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Abstract

In recent years, academia’s attention has gradually shifted toward non-point-valued time
series volatility forecasting models in the finance big data environment. This paper uses
random set theory to define the random fuzzy sets-valued assets returns and propose a new
Generalized Autoregressive Conditional Heteroskedasticity (GARCH)-type model named
the Set-GARCH model, which describes the evolution of sets-valued returns time series
volatility. We conceptualize such a model in both cases of correlated and uncorrelated returns.
We discuss the subtraction operation rule, the model specification, and the maximum likeli-
hood estimation method for the Set-GARCH model and its derivative model. We also define
how to convert the volatility of fuzzy sets-valued returns to the volatility of real returns. Using
long timespan daily/weekly/monthly oil, S&P500, and gold returns data, both in-sample and
out-of-sample empirical applications demonstrate that the volatility prediction ability of
the Set-GARCH model and its derivative outperforms the point-valued GARCH-type mod-
els, conditional autoregressive range-type models, and two hotly debated interval-valued
volatility models.
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1 Introduction

Volatility forecasting plays a critical role in derivatives valuation, portfolio management, and
risk measurement. It attracts extensive research to improve the forecasting performance of
time series volatility models (Barunik et al., 2016; Ma et al., 2019). The development of big
data technology and artificial intelligence has been significantly changing the development
process of econometric volatility estimation models (Papanagnou & Matthews-Amune, 2018;
Zhu et al., 2023). The advancement of financial storage technologies enables investors and
quantitative traders to effectively utilize all the available trading information, such as highest
prices, lowest prices, closing prices, etc., for risk management or arbitrage purposes (Tre-
leaven et al., 2013; Nuti et al., 2011). This required improvement of the previous paradigm
which solely uses closing prices or point-valued trading data for risk management. This study
proposes a new Generalized Autoregressive Conditional Heteroskedasticity (GARCH)-type
volatility forecasting model based on random set theory and sets-valued time series, namely,
the Set-GARCH model.

In the context of estimating volatility, GARCH models remain as the most popular devices.
Both uni-variate and multi-variate GARCH employ point-valued data, i.e., each moment of
the price time series of the GARCH model is a point, most notably the closing price-based
returns (Hansen & Lunde, 2005). However, with the development of big data in finance, the
structure of price data of assets has changed (Treleaven et al., 2013; Nuti et al., 2011). All
trading information during the day # would inform investors’ decision-making i.e., investors
may short (long) assets at any price during the trading day, rather than only focusing on the
closing price. Conditional autoregressive range (CARR) group models reveal the relationship
between return volatility and highest, and lowest price (Chou, 2005; Parkinson, 1980). The
diverse set of price information facilitates volatility forecasting in the context of big data
(Ly6csa et al., 2021; Molnar, 2012).

The non-point-valued data, particularly the study of interval-valued price characteristics
or interval-valued price forecasting, has been prevalent in recent years (Buansing et al., 2020;
Joshi & Kumar, 2016; Maia & de Carvalho, 2011). Interval-valued data may provide more
information than traditional point-valued GARCH or CARR group models and could be used
to forecast price volatility. The interval-valued models, such as auto-regressive conditional
interval (ACI) group models and GARCH model with interval-valued variables (Int-GARCH)
(Han et al., 2016; He et al., 2021; Sun et al., 2018, 2020; Yang et al., 2016), could explain
the evolution of an interval-valued defined price proxy. The use of interval-valued variables
and the incorporation of random set theory distinguishes these models from the standard
multivariate time series model.!

However, the interval-valued variables are only driven by information regarding the highest
and lowest prices. Could we use a sets-valued variable to represent prices and construct a sets-
valued time series volatility model by incorporating additional price information (such as the
closing price)? The interval-valued variable contains all possible price points with “equal”
weighting, but do these points actually weigh equally? Could we use sets-valued information
to achieve our desired point values? Motivated by these considerations, we intend to develop

1 “Appendix A” introduces the GARCH, CARR, ACI and Int-GARCH model mentioned above in details.
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a sets-valued time series model to describe the dynamics of return dynamics and, from this,
to forecast volatility.

The key element of our methodology is using random fuzzy sets to characterize the stochas-
tic process of returns and calculate volatility. Numerous studies have characterized prices (or
returns) with fuzzy sets-valued data (Atsalakis et al., 2019; Ezbakhe & Pérez-Foguet, 2021;
Nowak & Romaniuk, 2010), it is proven that fuzzy set-valued data contains more informa-
tion than interval-valued data.2 Not only does using fuzzy sets-valued prices as a proxy for
one day’s returns incorporate multiple types of price information, but it also highlights key
information with a continuum of membership grades (Hocine et al., 2020; Jones et al., 2022).
However, forecasting volatility with fuzzy sets-valued data is still underdeveloped due to its
complexity. Given that returns are stochastic, fuzzy sets-valued data must be transformed into
random fuzzy sets-valued time series, followed by evolution equations describing the time-
varying pattern of volatility. Some studies have combined the fuzzy set concept with GARCH
models, but in their models, prices are still point-valued or are not considered random fuzzy
sets-valued (D’Urso et al., 2016).

In this vein, we construct fuzzy sets-valued prices in a stochastic manner and propose
a novel Ser-GARCH model to address the aforementioned issues in volatility forecasting.
We incorporate additional price information into a set and predict the volatility of returns by
influencing the time series of sets-valued variables. The highest log-price H;, lowest log-price
L, and closing log-price C; of a day are integrated into a set to form a sets-valued stochastic
variable, that is, P + = {H;, L, C;}. The Set-GARCH model has a similar volatility-driven
equations structure to the GARCH model in general. Moreover, the addition/multiplication
operation and the distance measurement of the Set-GARCH model are performed in the
random fuzzy set space (Korner & Nither, 2002; Li et al., 2013; Sun et al., 2020; Wang et al.,
2016). In this study’s practice of volatility forecasting, the Set-GARCH model is adaptable
to different derivative family models and has demonstrated distinctive advantages.

The main contributions of this paper are two-fold. First, we established a theoretical
framework for modelling dynamic volatility using random fuzzy sets-valued returns data.
We propose the Set-GARCH model based on the characteristics of data structure and sets-
valued operation rules. The Set-GARCH model extends the ACI model (Sun et al., 2018), the
Int-GARCH model (Sun et al., 2020), and other interval-valued time series models (Wu et
al., 2023; Gonzalez-Rivera & Lin, 2013; Gonzalez-Rivera et al., 2020) from interval-valued
data to sets-valued data. Our Set-GARCH model is, to the best of our knowledge, the first
model to describe the dynamic volatility of sets-valued returns time series.

Second, we address the specification limits and extended specification space in the Set-
GARCH model and thus propose the Set-GARCH-LR model as a variation We utilized the
crude oil, gold, and S&P500 index, which are representative of the market, using daily,
weekly, and monthly trading data, respectively, for the applications of the proposed models.
In-sample and out-of-sample volatility forecasting demonstrate that the Set-GARCH model
and Set-GARCH-LR model outperform conventional GARCH-type, CARR-type, ACI, and
Int-GARCH models.

The rest of the paper is organized as follows. In Sect. 2, the definition of fuzzy sets-valued
returns is provided. The specifications of our proposed Set-GARCH models is provided in
Sect. 3. Section4 presents an application of empirical data. The paper concludes with Sect. 5.

2 Lietal. (2013) provides a clear explanation of the relationship between fuzzy set-valued data and interval-
valued data. When the fuzziness of fuzzy set-valued data degrades, it can be transformed into set-valued data.
Set-valued data includes interval-valued data since intervals are a type of set value. Therefore, fuzzy set-valued
data encompasses interval-valued data, and the computational properties of fuzzy set-valued data are equally
applicable to interval-valued data.
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“Appendix A” illustrates the benchmark volatility models used to validate the superiority
of our approach by separating the point-valued and interval-valued cases. “Appendix B”
contains an empirical example of a relevant technical point of the methodological section.

2 Construction of fuzzy sets-valued returns
2.1 Preliminaries of the fuzzy sets-valued random variable

We begin with defining the returns in the sets-valued variable space firstly by random set
theory (Li & Guan, 2007; Li et al., 2013).

