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Abstract
In this article, we investigate the dynamic control problem of a production-inventory system.
Here, demands arrive at the production unit according to a Poisson process and are pro-
cessed in an FCFS manner. The processing time of the customer’s demand is exponentially
distributed. Production manufacturers produce items on a make-to-order basis to meet cus-
tomer demands. The production is run until the inventory level becomes sufficiently large.
We assume that the production time of an item follows an exponential distribution and that
the amount of time for the produced item to reach the retail shop is negligible. In addition,
we assume that no new customer joins the queue when there is void inventory. Moreover,
when a customer is waiting in an infinite FIFO queue for service, he/she does not leave
the queue even if the inventory is exhausted. This yields an explicit product-form solution
for the steady-state probability vector of the system. The optimal policy that minimizes
the discounted/average/pathwise average total cost per production is derived using a Markov
decision process approach.We find an optimal policy using value/policy iteration algorithms.
Numerical examples are discussed to verify the proposed algorithms.
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1 Introduction

Inventory theory has useful applications in various day-to-day real-life scenarios. One such
application is production control, in which decision-makers focus on controlling costs while
satisfying customer demands and maintaining their goodwill. Over the last decade, research
on complex integrated production-inventory systems or service-inventory systems has found
much attention, often in connectionwith the research on integrated supply chainmanagement,
seeHeet al. (2002),He and Jewkes (2001),Helmes et al. (2015),Krishnamoorthy et al. (2015),
Krishnamoorthy and Narayanan (2013), Malini and Shajin (2020), Pal et al. (2012), Sarkar
(2012) and Veatch and Wein (1994). In these articles, the authors considered (s, S)/(s, Q)-
type policy to study their inventory models.

Sigman and Simchi-Levi (1992) and Melikov and Molchanov (1992) introduced the
integrated queueing-inventory models. Whereas the article by Sigman and Simchi-Levi
(1992) considered the Poisson arrival of demands, arbitrarily distributed service time, and
exponentially distributed replenishment lead time. Also, they showed that the resulting
queueing-inventory system is stable if and only if the service rate is higher than the cus-
tomer arrival rate. The authors considered that the customers might join the system even
when the inventory level is zero and discussed the case of non-exponential lead-time distri-
bution. Berman et al. (1993) followed them with deterministic service times and formulated
the model as a dynamic programming problem. For more inventory models with positive
service times, see Berman and Kim (1999, 2004), Arivarignan et al. (2002), Krishnamoorthy
et al. (2006a, b), for a recent extensive survey of the literature we refer in Krishnamoorthy et
al. (2021), it provides the summary of work done until 2019.

We recall the remarkable work of Schwarz et al. (2006). They propose product form
solutions for the system state distribution under the assumption that customers do not join
when the inventory level is zero, where the service/lead time is exponentially distributed,
and demands follow a Poisson distribution. Krishnamoorthy and Narayanan (2013) reduced
the Schwarz et al. (2006) model to a production-inventory system with single-batch bulk
production of the quantum of inventory required. The production-inventory with service
time and protection for a few of the final phases of production and service is discussed in
Sajeev (2012).

Saffari et al. (2011) considered anM/M/1 queue with inventoried items for service, where
the control policy followed is (s, Q) and the lead time is a mixed exponential distribution.
They assumed that when inventory stock is empty, fresh arrivals are lost to the system, and
thus, they obtain a product form solution for the system state probability. Schwarz et al.
(2007) studied an inventory system with queueing networks. The authors assumed that at
each service station, an order for replenishment is made when the inventory level at that
station drops to its reorder level; hence, no customer is lost to the system. Zhao and Lian
(2011) used dynamic programming to obtain the necessary and sufficient conditions for a
priority queueing inventory system to be stable.

In all the papers quoted above, customers are provided with an item from the inventory
after the completion of service. In Krishnamoorthy et al. (2015), customers may not get
an inventory after the completion of service. They studied the optimization problem and
obtained the optimal pairs (s, S) and (s, Q) corresponding to the expected minimum costs.
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In this study, we do not use any common inventory control policies such as (s, S)/(s, Q)-
type.We consider the problemof finding the optimal production rates for discounted/long-run
average/pathwise average cost criteria of the dynamic production-inventory system. Here, we
consider an M/M/1/∞ production-inventory systemwith positive service time. Customers’
demands arrive one at a time according to Poisson processes. Service and production times
follow an exponential distribution. Each production is 1 units, and the production process
is run until the inventory level becomes sufficiently large (infinity). It is assumed that the
amount of time for the item produced to reach the retail shop is negligible. We assume that no
customer joins a queue when the inventory level is zero. This assumption leads to an explicit
product-form solution for the steady-state probability vector using a simple approach. In
this paper, we have directly obtained a product-form solution for the steady-state probability
vector from the balance equation. Readers are referred to Neuts (1989, 1994), Chakravarthy
and Alfa (1986), and Chakravarthy (2022a, b) where the authors obtain a such product-form
solution for the steady-state probability vector using matrix analytic methods.

In this paper, we find an optimal stationary policy by policy/value iteration algorithm.
We see that there are many studies on inventory production control theory on continuous-
time controlled Markov decision processes (CTCMDPs) for discounted/ average/ pathwise
average cost criteria (see Federgruen&Zipkin, 1986a; 1986b; Helmes et al., 2015). However,
the articles discussed algorithms for finding an optimal stationary policy are, Federgruen and
Zhang (1992), He et al. (2002), He and Jewkes (2001). The fixed costs of ordering items
or setting up a production process arise in many real-life scenarios. In their presence, the
most widely used ordering policy in the stochastic inventory literature is the (s, S) policy. In
this context, we mention two important survey papers for discrete/continuous-time regarding
(s, S) replenishment policy; see Perera andSethi (2022a, b) for a comprehensive survey report
with the vast literature accumulating the articles over seven decades on the discounted/average
cost criterion on discrete/continuous time cases.

