility models.
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1 Introduction

Volatility forecasting plays a critical role in derivatives valuation, portfolio management, and
risk measurement. It attracts extensive research to improve the forecasting performance of
time series volatility models (Barunik et al., 2016; Ma et al., 2019). The development of big
data technology and artificial intelligence has been significantly changing the development
process of econometric volatility estimationmodels (Papanagnou&Matthews-Amune, 2018;
Zhu et al., 2023). The advancement of financial storage technologies enables investors and
quantitative traders to effectively utilize all the available trading information, such as highest
prices, lowest prices, closing prices, etc., for risk management or arbitrage purposes (Tre-
leaven et al., 2013; Nuti et al., 2011). This required improvement of the previous paradigm
which solely uses closing prices or point-valued trading data for risk management. This study
proposes a new Generalized Autoregressive Conditional Heteroskedasticity (GARCH)-type
volatility forecasting model based on random set theory and sets-valued time series, namely,
the Set-GARCH model.

In the context of estimating volatility, GARCHmodels remain as themost popular devices.
Both uni-variate and multi-variate GARCH employ point-valued data, i.e., each moment of
the price time series of the GARCH model is a point, most notably the closing price-based
returns (Hansen & Lunde, 2005). However, with the development of big data in finance, the
structure of price data of assets has changed (Treleaven et al., 2013; Nuti et al., 2011). All
trading information during the day t would inform investors’ decision-making i.e., investors
may short (long) assets at any price during the trading day, rather than only focusing on the
closing price. Conditional autoregressive range (CARR) groupmodels reveal the relationship
between return volatility and highest, and lowest price (Chou, 2005; Parkinson, 1980). The
diverse set of price information facilitates volatility forecasting in the context of big data
(Lyócsa et al., 2021; Molnár, 2012).

The non-point-valued data, particularly the study of interval-valued price characteristics
or interval-valued price forecasting, has been prevalent in recent years (Buansing et al., 2020;
Joshi & Kumar, 2016; Maia & de Carvalho, 2011). Interval-valued data may provide more
information than traditional point-valued GARCH or CARR groupmodels and could be used
to forecast price volatility. The interval-valued models, such as auto-regressive conditional
interval (ACI) groupmodels andGARCHmodelwith interval-valued variables (Int-GARCH)
(Han et al., 2016; He et al., 2021; Sun et al., 2018, 2020; Yang et al., 2016), could explain
the evolution of an interval-valued defined price proxy. The use of interval-valued variables
and the incorporation of random set theory distinguishes these models from the standard
multivariate time series model.1

However, the interval-valuedvariables are only drivenby information regarding the highest
and lowest prices. Couldwe use a sets-valued variable to represent prices and construct a sets-
valued time series volatility model by incorporating additional price information (such as the
closing price)? The interval-valued variable contains all possible price points with “equal”
weighting, but do these points actually weigh equally? Could we use sets-valued information
to achieve our desired point values? Motivated by these considerations, we intend to develop

1 “Appendix A” introduces the GARCH, CARR, ACI and Int-GARCH model mentioned above in details.
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a sets-valued time series model to describe the dynamics of return dynamics and, from this,
to forecast volatility.

The key element of ourmethodology is using random fuzzy sets to characterize the stochas-
tic process of returns and calculate volatility. Numerous studies have characterized prices (or
returns) with fuzzy sets-valued data (Atsalakis et al., 2019; Ezbakhe & Pérez-Foguet, 2021;
Nowak & Romaniuk, 2010), it is proven that fuzzy set-valued data contains more informa-
tion than interval-valued data.2 Not only does using fuzzy sets-valued prices as a proxy for
one day’s returns incorporate multiple types of price information, but it also highlights key
information with a continuum of membership grades (Hocine et al., 2020; Jones et al., 2022).
However, forecasting volatility with fuzzy sets-valued data is still underdeveloped due to its
complexity. Given that returns are stochastic, fuzzy sets-valued data must be transformed into
random fuzzy sets-valued time series, followed by evolution equations describing the time-
varying pattern of volatility. Some studies have combined the fuzzy set concept with GARCH
models, but in their models, prices are still point-valued or are not considered random fuzzy
sets-valued (D’Urso et al., 2016).

In this vein, we construct fuzzy sets-valued prices in a stochastic manner and propose
a novel Set-GARCH model to address the aforementioned issues in volatility forecasting.
We incorporate additional price information into a set and predict the volatility of returns by
influencing the time series of sets-valued variables. The highest log-price Ht , lowest log-price
Lt , and closing log-price Ct of a day are integrated into a set to form a sets-valued stochastic
variable, that is, P̃ t = {Ht , Lt ,Ct }. The Set-GARCH model has a similar volatility-driven
equations structure to the GARCH model in general. Moreover, the addition/multiplication
operation and the distance measurement of the Set-GARCH model are performed in the
random fuzzy set space (Körner & Näther, 2002; Li et al., 2013; Sun et al., 2020; Wang et al.,
2016). In this study’s practice of volatility forecasting, the Set-GARCH model is adaptable
to different derivative family models and has demonstrated distinctive advantages.

The main contributions of this paper are two-fold. First, we established a theoretical
framework for modelling dynamic volatility using random fuzzy sets-valued returns data.
We propose the Set-GARCH model based on the characteristics of data structure and sets-
valued operation rules. The Set-GARCHmodel extends the ACI model (Sun et al., 2018), the
Int-GARCH model (Sun et al., 2020), and other interval-valued time series models (Wu et
al., 2023; González-Rivera & Lin, 2013; Gonzalez-Rivera et al., 2020) from interval-valued
data to sets-valued data. Our Set-GARCH model is, to the best of our knowledge, the first
model to describe the dynamic volatility of sets-valued returns time series.

Second, we address the specification limits and extended specification space in the Set-
GARCH model and thus propose the Set-GARCH-LR model as a variation We utilized the
crude oil, gold, and S&P500 index, which are representative of the market, using daily,
weekly, and monthly trading data, respectively, for the applications of the proposed models.
In-sample and out-of-sample volatility forecasting demonstrate that the Set-GARCH model
and Set-GARCH-LR model outperform conventional GARCH-type, CARR-type, ACI, and
Int-GARCH models.

The rest of the paper is organized as follows. In Sect. 2, the definition of fuzzy sets-valued
returns is provided. The specifications of our proposed Set-GARCH models is provided in
Sect. 3. Section4 presents an application of empirical data. The paper concludes with Sect. 5.

2 Li et al. (2013) provides a clear explanation of the relationship between fuzzy set-valued data and interval-
valued data. When the fuzziness of fuzzy set-valued data degrades, it can be transformed into set-valued data.
Set-valued data includes interval-valued data since intervals are a type of set value. Therefore, fuzzy set-valued
data encompasses interval-valued data, and the computational properties of fuzzy set-valued data are equally
applicable to interval-valued data.

123



Annals of Operations Research

“Appendix A” illustrates the benchmark volatility models used to validate the superiority
of our approach by separating the point-valued and interval-valued cases. “Appendix B”
contains an empirical example of a relevant technical point of the methodological section.

2 Construction of fuzzy sets-valued returns

2.1 Preliminaries of the fuzzy sets-valued random variable

We begin with defining the returns in the sets-valued variable space firstly by random set
theory (Li & Guan, 2007; Li et al., 2013).

2.1.1 Sets-valued variable

Let P0(R
d) the family of all non-empty subsets of Rd . For any Ã ∈ P0(R

n), we first define
the membership function m Ã(x) : Rd → 0, 1 as

m Ã =
{
0 , x /∈ Ã
1 , x ∈ Ã

(1)

Membership function m Ã reflects whether x belongs to Ã. For Ã, B̃ ∈ P0(R
d), we have the

addition and scalar multiplication operation:

Ã ⊕ B̃ = {a + b : a ∈ Ã, b ∈ B̃}
λ Ã = {λa : a ∈ Ã}, λ ∈ R (2)

interval-valued subtraction consists of two concepts. Similarly, this issue will arise when we
discuss sets-valued subtraction. Sets-valued subtraction rule of ACI model (named Type-
A subtraction in this paper) considered that the sets-valued subtraction operation should
be the inverse of the sets-valued addition operation, shown in Eq.(3). However, the Sets-
valued subtraction rule of Int-GARCH models (named Type-B subtraction in this paper)
consider that the subtraction rule subtraction rule should be strictly adhered to in the set of
basic arithmetic operations, shown in Eq.(4). This paper provides a detailed explanation in
“Appendix A” on the ACI and Int-GARCH model, which are two benchmark models, along
with their respective subtraction rules.

Type-A Subtraction:

Ã �A B̃ = {x ∈ R
d , x + B̃ ⊂ Ã} (3)

where x + B̃ = {y = x + b : b ∈ B̃}.
Type-B Subtraction:

Ã �B B̃ = Ã ⊕ (−1) ⊗ B̃ (4)

where ⊕ and ⊗ are addition and scalar operations in Eq. (2). We pay close attention to
the subtraction operation because the choice of subtraction, i.e., Type-A substract of ACI
model and Type-B subtract of Int-GARCH model will directly impact the structure of our
sets-valued volatility model.
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2.1.2 Fuzzy sets-valued variable

Afuzzy set ÃonRd is identified by itsmembership functionm Ã(x) : Rd → [0, 1], wherem Ã
is interpreted as the degree of acceptance that x ∈ R

d is a member of Ã. Unlike the situation
described in Eq. (1), whether x belongs to Ã is not definite, but exists in an ambiguous
“either/or” state.