2.1.1 Sets-valued variable

Let Po(RY) the family of all non-empty subsets of R?. For any A € Po(R"), we first define
the membership function m A(x) ‘RY = 0,1 as
0,x¢A
- - 1
"a [ l,xeA M

Membership function m i reflects whether x belongs to A. For A, B¢ Po(Rd ), we have the
addition and scalar multiplication operation:

A®B={a+b:acA becB)
AM={ a:ae A}, AeR 2)

interval-valued subtraction consists of two concepts. Similarly, this issue will arise when we
discuss sets-valued subtraction. Sets-valued subtraction rule of ACI model (named Type-
A subtraction in this paper) considered that the sets-valued subtraction operation should
be the inverse of the sets-valued addition operation, shown in Eq.(3). However, the Sets-
valued subtraction rule of Int-GARCH models (named Type-B subtraction in this paper)
consider that the subtraction rule subtraction rule should be strictly adhered to in the set of
basic arithmetic operations, shown in Eq.(4). This paper provides a detailed explanation in
“Appendix A” on the ACI and Int-GARCH model, which are two benchmark models, along
with their respective subtraction rules.
Type-A Subtraction:

ASsB={xeR x+BcCA) A3)

wherex + B={y=x+b:bec B}.
Type-B Subtraction:

AcpB=A®(-1)®B @)

where @ and ® are addition and scalar operations in Eq. (2). We pay close attention to
the subtraction operation because the choice of subtraction, i.e., Type-A substract of ACI
model and Type-B subtract of Int-GARCH model will directly impact the structure of our
sets-valued volatility model.
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2.1.2 Fuzzy sets-valued variable

A fuzzy set A on R is identified by its membership function m i) R? — [0, 1], where m i

is interpreted as the degree of acceptance that x € R? is a member of A. Unlike the situation
described in Eq. (1), whether x belongs to A is not definite, but exists in an ambiguous
“either/or” state.

The crisp set

Ag={xeR!:m; >0}, acl01] ®)

is called the a-cut of A. For o = 0, the support of A is defined as Aq—g = cl{x e R :
mz > 0} = suppA For any two fuzzy sets A with membership function m4 (x) and B

with m 8 (x), they have addition operation A ® B = C and scalar multiplication operation
A ® A = D. Given the membership function of Cis m€ (x) and BismP (x), we have that

mc(x) =supf{a €[0,1]: x € mA(x)a +x € mB(x)a}

mA(E) A #£0

0cRY, A=0 ©)

mP(x) = {

Similar to the sets-valued variable case, given A© B = E, E has the membership function
mE (x). The subtraction © of fuzzy sets-valued variables could also be defined in Type-A
Subtraction like Egs. (A13) and (3),

m® (X) =m"(x) @4 m® (x)
=supf{a € [0,1] : x € mA(x)a — mB(x)a}, x e R? (@)

or Type-B subtraction like Egs. (A15) and (4)

mE(xg) =mA(xp) omP(xp) =  Sup  Infim*(xa),m®(xp)} ®)

XA—XB=XE

Fuzzy sets-valued Type-A subtraction is consistent with the idea of the ACI model. Fuzzy
sets-valued Type-B subtraction is consistent with the idea of the Int-GARCH model and a
classic fuzzy sets-valued subtraction rule (Zhii 2014).

2.1.3 The distance of fuzzy sets-valued variable

We give the concept of the support function first. Given Sy = Sup < u,y >, u € sa-1,
yeA
where M is a sets-valued variable, <, > is a scalar-inner product, and S?-1is the unit
sphere of R?. The support function of a fuzzy sets-valued variable A is S 1, 0) =S Ay ()’
a€(0,1],u € S? ! and Ay is a-cut of A in Eg. (5).
Using the concept of support function (Korner & Nither, 2002; Li et al., 2013), a popular
p2 distance measure between fuzzy sets-valued variable A and B is

P (A, B) = f (S5, @) — S5, ) (S50, B) — Sp, YK (u, o, v, )
[0,1]2X(Sd_])2
©))
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where dK (u, o, v, B) is a kernel, and f dK (u,a, v, B) = 1. Moreover, the inner
[0, l]ZX(S“LI)z
product between fuzzy sets-valued variable A and B is

<A, B>= / S;Gu, a)Sp (v, BYAK (u, o, v, ) (10
[O,I]ZX(S”I_I)Z

The expectation of any fuzzy random set X, denoted by E(X), is also a fuzzy set-variable in
such that for every o € [0, 1], i.e.,

(E(X)y =cHEf : f € Sg ) (11)
The variance of X can be defined as
D(X) = / COV(Sg(u, @), Sg(v, B)dK (u, o, v, )
[0, 112 (S9-1)2
=E(< X,X >)— <EX),EX) > (12)

where < X s X > is arandom variable, and the definition of fuzzy sets-valued inner product
can be referred to Eq. (10).

2.2 Fuzzy sets-valued price and returns

We build the highest log-price H;, lowest log-price L;, and closing log-price C; information
of day 7 into a set to form a sets-valued stochastic variable, that is, i’, = {H,, Ly, Cy}.
The range of asset price movements is formed by the H; and L, of the asset. Compared to
the opening and settlement prices, the closing price of an asset contains richer information
relating to investors’ market perceptions. The closing price often reflects the level of market
attention from investors towards a particular stock and can serve as an indicator of the expected
movement for the next trading day.? Therefore, the performance of the closing price is worth
paying attention to. In empirical research, most studies use H;, L;, and C; as the LR-fuzzy
set-valued price for asset prices (Moussa et al., 2014; Hassan, 2009).

We give P, with membership function m i,[(x) into a classic LR-type fuzzy set-valued
variable as

$Ep) L <x <G

"p, ()= {(b(;ﬁt_cc’,;p) e (1

—(=x)P _ — —xP
L2 (x < 0) + S5 1(x > 0) and x € [Ly, Hy]. The benefit
of choosing such a ¢ (x; p) is that the parameter p can control the morphology of P (x); to
produce rich variations (see “Appendix B”).
Let the closing price returns of day t be Rc; = C; — C;_1, similarly, the highest returns
of day t are Ry ; = H; — L;_1 and the lowest returns of day ¢ are R ; = L; — H;_1, then

where ¢ (x; p) =

3 Examples include the pricing of financial derivatives, which are typically based on the closing prices of
stocks or commodities. Mutual fund net asset values (NAV) and performance are also often calculated using
closing prices (Comerton-Forde & Putnins 2011), Suen and Wan (2022). Moreover, when paired with the
open price, these price levels provide crucial reference points for measuring strength and identifying key price
levels to validate trade ideas or biases.
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a sets-valued stochastic variable R, under Type-B subtraction of Eq. (8) is also a fuzzy
sets-valued variable with the membership function as

R =P,opP,_1=P,®-1Q® P,

R
o( Ct va) Rci— Ry <=x < Rcy,

14
(= RC’vP) Rcy =x < Rci+ Ry (1

m@@)z{

where R;; = C; — L; and R, ; = H; — C;. We will explain in Sect. 2.3 why we chose the
Type-B subtraction of Eq. (7) instead of the Type-A subtraction of Eq. (8). A numerical
example in “Appendix B” shows the membership function trajectory of our fuzzy sets-valued
returns.

There are three benefits of using the fuzzy sets-valued variable of Eq. (13): (1) Compared
with GARCH-type models’ point valued-returns, it expands the H, and L; information.
(2) Compared with CARR-type models’ range based point-valued returns, it expands the
“trend” information of H; and L;. (3) Compared with ACI and Int-GARCH models’ interval
valued-returns, Eq. (13) can flexibly highlight the closing price information.