The motivation for studying discounted problems comes mainly from economics. For
instance, if δ denotes a rate of discount, then (1 + δ)L would be the amount of money one
would have to pay to obtain a loan of L dollars over a single period. Similarly, the value of
a note promises to pay L dollars t time steps into the future would have a present value of

L
(1+δ)t

= αt L , where α := (1 + δ)−1 denotes the discount factor. This is the case for finite-
horizon problems. But in some cases, for instance, processes of capital accumulation for an
economy, or some problems with inventory or portfolio management, do not necessarily have
a natural stopping time in the definable future, see Hernández-Lerma and Lasserre (1996)
and Puterman (1994). Now when decisions are made frequently, the discount rate is very
close to 1, or when performance criteria cannot easily be described in economic terms, the
the decision maker may prefer to compare policies on the basis of their average expected
reward instead of their expected total discounted reward, see Piunovsky and Zhang (2020).

The ergodic problem for controlledMarkov processes refers to the problem of minimizing
the time-average cost over an infinite time horizon. Hence, the cost over any finite initial time
segment does not affect ergodic cost. This makes the analytical analysis of ergodic problems
more difficult. However, the sample-path cost r(·, ·, ·), defined by (13), corresponding to an
average-cost optimal policy that minimizes the expected average cost may fluctuate from
its expected value. To consider these fluctuations, we discuss the pathwise average-cost
(PAC) criterion. This study investigates a dynamic production-inventory control problem for
the discounted/average/pathwise average cost criterion. We find the optimal production rate
through a value/policy iteration algorithm. Finally, numerical examples are included to verify
the proposed algorithms.
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The remainder of this paper is organized as follows. First, we define the production control
problem in Sect. 2. In Sect. 3, we discuss the steady-state analysis of this model and describe
the evaluation of the control system. In addition, we define our cost criterion and assumptions
required to obtain an optimal policy. Section4 discusses the discount cost criterion. Here,
we find a solution for the optimality equation corresponding to the discounted cost criterion
and provide its value/policy iteration algorithms. The next section deals with the optimality
equation and policy iteration algorithm corresponding to the average cost criterion. We per-
form the same analysis in Sect. 6 for the pathwise average cost criterion, as in Sect. 5. Finally,
in Sect. 7, we provide concluding remarks and highlight the directions for future research.

Notations

N (t): number of customers in the system at time t .
I(t): inventory level in the system at time t .
e : (1, 1, . . . , 1, . . .) a column vector of 1′s of appropriate order.
N0 = N ∪ {0}, where N is set of all natural numbers.
Cb(N0 × N0) is the collection of all bounded functions on N0 × N0.

2 Problem description

We consider an M/M/1/∞ dynamic production-inventory system (Fig. 1) with positive
service time. Demands by customers for the item occur according to a Poisson process of
rate λ and each demand asks for one item from the inventory. Processing the customer request
requires a random amount of time, which is exponentially distributed with parameter μ and
the requested item will be provided to the customer at the end of his/her service completion.
Each production is of one unit and the production process is kept run until the inventory
level becomes sufficiently large (infinity). To produce an item, it takes an amount of time
that is exponentially distributed with the parameter β. We assume that no external customer
is allowed to join the queue when the inventory level becomes zero; such demands are
considered lost sales. We assume that the waiting customers will remain in the queue when
the inventory level is empty. It is assumed that the amount of time for the item produced
to reach the retail shop is negligible. Thus the system is a continuous-time Markov chain
(CTMC) {X (t); t ≥ 0} = {(N (t), I(t)) ; t ≥ 0} with state space � = ⋃∞

n=0 L(n), where
L(n) is called the nth level of the CTMC, is given by, {(n, i); i ∈ N0} .

Now the transition rates in the CTMC are:

• (n, i) → (n + 1, i): rate is λ, n ∈ N0, i ∈ N

• (n, i) → (n − 1, i − 1): rate is μ, n, i ∈ N

• (n, i) → (n, i + 1): rate is β, n, i ∈ N0.

• All other transition rates are zero.

Write,

P{N (t) = n, I(t) = i} = Pn,i (t).

These satisfy the system of difference-differential equations:

P ′
n,0(t) = −βPn,0(t) + μPn+1,1(t), n ∈ N0. (1)

P ′
n,i (t) = −(λ + β + μ)Pn,i (t) + μPn+1,i+1(t) + λPn−1,i (t) + βPn,i−1, n, i ∈ N. (2)

The invariant probability measure is obtained under the conditions λ < μ and β < λ which
will be shown in the subsequent section.
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Fig. 1 Dynamic production-inventory system

Write,

lim
t→∞ Pn,i (t) = Pn,i , n, i ∈ N.

Thus, the above set of Eqs. (1) and (2) becomes,

−βPn,0 + μPn+1,1 = 0, n ∈ N0 (3)

−(λ + β + μ)Pn,i + μPn+1,i+1 + λPn−1,i + βPn,i−1 = 0, n, i ∈ N. (4)

We can solve these equations to find the steady-state probability distribution (Fig. 1).
The infinitesimal generator of this CTMC {X (t); t ≥ 0} is

Q =

⎡

⎢
⎢
⎢
⎣

B A0

A2 A1 A0

A2 A1 A0 . . .

. . .
. . .

. . .

⎤

⎥
⎥
⎥
⎦

, (5)

where B contains transition rates within L(0); A0 is the arrival matrix that represents the
transition rates of customer arrival i.e., A0 represents the transition from level n to level n+1,
for any n ∈ N0; A1 represents the transitions within L(n) for any n ∈ N and A2 is the service
matrix that represents the transition rates of service times i.e., A2 represents transitions from
L(n) to L(n − 1), n ∈ N. The transition rates are

[B]kl =

⎧
⎪⎪⎨

⎪⎪⎩

−β, for l = k = 0,
−(λ + β), for l = k; k = 1, 2, . . . ,∞,

β, for l = k + 1; k = 0, 1, . . . ,∞,

0, otherwise,
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[A0]kl =
{

λ, for l = k; k = 1, 2, . . . ,∞,

0, otherwise,

[A1]kl =

⎧
⎪⎪⎨

⎪⎪⎩

−β, for l = k = 0,
−(λ + β + μ), for l = k; k = 1, 2, . . . ,∞,

β, for l = k + 1; k = 0, 1, . . . ,∞,

0, otherwise,

[A2]kl =
{

μ, for l = k − 1; k = 1, 2, . . . ,∞,

0, otherwise.

All other remaining transition rates are zero.
Note: All entries (block matrices) in Q have infinite order, and these matrices contain tran-
sition rates within the level (in the case of diagonal entries) and between levels (in the case
of off-diagonal entries).