The crisp set

Ãα
.= {x ∈ R

d : m Ã ≥ α}, α ∈ [0, 1] (5)

is called the α-cut of Ã. For α = 0, the support of Ã is defined as Ãα=0
.= cl{x ∈ R

d :
m Ã > 0} .= supp Ã. For any two fuzzy sets Ã with membership function mA(x) and B̃
with mB(x), they have addition operation Ã ⊕ B̃ = C̃ and scalar multiplication operation
λ ⊗ Ã = D̃. Given the membership function of C̃ is mC (x) and B̃ is mD(x), we have that

mC (x) = sup{α ∈ [0, 1] : x ∈ mA(x)α + x ∈ mB(x)α}
mD(x) =

{
mA( x

λ
) , λ 	= 0

0̃ ∈ R
d , λ = 0

(6)

Similar to the sets-valued variable case, given Ã� B̃ = Ẽ, Ẽ has the membership function
mE (x). The subtraction � of fuzzy sets-valued variables could also be defined in Type-A
Subtraction like Eqs. (A13) and (3),

mE (X) =mA(x) �A mB(x)

=sup{α ∈ [0, 1] : x ∈ mA(x)α − mB(x)α}, x ∈ R
d (7)

or Type-B subtraction like Eqs. (A15) and (4)

mE (xE ) = mA(xA) � mB(xB) = Sup
xA−xB=xE

I n f {mA(xA),mB(xB)} (8)

Fuzzy sets-valued Type-A subtraction is consistent with the idea of the ACI model. Fuzzy
sets-valued Type-B subtraction is consistent with the idea of the Int-GARCH model and a
classic fuzzy sets-valued subtraction rule (Zhü 2014).

2.1.3 The distance of fuzzy sets-valued variable

We give the concept of the support function first. Given SM̃
.= Sup

y∈ Ã

< u, y >, u ∈ S
d−1,

where M̃ is a sets-valued variable, <,> is a scalar-inner product, and S
d−1 is the unit

sphere of Rd . The support function of a fuzzy sets-valued variable Ã is SÃ(u, α)
.= SÃα(u)

,

α ∈ (0, 1], u ∈ S
d−1 and Ãα is α-cut of Ã in Eq. (5).

Using the concept of support function (Körner & Näther, 2002; Li et al., 2013), a popular
ρ2 distance measure between fuzzy sets-valued variable Ã and B̃ is

ρ2( Ã, B̃) =
∫

[0,1]2×(Sd−1)2

((SÃ(u, α) − SB̃(u, α))(SÃ(v, β) − SB̃(v, β)))dK (u, α, v, β)

(9)
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where dK (u, α, v, β) is a kernel, and
∫

[0,1]2×(Sd−1)2

dK (u, α, v, β) = 1. Moreover, the inner

product between fuzzy sets-valued variable Ã and B̃ is

< Ã, B̃ >
.=

∫

[0,1]2×(Sd−1)2

SÃ(u, α)SB̃(v, β)dK (u, α, v, β) (10)

The expectation of any fuzzy random set X̃ , denoted by E(X̃), is also a fuzzy set-variable in
such that for every α ∈ [0, 1], i.e.,

(E(X̃))α = cl{E f : f ∈ SX̃α
} (11)

The variance of X̃ can be defined as

D(X̃) =
∫

[0,1]2×(Sd−1)2

COV (SX̃ (u, α), SX̃ (v, β))dK (u, α, v, β)

= E(< X̃, X̃ >)− < E(X̃),E(X̃) > (12)

where < X̃, X̃ > is a random variable, and the definition of fuzzy sets-valued inner product
can be referred to Eq. (10).

2.2 Fuzzy sets-valued price and returns

We build the highest log-price Ht , lowest log-price Lt , and closing log-price Ct information
of day t into a set to form a sets-valued stochastic variable, that is, P̃ t = {Ht , Lt ,Ct }.
The range of asset price movements is formed by the Ht and Lt of the asset. Compared to
the opening and settlement prices, the closing price of an asset contains richer information
relating to investors’ market perceptions. The closing price often reflects the level of market
attention from investors towards a particular stock and can serve as an indicator of the expected
movement for the next trading day.3 Therefore, the performance of the closing price is worth
paying attention to. In empirical research, most studies use Ht , Lt , and Ct as the LR-fuzzy
set-valued price for asset prices (Moussa et al., 2014; Hassan, 2009).

We give P̃ t with membership function m P̃ t
(x) into a classic LR-type fuzzy set-valued

variable as

m P̃ t
(x) =

{
φ( Ct−x

Ct−Lt
; p) , Lt ≤ x ≤ Ct

φ( x−Ct
Ht−Ct

; p) , Ht ≥ x ≥ Ct
(13)

where φ(x; p) .= e−(−x)p−e−1

1−e−1 1(x ≤ 0) + e−x p−e−1

1−e−1 1(x > 0) and x ∈ [Lt , Ht ]. The benefit
of choosing such a φ(x; p) is that the parameter p can control the morphology of P̃(x)t to
produce rich variations (see “Appendix B”).

Let the closing price returns of day t be RC,t = Ct − Ct−1, similarly, the highest returns
of day t are RH ,t = Ht − Lt−1 and the lowest returns of day t are RL,t = Lt − Ht−1, then

3 Examples include the pricing of financial derivatives, which are typically based on the closing prices of
stocks or commodities. Mutual fund net asset values (NAV) and performance are also often calculated using
closing prices (Comerton-Forde & Putniņš 2011), Suen and Wan (2022). Moreover, when paired with the
open price, these price levels provide crucial reference points for measuring strength and identifying key price
levels to validate trade ideas or biases.

123



Annals of Operations Research

a sets-valued stochastic variable R̃t under Type-B subtraction of Eq. (8) is also a fuzzy
sets-valued variable with the membership function as

R̃t = P̃ t �B P̃ t−1 = P̃ t ⊗ −1 ⊗ P̃ t−1

m P̃ t
(x) =

{
φ(

RC,t−x
Rl,t

; p) , RC,t − Rl,t ≤ x ≤ RC,t

φ(
x−RC,t
Rr,t

; p) , RC,t ≤ x < RC,t + Rr ,t
(14)

where Rl,t = Ct − Lt and Rr ,t = Ht − Ct . We will explain in Sect. 2.3 why we chose the
Type-B subtraction of Eq. (7) instead of the Type-A subtraction of Eq. (8). A numerical
example in “Appendix B” shows the membership function trajectory of our fuzzy sets-valued
returns.

There are three benefits of using the fuzzy sets-valued variable of Eq. (13): (1) Compared
with GARCH-type models’ point valued-returns, it expands the Ht and Lt information.
(2) Compared with CARR-type models’ range based point-valued returns, it expands the
“trend” information of Ht and Lt . (3) Compared with ACI and Int-GARCHmodels’ interval
valued-returns, Eq. (13) can flexibly highlight the closing price information.

2.3 Why do we choose the Type-B subtraction?

If the Type-A subtraction (like the ACI model as introduced in Section A.2) is used in the
calculation of returns when Lt − Ht ≤ Lt − Lt−1 ≤ Ct −Ct−1 ≤ Ht − Ht−1 ≤ Ht − Lt−1

and Lt − Ht−1 ≤ Ht − Ht−1 ≤ Ct − Ct−1 ≤ Lt − Lt−1 ≤ Ht − Lt−1,4 the fuzzy sets-
valued returns calculated by the Type-A subtraction R̃T ype−A with membership function
mType−A(x) could be

R̃T ype−A = P̃ t �A P̃ t−1

mType−A(x) =
{

φ(
RC,t−x

Rl,t−(Lt−Lt−1)
; p) , Lt − Lt−1 ≤ x ≤ RC,t

φ(
x−RC,t

(Ht−Ht−1)−Rr,t
; p) , RC,t ≤ x < Ht − Ht−1

(15)

If we ignore the fuzziness of P̃T ype−A,t or assume a relatively high value of p in Eq. (15),

R̃T ype−A,t will become R̃
∗
T ype−A,t , i.e.,

R̃
∗
T ype−A,t = [Lt − Lt−1, Ht − Ht−1] = [ P̃ L,t − P̃ L,t−1, P̃ R,t − P̃ R,t−1] (16)

Due to Lt ≤ Ct ≤ Ht and Lt−1 ≤ Ct−1 ≤ Ht−1, under the Type-A subtraction, we cannot
guarantee that RC,t = Ct − Ct−1 ∈ Supp R̃

∗
T ype−A,t . It would be contrary to our original

intent to absorb closing price data. Further, let �m(x; p) be the difference between m P̃ t
(x)

in Eq. (14) and mType−A(x) in Eq. (15), i.e.,

�m(x; p) =
{
m P̃ t

(x) − mType−A(x) , Lt − Lt−1 ≤ x ≤ Ht − Ht−1

m P̃ t
(x) , others

(17)

then Fig 1 demonstrates the trajectory of �m(x; p).
Fig 1 demonstrates the trajectory of �m(x; p). When a real-world trading point-valued

returns rt is in [Lt −Ht−1, Lt −Lt−1] and [Ht −Ht−1, Ht −Lt−1], as p in Eq. (17) increases,
the degree of membership of rt to R̃t of Eq. (14) will surpass P̃T pyr−A,t of Eq. (15) to a
greater extent. When the point-valued returns rt is in [Lt − Lt−1, Ht − Ht−1], the greater
4 This is a necessary condition for type-A subtraction to hold.
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Fig. 1 The trajectory of �m(x; p) with different value of p

the p, the smaller the difference between the membership of rt for R̃t and the membership
for R̃T pye−A,t .