2.3 Why do we choose the Type-B subtraction?

If the Type-A subtraction (like the ACI model as introduced in Section A.2) is used in the
calculation of returnswhen L, — H, < L, — L, 1 <C;,—C,—y < H — H,_y < H, — L,
and Lt — Ht—l < Ht — Ht—] < Ct — Cl—] < Lt — Lf_] < Ht — Ll—]a4 the fuzzy sets-
valued returns calculated by the Type-A subtraction ilrype, A with membership function
Mmrype—a(x) could be

RType—A =P,04 P

R,
¢(R1,+2,1) p),Li—Li—1 <x <Rc;
ke (15)

MType—A(X) =
e ¢(m, p), Rey <x < Hy — Hi—)

If we ignore the fuzziness of i’Type, A, or assume a relatively high value of p in Eq. (15),
Rrype_A,t will become I};W%A’,, ie.,

Riypens=ILi— Lot H —H_\1=[Pr,—Pr,1, Pry— Prst]  (16)

Dueto L, < C; < Hyand L, < Cy—1 < H;_1, under the Type-A subtraction, we cannot
guarantee that Rc; = C; — Ci—1 € Suppi{;ypefA,,. It would be contrary to our original
intent to absorb closing price data. Further, let Am(x; p) be the difference between m P, (x)
in Eq. (14) and mrype—a (x) in Eq. (15), i.e.,

a7

mp (x) —mpype—a(x) , Ly — L1 <x < H, — H,_
Am(x;p):{ P,() Type A() t t—1 =X = M1 t—1

mi,t(x) , others

then Fig 1 demonstrates the trajectory of Am(x; p).

Fig 1 demonstrates the trajectory of Am(x; p). When a real-world trading point-valued
returns ryisin[L; — H; 1, Ly — L, 1] and [H; — H;_{, H— L;_ 1] as p in Eq. (17) increases,
the degree of membership of r; to R, of Eq. (14) will surpass PTPW A of Eq. (15) to a
greater extent. When the point-valued returns r; is in [L; — L,—1, H; — H;_1], the greater

4 Thisis a necessary condition for type-A subtraction to hold.
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m(x):The b ip difference our proposed and ACI model-based fuzzy set-valued returns

1.00
= =05
-
p=2

- -3
= =5
= p=10
= p-10000

Membership difference
g

LO-HE1) Lo-Le1) cw-ce-1) HE-HE1) HO-LE-1)
returns

Fig.1 The trajectory of Am(x; p) with different value of p

the p, the smaller the difference between the membership of r; for R; and the membership
for R7pye—a,:r-

From the perspective of information absorption, when p is smaller, the difference between
selecting Type-A and Type-B subtraction is smaller; and when p is larger, selecting the Type-
B subtraction has a higher degree of information absorption on [L; — H;—1, Ly — L;—1] and
[H; — H;—1, H; — L;_1]. This actually implies that we should regard the setting of p as a prior
parameter, rather than putting it into our model and then estimating its value. All in all, if real-
world trading returns r; fall in the interval [L; — H; 1, Ly—L;_1]and [H; — H;_1, H;—L;_1],
the returns defined by Type-A subtraction (like the ACI model) cannot cover r;. This goes
against the original intent of the model we wish to create, and we also find that the preceding
parameter p in Eq. (13).

2.4 Discussion of K(u, a, v, B)

Here we discuss the setting of K (u, «, v, B) in fuzzy sets-valued returns (He et al., 2021; Sun
et al., 2018; Yang et al., 2016), which is used in scalar-inner product, distance, and variance
calculation of R, from Egs. (9). to (12). Given that the sets-valued volatility model in this
study is for uni-variate fuzzy sets-valued time series, we have sd-1 = §0 — {1, —1} in the
support function in Eq. (9). The u and v in Eq. (9) and K (u, «, v, 8) only takes 1 or —1 in
this study. We have (He et al., 2021; Sun et al., 2020, 2018; Yang et al., 2016)

a-6q(B)da ,u=v=1
Ku,a,v,8)= b -6sB)da , u=v=-—1 (18)
c-dq(B)da , u =—v
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where §4(8) = 1 when o = B and 6,(B8) = 0 when o # B. For the settings of a, b, ¢, a
classic form is Korner and Nither (2002); Nather (2001)

1 1
a=1 —2/ tdl//(t)+/ 2dy (1)
0 0
1
b:/ 2dy ()
0

1 1
c:/ tdl//(t)—/ 2dy (1) (19)
0 0

where ¥/ (¢) is the weight function. We set ¢ (t) = ¢ in tl}is stu~dy, thus in Egs. (18) and (19),
we havea = 1/3,b = 1/3,and ¢ = 1/6. The a-cut of R; is R, ;, and

Ro;=I[Rc:—¢ (@R Rey+ ¢ (@R ] (20)
where ¢ (x) is defined in Eq. (13). Combining Eqs. (10) and (20), the scalar inner product is
< i?z, kz >a=1/3,b=1/3,c=1/6
1
= / @(Rc,+ ¢ (R )* +b¢~ (@R, — Re,)Hda
0
1
- f Qc(Rey + ¢ (@R (@ (@R — Re.))da
0
1 1
=(a+b—20)R¢, +aR}, / (¢~ (@)’ de + bR}, / (¢~ (@)’ da
0 0
1 1
+2Rc Ry (@ —c) / ¢~ (@) +2Rc R (c — b) / ¢~ @)
0 0

1
+2¢R; Ry, f (¢ (@)*da @21)
0

given the distance between R, and 0 is p2(R;.0) =< R,, R, >= |R;||?,. and E(Sg,) =

SJERI’ the variance ]D)(R,) is,

)— <ER,ER, >,_1,_

D(R) =E(< Ri. R >, 1 ) 1.

1
3%

=

,C=

Wl
Ul

1
= (a+b—2c)D(Rc,) +aD(R; ) / (¢~ (@) *da
0
1 1
+ bD(Ry,;) / (¢~ (@)*da +2COV(Rc,;, Ry 1)(a —c) / ¢~ (@)da
0 0
1
+2COV(Rcs, Riy)(c —b) / ¢~ (@)da
0

1
+2COV(Rys, Ry 1)e / (¢~ (@)*da (22)
0
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3 The random fuzzy sets-valued based GARCH model
3.1 Grounding ideas on the model setting

The modeling philosophy embodied in Eq. (A5) in subsection A.1.1 implies that changes
in current observations are driven by historical observations. If we also wish to apply this
modeling philosophy to the proposed model with parameter 6, one classic mode is:

= f(R—1,R—2, ..., &1, &2,...;0) + & (23)

In Eq. (23), at time ¢, the term f(iit_l, R 5, ...,&_1,&v_2,...:0) is not stochastic any
more, but is still a fuzzy sets-valued number, while €, is a random sets-valued variable that
gives randomness to R, .

Letr; = {Fp,Fr_1,Fr_2,...,F1, Fo} the observations of R, and 7, is a fuzzy sets-
valued variable. Under the classic model structure of Eq. (23), when one uses the minimum
loss function method to estimate the parameter & with some loss function W, the estimated
parameter 6 under type-A and type-B subtraction is

T
éTypg_A =argmin Z V(4 f(Fio1,Fiza,...,€i—1,€i—2,...;0))
o iz
R T
OType—p = argmin Z V(F O f(Fic1,Fi—2,...,€i_1,€i_2,...;0)) (24)
o izl
respectively. However, given a real parameter 0*, we will never find a éT) pe—B = 0% under
minimum loss function method, because 7; ©p f(rl 1 Fio,...,€_ 1, €i_ 25 ;0) £ 0.
The reason is that if we have A = B then A © A B = 0 while A Op B #* 0. However we
could find a GType_A = 0*.