3 Analysis of the system

In this section, we discuss the invariant probability measure of a production-inventory model
with consideration of stability conditions of the system.We know that the limiting distribution
is the unique solution of the system of balance equations when we add the normalizing
equation. To obtain the limiting distribution, we assume that Pn,i be a solution of (3)–(4).
Let Pn,i = Cxn yi and using (3)–(4), we have

(λ + β + μ)xy = λy + βx + μx2y2 and β = μxy.

Thus,

βμx2 − (λ + μ)βx + βλ = 0.

After factorization, we get

(x − 1)(μx − λ) = 0. (6)

From above equtaion, we have x = λ
μ
and y = β

λ
. By normalization,

1 =
∞∑

n=0

∞∑

i=0

Pn,i = C
∞∑

n=0

∞∑

i=0

(
λ

μ

)n (
β

λ

)i

= C
1

(
1 − λ

μ

) (
1 − β

λ

) . (7)

This implies, C =
(
1 − λ

μ

) (
1 − β

λ

)
and hence

Pn,i =
(

1 − λ

μ

) (

1 − β

λ

) (
λ

μ

)n (
β

λ

)i

. (8)

Consequently, the stability conditions of the dynamic production-inventory model are
given by λ < μ and β < λ. The invariant measure of the CTMC {X (t); t ≥ 0} =
{(N (t), I(t)) ; t ≥ 0} is given by

P = (P0, P1, P2, . . . ), (9)

where the sub-vectors of P are further partitioned as,

Pn = (Pn,0, Pn,1, Pn,2, . . . ), n ∈ N0,
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where Pn,i is given in (8). The existence of such invariant measure is ensured by Assump-
tions 1 and Condition A (which is satisfied by our transition rates); see Remark 2, p. 12–13,
for details. For more details about steady-state control of queues exploiting the product form
stationary distributions, see, e.g., the recent work of Rahul (2022), Krishnamoorthy et al.
(2015), Malini and Shajin (2020) and Neuts (1994).

It is very natural to assume that our production rate function never goes to zero because
of heavy starting cost, and at any time, it depends on the number of items in the inventory
and the number of demands in the queue, i.e., it is a map

β : N0 × N0 → [γ, R],
where N0 := {0, 1, 2, . . .}, and γ, R are some positive constant. Here in our model, state
space is � = ⋃∞

n=0 {(n, i); i ∈ N0}, and the action space is A = [γ, R] also let for any
state (n, i) ∈ N0 ×N0, the corresponding admissible action space is A(n, i) = [γ, R]. Now,
consider a Borel subset of N0 × N0 × [γ, R] denoted by K := {(n, i, β̃) : n, i ∈ N0, β̃ ∈
[γ, R]}. Recall (p. 6–7) corresponding to state (n, i) and β̃ ∈ [γ, R], we denote the transition
rates as π

β̃

(n,i)(m, j).

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

π
β̃

(0,i)(0, j) = (B)i j

π
β̃

(n,i)(n+1, j) = (A0)i j for any n ∈ N0

π
β̃

(n,i)(n, j) = (A1)i j for any n ∈ N

π
β̃

(n,i)(n−1, j) = (A2)i j for any n ∈ N.

(10)

All other transition rates are zero. Note that,
∑

(m, j)∈N0×N0

π
β̃

(n,i)(m, j) ≡ 0, ∀(n, i, β̃) ∈ K (11)

and

sup
(n,i)∈N0×N0

π∗
(n,i) = sup

(n,i)∈N0×N0

sup
β̃∈[γ,R]

π
β̃

(n,i)

= sup
(n,i)∈N0×N0

sup
β̃∈[γ,R]

[
− π

β̃

(n,i)(n,i)

]
= R + μ + λ < ∞. (12)

Define r(n, i, β) as the cost function in the long run corresponding to production rate function
β. Then the cost function is of the form:

r(n, i, β) = h · i + c1 · μ · I{n>0} + c2 · β · I{i>S} + c3 · λI{i=0}
+ c4 · (n − 1)I{n≥2}, (13)

where h is the holding cost per item per unit of time in the warehouse, c1 is the service cost
per customer, c2 is the storage/penalty cost per item per production when the inventory level
is beyond S, c3 is the cost incurred due to loss per customer when the item of the inventory is
out of stock, and c4 is the waiting cost per customer when there are more than one customer
in the system. Note that our cost function is continuous in the third argument for each fixed
first (n, i) ∈ N0 ×N0. Here our aim is to minimize our accumulated cost overall production
rate functions, i.e.,

USM := {β | β : N0 × N0 → [γ, R]}.
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This is the collection of all deterministic stationary strategies/policies. Note that we can
write USM as the countable product space [γ, R]. So, Tychonoff’s theorem (see Guo &
Hernández-Lerma, 2009, Proposition A. 6) yields that USM is compact.

Evolution of the control system:Next,we give an informal description of the evolution of the
CTCMCs as follows. The controller observes continuously the current state of the system.
When the system is in state (n, i) ∈ � at time t ≥ 0, he/she chooses action β̃ ∈ [γ, R]
according to some control. As a consequence of this, the following happens:

1. the controller incurs an immediate cost at rate r(n, i, β̃); and
2. the system stays in state (n, i) for a random time, with rate of leaving (n, i) given by

π
β̃

(n,i), and then jumps to a new state (m, j) �= (n, i) with the probability determined by

π
β̃

(n,i)(n,i)

π
β̃

(n,i)

(see Guo & Hernández-Lerma 2009, Proposition B.8, for details).

When the state of the system transits to the new state (m, j), the above procedure is repeated.
The controller tries to minimize his/her costs with respect to some performance criterion
defined by (16), (17) and (18) below.

For each β ∈ USM , the associated rates are defined as

π
β

(n,i)(m, j) := π
β(n,i)
(n,i)(m, j) for (n, i), (m, j) ∈ N0 × N0 for t ≥ 0. (14)

Let Q(β) :=
[
π

β

(n,i)(m, j)

]
be the associated matrix of transition rates with the

((n, i), (m, j))th element π
β

(n,i)(m, j). Any (possible sub stochastic and homogeneous)
transition function p̃(s, (n, i), t, (m, j), β) such that

lim
γ→0+

p̃(t, (n, i), t + γ, (m, j), β) − δ(n,i)(m, j)

γ
= π

β

(n,i)(m, j)

is called a Q-processes with the transition rate matrices Q(β), where δ(n,i)(m, j) is the
Kronecker delta. Under Assumption 1 (a), we will denote by {Y (t, β̃)} the associated right-
continuous Markov chain with values in N0 × N0 and for each β ∈ USM , the regular Q
process simply denoted as p(s, (n, i), t, (m, j), β), see Guo and Hernández-Lerma (2009).