From the perspective of information absorption, when p is smaller, the difference between
selecting Type-A and Type-B subtraction is smaller; and when p is larger, selecting the Type-
B subtraction has a higher degree of information absorption on [Lt − Ht−1, Lt − Lt−1] and
[Ht −Ht−1, Ht −Lt−1]. This actually implies that we should regard the setting of p as a prior
parameter, rather than putting it into our model and then estimating its value. All in all, if real-
world trading returns rt fall in the interval [Lt−Ht−1, Lt−Lt−1] and [Ht−Ht−1, Ht−Lt−1],
the returns defined by Type-A subtraction (like the ACI model) cannot cover rt . This goes
against the original intent of the model we wish to create, and we also find that the preceding
parameter p in Eq. (13).

2.4 Discussion of K(u, ˛, v, ˇ)

Here we discuss the setting of K (u, α, v, β) in fuzzy sets-valued returns (He et al., 2021; Sun
et al., 2018; Yang et al., 2016), which is used in scalar-inner product, distance, and variance
calculation of R̃t from Eqs. (9). to (12). Given that the sets-valued volatility model in this
study is for uni-variate fuzzy sets-valued time series, we have Sd−1 = S

0 = {1,−1} in the
support function in Eq. (9). The u and v in Eq. (9) and K (u, α, v, β) only takes 1 or −1 in
this study. We have (He et al., 2021; Sun et al., 2020, 2018; Yang et al., 2016)

K (u, α, v, β) =
⎧⎨
⎩
a · δα(β)dα , u = v = 1
b · δα(β)dα , u = v = −1
c · δα(β)dα , u = −v

(18)
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where δα(β) = 1 when α = β and δα(β) = 0 when α 	= β. For the settings of a, b, c, a
classic form is Körner and Näther (2002); Näther (2001)

a = 1 − 2
∫ 1

0
tdψ(t) +

∫ 1

0
t2dψ(t)

b =
∫ 1

0
t2dψ(t)

c =
∫ 1

0
tdψ(t) −

∫ 1

0
t2dψ(t) (19)

where ψ(t) is the weight function. We set ψ(t) = t in this study, thus in Eqs. (18) and (19),
we have a = 1/3, b = 1/3, and c = 1/6. The α-cut of R̃t is R̃α,t , and

R̃α,t = [RC,t − φ−1(α)Rl,t , RC,t + φ−1(α)Rr ,t ] (20)

where φ(x) is defined in Eq. (13). Combining Eqs. (10) and (20), the scalar inner product is

< R̃t , R̃t >a=1/3,b=1/3,c=1/6

=
∫ 1

0
(a(RC,t + φ−1(α)Rr ,t )

2 + b(φ−1(α)Rl,t − RC,t )
2)dα

+
∫ 1

0
(2c(RC,t + φ−1(α)Rr ,t )(φ

−1(α)Rl,t − RC,t ))dα

= (a + b − 2c)R2
C,t + aR2

r ,t

∫ 1

0
(φ−1(α))2dα + bR2

l,t

∫ 1

0
(φ−1(α))2dα

+ 2RC,t Rr ,t (a − c)
∫ 1

0
φ−1(α)α + 2RC,t Rl,t (c − b)

∫ 1

0
φ−1(α)α

+ 2cRl,t Rr ,t

∫ 1

0
(φ−1(α))2dα (21)

given the distance between R̃t and 0̃ is ρ2(R̃t , 0̃) =< R̃t , R̃t >
.= ‖R̃t‖2ρ2 , and E(SR̃t

) =
S
ER̃t

, the variance D(R̃t ) is,

D(R̃t ) = E(< R̃t , R̃t >a= 1
3 ,b= 1

3 ,c= 1
6
)− < ER̃t ,ER̃t >a= 1

3 ,b= 1
3 ,c= 1

6

= (a + b − 2c)D(RC,t ) + aD(Rr ,t )

∫ 1

0
(φ−1(α))2dα

+ bD(Rl,t )

∫ 1

0
(φ−1(α))2dα + 2COV (RC,t , Rr ,t )(a − c)

∫ 1

0
φ−1(α)dα

+ 2COV (RC,t , Rl,t )(c − b)
∫ 1

0
φ−1(α)dα

+ 2COV (Rl,t , Rr ,t )c
∫ 1

0
(φ−1(α))2dα (22)
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3 The random fuzzy sets-valued based GARCHmodel

3.1 Grounding ideas on themodel setting

The modeling philosophy embodied in Eq. (A5) in subsection A.1.1 implies that changes
in current observations are driven by historical observations. If we also wish to apply this
modeling philosophy to the proposed model with parameter θ , one classic mode is:

R̃t = f (R̃t−1, R̃t−2, . . . , ε̃t−1, ε̃t−2, . . . ; θ) + ε̃t (23)

In Eq. (23), at time t , the term f (R̃t−1, R̃t−2, . . . , ε̃t−1, ε̃t−2, . . . ; θ) is not stochastic any
more, but is still a fuzzy sets-valued number, while ε̃t is a random sets-valued variable that
gives randomness to R̃t .

Let r̃ t = {r̃T , r̃T−1, r̃T−2, . . . , r̃1, r̃0} the observations of R̃t , and r̃ t is a fuzzy sets-
valued variable. Under the classic model structure of Eq. (23), when one uses the minimum
loss function method to estimate the parameter θ with some loss function �, the estimated
parameter θ under type-A and type-B subtraction is

θ̂T ype−A = argmin
θ

T∑
i=1

�(r̃ i �A f (r̃ i−1, r̃ i−2, . . . , ε̃i−1, ε̃i−2, . . . ; θ))

θ̂T ype−B = argmin
θ

T∑
i=1

�(r̃ i �B f (r̃ i−1, r̃ i−2, . . . , ε̃i−1, ε̃i−2, . . . ; θ)) (24)

respectively. However, given a real parameter θ∗, we will never find a θ̂T ype−B = θ∗ under
minimum loss function method, because r̃ i �B f (r̃ i−1, r̃ i−2, . . . , ε̃i−1, ε̃i−2, . . . ; θ) 	= 0̃.
The reason is that if we have Ã = B̃, then Ã �A B̃ = 0̃, while Ã �B B̃ 	= 0̃. However, we
could find a θ̂T ype−A = θ∗.

Using maximum likelihood (ML) for parameter estimation, Type-B subtraction suffers
from the same issue. Given that both R̃t and r̃ t in Eq. (23) are random variables, one could
maximize the likelihood function of R̃t and r̃ t to estimate θ in Eq. (23). Given the fact that

R̃t �A f (R̃t−1, R̃t−2, . . . , ε̃t−1, ε̃t−2, . . . ; θ) = ε̃t

R̃t �B f (R̃t−1, R̃t−2, . . . , ε̃t−1, ε̃t−2, . . . ; θ) 	= ε̃t (25)

let the density function of R̃t and ε̃t be f R̃ and fε̃ , whether we maximize f R̃ to obtain θ̂ R̃ or

maximize fε̃ to get θ̂ ε̃ . It should have θ̂ R̃ = θ̂ ε̃ . However, there is a paradox in the following
maximum likelihood estimation function under model structure of Eq. (23),

θ̂ R̃
T ype−A = argmax

θ

T∏
t−1

f R̃(θ |r̃ t ) = argmax
θ

T∏
t−1

fε̃(θ |ε̃t ) = θ̂ ε̃
T ype−A

θ̂ R̃
T ype−B = argmax

θ

T∏
t−1

f R̃(θ |r̃ t ) = argmax
θ

T∏
t−1

fε̃(θ |ε̃t ) 	= θ̂ ε̃
T ype−B (26)

To solve this problem in the estimation process, one solution is to drive the dynamics of R̃t

in the following model structure instead of Eq. (23)’s structure as

R̃t = ε̃t

ε̃t ∼ fε̃t (x̃; θ) (27)
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Where the evolution and randomness of R̃t are all comes from a fuzzy sets-valued stochastic
variable ε̃t with time-varying probability density fε̃t (x̃; θ). It could be found that the problem
in Eq. (26) is resolved, because we set R̃t = ε̃t compulsively in Eq. (27). This kind of setting
is similar to the Int-GARCH model and most GARCH-type models. In Sect. 4, we discover
that the model structure of Eq. (27) is still capable of predicting volatility accurately. The
limitation of the model setting does not necessarily impact the proposed model’s predictive
power.

Recalling Eq. (27), R̃t = ε̃t , ε̃t ∼ fε̃t (x̃;θ), if one wants to determine the change of ε̃t , a
straightforward idea from Eq. (A5) of GARCH-type models is to construct a time-varying
parameter θt ,5 and use the past observations of ε̃t (or R̃t ) to obtain the θt . From an economic
perspective, whether we use point values or the fuzzy set values as described in this paper
to represent returns (or the innovations in returns), we must carefully consider the fact that
current returns (or the innovations in returns) may be driven by past values and exhibit
correlation with past values. The concept of lagged terms influencing current terms is widely
applied in various econometric models (Creal et al., 2013; Koop & Korobilis, 2013).