Using maximum likelihood (ML) for parameter estimation, Type-B subtraction suffers
from the same issue. Given that both R, and 7, in Eq. (23) are random variables, one could
maximize the likelihood function of R, and 7, to estimate 6 in Eq. (23). Given the fact that

R OAf(R_1,R 2.6 1,&2,...;0) =&
R ©p f(R—1,Ri—2, ..., &1,& 2,...;0) # & (25)

let the density function of R, and & be f 7 and f¢, whether we maximize [ to obtain 6R or

maximize fz to get 6¢ 1t should have 48 = §¢. However, there is a paradox in the following
maximum likelihood estimation function under model structure of Eq. (23),

GTWE 4= arggmx HfR(OIr,) = argmax 1_[ fe(Ol€r) = OType A
t—1 —1
T T

OF e = argmax [Tz F) =argmax ] fe01&) # 0%, 5 (26)
t—1 t—1

To solve this problem in the estimation process, one solution is to drive the dynamics of R,
in the following model structure instead of Eq. (23)’s structure as

R[ = gl
€~ fe,(%:0) @7
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Where the evolution and randomness of R, are all comes from a fuzzy sets-valued stochastic
variable €, with time-varying probability density f¢, (X; 6). It could be found that the problem
in Eq. (26) is resolved, because we set R; = & compulsively in Eq. (27). This kind of setting
is similar to the Int-GARCH model and most GARCH-type models. In Sect. 4, we discover
that the model structure of Eq. (27) is still capable of predicting volatility accurately. The
limitation of the model setting does not necessarily impact the proposed model’s predictive
power.

Recalling Eq. (27), R, =¢,¢ ~ fe,(z:0), if one wants to determine the change of €;, a
straightforward idea from Eq. (AS) of GARCH-type models is to construct a time-varying
parameter 6;,> and use the past observations of €; (or R ;) to obtain the 6,. From an economic
perspective, whether we use point values or the fuzzy set values as described in this paper
to represent returns (or the innovations in returns), we must carefully consider the fact that
current returns (or the innovations in returns) may be driven by past values and exhibit
correlation with past values. The concept of lagged terms influencing current terms is widely
applied in various econometric models (Creal et al., 2013; Koop & Korobilis, 2013).

Similar to the GARCH-type model, the type of distribution law of €, will not change
over time. Let the parameter set 0; in Eq. (27) is 6; = vi ¢, v2s, . .., Vy,; and we provide the
following general model structure:

R, =¢, €= ft(Vl,t, V2tsenns Vn,z)

Vi~ O), Ou, = AR, Rizay o 00, B0,y )

Vit ~ lai By, )y Onr = fu(Rizt, Ri—ay o 00y, 0oy sy e) (28)

where vy, V2, ..., vy, are the random scalar parameters in €, and with density func-
tionly, 0o, ..., Iy, Following the GARCH-type model, in Eq. (28), the scalar parameters
01, Ovyss -+ -, Oy, in density functions Iy 4, 24, ..., I, are obtained by the past observed
R, and lag-terms of themselves Oviss Oupyr o v Oyl

We further explore the drivers of R, change. When we get the prior parameter p in Eq.
(13), the shape of I?t depends on Rc ;, Ry, and R; ;. The evolution of scalar value Rc, t is
first obtained by the past term of itself, and the distance between Rc ; and 0. The p; distance
of Eq. (9) between R, and 0 represents the degree of change in the overall price information
set, which we note it by a 2-norm form || R, ||/2)2. The overall change will also cause a change
in the distance between Rc ; and 0. In this vein, we have

Rey=g1(Re—1, Rey—z. .. IR 1115, IR 212, .. ) (29)

If Rc; reflects a “standard” returns level, then R, ; and R;, reflect the degree of extreme
deviation from “standard” returns level in the positive and negative directions, respectively.®
This implies that the current R, ; may be related to the past R, ;1 and the past R; ;—1. The
case is same for Ry ;. Therefore, we set the following drive mode:

B2 1R 2
Ri: =g (Ri—1, Rip—2, ooy Rr— 1, R 2y oo IRt N1y, 1Re2M15,, - )

B2 1R 2
Ry = 83(Rr,z—1, Rt ....Ri -1, Rii—2,..., 1R —1 ||an ||Rl—2||p25 o) (30)

5In Eq. (AS) the o7 is time-varying and treated as a time-varying parameter.

6 If there is a large Ry ; on day ¢, the probability of a large H; on day t+ — 1 will also be high, which may
induce a large R; ; on day ¢. Similarly, if there is a large R ; on day ¢, it would show that investors have strong
intention to push asset prices up.
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where the form of functions g1, g2, and g3 will be discussed later. From Eq. (28) to Eq. (30),
we have

Rt = ¢
€ ~ fe,(Rci—1, Rci—2, ..., Ris—1, Rii—2, ..., Rr 1,
52 wh 2
Rri—2, o IR =111y, IRe—2 115, - ) (€21))

In this vein, we could determine the evolution of conditional random sets-valued R, [2/—1
(whereby @, = Rc, Rci-1,.--, Rit s Rii—1, ..., Rr sy Rry—1, ... is information set at
time ¢) and calculate the in-sample volatility ]D)(I?IIQ,, 1) and out-of-sample volatility
D(R,|€2—1) using Eq. (12).

3.2 Relationship between D(i?,) and o;

The D(R,) is the volatility of fuzzy sets-valued returns i?t, which is not exactly the daily
volatility (Sun et al., 2020). We need to perform an “average operation” for the “degree of
fuzziness” R, to get o;. First, we use a fuzziness control parameter ¢ € [0, 1] to control the
“degree of fuzziness” of R,, that is:

Re . —
- ¢( {ng'“X§P),RC,t—Rl,t <x < Rc;:

R@) = o (e

(32)
TR, P) , Rei <x <Rci+Rr;

The smaller the value of ¢, the better the Rc ; is able to represent the fuzzy information of
this day. In particular, when ¢ is 0, fuzzy sets-valued i?({), collapses to Rc ;. Following
Sun et al. (2020), in this study, we define an aggregate sets-valued volatility o;¢’, which
reflects the average change from accepting all possible returns information and assigning a
certain membership, to accept only Rc ;. For any fuzzy sets-valued returns R(Z); under a
set information reception level ¢, we give ¢ a certain weight W (¢). Then, the volatility ¢;*¢/
defined in our study is

st _ Jo DR@DAW @)
’ Jy AW ()

We set a general weight function W(¢) = —¢ + 1, ¢ € [0, 1] in this study.

(33)

3.3 Model specification

In accordance with the analysis framework of subsections 3.1 and 3.2, we present our
proposed random sets-valued GARCH model, Set-GARCH model, and its derivatives.
3.3.1 Set-GARCH model

We set 6 = vy, vp, v3 in Eq. (28) as 6 = Rc;, Ry, Ry;, which also means Rc;, Ry, and
R, ; would be stochastic processes. Thus, Eq. (27) can be expressed as:

Rt = gt, gt = gt(RC,tv Rl,t, Rr,z) (34)
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Following the GARCH-type models, we set [, ; in Eq. (28) to be a normal distribution
N(, 1).” Thus, we have:

[~ //7,/\/(0, 1)
Py Ry,

hi=on+ Y apihi z+Zﬂhz(||Rt 5, = 3 12, DAY viRE, (35

i=1 i=1 i=1

Given that || R,_; ||2 has a term of %Rz from Eq. (21), which reveals that we should remove
this term in ||R, 1||p2, because the Zl 1 Y, lRC (1 term in h; also has RC ;- Since R, ; and
R, must be positive numbers, we set /5 ; and I3 ; in Eq. (28) as Gamma distributions I'1,6,,
and I'1, 6 ,, which can flexibly control the variance and mean of /; ; and I ; in Eq. (28),
while reducing the complexity of the model. We have E(l> ;) = 1/6,,, and D(l ;) =1/ 9[22.
We denote 1/6),, as A, and 1/0;, as A, ;. Here, we first give a simple setting, thatis, R;,; and
R, ; are independent of each other, or COV (R, R, ;) = 0. This assumption is not strong,
because in the analysis of Eq. (30) we only discussed some possible influence paths of R; ;
and R, ;. In Sect. 3.3.2, we will discuss the case where R;; and R, ; are not independent of
each other. According to the setting of Egs. (28) and (30) we provide the following structure:

Rl,tl_;\’ )‘l,tr(lv D), Rr,til_“’ }‘l‘,tr(lv 1)

)»lt—/\(w1+2alz?»1t l+2ﬁll|Rt 1||p2+ZVItth —i

i=1 i=1

App = Awr + Z oy ihrr—i + Z 5r,i ||kt—1 ”pz + Z Vit Rr i (36)

i=1 i=1 i=1

where A : R — (0, inf] is a conversion function to ensure that A;, and A, ; are positive
values. Compared to Eq. (35), Eq. (36) selects IIR,,l llp, term instead of IIR,,l II%2 term,
given that distance, rather than the square of the distance, is more suitable for describing
Ry and R, ;. Now we have the proposed Set-GARCH model, which means a GARCH-type
model for sets-valued time series as:

R =&, &=¢(Rc,, Ris R
,~ JEN(o, 1), Rl,z,;" DL 1), Rey ~ 3y D(1L 1)

Py Ry

he=on+ Y anihi- l+2ﬂh,<nRt i, - Rc, D+ vniRE,

i=1 i=1 i=1

lzt—A(wl-l-Zalllzt 1+2,311|Rz l||p2+ZVllth i)

i=1 i=1

At = Aoy + Zar,m,m» + Z Brill Ri—illy, + Z VriRrioi) (37)

i=1 i=1 i=1

7 In model settings with uncertainty and large sample scenarios, the normal distribution can maintain good
asymptotic properties (White, 1982).
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Given COV(R;;, Rc;) = 0, COV(Rc, Rry) = 0,and COV (R, Rr ;) = 0, now we
give the set volatility ¢’ of Eq. (33) of Set-GARCH model as:

s _ Jy DR@DAW (@)
’ Jo dW(©)
1 A4+, !
= g [ i (38)
3 18 0
where fol (qﬁ_l (a; p))zda depends on p and A, is in Eq. (35), and Aft + A%’t are as in Eq.
(36).

3.3.2 Set-GARCH-LR model

One assumption in the Set-GARCH model is COV (R;;, R, ;) = 0. Now we remove this
condition and consider that R;; and R, ; are not independent. We call the proposed model
in this case as Set-GARCH-LR model.

We consider using a joint bivariate Gamma distribution I'2 to characterize R;; and R, ;
(Furman, 2008), where the marginal distribution R; ; or R; ; is a univariate Gamma distribu-
tion. This setup follows the CARR model’s specification of the distribution of returns’ range
(Chou, 2005) (also see “Appendix A.1.27).

Let R = (Y, Y1, Y»)' is a tri-variate vector and Y; ~ I'(y;, «;), which has the density of
fri(y) = e Y rop Y > 0ai >0y > 0. Letd = [zg;z; aliaz (1):| (R R’ =
AY, the joint distribution (R;, R,) is a bi-variate gamma distribution which is controlled
by the parameter {«o, &1, &2, Y0, Y1, ¥2}. Let x* = min{g('J Ry, Of R,}, we have the density
function of bivariate Gamma:

—1g%i

Vi *

rn-12 o' X
—ax | I 1 o .
f(x1,xp) = e %2 (Xz _ 7)61) 7 / y(l)/o (1 — 2y,
iz \F@) ) Jo |

o
(39)

According to the definition of Eq. (39), the marginal distribution of R;; and R, ; is Gamma
distribution, and the expectation and covariance of R; ; and R, ; is E(R;) = VOJ”/] ,E(R,) =

w ,D(R) = V0+V1 ,D(R,) = WENER and COV (R, R,) = A1 In this paper,
2

3%}
we reparametrlze Eq. (39) Letyp =1, 00 =L y1 =y +y1,and y» = o + y1 + y2, and
thus we have:

a5 oﬂl/' !
friry (X1, x2) = €92y — —x )N T ———
e ®2 FGr—D
y2—1 B
el R Dl 40
r(yz—l)/ (i yO) 0 (40)

We keep y1 and y; time-invariant, and let @1 and a» change dynamically in Eq. (40). Under
this condition, we simplified Eq. (39) while ensuring that the marginal distribution of R; ; and
R, ; has a gamma distribution I (y, ), and more importantly, we can maintain the dynamics
of the first and second moments of R;; and R, ;. Further, we have:

(Rt Ry ) i T2, @20, 71, 72)

@ Springer



Annals of Operations Research
P Oir ~
arg | _ @ +Z aj,i O of +Z bri| | IR—illp,
a2, wr] |0 ang Loy, ] S b2 1R~ ll py
R[r R
Cll,i C12,i 1t—i
+ . . ,
21: a1, €22,i | | Rre—i

i=

aT’, = A(Ofl,t), (x;[ = A(Otz,z) (41)

where o is Hadamard product, I'? is the density function of Eq. (40) with four parameters,
and A(x) is a transformation function A : R — (0, oo]. Combining Egs. (34), (35), and
(41), we propose the derivative of Set-GARCH named Set-GARCH-LR model as:

Rt = gt, Et = gt(RC,h Rl,t, Rr,z)

t~ \/IT,N(O, 1
Ry

h,—wh+2ah,h,Z+Zﬂh,(nR,,u Rc“>+2yh,Rc,,

i=1 i=1 i=1
2 - -
(Rit, Rrp) " (a1, 02,0, V1, 72)
L.i.da.

Py * er .
ayy o ai,; 0 oy, by, I R:—illp,
= =+ ’ + o ~
DS P E ol e [ ) KD ol PR s
Rr
i X[: ci1i c12,i || Rie—i
“ [ c21i €22 Ry i—i

i=
QT,[ = A(Ofl,z), Ol;,, = A(Otz,z) (42)
The “LR” in the name of Set-GARCH-LR means that it reveals the dependence between R; ;
and R, ;. Recalling Eq. (33), the calculated by the Set-GARCH-LR model is:

1

o = 3+ oG g T / @ (@ p)da 3)
3 18 (X 0[1 1002t

where fol (([)’1(01; p))zda depends on p. The h; is in Eq. (35), and y1, 12, a1, and o3 ; in

Eq. (41).

3.4 Parameter estimation

Given that I}t = ¢€;, we can directly use historical observations for maximum like-
lihood estimation. For the Set-GARCH model, given that fr. r;,r.) = frc SR SR>
the log-likelihood function lls.;—Garcm Ww.rt. the parameter set Os.,—GARCH =
(wn, otn, By Vs @i, 01, By, vy, o, 0, By ) is

User—GARCH (@n, 0, By, Vs w1, 00, By, vy, @, 0, B ¥, Fr)

T T T
=Y In fre(X1Q-1) + Y In fr (XIQ-1) + ) In fr, (x2-1)
t=1 t=1 t=1
T

T T
oc—%Zlnh,—Z Zlnklt Z;” Zlnk”—Zf” (44)
=1 =1 r,t

=1 =1 "t =1
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Thus, we can deconstruct the maximum likelihood estimation process into three sub-
maximum likelihood estimation terms, i.e.,

T T 2
1 C.
, o, B, =argmax{—— Inh, — —_
(ns @, Bys i) = argmax{ 2; ' [_21%}
T T "
(w1, a1, B, v)) :argmax{—Zln}\l,, — s
=1 e
T T,
(wr, 0, B,,y,) =argmax{— Zln Arp— Z rt } 45)
=1 =171
For the Set-GARCH-LR model, given that f(g. g R, = frc f(R.R,), the

likelihood function [lse;—GArRcH—LR W.I.t. parameter set Oso.—GARCH—LR =
(whv oy, ﬂhv Y @1, w2, 1715 )727 aP]rv bQ[rs chr) is:

Uset—GARCH—LR(@Wh, &th, Bp, Vi, 01, w2, V1, V2, @pr, boyr, CRirI71)

T T
=Y In fre(xIQ%-1) + Y In fryr (. YIR-1)
1—1 1—1
1 T T ré T T ar
>t =, - >
X ) Zlnht - Z Tht - ;altrr,t +—n—-D Zln(rr,, - ;’I"l,t)

t=1

t= =

T T T
+ @7 —DY Ina +G—7) ) nay, — Y TG —1)

t=1 t=1 t=1
a a x Yo .5
+Y TG =)+ Y In(| (= =—)""2dy) (46)
=1 =1 70 O

We can still find the optimal parameters to be estimated using a method similar to Eq. (45),
that is:

T T 2
1 r
(wp, o, By, ¥y) = argmaX{—E Zlnh, B Z 2Ch,t}
t

t=1 t=1
(w1, w2, Y1, V2, @prs bgrs CRyr)
T T
- _ a1,¢
=argmax{— Zaz,t"r,t +—-n—-1 Zln(rm - af"l,t)
2.t

=1 t=1

T T T
+ 7 =D) Ine +G—7) Y Inegy,— Y Inl—1)
=1

=1 =1
T T o
— - 0 7 —
+3 mrG -+ Y ([ (= 257 2dyg)) @7)
=1 =1 J0 YL

where x* = min{ le) Ry, g—g R, }. The scoring direction search optimization method is used to

solve Eqgs. (45) and (47). Let 0%,, g arcy @0d 0,,_carcH_rr be the real parameters of
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the Set-GARCH and Set-GARCH-LR model. We have that:

A P
(T — 00)0sei—GARCH = O50i_GARCH
A P
(T — 00)0se1—GARCH—-LR —> 05, _GARCH-LR
!