Also, for each initial state (n, i) ∈ N0 × N0 at time s = 0, we denote our probability
space as (�,F , Pβ

(n,i)), where F is Borel σ -algebra over � and Pβ

(n,i) denotes the proba-

bility measure determined by p(s, (n, i), t, (m, j), β). Denote Eβ

(n,i) as the corresponding
expectation operator. For any real-valued measurable function u on K and β ∈ USM , let

u(n, i, β) := u(n, i, β(n, i)) ∀ (n, i) ∈ N0 × N0 and t ≥ 0, (15)

whenever the integral is well defined. For any measurable function V ≥ 1 on N0 × N0,
we define the V -weighted supremum norm ‖ · ‖ of a real-valued measurable function u on
N0 × N0 by

‖u‖V := sup
(n,i)∈N0×Sn

{
u(n, i)

V (n, i)

}

,

and the Banach space BV (N0 × N0) := {u : ‖u‖V < ∞}.
Now we briefly describe the problems we consider in this paper.
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3.1 Discounted cost problem

For β ∈ USM , define α-discounted cost criterion by

I β
α (n, i) = Eβ

(n,i)

[∫ ∞

0
e−αt r(Y (t), β(Y (t)))dt

]

(16)

where α > 0 is the discount factor, Y (·) is the Markov chain corresponding to β ∈ USM

with Y (0) = (n, i), Eβ

(n,i) denote the corresponding expectation and r is defined as in (13).
Here the controller wants to minimize his cost over USM .

Definition A control β∗ ∈ USM is said to be optimal if

I ∗
α (n, i) := I β∗

α (n, i) = inf
β∈U SM

I β
α (n, i).

3.2 Ergodic cost criterion

For β ∈ USM , the ergodic cost criterion is defined by

J (n, i, β) = lim sup
T→∞

1

T
Eβ

(n,i)

[ ∫ T

0
r(Y (t), β(Y (t)))dt

]
, (17)

where r is defined as in (13) and Y (·) is the process corresponding to the controlβ ∈ USM and
Eβ

(n,i) denote the expectation where control β used with Y (0) = (n, i). Here the controller
wants to minimize his cost over USM .

Definition A control β∗ ∈ USM is said to be optimal if

J ∗(n, i) := J (n, i, β∗) = inf
β∈U SM

J (n, i, β).

3.3 Pathwise average cost criterion

Pathwise average cost (PAC) criterion Jc(·, ·, ·) is defined as follows: for all β ∈ USM and
(n, i) ∈ N0 × N0,

Jc(n, i, β) := lim sup
T→∞

1

T

∫ T

0
r(Y (t), β(Y (t)))dt . (18)

Definition A policy β∗ ∈ USM is said to PAC-optimal if there exists a constant g∗ such that

Pβ∗
(n,i)(Jc(n, i, β∗) ≤ g∗) = 1 and Pβ

(n,i)(Jc(n, i, β) ≥ g∗) = 1,

for all (n, i) ∈ N0 × N0 and β ∈ USM .

To ensure the regularity of a Q-process and finiteness of the cost criteria (16), (17) and
(18), we take the following assumption.

Assumption 1 (a) There exist a nondecreasing function W ≥ 1 on N0 × N0 and constants
c1 > 0 and b1 ≥ 0 such that for any (n, i) ∈ N0 × N0, and β̃ ∈ [γ, R], the following
holds:



β̃

(n,i)W (n, i) =
∑

(m, j)∈N0×N0

π
β̃

(n,i)(m, j)W (m, j) ≤ −c1W (n, i) + b1δ(n,i)(0,0),

where δ(n,i)(m, j) is the Dirac delta measure.
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(b) For every (n, i) ∈ N0 × N0 and some constant M > 0, r(n, i, β̃) ≤ MW (n, i).

Remark 1 (1) Assumption 1 (a) and its variants are used to study ergodic control problems,
see, Guo and Hernández-Lerma (2009), Meyn and Tweedie (1993) and Pal and Pradhan
(2019).

(2) Assumption 1 (b) and its variants are very useful Assumption for unbounded costs
in control theory, see Golui and Pal (2022), Guo and Hernández-Lerma (2009). For
bounded cost as in Ghosh and Saha (2014), Kumar and Pal (2015), Assumption 1 (b) is

not required. By (10) and (13), we have that the functions, r(n, i, β̃), π
β̃

(n,i)(m, j), and
∑

(m, j)∈N0×N0
π

β̃

(n,i)(m, j)W (m, j) are all continuous in β̃ for each fixed (n, i) ∈ N0×N0,

with W as in Assumption 1. To ensure the existence of optimal stationary strategies, we
need this continuity (see, for instance, Ghosh & Saha, 2014; Kumar & Pal, 2013; 2015
and their references).

Now to prove the existence of an optimal stationary policy for discounted cost criterion,
we need the following Assumption, see Guo and Hernández-Lerma (2009, chapter 6).

Assumption 2 There exists a nonnegative functionW ′ onN0×N0 and constants c′ > 0, b′ ≥
0, and M ′ > 0 such that

π∗
(n,i)W (n, i) ≤ M ′W ′(n, i), (n, i) ∈ N0 × N0,

∑

(m, j)∈N0×N0

π
β̃

(n,i)(m, j)W
′(m, j) ≤ c′W ′(n, i) + b′, (n, i) ∈ N0 × N0, β̃ ∈ [γ, R].

We now state an important condition that is satisfied by our transition rates given by (10).
Condition A For each β ∈ USM , the corresponding Markov process {Y (t)} with transition
function p((n, i), t, (m, j), β) is irreducible, which means that, for any two states (n, i) �=
(m, j), there exists a set of distinct states (n, i) = (m1, i1), . . . , (mk, ik) such that

π
β(m1,i1)
(m1,i1)(m2,i2)

. . . π
β(mk ,ik )
(mk ,ik )(m, j) > 0.