Similar to the GARCH-type model, the type of distribution law of ε̃t will not change
over time. Let the parameter set θt in Eq. (27) is θt = ν1,t , ν2,t , . . . , νn,t and we provide the
following general model structure:

R̃t = ε̃t , ε̃t = ε̃t (ν1,t , ν2,t , . . . , νn,t )

ν1,t ∼ l1,t (θν1,t ), θν1,t = f1(R̃t−1, R̃t−2, . . . , θν1,t−1 , θν1,t−2 , . . .)

. . .

νn,t ∼ ln,t (θνn,t ), θνn,t = fn(R̃t−1, R̃t−2, . . . , θν1,t−1 , θν1,t−2 , . . .) (28)

where ν1,t , ν2,t , . . . , νn,t are the random scalar parameters in ε̃t and with density func-
tion l1,t , l2,t , . . . , ln,t . Following the GARCH-type model, in Eq. (28), the scalar parameters
θν1,t , θν2,t , . . . , θνn,t in density functions l1,t , l2,t , . . . , ln,t are obtained by the past observed
R̃t and lag-terms of themselves θν1,t , θν2,t , . . . , θνn,t .

We further explore the drivers of R̃t change. When we get the prior parameter p in Eq.
(13), the shape of R̃t depends on RC,t , Rr ,t , and Rl,t . The evolution of scalar value RC , t is
first obtained by the past term of itself, and the distance between RC,t and 0. The ρ2 distance
of Eq. (9) between R̃t and 0̃ represents the degree of change in the overall price information
set, which we note it by a 2-norm form ‖R̃t‖2ρ2 . The overall change will also cause a change
in the distance between RC,t and 0. In this vein, we have

RC,t = g1(RC,t−1, RC,t−2, . . . , ‖R̃t−1‖2ρ2 , ‖R̃t−2‖2ρ2 , . . .) (29)

If RC,t reflects a “standard” returns level, then Rr ,t and Rl,t reflect the degree of extreme
deviation from “standard” returns level in the positive and negative directions, respectively.6

This implies that the current Rr ,t may be related to the past Rr ,t−1 and the past Rl,t−1. The
case is same for Rl,t . Therefore, we set the following drive mode:

Rl,t = g2(Rl,t−1, Rl,t−2, . . . , Rr ,t−1, Rr ,t−2, . . . , ‖R̃t−1‖2ρ2 , ‖R̃t−2‖2ρ2 , . . .)
Rr ,t = g3(Rr ,t−1, Rr ,t−2, . . . , Rl,t−1, Rl,t−2, . . . , ‖R̃t−1‖2ρ2 , ‖R̃t−2‖2ρ2 , . . .) (30)

5 In Eq. (A5) the σt is time-varying and treated as a time-varying parameter.
6 If there is a large Rr ,t on day t , the probability of a large Ht on day t − 1 will also be high, which may
induce a large Rl,t on day t . Similarly, if there is a large Rr ,t on day t , it would show that investors have strong
intention to push asset prices up.
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where the form of functions g1, g2, and g3 will be discussed later. From Eq. (28) to Eq. (30),
we have

R̃t = ε̃t

ε̃t ∼ fε̃t (RC,t−1, RC,t−2, . . . , Rl,t−1, Rl,t−2, . . . , Rr ,t−1,

Rr ,t−2, . . . , ‖R̃t−1‖2ρ2 , ‖R̃t−2‖2ρ2 , . . .) (31)

In this vein, we could determine the evolution of conditional random sets-valued R̃t |�t−1

(whereby �t = RC,t , RC,t−1, . . . , Rl,t , Rl,t−1, . . . , Rr ,t , Rr ,t−1, . . . is information set at
time t) and calculate the in-sample volatility D(R̃t |�t−1) and out-of-sample volatility
D(R̃t |�t−1) using Eq. (12).

3.2 Relationship betweenD(R̃t) and�t

The D(R̃t ) is the volatility of fuzzy sets-valued returns R̃t , which is not exactly the daily
volatility (Sun et al., 2020). We need to perform an “average operation” for the “degree of
fuzziness” R̃t to get σt . First, we use a fuzziness control parameter ζ ∈ [0, 1] to control the
“degree of fuzziness” of R̃t , that is:

R̃(ζ )t =
⎧⎨
⎩

φ
(
RC,t−x
ζ Rl,t

; p
)

, RC,t − Rl,t ≤ x ≤ RC,t

φ
(
x−RC,t
ζ Rr,t

; p
)

, RC,t ≤ x < RC,t + Rr ,t

(32)

The smaller the value of ζ , the better the RC,t is able to represent the fuzzy information of
this day. In particular, when ζ is 0, fuzzy sets-valued R̃(ζ )t collapses to RC,t . Following
Sun et al. (2020), in this study, we define an aggregate sets-valued volatility σ set

t , which
reflects the average change from accepting all possible returns information and assigning a
certain membership, to accept only RC,t . For any fuzzy sets-valued returns R̃(ζ )t under a
set information reception level ζ , we give ζ a certain weight W (ζ ). Then, the volatility σ set

t
defined in our study is

σ set
t =

∫ 1
0 D(R̃(ζ )t )dW (ζ )∫ 1

0 dW (ζ )
(33)

We set a general weight function W (ζ ) = −ζ + 1, ζ ∈ [0, 1] in this study.

3.3 Model specification

In accordance with the analysis framework of subsections 3.1 and 3.2, we present our
proposed random sets-valued GARCH model, Set-GARCH model, and its derivatives.

3.3.1 Set-GARCHmodel

We set θ = ν1, ν2, ν3 in Eq. (28) as θ = RC,t , Rl,t , Rr ,t , which also means RC,t , Rl,t , and
Rr ,t would be stochastic processes. Thus, Eq. (27) can be expressed as:

R̃t = ε̃t , ε̃t = ε̃t (RC,t , Rl,t , Rr ,t ) (34)
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Following the GARCH-type models, we set lq,t in Eq. (28) to be a normal distribution
N (0, 1).7 Thus, we have:

RC,t ∼
i .i .d

√
htN (0, 1)

ht = ωh +
Ph∑
i=1

αh,i ht−i +
Qh∑
i=1

βh,i (‖R̃t−1‖2ρ2 − 1

3
R2
C,t−1) +

Rh∑
i=1

γh,i R
2
C,t−1 (35)

Given that ‖R̃t−1‖2ρ2 has a term of 1
3 R

2
C,t from Eq. (21), which reveals that we should remove

this term in ‖R̃t−1‖2ρ2 , because the
∑Rh

i=1 γh,i R2
C,t−1 term in ht also has R2

C,t . Since Rr ,t and
Rl,t must be positive numbers, we set l2,t and l3,t in Eq. (28) as Gamma distributions �1, θl2,t
and �1, θl3,t , which can flexibly control the variance and mean of l2,t and l2,t in Eq. (28),
while reducing the complexity of the model. We have E(l2,t ) = 1/θl2,t and D(l2,t ) = 1/θ2l2,t .
We denote 1/θl2,t as λl,t and 1/θl3,t as λr ,t . Here, we first give a simple setting, that is, Rl,t and
Rr ,t are independent of each other, or COV (Rl,t , Rr ,t ) = 0. This assumption is not strong,
because in the analysis of Eq. (30) we only discussed some possible influence paths of Rl,t

and Rr ,t . In Sect. 3.3.2, we will discuss the case where Rl,t and Rr ,t are not independent of
each other. According to the setting of Eqs. (28) and (30) we provide the following structure:

Rl,t ∼
i .i .d.

λl,t�(1, 1), Rr ,t ∼
i .i .d.

λr ,t�(1, 1)

λl,t = �(ωl +
Pl∑
i=1

αl,iλl,t−i +
Ql∑
i=1

βl,i‖R̃t−1‖ρ2 +
Rl∑
i=1

γl,t Rl,t−i

λr ,t = �(ωr +
Pr∑
i=1

αr ,iλr ,t−i +
Qr∑
i=1

βr ,i‖R̃t−1‖ρ2 +
Rr∑
i=1

γr ,t Rr ,t−i (36)

where � : R → (0, inf] is a conversion function to ensure that λl,t and λr ,t are positive
values. Compared to Eq. (35), Eq. (36) selects ‖R̃t−1‖ρ2 term instead of ‖R̃t−1‖2ρ2 term,
given that distance, rather than the square of the distance, is more suitable for describing
Rl,t and Rr ,t . Now we have the proposed Set-GARCH model, which means a GARCH-type
model for sets-valued time series as:

R̃t = ε̃t , ε̃t = ε̃t (RC,t , Rl,t , Rr ,t )

RC,t ∼
i .i .d

√
htN (0, 1), Rl,t ∼

i .i .d.
λl,t�(1, 1), Rr ,t ∼

i .i .d.
λr ,t�(1, 1)

ht = ωh +
Ph∑
i=1

αh,i ht−i +
Qh∑
i=1

βh,i (‖R̃t−i‖2ρ2 − 1

3
R2
C,t−i ) +

Rh∑
i=1

γh,i R
2
C,t−i

λl,t = �(ωl +
Pl∑
i=1

αl,iλl,t−i +
Ql∑
i=1

βl,i‖R̃t−i‖ρ2 +
Rl∑
i=1

γl,i Rl,t−i )

λr ,t = �(ωr +
Pr∑
i=1

αr ,iλr ,t−i +
Qr∑
i=1

βr ,i‖R̃t−i‖ρ2 +
Rr∑
i=1

γr ,i Rr ,t−i ) (37)

7 In model settings with uncertainty and large sample scenarios, the normal distribution can maintain good
asymptotic properties (White, 1982).
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Given COV (Rl,t , RC,t ) = 0, COV (RC,t , Rr ,t ) = 0, and COV (Rl,t , Rr ,t ) = 0, now we
give the set volatility σ set

t of Eq. (33) of Set-GARCH model as:

σ set
t =

∫ 1
0 D(R̃(ζ )t )dW (ζ )∫ 1

0 dW (ζ )

= 1

3
ht + λ2l,t + λ2r ,t

18

∫ 1

0
(φ−1(α; p))2dα (38)

where
∫ 1
0 (φ−1(α; p))2dα depends on p and ht is in Eq. (35), and λ2l,t + λ2r ,t are as in Eq.