1A D 9*Ulser—GARCH

(T — 0T 2(Oser—GarcH — Oser—GarcH) = N (07 - [E*za
00*Se—GarcH)

l A~
(T — 00)T2(05ei—GARCH-LR — 050t GARCH-LR)

/
0211 gpy— _
3/\/ (0, i |:E Set—GARCH—-LR :| ) (48)

*2
a0 SethARCHfLR)

a2 2
where —[]EWM]’ and —[EWM]’ is the Fisher information matrix
el SethARCH) a0 SelfGARCHfLR)

of lgser—Garch in Eq. (44) and llse—GarcH-Lr in Eq. (46) at 0%, gapcy and
0%,;_GArCH—L g TesPectively. We can compute the numerical solution of Eq. (48) to obtain
the standard errors of the estimated parameter.

4 An empirical application
4.1 Data selection

We select daily, weekly, and monthly data from Datastream for WTI oil futures, S&P500 stock
index, and NYMEX gold futures to demonstrate the in-sample and out-of-sample volatility
forecasting and returns interval forecasting capabilities of the proposed Set-GARCH model.
Futures prices are chosen so that they represent the highest, lowest, and closing prices. The
selection of Data is shown in Table 1.

As shown in Table 1, the SD of the highest price, lowest price, and closing price of an asset
would almost increase as the timescale lengthens. This is because of the cumulative change
in asset prices in a month is always greater than the change in a day or week. The daily data
is a great test of the forecasting performance of a model that incorporates range information,
but we would like to investigate further how our Set-GARCH or Set-GARCH-LR models
perform in this environment of high- and low-frequency data. Figure?2 clearly depicts the
high, low, and closing price (returns) trajectories for the same sample period since 2018 for
crude oil. If we only consider the closing price, we appear to lose a great deal of information.

4.2 In-sample volatility forecasting

Without loss of generality, we set the Set-GARCH model specification of proposed as follows:
R =&, &=&(Rc Ry Ry
Req ~ NWN©, 1), Riy ~ w1, Ry ~ dp T(1 )
iid iid. iid.

~ 1
he = on +anthi1 + Bra(IR 112, — S RE,_1) + a1 RE

3
Moo= (0 + k-1 + Bl Ri— o, + Vi1 R —1)* 4 0.001
Ao = (@r + or v i1+ BralRi-1llpy + vr1 Res—1)* +0.001 (49)
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Fig.2 The trajectory of monthly Cy, Hy, Ly, Rc ;, Ry ;s and Ry ; of oil, S&P500, and gold since 2018

Similarly, we set each order in the Set-GARCH-LR model to 1, i.e.,

Rt = gt» gt = gt(RC,ts Rl,t» Rr,t)
RC,t i?d A% htN(O’ D

- 1
hy = wp +apihi—1 + Bra (1R -1 ||f)2 - gR%,,_,-) + Y1 RE

(Rips Re) ~ T2 (@1, @0, 71, 1)
are | _{er]  fann 0 “ZH o] o | 1Rl
o ) 0 ani]lo;, b1 IR:—1ll,
[011,1 012,1:| |:Rl,z—1:|
_l’_
ca1,1 €221 || Rre—1
af, = (a1,)* +0.001, a3, = (a2,)* +0.001 (50)

Meanwhile, we set the prior parameter p reflecting the shape of the fuzzy set to three different
values of 1, 2, and 10. Tables 2, 3, 4, 5, 6 and 7 demonstrate the parameter estimation results.

Bn.1 shows how item || R, (|2, — §R% ,_, in the Set-GARCH and Set-GARCH-LR model
affects the change of h,, which is also an important coefficient revealing the usage of fuzzy
sets-valued variable. We found that for the same asset, 8,1 is mostly insignificant under
the daily data, while under the weekly and monthly data, B ; is statistically significant. In
Sect. 4.1, we found that as the data frequency decreases, the volatility of the H; and L; also
becomes greater. The || R, ||f,2 — %R% ;1 changes in the weekly and monthly frequencies
and will provide more information. In contrast to the daily frequency, which helps to predict
the /; under the weekly and monthly data frequency.
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In Set-GARCH model, the §;,1 and §,,1 shows how || R, Il o, affects the expectation (and
also variance) of R, ; and R; ;. From Tables 2, 3 and 4, in almost all assets and different
time scales, ;.1 and B, 1 are significant, indicating that the influence of fuzzy set numerical
variables on R, ; and R;; do not change with the data frequency. Further, ||I~i;_1 Ilp, always
have a positive impact on A;; and X, ; in our empirical application, which is different the
pattern of the influence of || i?,, 1llp, on h;. The hy, A+, and A, ; demonstrate strong dynamic
patterns which drive the change of R;. This implies the rationality of our settings on the
Set-GARCH model.

The Eqgs. (45) and (47) imply that the wp, an.1, Br,1, ¥ir,1 in both Set-GARCH and Set-
GARCH-LR models are at the same value, which is demonstrated in Tables 5, 6 and 7.
The coefficients b1, and by 1 of the Set-GARCH-LR model are almost all significant under
different assets and different sample frequencies, which shows that when R, ; and R, ; are
not independent, || I},, 1l p, would affect the a1 ; and a2 ; parameters in the distribution in a
time-varying manner. This demonstrates once again the importance of our returns being in
fuzzy random set values.

Compared to the Set-GARCH model, the c12,1 and c1,1 coefficients in the Set-GARCH-
LR model are also significant in most cases from Tables 5, 6 and 7. This illustrates the
interaction of R, ; and R; ; of assets, and this interaction will not disappear due to the changes
in data frequency. In summary, the model settings of Set-GARCH and Set-GARCH-LR make
full use of R,_ past information to drive changes of R,.

We select the following two loss functions to measure the volatility forecasting accuracy
(Patton, 2011), and we denote the squared returns 0,2 the proxy 62 the predicted volatility of
real volatility (Wang et al., 2020; Zhang et al., 2020):

N
1 N
MSE—SD:NE 6 —0i)?

i=1
1 N
~2 2
MAE=NX1:|G —o?| (51)
1=

The Model Confidence Set (MCS) test (Hansen et al., 2011) is utilized to determine if a model
could achieve an acceptance set with a specified confidence level. The MCS statistics range
between 0 and 1. The greater the number, the higher the acceptance of one model (Wang et
al., 2020, 2016). For CARR group models and the ACI model, after calculating their range,
we use }f{ 1;%’ to calculate their in-sample predicted volatility.

In general, compared to the benchmark model, the Set-GARCH and Set-GARCH-LR
models exhibit significantly superior in-sample volatility prediction capabilities. The Set-
GARCH and Set-GARCH-LR models demonstrate superior in-sample volatility prediction
capabilities than daily or weekly data, particularly as the sample frequency of assets decreases
(e.g., monthly data). For the same frequency and asset, the Set-GARCH-LR model’s in-
sample prediction performance is frequently superior to that of the Set-GARCH model.
These observations indicate that the degree of absorption of sets-valued information in the
sample enables the model to better fit the in-sample data. Through the evidence presented in
Tables 8, 9 and 10, we will further elaborate this claim.