Remark 2 (1) Condition A is satisfied by our transition rates given by (10).
(2) Under Assumptions 1 and Condition A, for each β ∈ USM , by Guo and Hernández-

Lerma (2009, Propositions C.11 and C.12), we say that the MC {Y (t)} has a unique
invariant probability measure, ϑβ which satisfies

ϑβ(m, j) = lim
t→∞ p((n, i), t, (m, j), β),

(independent of (n, i) ∈ N0 × N0) for all (m, j) ∈ N0 × N0. Thus by Assumption 1 (a)
and Guo and Hernández-Lerma (2009, Lemma 6.3 (i)), we have

ϑβ(W ) :=
∑

(m, j)

W (m, j)ϑβ(m, j) ≤ b1
c1

< ∞,

and so,

ϑβ(u) :=
∑

(m, j)

u(m, j)ϑβ(m, j) < ∞, ∀β ∈ USM for any u ∈ BW (N0 × N0). (19)

To get the existence of average cost optimal (ACO) stationary strategy, in addition to
Assumptions 1 and 2, we impose the following condition. This assumption is very important
to study an ergodic control problem, see Guo and Hernández-Lerma (2009, chapter 7). Under
this assumption, the Markov chain is uniformly ergodic.
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Assumption 3 The control model is uniformly ergodic, which means the following: there
exist constants δ > 0 and L2 > 0 such that [using the notation in (19)]

sup
β∈U SM

|Eβ

(n,i)u(Y (t)) − ϑβ(u)| ≤ L2e
−δt‖u‖WW (n, i)

for all (n, i) ∈ N0 × N0, u ∈ BW (N0 × N0), and t ≥ 0.

For the existence of pathwise average cost optimal (PACO) stationary strategy, in addition
to Assumptions 1, 2 and 3, we impose the following conditions.

Assumption 4 Let W ≥ 1 be as in Assumption 1. For k = 1, 2, there exist nonnegative
functions W ∗

k ≥ 1 on N0 and constants c∗
k > 0, b∗

k ≥ 0, and M∗
k > 0 such that for all

(n, i) ∈ N0 × N0 and β̃ ∈ [γ, R],
(a) W 2(n, i) ≤ M∗

1W
∗
1 (n, i) and

∑

(m, j)

π
β̃

(n,i)(m, j)W
∗
1 (n, j) ≤ −c∗

1W
∗
1 (n, i) + b∗

1.

(b) [π∗
(n,i)W (n, i)]2 ≤ M∗

2W
∗
2 (n, i) and

∑
(m, j) π

β̃

(n,i)(m, j)W
∗
2 (m, j) ≤ −c∗

2W
∗
2 (n, i) + b∗

2 .

4 Analysis of discounted cost problem

In this section, we study the infinite horizon discounted cost problem given by the criterion
(16) and prove the existence of the optimal policy. Corresponding to the cost criterion (16),
we recall the following function

I ∗
α (n, i) = inf

β∈U SM
I β
α (n, i).

Using the dynamic programming heuristics, the Hamilton-Jacobi-Bellman (HJB) equations
for discounted cost criterion are given by

α I ∗
α (n, i) = inf

β̃∈[γ,R]

[



β̃

(n,i) I
∗
α (n, i) + r(n, i, β̃)

]
(20)

where 

β̃

(n,i) f (n, i) :=
∑

(m, j)∈N0×N0

π
β̃

(n,i)(m, j) f (m, j), for any function f (n, i).

Define an operator T : BW (N0 × N0) → BW (N0 × N0) as

Tu(n, i) := inf
β̃∈[γ,R]

[
r(n, i, β̃)

R + α + λ + μ
+ R + λ + μ

R + α + λ + μ

∑

(m, j)∈N0×N0

pβ̃

(n,i)(m, j)u(m, j)

]

,

(21)

for u ∈ BW (N0 × N0) and (n, i) ∈ N0 × N0, where

pβ̃

(n,i)(m, j) := π
β̃

(n,i)(m, j)

R + λ + μ
+ δ(n,i)(m, j)

is a probability measure on N0 ×N0 for each (n, i, β̃) ∈ N0 ×N0 × [γ, R] and δ(n,i)(m, j) is
the Dirac-delta function.

Next, we prove the optimality theorem for the discounted cost criterion. In this theorem,
we find the existence of a solution of the discounted-cost optimality equation (DCOE) and
the optimal stationary policy.
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Theorem 1 Suppose that Assumptions 1 and 2 hold. Define u0 := 0, uk+1 := Tuk. Then the
following hold.

(a) The sequence {uk}k≥0 is monotone nondecreasing, and the limit u∗ := limk→∞ uk is in
BW (N0 × N0).

(b) The function u∗ in (a) satisfies the fixed-point equation u∗ = Tu∗, or, equivalently, u∗
verifies the DCOE, that is

αu∗(n, i) = inf
β̃∈[γ,R]

{

r(i, n, β̃) +
∑

(m, j)∈N0×N0

π
β̃

(n,i)(m, j)u
∗(m, j)

}

∀(n, i) ∈ N0 × N0.

(22)

(c) There exist stationary policies βk (for each k ≥ 0) and β∗
α attaining the minimum in the

equations uk+1 = Tuk and the DCOE (22), respectively. Moreover, u∗ = I ∗
α . and the

policy β∗
α is discounted-cost optimal.

(d) Every limit point in USM of the sequence {βk} in (c) is a discounted-cost optimal
stationary policy.

Proof (a) We first prove the monotonicity of {uk}k≥0. Let u0 = 0. Since r ≥ 0, u1(n, i) ≥
u0(n, i) for all (n, i) ∈ N0 × N0. Consequently, the monotonicity of T gives

uk = T ku0 ≤ T ku1 = uk+1 for every k ≥ 1.