(36).

3.3.2 Set-GARCH-LR model

One assumption in the Set-GARCH model is COV (Rl,t , Rr ,t ) = 0. Now we remove this
condition and consider that Rl,t and Rr ,t are not independent. We call the proposed model
in this case as Set-GARCH-LR model.

We consider using a joint bivariate Gamma distribution �2 to characterize Rl,t and Rr ,t

(Furman, 2008), where the marginal distribution Rl,t or Rr ,t is a univariate Gamma distribu-
tion. This setup follows the CARR model’s specification of the distribution of returns’ range
(Chou, 2005) (also see “Appendix A.1.2”).

Let R = (Y0, Y1, Y2)′ is a tri-variate vector and Yi ∼ �(γi , αi ), which has the density of

fYi (y) = e−αi y yγi−1α
γi
i

�(yi )
, y > 0, αi > 0, γi > 0. Let A =

[
α0/α1 1 0
α0/α2 α1/α2 1

]
, (Rl , Rr )

′ =
AY , the joint distribution (Rl , Rr ) is a bi-variate gamma distribution which is controlled
by the parameter {α0, α1, α2, γ0, γ1, γ2}. Let x∗ = min{α1

α0
Rl ,

α2
α0
Rr }, we have the density

function of bivariate Gamma:

f (x1, x2) = e−α2x2

(
x2 − α1

α2
x1

)γ2−1 2∏
j=0

(
α

γ j
j

�(γ j )

) ∫ x∗

0
yγ0−1
0 (x1 − α0

α1
y0)

γ1−1dy0

(39)

According to the definition of Eq. (39), the marginal distribution of Rl,t and Rr ,t is Gamma
distribution, and the expectation and covariance of Rl,t and Rr ,t is E(Rl) = γ0+γ1

α1
, E(Rr ) =

γ0+γ1+γ2
α2

, D(Rl) = γ0+γ1

α2
1

, D(Rr ) = γ0+γ1+γ2

α2
2

, and COV (Rl , Rr ) = γ0+γ1
α1α2

. In this paper,

we reparametrize Eq. (39). Let γ0 = 1, α0 = 1, γ̄1 = γ0 + γ1, and γ̄2 = γ0 + γ1 + γ2, and
thus we have:

f(Rl ,Rr )′(x1, x2) = e−α2x2(x2 − α1

α2
x1)

γ̄2−γ̄1−1 α
γ̄1−1
1

�(γ̄1 − 1)

· α
γ̄2−1
2

�(γ̄2 − 1)

∫ x∗

0
(x1 − 1

α1
y0)

γ̄1−2dy0 (40)

We keep γ̄1 and γ̄1 time-invariant, and let α1 and α2 change dynamically in Eq. (40). Under
this condition, we simplified Eq. (39) while ensuring that the marginal distribution of Rl,t and
Rr ,t has a gamma distribution �(γ, α), and more importantly, we can maintain the dynamics
of the first and second moments of Rl,t and Rr ,t . Further, we have:

(Rl,t , Rr ,t ) ∼
i .i .d.

�2(α1,t , α2,t , γ̄1, γ̄2)
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[
α1,t

α2,t

]
=

[
ω1

ω2

]
+

Plr∑
i=1

[
a11,i 0
0 a22,i

] [
α∗
1,t−1

α∗
2,t−1

]
+

Qlr∑
i=1

[
b1,i
b2,i

]
◦

[ ‖R̃t−i‖ρ2

‖R̃t−i‖ρ2

]

+
Rlr∑
i=1

[
c11,i c12,i
c21,i c22,i

] [
Rl,t−i

Rr ,t−i

]

α∗
1,t = �(α1,t ), α∗

2,t = �(α2,t ) (41)

where ◦ is Hadamard product, �2 is the density function of Eq. (40) with four parameters,
and �(x) is a transformation function � : R → (0,∞]. Combining Eqs. (34), (35), and
(41), we propose the derivative of Set-GARCH named Set-GARCH-LR model as:

R̃t = ε̃t , ε̃t = ε̃t (RC,t , Rl,t , Rr ,t )

RC,t ∼
i .i .d

√
htN (0, 1)

ht = ωh +
Ph∑
i=1

αh,i ht−i +
Qh∑
i=1

βh,i (‖R̃t−i‖2ρ2 − 1

3
R2
C,t−i ) +

Rh∑
i=1

γh,i R
2
C,t−i

(Rl,t , Rr ,t ) ∼
i .i .d.

�2(α1,t , α2,t , γ̄1, γ̄2)

[
α1,t

α2,t

]
=

[
ω1

ω2

]
+

Plr∑
i=1

[
a11,i 0
0 a22,i

] [
α∗
1,t−i

α∗
2,t−i

]
+

Qlr∑
i=1

[
b1,i
b2,i

]
◦

[ ‖R̃t−i‖ρ2

‖R̃t−i‖ρ2

]

+
Rlr∑
i=1

[
c11,i c12,i
c21,i c22,i

] [
Rl,t−i

Rr ,t−i

]

α∗
1,t = �(α1,t ), α∗

2,t = �(α2,t ) (42)

The “LR” in the name of Set-GARCH-LRmeans that it reveals the dependence between Rl,t

and Rr ,t . Recalling Eq. (33), the calculated by the Set-GARCH-LR model is:

σ set
t = 1

3
ht + 1

18
(

γ̄1

α2
1,t

+ γ̄2

α2
2,t

+ γ̄1

α1,tα2,t
)

∫ 1

0
(φ−1(α; p))2dα (43)

where
∫ 1
0 (φ−1(α; p))2dα depends on p. The ht is in Eq. (35), and γ̄1, γ̄2, α1,t and α2,t in

Eq. (41).

3.4 Parameter estimation

Given that R̃t = ε̃t , we can directly use historical observations for maximum like-
lihood estimation. For the Set-GARCH model, given that f(RC ,Rl ,Rr ) = fRC fRl fRr ,
the log-likelihood function llSet−GARCH w.r.t. the parameter set θ Set−GARCH =
(ωh,αh,βh, γ h, ωl ,αl ,βl , γ l , ωr ,αr ,βr , γ r ) is

llSet−GARCH (ωh,αh,βh, γ h, ωl ,αl ,βl , γ l , ωr ,αr ,βr , γ r |r̃ t )

=
T∑
t=1

ln fRC (x |�t−1) +
T∑
t=1

ln fRl (x |�t−1) +
T∑
t=1

ln fRr (x |�t−1)

∝ −1

2

T∑
t=1

ln ht −
T∑
t=1

r2C,t

2ht
−

T∑
t=1

ln λl,t −
T∑
t=1

rl,t
λl,t

−
T∑
t=1

ln λr ,t −
T∑
t=1

Rr ,t

λr ,t
(44)
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Thus, we can deconstruct the maximum likelihood estimation process into three sub-
maximum likelihood estimation terms, i.e.,

(ωh,αh,βh, γ h) = argmax{−1

2

T∑
t=1

ln ht −
T∑
t=1

r2C,t

2ht
}

(ωl ,αl ,βl , γ l) = argmax{−
T∑
t=1

ln λl,t −
T∑
t=1

rl,t
λl,t

}

(ωr ,αr ,βr , γ r ) = argmax{−
T∑
t=1

ln λr ,t −
T∑
t=1

rr ,t
λr ,t

} (45)

For the Set-GARCH-LR model, given that f(RC ,Rl ,Rr ) = fRC f(Rl ,Rr ), the
likelihood function llSet−GARCH−LR w.r.t. parameter set θ Set−GARCH−LR =
(ωh,αh,βh, γ h, ω1, ω2, γ̄1, γ̄2, aPlr , bQlr , cRlr ) is:

llSet−GARCH−LR(ωh,αh,βh, γ h, ω1, ω2, γ̄1, γ̄2, aPlr , bQlr , cRlr |r̃ t )

=
T∑
t−1

ln fRC (x |�t−1) +
T∑
t−1

ln f(Rl ,Rr )(x, y|�t−1)

∝ −1

2

T∑
t=1

ln ht −
T∑
t=1

r2C,t

2ht
−

T∑
t=1

α2,t rr ,t + (γ̄2 − γ̄1 − 1)
T∑
t=1

ln(rr ,t − α1,t

α2,t
rl,t )

+ (γ̄1 − 1)
T∑
t=1

ln α1,t + (γ̄2 − γ̄1)

T∑
t=1

ln α2,t −
T∑
t=1

ln�(γ̄1 − 1)