Referring to the analysis in sections A.1 and 2, Set-GARCH and Set-GARCH-LR models
have captured “range” and “level” information of H; and L;, and the “point” information
of Rc ;. The GARCH group models only contain the “point” information, while the ACI
and Int-GARCH models do not contain the “point” information of Rc ;. The CARR group
models only engage the “range” information of H; and L;, and the “point” information
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Fig.3 Real volatility and fitted volatility of best model under MSE-SD and MAE loss function

of Rc ;. Provided that the ’ range” and “level” information of R; ; and Ry ; contain rich
information (or a relatively large change), it would certainly improve in-sample forecasting.
Compared to daily and weekly time intervals, the changes of Ry, ; and Ry ; in monthly data are
more profound. The complete information empowers the Set-GARCH and Set-GARCH-LR
models to close the information gap existing in the benchmark models.

The empirical results also show that the in-sample prediction performance of the Set-
GARCH-LR model is superior to that of the Set-GARCH model when it was applied to
crude oil. Crude oil is a highly volatile asset (Cerqueti & Fanelli, 2021; Cerqueti et al.,
2020), and the mechanism of change between Ry ; and Ry ; is more significant, which
could make Set-GARCH-LR superior for in-sample forecasting.

The high value of p means that we increase the degree of membership of returns value
close to the Ry ; and Ry ; in R,. From the performance of in-sample prediction, the Set-
GARCH and Set-GARCH-LR models with p = 1 and p = 2 have better fitting results.
Compared to the ACI and Int-GARCH models that fairly absorb all the interval-valued
information, the small p controls our “degree of membership for various points in the interval-
valued information. As shown in Fig. 3, there is no difference between R ; and interval-valued
variables for extremely large p values, making our model inferior to ACI and Int-GARCH.
Figure 3 demonstrates the real volatility and best models’ fitted volatility.

4.3 Out-of-sample volatility forecasting

We use the rolling 300-length window one-step forward prediction method to evaluate the out-
of-sample volatility prediction performance of the Set-GARCH model and the Set-GARCH-
LR model. From Egs. (49) and (50), the one-step head G (1) is:

AL+ 4

. I
O'set,t(l) = ght(l) 18

2 1 1
ra (D /0 (¢~ (a: p))’da

2
RC,t

3
A1) = (@ 4@ 1he 4 BrillR—1llpy + P11 R1)* +0.001

h(1) = @ + Gn 1y + ,3h,l(||kt—l||%;2 - )+ ?h,lR%,,
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A (1) = (@ + & 1A s + BrallRi—1llpy + Pr1 Ry )* +0.001 (52)

and the one-step forward prediction of the Set-GARCH-LR is also calculated in a similar
way.

As evidenced in Tables 11 and 13, the Set-GARCH group models generally demonstrate a
superior ability to predict out-of-sample volatility compared to the benchmark models. With
some exceptions, the CARR-B model exhibits certain predictive advantages for weekly data.

Unlike the Set-GARCH or the Set-GARCH-LR model when p = 1 or p = 2, the out-
of-sample prediction effect of the Set-GARCH model when the prior parameter equals to
10 is not as satisfactory in our empirical applications. This may be because that a higher
p value increases the absorption of R; and R, information in the model in out-of-sample
predictions. This may lead to instability in the Set-GARCH model. The poor prediction
performance of the Set-GARCH model under this large p is consistent with the poor out-of-
sample volatility prediction performance of the Int-GARCH model presented in Tables 11,
12 and 13. According to the analysis in Sect. 2.3, R, turns into an interval number random
variable equivalent to the Int-GARCH model when p is large. At this time, we approximate
that Int-GARCH and Set-GARCH (-LR) models under p = 10 absorb the same information.
We note that the prediction results of Int-GARCH and Set-GARCH(-LR) are not satisfactory.
This may suggest that extra interval information will not necessarily improve the model’s
performance in volatility prediction in the out-of-sample analysis.

Under p = 1 or p = 2, the out-of-sample volatility prediction of Set-GARCH or Set-
GARCH-LR model performs well. The out-of-sample prediction performance of GARCH
group models is significantly inferior to our proposed Set-GARCH (-LR) model. This is
largely due to the lack of information processed by the GARCH model, which only considers
Rc; information. This confirms the importance of Set-GARCH (-LR) absorbing R ; and
Rp,; information in the out-of-sample volatility prediction.

As discussed in Sect. 2.3, when p is small, the information absorbed by Set-GARCH-LR
is closed to the information absorbed by the ACI model. In most cases, the Set-GARCH
(-LR) out-of-sample prediction of p = 1 or p = 2, performs better than the ACI model. It
may imply that the calculation mode of atse’ is better than the calculation mode of Z’ 1;3’ of
the ACI model. Recalling Eqgs. (38) and (43), o,se’ is a linear combination of term D(R¢),
D(R,), D(R)), COV(Rc, R,), COV(Rc, R;),and COV (R;, R,). Different combinations
of information are blended together to give alse’ an enhanced predictive capability. Different
sample frequencies do not appear to have a substantial effect on the Set-GARCH (-LR)
model’s ability to predict out-of-sample volatility.

5 Conclusion

In the last few decades, the data structure of the financial time series volatility model has
evolved significantly from GARCH-type models with point-valued data to CARR-type mod-
els with range-valued data, the ACI model and Int-GARCH model with interval-valued
data using random set theory etc. This study proposes a Set-GARCH model that drives the
volatility changes in random fuzzy sets-valued time series. Adapting to the rules of random
set operations, the proposed Set-GARCH model exhibits accurate volatility prediction.

We construct the sets-valued asset price using a fuzzy LR-form set. We present a general
and adaptable form of the membership function with a prior parameter p that controls the

8 N oting that Eq. (33) is just a linear transformation.
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shape of these functions. We examine the impact of various subtraction rules on sets-valued
returns. This paper provides the inner-product definition, distance definition, and variance
definition between two random fuzzy sets-valued returns.

Based on the sets-valued variable subtraction rule selected, we discuss the specifications
that a model driving sets-valued variable changes should have and provide the specifications of
our Set-GARCH model. We also propose the Set-GARCH-LR model as a derivative of the Set-
GARCH model to increase the flexibility of structure settings. The Set-GARCH differs from
Set-GARCH-LR in that the latter assumes that the two shape parameters in fuzzy sets-valued
returns are dependent and follow bivariate Gamma distribution. Maximum likelihood could
be utilized to estimate both the Set-GARCH and the Set-GARCH-LR models’ parameters.
In addition, we provide a transforming formula between the variance of fuzzy sets- valued
returns and the volatility of real returns.

In the empirical applications, we compare the volatility forecasting performance of the
Set-GARCH model to that of three classic GARCH-type models, three classic CARR-type
models, the interval valued-ACI model, and the interval valued Int-GARCH model using
daily/weekly/monthly trading data for oil, gold, and the S&P500. The proposed Set-GARCH
model/Set-GARCH-LR model performs well in both in-sample and out-of-sample volatility
prediction tests.

This paper also points out the possible directions for future research on the development of
sets-valued time series volatility models. First, to develop sets-valued time series models that
could absorb more information on price aggregation (our model only absorbs three prices).
Second, to develop an extension to the multivariate sets-valued time series.
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Appendix A: The benchmark models

This Appendix illustrates the volatility models that are taken as benchmark frameworks. We
treat separately the point-valued and the interval-valued models.

A.1 Point-Valued volatility models
A.1.1 GARCH-type models
Classical GARCH-type models incorporate the point-valued data. Assuming the closing price

at day ¢ is P, and the point-valued returns series y; = log P, — log P;_1, (4 is some mean
process or just a constant with innovation ¢;, the mean equation of GARCH-type models is

Ve =W+ €
€t = V;0¢ (Al)
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The oy is the standard deviation (SD) of returns y, at day ¢. The variance equation,

which describes the evolution of o; varies across different GARCH-type models. We select

GARCH, E-GARCH, and GJR-GARCH as the three benchmark models, and their respective

specifications are listed below (Hansen & Lunde, 2005; Escobar-Anel et al., 2021).
Benchmark model 1, GARCH(1,1) model:

o? =w+oclet2_l —1—;316,2_1 (A2)
Benchmark model 2, EGARCH(1,1) model:
Ino* = w+ i (le—1 | — E(le—11)) + Bre, (A3)

Benchmark model 3, GJR-GARCH(1,1) model:
o’ =w+aie | +ynl(e—1 <0)e_ + pie, (A4)

where I(e; < 0) = 1if ¢, < 0 and w, o1, B1 and y; are scalar parameters. Following the
variance equations from Eq. (A2) to Eq. (A4), GARCH-type models use the square of past
volatility 0[271. and and past innovation 6[27 ; to determine the change of current volatility o}
as

02 = 7 1,070 D (€2 ). D1 (2 )),...) (AS5)

The otz is calculated using the information of the point valued-returns y;, and only the point
valued-operation in the Euclidean space is used.