So, the sequence {uk}k≥0 is a monotone increasing sequence. So, the limit u∗ exists.
Also, by direct calculations we get

|uk(n, i)| ≤ b1M

α(α + c1)
+ MW (n, i)

α + c1
≤ (α + b1)M

α(α + c1)
W (n, i) ∀k ≥ 0 and (n, i) ∈ N0 × N0,

which implies that supk≥0 ‖uk‖W is finite. Hence u∗ ∈ BW (N0 × N0).
(b) By the monotonicity of T , Tu∗ ≥ Tuk = uk+1 for all k ≥ 0, and thus

Tu∗ ≥ u∗. (23)

Now, there exists βk ∈ USM such that

uk+1(n, i) =
[

r(n, i, βk)

R + α + λ + μ
+ R + λ + μ

R + α + λ + μ

∑

(m, j)

pβk
(n,i)(m, j)uk(m, j)

]

,

for all k ≥ 0. SinceUSM is compact, there exist a policy β∗ ∈ USM and a subsequence of
k for which limk→∞ βk = β∗. So, by the generalized Fatou’s lemma by taking k → ∞,
we get

u∗(n, i) ≥
[

r(n, i, β∗)
R + α + λ + μ

+ R + λ + μ

R + α + λ + μ

∑

(m, j)

pβ∗
(n,i)(m, j)u

∗(m, j)

]

∀(n, i) ∈ N0 × N0,

which gives u∗ ≥ Tu∗. So, u∗ = Tu∗, and so we get DCOE (22).
(c) Since we have that uk and u∗ are in BW (N0 × N0), from Guo and Hernández-Lerma

(2009, Proposition A.4), we see that the functions in (21) and (22) are continuous in
β̃ ∈ [γ, R]. Hence the first claim of part (c) holds. Moreover, for all ∀(n, i) ∈ N0 × N0

and β ∈ USM , it follows from (22) that

αu∗(n, i) ≤
{

r(n, i, β) + 

β

(n,i)u
∗(n, i)

}

for all (n, i) ∈ N0 × N0 (24)
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with equality if β = β∗
α . Hence, (24), together with Guo and Hernández-Lerma (2009,

Theorem 6.9 (b)), yields that

I
β∗

α
α (n, i) = u∗(i) ≤ I β

α (n, i) for all (n, i) ∈ N0 × N0 and t ≥ 0.

Hence, we prove part (c).
(d) By part (a) and the generalized dominated convergence theorem in Guo and Hernández-

Lerma (2009, Proposition A.4), every limit point β ∈ USM of {βk} satisfies

u∗(n, i) =
[

r(n, i, β)

R + α + λ + μ
+ R + λ + μ

R + α + λ + μ

∑

(m, j)

pβ

(n,i)(m, j)u
∗(m, j)

]

,

which is equivalent to

αu∗(n, i) =
{

r(n, i, β) + 

β

(n,i)u
∗(n, i)

}

∀(n, i) ∈ N0 × N0.

Thus by (b) and Guo and Hernández-Lerma (2009, Theorem 6.9 (c)), I β
α (n, i) =

u∗(n, i) = I ∗
α (n, i) for every (n, i) ∈ N0 × N0.

��

4.1 The discounted-cost value iteration algorithm

Now using the value iteration algorithm, we find an optimal production rate β∗
α for the

discounted-cost criterion. Since this optimal production rate β∗
α cannot be computed explic-

itly, we explore the possibility of algorithmic computation. Thus, in the presence of
Theorem 1, one can use the following value iteration algorithm for computing β∗

α .
A Value Iteration Algorithm 4.1 By the value iteration algorithm, we will find an optimal
production rate β∗

α , described briefly as follows:

Step 0 Let v0(n, i) = 0, for all (n, i) ∈ N0 × N0.
Step 1 For k ≥ 1, define

vk(n, i) = inf
β̃∈[γ,R]

[
r(n, i, β̃)

R + α + λ + μ
+ R + λ + μ

R + α + λ + μ

∑

(m, j)

pβ̃

(n,i)(m, j)vk−1(m, j)

]

,

(25)

where (n, i), (m, j) ∈ N0 × N0, p
β̃

(n,i)(m, j) := π
β̃

(n,i)(m, j)
R+λ+μ

+ δ(n,i)(m, j).
Step 2 Choose βk ∈ USM attaining the minimum in the right-hand side of (25).
Step 3 v∗(n, i) = lim

k→∞ vk(n, i), for all (n, i) ∈ N0 × N0.

Step 4 Every limit point in USM of the sequence {βk} is a discounted-cost optimal
stationary policy.

Numerical example

Now, we discuss the results obtained from the implementation of the discounted-cost value
iteration algorithm. Unless specified otherwise, the experiment parameters remain consistent
as follows: λ = 4.5, μ = 5, α = 0.7, h = 100, c1 = 20, c2 = 30, c3 = 40, c4 = 10,
S = 2 and [γ, R] = [0.1, 2] discretized as {0.1, 0.2, 0.3, . . . , 1.9, 2} for computational
purposes. We assume n ≤ 25 and i ≤ 25 in the computational experiments to enhance the
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(a) Convergence of value iteration in a finite
number of steps.

(b) Impact of α on the convergence speed.

Fig. 2 ε-Convergence of vk for selected state(s) as k increases, where ε = 0.01

(a) Optimal production rate β∗
α(n, i) (b) Optimal state values v∗(n, i)

Fig. 3 Discounted-cost value iteration results for each state (n, i) at convergence

interpretability while allowing substantial numerical insights. Figure2 shows the speed of
convergence of the value function for selected states and different α values. Reducing the
value ofα leads to an increase in the number of iterations k required to achieve ε-convergence,
as evident from Fig. 2, as well as in (25).

The optimal policy table for the discounted-cost criterion using the above mentioned
parameters is shown in Fig. 3. A lower production rate is advised in most states where
the majority of customer demands can be fulfilled using the existing inventory. We notice
that a high production rate is optimal for some states where there is zero/low inventory. In
addition, we see that the optimal policy is in accordance with the current state as well as
future transitions. It is intriguing to observe that the optimal production rates often approach
either the lower or upper bounds of the permissible production rates, i.e., γ = 0.1 or R =
2, respectively. The optimal value function (v∗(n, i)) reveal that as the inventory level i
increases, the discounted cost also rises.

It is important to note that the optimal policy has a strong correlation with the service rate
of the system μ. As μ increases, the expected service time reduces and thus the production
frequency should be increased in consideration of future demands. Figures3, 4, and 5 provide
supporting evidence for this by varying μ with rest of the fixed parameters. When μ = 40,
the optimal state values increase when there is a larger number of customers waiting for
service, which is an infrequent event for a lower λ

μ
value.
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(a) β∗ (n, i) (b) v∗(n, i)

Fig. 4 Discounted-cost value iteration results when μ = 20

(a) β∗
α(n, i) (b) v∗(n, i)

Fig. 5 Discounted-cost value iteration results μ = 40

The discount factor α is another parameter used to measure the value of future costs
which impacts the optimal policies significantly. A smaller α value not only prolongs the
computational time to algorithm convergence but also influences the optimal production rates
and optimal state values, as depicted in Figs. 6 and 7, where the remaining parameters are
fixed.