+
T∑
t=1

ln�(γ̄2 − γ̄1) +
T∑
t=1

ln(
∫ x∗

0
(rl,t − y0

α1,t
)γ̄1−2dy0) (46)

We can still find the optimal parameters to be estimated using a method similar to Eq. (45),
that is:

(ωh,αh,βh, γ h) = argmax{−1

2

T∑
t=1

ln ht −
T∑
t=1

r2C,t

2ht
}

(ω1, ω2, γ̄1, γ̄2, aPlr , bQlr , cRlr )

= argmax{−
T∑
t=1

α2,t rr ,t + (γ̄2 − γ̄1 − 1)
T∑
t=1

ln(rr ,t − α1,t

α2,t
rl,t )

+ (γ̄1 − 1)
T∑
t=1

ln α1,t + (γ̄2 − γ̄1)

T∑
t=1

ln α2,t −
T∑
t=1

ln�(γ̄1 − 1)

+
T∑
t=1

ln�(γ̄2 − γ̄1) +
T∑
t=1

ln(
∫ x∗

0
(rl,t − y0

α1,t
)γ̄1−2dy0)} (47)

where x∗ = min{α1
α0
Rl ,

α2
α0
Rr }. The scoring direction search optimization method is used to

solve Eqs. (45) and (47). Let θ∗
Set−GARCH and θ∗

Set−GARCH−LR be the real parameters of
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the Set-GARCH and Set-GARCH-LR model. We have that:

(T → ∞)θ̂ Set−GARCH
P→ θ∗

Set−GARCH

(T → ∞)θ̂ Set−GARCH−LR
P→ θ∗

Set−GARCH−LR

(T → ∞)T
1
2 (θ̂ Set−GARCH − θ∗

Set−GARCH )
D→N

(
0,−

[
E

∂2llSet−GARCH

∂θ∗2
Set−GARCH )

]′)

(T → ∞)T
1
2 (θ̂ Set−GARCH−LR − θ∗

Set−GARCH−LR)

D→N
(
0,−

[
E

∂2llSet−GARCH−LR

∂θ∗2
Set−GARCH−LR)

]′)
(48)

where −[E ∂2llSet−GARCH

∂θ∗2
Set−GARCH )

]′ and −[E ∂2llSet−GARCH−LR

∂θ∗2
Set−GARCH−LR)

]′ is the Fisher information matrix

of llSet−GARCH in Eq. (44) and llSet−GARCH−LR in Eq. (46) at θ∗
Set−GARCH and

θ∗
Set−GARCH−LR , respectively. We can compute the numerical solution of Eq. (48) to obtain

the standard errors of the estimated parameter.

4 An empirical application

4.1 Data selection

Weselect daily,weekly, andmonthly data fromDatastream forWTI oil futures, S&P500 stock
index, and NYMEX gold futures to demonstrate the in-sample and out-of-sample volatility
forecasting and returns interval forecasting capabilities of the proposed Set-GARCH model.
Futures prices are chosen so that they represent the highest, lowest, and closing prices. The
selection of Data is shown in Table 1.

As shown in Table 1, the SD of the highest price, lowest price, and closing price of an asset
would almost increase as the timescale lengthens. This is because of the cumulative change
in asset prices in a month is always greater than the change in a day or week. The daily data
is a great test of the forecasting performance of a model that incorporates range information,
but we would like to investigate further how our Set-GARCH or Set-GARCH-LR models
perform in this environment of high- and low-frequency data. Figure2 clearly depicts the
high, low, and closing price (returns) trajectories for the same sample period since 2018 for
crude oil. If we only consider the closing price, we appear to lose a great deal of information.

4.2 In-sample volatility forecasting

Without loss of generality,we set the Set-GARCHmodel specification of proposed as follows:

R̃t = ε̃t , ε̃t = ε̃t (RC,t , Rl,t , Rr ,t )

RC,t ∼
i .i .d

√
htN (0, 1), Rl,t ∼

i .i .d.
λl,t�(1, 1), Rr ,t ∼

i .i .d.
λr ,t�(1, 1)

ht = ωh + αh,1ht−1 + βh,1(‖R̃t−1‖2ρ2 − 1

3
R2
C,t−1) + γh,1R

2
C,t−1

λl,t = (ωl + αl,1λl,t−1 + βl,1‖R̃t−1‖ρ2 + γl,1Rl,t−1)
2 + 0.001

λr ,t = (ωr + αr ,1λr ,t−1 + βr ,1‖R̃t−1‖ρ2 + γr ,1Rr ,t−1)
2 + 0.001 (49)
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Fig. 2 The trajectory of monthly Ct , Ht , Lt , RC,t , RL,t and RH ,t of oil, S&P500, and gold since 2018

Similarly, we set each order in the Set-GARCH-LR model to 1, i.e.,

R̃t = ε̃t , ε̃t = ε̃t (RC,t , Rl,t , Rr ,t )

RC,t ∼
i .i .d

√
htN (0, 1)

ht = ωh + αh,1ht−1 + βh,1(‖R̃t−1‖2ρ2 − 1

3
R2
C,t−i ) + γh,1R

2
C,t−1

(Rl,t , Rr ,t ) ∼
i .i .d.

�2(α1,t , α2,t , γ̄1, γ̄2)

[
α1,t

α2,t

]
=

[
ω1

ω2

]
+

[
a11,1 0
0 a22,1

] [
α∗
1,t−1

α∗
2,t−1

]
+

[
b1,1
b2,1

]
◦

[ ‖R̃t−1‖ρ2

‖R̃t−1‖ρ2

]

+
[
c11,1 c12,1
c21,1 c22,1

] [
Rl,t−1

Rr ,t−1

]

α∗
1,t = (α1,t )

2 + 0.001, α∗
2,t = (α2,t )

2 + 0.001 (50)

Meanwhile, we set the prior parameter p reflecting the shape of the fuzzy set to three different
values of 1, 2, and 10. Tables 2, 3, 4, 5, 6 and 7 demonstrate the parameter estimation results.

βh,1 shows how item ‖R̃t−1‖2ρ2 − 1
3 R

2
C,t−1 in the Set-GARCHand Set-GARCH-LRmodel

affects the change of ht , which is also an important coefficient revealing the usage of fuzzy
sets-valued variable. We found that for the same asset, βh,1 is mostly insignificant under
the daily data, while under the weekly and monthly data, βh,1 is statistically significant. In
Sect. 4.1, we found that as the data frequency decreases, the volatility of the Ht and Lt also
becomes greater. The ‖R̃t−1‖2ρ2 − 1

3 R
2
C,t−1 changes in the weekly and monthly frequencies

and will provide more information. In contrast to the daily frequency, which helps to predict
the ht under the weekly and monthly data frequency.
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In Set-GARCHmodel, the βl,1 and βr ,1 shows how ‖R̃t−1‖ρ2 affects the expectation (and
also variance) of Rr ,t and Rl,t . From Tables 2, 3 and 4, in almost all assets and different
time scales, βl,1 and βr ,1 are significant, indicating that the influence of fuzzy set numerical
variables on Rr ,t and Rl,t do not change with the data frequency. Further, ‖R̃t−1‖ρ2 always
have a positive impact on λl,t and λr ,t in our empirical application, which is different the
pattern of the influence of ‖R̃t−1‖ρ2 on ht . The ht , λl,t , and λr ,t demonstrate strong dynamic
patterns which drive the change of R̃t . This implies the rationality of our settings on the
Set-GARCH model.

The Eqs. (45) and (47) imply that the ωh , αh,1, βh,1, γh,1 in both Set-GARCH and Set-
GARCH-LR models are at the same value, which is demonstrated in Tables 5, 6 and 7.
The coefficients b1,1 and b2,1 of the Set-GARCH-LR model are almost all significant under
different assets and different sample frequencies, which shows that when Rr ,t and Rl,t are
not independent, ‖R̃t−1‖ρ2 would affect the α1,t and α2,t parameters in the distribution in a
time-varying manner. This demonstrates once again the importance of our returns being in
fuzzy random set values.

Compared to the Set-GARCH model, the c12,1 and c21,1 coefficients in the Set-GARCH-
LR model are also significant in most cases from Tables 5, 6 and 7. This illustrates the
interaction of Rr ,t and Rl,t of assets, and this interaction will not disappear due to the changes
in data frequency. In summary, themodel settings of Set-GARCH and Set-GARCH-LRmake
full use of R̃t−1 past information to drive changes of R̃t .

We select the following two loss functions to measure the volatility forecasting accuracy
(Patton, 2011), and we denote the squared returns σ 2

t the proxy σ̂ 2 the predicted volatility of
real volatility (Wang et al., 2020; Zhang et al., 2020):

MSE − SD = 1

N

N∑
i=1

(σ̂ − σi )
2

MAE = 1

N

N∑
i=1

|σ̂ 2 − σ 2
i | (51)

TheModel Confidence Set (MCS) test (Hansen et al., 2011) is utilized to determine if amodel
could achieve an acceptance set with a specified confidence level. The MCS statistics range
between 0 and 1. The greater the number, the higher the acceptance of one model (Wang et
al., 2020, 2016). For CARR group models and the ACI model, after calculating their range,
we use Ht−Lt

4 ln 2 to calculate their in-sample predicted volatility.
In general, compared to the benchmark model, the Set-GARCH and Set-GARCH-LR

models exhibit significantly superior in-sample volatility prediction capabilities. The Set-
GARCH and Set-GARCH-LR models demonstrate superior in-sample volatility prediction
capabilities than daily orweekly data, particularly as the sample frequency of assets decreases
(e.g., monthly data). For the same frequency and asset, the Set-GARCH-LR model’s in-
sample prediction performance is frequently superior to that of the Set-GARCH model.
These observations indicate that the degree of absorption of sets-valued information in the
sample enables the model to better fit the in-sample data. Through the evidence presented in
Tables 8, 9 and 10, we will further elaborate this claim.