A.1.2 Conditional Autoregressive Range (CARR)-type models

The point-valued data structure will lose a substantial amount of price information, and it is
challenging to serve as a proxy for diverse and extensive investor behaviors. A substantial
amount of research has centered on using range-valued (which is also a point-valued-data)
information incorporating the highest and lowest prices at day ¢ to estimate volatility otz
(Parkinson, 1980; Lin et al., 2012). Let R, be the log-price range of day ¢ as

R, =In(max Py ;) —In(min Pr;), v=12,...,T (A6)
T T
where 7 is the intraday timing of the day 7. The CARR model could describe the returns
2
volatility o by 4;% (Chou, 2005; Parkinson, 1980). The mean equation of Eq. (A6) is
Rt = A€
€ ~(0,1) (A7)
iid
Benchmark model 4, CARR(1,1) model:
h=w+arRe—1 + Biri—1 (A8)

The CARR model incorporates the day’s highest and lowest prices, but discards the closing
price information. In addition, CARR does not store trend information, only range informa-
tion.? Two classic derivatives of CARR model is the CARR-A and CARR-B models (Chou,
2005).

Benchmark model 5, CARR-A(1,1) model:

M=w+a R+ Bird—1 +yyi—1 +8|lri—1l (A9)

9 The ranges of [3, 5] has the same the ranges as [13, 15].
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Benchmark model 6, CARR-B(1,1) model:
M=o+ a1 Ry + Biar—1 + yyi—1 (A10)

where the parameters w, o1, B1, and y are constant to be calibrated. Theoretically,
CARR-A and CARR-B absorb the highest price, the lowest price, and the closing price
to describe volatility changes. The CARR-type models convert the price information set
P, = {H,, L, C;} into multiple pointed-value data and compute the otz using point
valued-operation rules.

A.2 Interval-valued volatility models
A.2.1 Interval-valued variable and debates on subtraction operation rules

Noting that the returns of the day are equal to the log-price at day ¢ minus the log-price
at day t+ — 1, the interval valued-returns could be defined in a similar way. The interval
valued-variable ¥ could be defined as X = [a, b] = {x € R|la, b € R}. A random interval
valued-variable X on a probability space (€2, F, P) is a measurable mapping X : Q2 — Iy
where I is the space of closed sets of ordered numbers in R. The addition & and scalar
multiplication ® is

A®B=[A;+ B, Ag + Bg)
a®A=[aAL+,aARg] (A11)

where A= [AL, AR], B = [BL, BR], and AL, AR, BL, AR, a € R, a > 0. However, the
sets-valued time series model may be affected differently depending on the subtraction rule
chosen. The first kind of subtraction operation — g follows Hukuhara rule (Han et al., 2016;
Hukuhara, 1967; Sun et al., 2018), which is named as the Type-A subtraction in this paper.
in Type-A subtraction,

A—pyB=[A;, — B, Ag — Bg] (A12)

Given the highest price H; and lowest price L, in day ¢, the interval valued-returns R, by
Type-A subtraction is

Ry =L — Li—1, H; — Hi_1] (A13)
Type-A subtraction is the inverse of addition, while it doesn’t follow the rules for set opera-
tions, i.e., for any operations *, A * B should be {x|A « B, A € [AL, ARr], B = [Br, Brl}.
Here, we give the second kind of subtraction, Type-B subtraction S as
A©B=[AL - Bg, Az - B.] (Al4)
In this vein, the interval valued-returns I}, of day ¢ is

A=[L —H_1,H — L] (A15)

As we will see in the followings, sets-valued random variables and intervals share similar
characteristics, and different subtraction rules can have varying outcomes.
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A.2.2 Autoregressive conditional interval (ACl) model

Range-valued time series retains only the “leve” information of the price range, whereas
“trend” information is lost (Han et al., 2016).'0 Following the Type-A subtraction and the
interval valued-returns definition in Eq. (A13), Autoregressive conditional interval (ACI)
model obtains the dynamic evolution of interval valued-returns

Benchmark model 7, ACI(1,1) model: Y, (Han et al., 2016; Yang et al., 2016; Sun et
al., 2018) as

Y, =ao+ polo+p1Y, +it, (A16)

where the Y, = [Y,,, Yg] and 1,0 = [—1, 1] is the interval-valued variable. The oo, So.
and B; in Eq. (A16) are scalar values in R. The &, is the interval-valued white noise process.
In the ACI model, there is no pointed-value operation rule, and the volatility alz at day ¢
could be computed as %. In both the evolution process equation and the parameter
estimation process in Eq. (A16), the pointed-value operation rule in Euclidean space is no

longer used. However, the random set theory’s operation rule is adopted.

A.2.3 Interval-valued GARCH (Int-GARCH) model

The interyal—valued GARCH model (Int-GARCH) determines the variance of interval-valued
returns Y; defined by Eq. (A15) using a GARCH-type structure and Type-B subtraction as
Benchmark model 8, Int-GARCH(1,1) model:

Y, =h @,
v, =& —nr, € + 1]
1 N(O, D
~ F(k 1)
ll
he = ao + arlld—1ll + B1d—1 + yihi—i (A17)

where N is is a normal distribution, and I' is a univariate Gamma distribution. The Int-
GARCH model uses the Type-B subtraction. Let an arbitrary return at position a in ¥, be
Y, (a) = hi(& +an,),a € [—1, 1], the Int-GARCH volatility o is the average of D(Y,(a))
or f _11 ID)();, (a))da (Sun et al., 2020). The Int-GARCH model failed to absorb the closing
price information.

Appendix B: A numerical example of Eq. (13)

The log-price of S&P 500 index at # = Oct 15, 2021 is 8.406445 (H;), 8.40014 (L,), 8.40545
(Ct), and on Oct 14, 2021 is 8.398349 (H,_1), 8.386344 (L,_1), 8.398018 (C;_1), the shape
of mp (x) on Oct 14, 2021 is shown in Fig.4. In Eq. (13), the p is a priori parameter,
and different values of p can represent the attitudes of different types of investors to risk
perception. As shown in Fig.4, when p = 1, the membership of the closing price returns
Rc; in the fuzzy set R[ is 1. The closer to the Ry ; and Ry ; in the R,, the mp (x) value

10°If the price range of one day is 3 to 8, and the price range of another day is 13 to 18, then the “level”
information of their ranges is the same, but the “trend” information is very different.
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Fig.4 The sample of fuzzy sets-valued returns of S&P 500 on Oct 15, 2021

decreases nearly linearly to 0. R; is almost close to a triangular fuzzy sets-valued random
variable. When p = 2, the m j (x) value shows a rapid increase in the process of changing
from the support set boundary of m 3 (x) to the Rc ;. As p continues to increase, the m P, (x)

value at left and right ends of R, gradually decreases, and R; gradually becomes an interval-
valued variable, making R, degenerate into an interval valued-random process (Sun et al.,
2020).

If we eliminate the fuzziness of R, in Eq. (13), or we set p in ¢ (x; p) to a very large
number, R ¢ will degenerate into an interval-valued random variable R similar to Int-GARCH
model, and the definition of R™ can become:

R'=[L —H_1,H —L_1=[Pr;,— Pry1, Pr,— Pr 1] (B18)

R" becomes SuppR. Consequently, we can find that we have selected the same Type-
B Subtraction rule as in the Int-GARCH model. Indeed, the Type-B subtraction used in
Egs. (13) and (B18) can give the returns value of day ¢ (with specific membership) in all
real-world trading cases based on the price information of day # and day ¢ — 1.
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