4.2 The discounted-cost policy iteration algorithm

Now if the state and action spaces are both finite then using Lemma 1 and Theorem 2 below,
one can find an optimal production rate β∗

α by using the policy iteration algorithm given
below.

In order to solve the discounted-cost problem through the policy iteration algorithm, we
define some sets. For every β ∈ USM , (n, i) ∈ N0 × N0, and β̃ ∈ [γ, R], let

Dβ(n, i, β̃) := r(n, i, β̃) +
∑

(m, j)∈N0×N0

π
β̃

(n,i)(m, j) I
β
α (m, j) (26)
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(a) β∗
α(n, i) (b) v∗(n, i)

Fig. 6 Discounted-cost value iteration results when α = 0.3

(a) β∗
α(n, i) (b) v∗(n, i)

Fig. 7 Discounted-cost value iteration results when α = 0.9

and

Eβ(n, i) := {β̃ ∈ [γ, R] : Dβ(n, i, β̃) < α I β
α (n, i)}. (27)

We then define an improvement policy β ′ ∈ USM (depending on β) as follows:

β ′(n, i) ∈ Eβ(n, i) if Eβ(n, i) �= ∅ and β ′(n, i) := β(n, i) if Eβ(n, i) = ∅. (28)

Note: Now if the number of customers is m and the number of items is also m, then cor-
responding to fixed β ∈ USM , let I is the m2 × m2 standard identity matrix. Also, define
Î β
α := [I β

α (n, i)]m2×1 and r̂(β) := [r(n, i, β)]m2×1 are column vectors (here β is fixed but
(n, i)will vary). Note that, if the state and action spaces are finite, then Assumption 1 (which
is required for the next Lemma 1 and Theorem 2) of the present manuscript is satisfied by
suitable Lyapunov function and constants.

Next, we state a Lemma whose proof is in Guo and Hernández-Lerma (2009, Lemma
4.16, Lemma 4.17).

Lemma 1 Suppose that Assumption 1 holds. Then for the finite CTMDPmodel, I β
α is a unique

bounded solution to the equation
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αu(n, i) = r(n, i, β) +
∑

(m, j)∈N0×N0

π
β

(n,i)(m, j)u(m, j) ∀(n, i) ∈ N0 × N0,

for every β ∈ USM . (29)

Also, for any given β ∈ USM , let β ′ ∈ USM be defined as in (28) and suppose that β ′ �= β.

Then I β
α ≥ I β ′

α .

The Policy Iteration Algorithm 4.1

Step 1 Pick an arbitrary β ∈ USM . Let k = 0 and take βk := β

Step 2 (Policy evaluation) Obtain Î βk
α = [α I − Q(βk)]−1r̂(βk) (by Lemma 1), where

Q(βk) =
[
π

βk
(n,i)(m, j)

]
, I is the identity matrix, Î βk

α and r̂ are column vecors.

Step 3 (Policy improvement) Obtain a policy βk+1 from (28) (with βk and βk+1 in lieu
of β and β ′, respectively.
Step 4 If βk+1 = βk , then stop because βk+1 is discounted-cost optimal (by Theorem 2
below). Otherwise, increase k by 1 and return to Step 2.

To get the optimal policy from the above policy iteration algorithm, we prove the following
Theorem.

Theorem 2 Suppose that Assumption 1 holds. Then for each fixed discounted factor α > 0,
the discounted-cost policy iteration algorithm yields a discounted-cost optimal stationary
policy in a finite number of iterations.

Proof Let {βk} be the sequence of policies in the discounted-cost policy iteration algorithm
above. Then, by Lemma 1, we have I βk

α � I βk+1
α . Thus, each policy in the sequence {βk, k =

0, 1, . . .} is different. Since the number of policies is finite, the iterations must stop after a
finite number. Suppose that the algorithm stops at a policy denoted by β∗

α . Then β∗
α satisfies

the optimality equation

α I ∗
α (n, i) = inf

β̃∈[γ,R]

[

r(n, i, β̃) +
∑

(m, j)

π
β̃

(n,i)(m, j) I
∗
α (m, j)

]

. (30)

Thus, by Guo and Hernández-Lerma (2009, Theorem 4.10), β∗
α is discounted-cost optimal.

��
Note As expected, the above policy iteration algorithm with a discrete action space given by
{0.1, 0.2, 0.3, . . . , 1.9, 2} provides the same optimal solution as the value iteration algorithm
in Fig. 3. Differences may appear in the optimal policy tables (corresponding to each algo-
rithm) when there are alternate optimal production rates for one or more states. The speed of
convergence of the policy iteration depends on the initial choice of arbitrary β(n, i) for each
state (n, i).

5 Analysis of ergodic cost criterion

In this section, we prove that under Assumptions 1, 2 and 3, the average cost optimality
equation (ACOE) (or HJB equation) given by (31) has a solution. Also, we find the optimal
stationary policy by using the policy iteration algorithm for this cost criterion.

Next, we prove the optimality theorem for the ergodic cost criterion.
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Theorem 3 Suppose that Assumptions 1, 2 and 3 hold. Then:

(a) There exists a solution (g∗, ũ) ∈ R × BW (N0 × N0) to the ACOE

g∗ = inf
β̃∈[γ,R]

{

r(n, i, β̃) +
∑

(m, j)

ũ(m, j)πβ̃

(n,i)(m, j)

}

∀(n, i) ∈ N0 × N0. (31)

Moreover, the constant g∗ coincides with the optimal average cost function J ∗, i.e.,

g∗ = J ∗(n, i) ∀(n, i) ∈ N0 × N0,

and ũ is unique up to additive constants.
(b) A stationary policy β∗ ∈ USM is AC optimal if and only if it attains the minimum in

ACOE (31) i.e.,

g∗ =
{

r(n, i, β∗) +
∑

(m, j)

ũ(m, j)πβ∗
(n,i)(m, j)

}

∀(n, i) ∈ N0 × N0. (32)