Referring to the analysis in sections A.1 and 2, Set-GARCH and Set-GARCH-LRmodels
have captured “range” and “level” information of Ht and Lt , and the “point” information
of RC,t . The GARCH group models only contain the “point” information, while the ACI
and Int-GARCH models do not contain the “point” information of RC,t . The CARR group
models only engage the “range” information of Ht and Lt , and the “point” information
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Fig. 3 Real volatility and fitted volatility of best model under MSE-SD and MAE loss function

of RC,t . Provided that the ’ range” and “level” information of RL,t and RH ,t contain rich
information (or a relatively large change), it would certainly improve in-sample forecasting.
Compared to daily andweekly time intervals, the changes of RL,t and RH ,t inmonthly data are
more profound. The complete information empowers the Set-GARCH and Set-GARCH-LR
models to close the information gap existing in the benchmark models.

The empirical results also show that the in-sample prediction performance of the Set-
GARCH-LR model is superior to that of the Set-GARCH model when it was applied to
crude oil. Crude oil is a highly volatile asset (Cerqueti & Fanelli, 2021; Cerqueti et al.,
2020), and the mechanism of change between RL,t and RH ,t is more significant, which
could make Set-GARCH-LR superior for in-sample forecasting.

The high value of p means that we increase the degree of membership of returns value
close to the RL,t and RH ,t in R̃t . From the performance of in-sample prediction, the Set-
GARCH and Set-GARCH-LR models with p = 1 and p = 2 have better fitting results.
Compared to the ACI and Int-GARCH models that fairly absorb all the interval-valued
information, the small p controls our “degree ofmembership for various points in the interval-
valued information. As shown in Fig. 3, there is no difference between R̃t and interval-valued
variables for extremely large p values, making our model inferior to ACI and Int-GARCH.
Figure3 demonstrates the real volatility and best models’ fitted volatility.

4.3 Out-of-sample volatility forecasting

Weuse the rolling 300-lengthwindowone-step forward predictionmethod to evaluate the out-
of-sample volatility prediction performance of the Set-GARCHmodel and the Set-GARCH-
LR model. From Eqs. (49) and (50), the one-step head σ̂set,t (1) is:

σ̂set,t (1) = 1

3
ĥt (1)

λ̂2l,t (1) + λ̂2r ,t (1)

18

∫ 1

0
(φ−1(a; p))2dα

ĥt (1) = ω̂h + α̂h,1ht + β̂h,1(‖R̃t−1‖2ρ2 − R2
C,t

3
) + γ̂h,1R

2
C,t

λ̂l,t (1) = (ω̂l + α̂l,1λl,t + β̂l,1‖R̃t−1‖ρ2 + γ̂l,1Rl,t )
2 + 0.001
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λ̂r ,t (1) = (ω̂r + α̂r ,1λr ,t + β̂r ,1‖R̃t−1‖ρ2 + γ̂r ,1Rr ,t )
2 + 0.001 (52)

and the one-step forward prediction of the Set-GARCH-LR is also calculated in a similar
way.

As evidenced in Tables 11 and 13, the Set-GARCH group models generally demonstrate a
superior ability to predict out-of-sample volatility compared to the benchmark models. With
some exceptions, the CARR-B model exhibits certain predictive advantages for weekly data.

Unlike the Set-GARCH or the Set-GARCH-LR model when p = 1 or p = 2, the out-
of-sample prediction effect of the Set-GARCH model when the prior parameter equals to
10 is not as satisfactory in our empirical applications. This may be because that a higher
p value increases the absorption of Rl and Rr information in the model in out-of-sample
predictions. This may lead to instability in the Set-GARCH model. The poor prediction
performance of the Set-GARCH model under this large p is consistent with the poor out-of-
sample volatility prediction performance of the Int-GARCH model presented in Tables 11,
12 and 13. According to the analysis in Sect. 2.3, R̃t turns into an interval number random
variable equivalent to the Int-GARCH model when p is large. At this time, we approximate
that Int-GARCH and Set-GARCH (-LR) models under p = 10 absorb the same information.
We note that the prediction results of Int-GARCH and Set-GARCH(-LR) are not satisfactory.
This may suggest that extra interval information will not necessarily improve the model’s
performance in volatility prediction in the out-of-sample analysis.

Under p = 1 or p = 2, the out-of-sample volatility prediction of Set-GARCH or Set-
GARCH-LR model performs well. The out-of-sample prediction performance of GARCH
group models is significantly inferior to our proposed Set-GARCH (-LR) model. This is
largely due to the lack of information processed by the GARCHmodel, which only considers
RC,t information. This confirms the importance of Set-GARCH (-LR) absorbing RL,t and
RR,t information in the out-of-sample volatility prediction.

As discussed in Sect. 2.3, when p is small, the information absorbed by Set-GARCH-LR
is closed to the information absorbed by the ACI model. In most cases, the Set-GARCH
(-LR) out-of-sample prediction of p = 1 or p = 2, performs better than the ACI model. It
may imply that the calculation mode of σ Set

t is better than the calculation mode of Ht−Lt
4 ln 2 of

the ACI model. Recalling Eqs. (38) and (43), σ Set
t is a linear combination of term D(RC ),

D(Rr ), D(Rl), COV (RC , Rr ), COV (RC , Rl), and COV (Rl , Rr ).8 Different combinations
of information are blended together to give σ Set

t an enhanced predictive capability. Different
sample frequencies do not appear to have a substantial effect on the Set-GARCH (-LR)
model’s ability to predict out-of-sample volatility.

5 Conclusion

In the last few decades, the data structure of the financial time series volatility model has
evolved significantly fromGARCH-type models with point-valued data to CARR-type mod-
els with range-valued data, the ACI model and Int-GARCH model with interval-valued
data using random set theory etc. This study proposes a Set-GARCH model that drives the
volatility changes in random fuzzy sets-valued time series. Adapting to the rules of random
set operations, the proposed Set-GARCH model exhibits accurate volatility prediction.

We construct the sets-valued asset price using a fuzzy LR-form set. We present a general
and adaptable form of the membership function with a prior parameter p that controls the

8 Noting that Eq. (33) is just a linear transformation.
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shape of these functions. We examine the impact of various subtraction rules on sets-valued
returns. This paper provides the inner-product definition, distance definition, and variance
definition between two random fuzzy sets-valued returns.

Based on the sets-valued variable subtraction rule selected, we discuss the specifications
that amodel driving sets-valuedvariable changes should have andprovide the specifications of
ourSet-GARCHmodel.Wealsopropose theSet-GARCH-LRmodel as a derivative of theSet-
GARCHmodel to increase the flexibility of structure settings. The Set-GARCH differs from
Set-GARCH-LR in that the latter assumes that the two shape parameters in fuzzy sets-valued
returns are dependent and follow bivariate Gamma distribution. Maximum likelihood could
be utilized to estimate both the Set-GARCH and the Set-GARCH-LR models’ parameters.
In addition, we provide a transforming formula between the variance of fuzzy sets- valued
returns and the volatility of real returns.

In the empirical applications, we compare the volatility forecasting performance of the
Set-GARCH model to that of three classic GARCH-type models, three classic CARR-type
models, the interval valued-ACI model, and the interval valued Int-GARCH model using
daily/weekly/monthly trading data for oil, gold, and the S&P500. The proposed Set-GARCH
model/Set-GARCH-LR model performs well in both in-sample and out-of-sample volatility
prediction tests.

This paper also points out the possible directions for future research on the development of
sets-valued time series volatility models. First, to develop sets-valued time series models that
could absorb more information on price aggregation (our model only absorbs three prices).
Second, to develop an extension to the multivariate sets-valued time series.
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Appendix A: The benchmarkmodels

This Appendix illustrates the volatility models that are taken as benchmark frameworks. We
treat separately the point-valued and the interval-valued models.

A.1 Point-Valued volatility models

A.1.1 GARCH-type models

ClassicalGARCH-typemodels incorporate the point-valued data. Assuming the closing price
at day t is Pt and the point-valued returns series yt = logPt − logPt−1, μt is some mean
process or just a constant with innovation εt , the mean equation of GARCH-type models is

yt = μt + εt

εt = νtσt (A1)
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The σt is the standard deviation (SD) of returns yt at day t . The variance equation,
which describes the evolution of σt varies across different GARCH-type models. We select
GARCH, E-GARCH, and GJR-GARCH as the three benchmark models, and their respective
specifications are listed below (Hansen & Lunde, 2005; Escobar-Anel et al., 2021).

Benchmark model 1, GARCH(1,1) model:

σ 2 = ω + α1ε
2
t−1 + β1ε

2
t−1 (A2)

Benchmark model 2, EGARCH(1,1) model:

lnσ 2 = ω + α1(‖εt−1‖ − E(‖εt−1‖)) + β1ε
2
t−1 (A3)

Benchmark model 3, GJR-GARCH(1,1) model:

σ 2 = ω + α1ε
2
t−1 + γ1 I (εt−1 < 0)ε2t−1 + β1ε

2
t−1 (A4)

where I (εt < 0) = 1 if εt < 0 and ω, α1, β1 and γ1 are scalar parameters. Following the
variance equations from Eq. (A2) to Eq. (A4), GARCH-type models use the square of past
volatility σ 2

t−i and and past innovation ε2t− j to determine the change of current volatility σ 2
t

as

σ 2
t = f (σ 2

t−1, σ
2
t−2, . . . ,Dt−1(ε

2
t−1),Dt−1(ε

2
t−1), . . .) (A5)

The σ 2
t is calculated using the information of the point valued-returns yt , and only the point

valued-operation in the Euclidean space is used.

A.1.2 Conditional Autoregressive Range (CARR)-type models

The point-valued data structure will lose a substantial amount of price information, and it is
challenging to serve as a proxy for diverse and extensive investor behaviors. A substantial
amount of research has centered on using range-valued (which is also a point-valued-data)
information incorporating the highest and lowest prices at day t to estimate volatility σ 2

t
(Parkinson, 1980; Lin et al., 2012). Let Rt be the log-price range of day t as

Rt = ln(max
τ

Pτ,t ) − ln(min
τ

Pτ,t ), τ = 1, 2, . . . , T (A6)

where τ is the intraday timing of the day t . The CARR model could describe the returns

volatility σ 2
t by R2

t
4ln2 (Chou, 2005; Parkinson, 1980). The mean equation of Eq. (A6) is

Rt = λtεt

ε ∼
i .i .d

(0, 1) (A7)

Benchmark model 4, CARR(1,1) model:

λt = ω + α1Rt−1 + β1λt−1 (A8)

The CARR model incorporates the day’s highest and lowest prices, but discards the closing
price information. In addition, CARR does not store trend information, only range informa-
tion.9 Two classic derivatives of CARR model is the CARR-A and CARR-B models (Chou,
2005).

Benchmark model 5, CARR-A(1,1) model:

λt = ω + α1Rt−1 + β1λt−1 + γ yt−1 + δ‖rt−1‖ (A9)

9 The ranges of [3, 5] has the same the ranges as [13, 15].
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Benchmark model 6, CARR-B(1,1) model:

λt = ω + α1Rt−1 + β1λt−1 + γ yt−1 (A10)

where the parameters ω, α1, β1, and γ are constant to be calibrated. Theoretically,
CARR-A and CARR-B absorb the highest price, the lowest price, and the closing price
to describe volatility changes. The CARR-type models convert the price information set
P̃ t = {Ht , Lt ,Ct } into multiple pointed-value data and compute the σ 2

t using point
valued-operation rules.

A.2 Interval-valued volatility models

A.2.1 Interval-valued variable and debates on subtraction operation rules

Noting that the returns of the day are equal to the log-price at day t minus the log-price
at day t − 1, the interval valued-returns could be defined in a similar way. The interval
valued-variable x̃ could be defined as x̃ = [a, b] = {x ∈ R‖a, b ∈ R}. A random interval
valued-variable X̃ on a probability space (�,F,P) is a measurable mapping X̃ : � → IR
where IR is the space of closed sets of ordered numbers in R. The addition ⊕ and scalar
multiplication ⊗ is

Ã ⊕ B̃ = [ ÃL + B̃L , ÃR + B̃R]
a ⊗ Ã = [a ÃL+, a ÃR] (A11)

where Ã = [ ÃL , ÃR], B̃ = [B̃L , B̃R], and ÃL , ÃR , B̃L , ÃR , a ∈ R, a ≥ 0. However, the
sets-valued time series model may be affected differently depending on the subtraction rule
chosen. The first kind of subtraction operation −H follows Hukuhara rule (Han et al., 2016;
Hukuhara, 1967; Sun et al., 2018), which is named as the Type-A subtraction in this paper.
in Type-A subtraction,

Ã −H B̃ = [ ÃL − B̃L , ÃR − B̃R] (A12)

Given the highest price Ht and lowest price Lt in day t , the interval valued-returns R̃t by
Type-A subtraction is

R̃t = [Lt − Lt−1, Ht − Ht−1] (A13)

Type-A subtraction is the inverse of addition, while it doesn’t follow the rules for set opera-
tions, i.e., for any operations ∗, Ã ∗ B̃ should be {x |A ∗ B, A ∈ [AL , AR], B = [BL , BR]}.
Here, we give the second kind of subtraction, Type-B subtraction � as

Ã � B̃ = [ ÃL − B̃R, ÃR − B̃L ] (A14)

In this vein, the interval valued-returns R̃t of day t is

Ã = [Lt − Ht−1, Ht − Lt−1] (A15)

As we will see in the followings, sets-valued random variables and intervals share similar
characteristics, and different subtraction rules can have varying outcomes.
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A.2.2 Autoregressive conditional interval (ACI) model

Range-valued time series retains only the “leve” information of the price range, whereas
“trend” information is lost (Han et al., 2016).10 Following the Type-A subtraction and the
interval valued-returns definition in Eq. (A13), Autoregressive conditional interval (ACI)
model obtains the dynamic evolution of interval valued-returns

Benchmark model 7, ACI(1,1) model: Ỹ t (Han et al., 2016; Yang et al., 2016; Sun et
al., 2018) as

Ỹ t = α0 + β0 Ĩ0 + β1Ỹ t + ũt (A16)

where the Ỹ t = [Ỹ L,t , Ỹ R,t ] and Ĩ t0 = [−1, 1] is the interval-valued variable. The α0, β0,
and β1 in Eq. (A16) are scalar values in R. The ũt is the interval-valued white noise process.
In the ACI model, there is no pointed-value operation rule, and the volatility σ 2

t at day t

could be computed as Ỹ R,t−Ỹ L,t
4ln2 . In both the evolution process equation and the parameter

estimation process in Eq. (A16), the pointed-value operation rule in Euclidean space is no
longer used. However, the random set theory’s operation rule is adopted.

A.2.3 Interval-valued GARCH (Int-GARCH) model

The interval-valuedGARCHmodel (Int-GARCH) determines the variance of interval-valued
returns Ỹ t defined by Eq. (A15) using a GARCH-type structure and Type-B subtraction as

Benchmark model 8, Int-GARCH(1,1) model:

Ỹ t = ht ⊗ ν̃t

ν̃t = [εt − ηt , εt + ηt ]
εt ∼

i .i .d
N (0, 1)

ηt ∼
i .i .d

�(k, 1)

ht = α0 + α1‖λt−1‖ + β1δt−1 + γ1ht−1 (A17)

where N is is a normal distribution, and � is a univariate Gamma distribution. The Int-
GARCH model uses the Type-B subtraction. Let an arbitrary return at position a in Ỹ t be
Ỹ t (a) = ht (εt + aηt ), a ∈ [−1, 1], the Int-GARCH volatility σ 2

t is the average of D(Ỹ t (a))

or
∫ 1
−1 D(Ỹ t (a))da (Sun et al., 2020). The Int-GARCH model failed to absorb the closing

price information.

Appendix B: A numerical example of Eq. (13)

The log-price of S&P 500 index at t =Oct 15, 2021 is 8.406445 (Ht ), 8.40014 (Lt ), 8.40545
(Ct ), and on Oct 14, 2021 is 8.398349 (Ht−1), 8.386344 (Lt−1), 8.398018 (Ct−1), the shape
of m P̃ t

(x) on Oct 14, 2021 is shown in Fig. 4. In Eq. (13), the p is a priori parameter,
and different values of p can represent the attitudes of different types of investors to risk
perception. As shown in Fig. 4, when p = 1, the membership of the closing price returns
RC,t in the fuzzy set R̃t is 1. The closer to the RL,t and RH ,t in the R̃t , the m P̃ t

(x) value

10 If the price range of one day is 3 to 8, and the price range of another day is 13 to 18, then the “level”
information of their ranges is the same, but the “trend” information is very different.
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Fig. 4 The sample of fuzzy sets-valued returns of S&P 500 on Oct 15, 2021

decreases nearly linearly to 0. R̃t is almost close to a triangular fuzzy sets-valued random
variable. When p = 2, the m P̃ t

(x) value shows a rapid increase in the process of changing
from the support set boundary ofm P̃ t

(x) to the RC,t . As p continues to increase, them P̃ t
(x)

value at left and right ends of R̃t gradually decreases, and R̃t gradually becomes an interval-
valued variable, making R̃t degenerate into an interval valued-random process (Sun et al.,
2020).

If we eliminate the fuzziness of R̃t in Eq. (13), or we set p in φ(x; p) to a very large
number, R̃t will degenerate into an interval-valued randomvariable R̃

∗
similar to Int-GARCH

model, and the definition of R̃
∗
can become:

R̃
∗ = [Lt − Ht−1, Ht − Lt−1] = [ P̃ L,t − P̃ R,t−1, P̃ R,t − P̃ L,t−1] (B18)

R̃
∗
becomes Supp R̃. Consequently, we can find that we have selected the same Type-

B Subtraction rule as in the Int-GARCH model. Indeed, the Type-B subtraction used in
Eqs. (13) and (B18) can give the returns value of day t (with specific membership) in all
real-world trading cases based on the price information of day t and day t − 1.
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