Proof We prove parts (a) and (b) together. Take the α-discounted cost optimal stationary

policy β∗
α as in Theorem 1. Hence I

β∗
α

α (n, i) = I ∗
α (n, i). Now define u

β∗
α

α (n, i) := I
β∗

α
α (n, i)−

I
β∗

α
α (n0, i0), where (n0, i0) is a fixed reference state. Now we apply the vanishing discounted
approach. By Guo and Hernández-Lerma (2009, Lemma 7.7, Proposition A.7), we get a
sequence {αk} of discounted factors such that αk ↓ 0, a constant g∗ and a function ū ∈
BW (N0 × N0) such that

lim
k→∞ αk I

∗
αk

(n0, i0) = g∗ and lim
k→∞ u

β∗
αk

αk (n, i) = ū(n, i) ∀(n, i) ∈ N0 × N0. (33)

Now for all k ≥ 1 and (n, i) ∈ N0 × N0, by Theorem 1, we have

αk I ∗
αk

(n0, i0)

R + λ + μ
+ αnu

β∗
αk

αk (n0, i0)

R + λ + μ
+ u

β∗
αk

αk (n, i)

≤ r(n, i, β̃)

R + λ + μ
+

∑

(m, j)

u
β∗

αk
αk (n, i)

[
π

β̃

(n,i)(m, j)

R + λ + μ
+ δ(n,i)(m, j)

]

for all (n, i, β̃) ∈ K . Using this and (33), we get

g∗

R + λ + μ
+ ū(n, i) ≤ r(n, i, β̃)

R + λ + μ
+

∑

(m, j)

ū(m, j)

[
π

β̃

(n,i)(m, j)

R + λ + μ
+ δ(n,i)(m, j)

]

for all (n, i, β̃) ∈ K . Thus we get

g∗ ≤ inf
β̃∈[γ,R]

{

r(n, i, β̃) +
∑

(m, j)

ū(m, j)πβ̃

(n,i)(m, j)

}

. (34)

Now there exists βk ∈ USM such that for all (n, i) ∈ N0 × N0, we have

αk I ∗
αk

(n, i0)

R + λ + μ
+ αku

β∗
αk

αk (n, i0)

R + λ + μ
+ u

β∗
αk

αk (n, i)

= r(n, i, βk)

R + λ + μ
+

∑

(m, j)

u
β∗

αk
αk (n, i)

[
π

βk
(n,i)(m, j)

R + λ + μ
+ δ(n,i)(m, j)

]

. (35)
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Since USM is compact, there exists β ′ ∈ USM such that

lim
k→∞ βk(n, i) = β ′(n, i) ∀(n, i) ∈ N0 × N0.

So, by the dominated convergence theorem, taking k → ∞ in (35), we get

g∗

R + λ + μ
+ ū(n, i) = r(n, i, β ′)

R + λ + μ
+

∑

(m, j)

[
π

β ′
(n,i)(m, j)

R + λ + μ
+ δ(n,i)(m, j)

]

ū(m, j)

for all (n, i) ∈ N0 × N0. Hence we get

g∗ = r(n, i, β ′) +
∑

(m, j)

π
β ′
(n,i)(m, j)ū(m, j)

≥ inf
β̃∈[γ,R]

{

r(n, i, β̃) +
∑

(m, j)

π
β̃

(n,i)(m, j)ū(m, j)

}

. (36)

From (34) and (36), we get (31). Nowwe prove that g∗ = J ∗(n, i) for every (n, i) ∈ N0×N0.
Take an arbitrary β ∈ USM . Then from (31), we get for β ∈ USM ,

g∗ ≤
{

r(n, i, β) +
∑

(m, j)

π
β

(n,i)(m, j)ū(m, j)

}

∀(n, i) ∈ N0 × N0.

Then by Guo and Hernández-Lerma (2009, Proposition 7.3), we get g∗ ≤ J (n, i, β). Hence
g∗ ≤ J ∗(n, i) for every (n, i) ∈ N0 × N0. Now there exists β∗ ∈ USM for which

g∗ =
{

r(n, i, β∗) +
∑

(m, j)

ū(m, j)πβ∗
(n,i)(m, j)

}

∀(n, i) ∈ N0 × N0.

Hence, by Guo and Hernández-Lerma (2009, Proposition 7.3), we get g∗ = J (n, i, β∗).
Hence g∗ = J (n, i, β∗) = J ∗(n, i) for all (n, i) ∈ N0×N0. Consequently,β∗ is AC-optimal.

Now by Guo and Hernández-Lerma (2009, (7.3)), we have

J (n, i, β) =
∑

(m, j)

r(m, j, β)ϑβ(m, j) = g(β) ∀ f ∈ USM and (n, i) ∈ N0 × N0, (37)

where g(β) := ∑
(m, j) r(m, j, β)ϑβ(m, j).

Nowwe prove the necessary part for a deterministic stationary policy to be AC optimal by
contradiction. So, suppose that β∗ ∈ USM is an AC optimal that does not attain the minimum
in the ACOE (31). Then there exist (n′, i ′) ∈ N0 × N0 and a constant d > 0 (depending on
(n′, i ′) and β∗) such that

g∗ ≤ r(n, i, β∗) − dδ(n′,i ′)(m, j) +
∑

(m, j)

π
β∗
(n,i)(m, j)ū(m, j) ∀(n, i) ∈ N0 × N0. (38)

By the irreducibility condition of the transition rates, the invariant measure ϑβ∗ of
p((n, i), t, (m, j), β∗) is supported on all ofN0 ×N0, meaning that ϑβ∗(m, j) > 0 for every
(m, j) ∈ N0 × N0. So, as in the proof of (37), from (38) and Guo and Hernández-Lerma
(2009, Proposition 7.3), we have

g∗ ≤ g(β∗) − dϑβ∗(n′, i ′) < g(β∗), (39)

which is a contradiction. So, β∗ is AC-optimal.
By similar arguments as in Guo and Hernández-Lerma (2009, Theorem 7.8), we get the

uniqueness of the solution of ACOE (31). ��
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The Bias of a stationary policy Let β ∈ USM . We say that a pair (g′, hβ) ∈ R× BW (N0 ×
N0) is a solution to the Poisson equation for β ∈ USM if

g′ = r(n, i, β) +
∑

(m, j)

hβ(m, j)πβ

(n,i)(m, j) ∀(n, i) ∈ N0 × N0.

Define g(β) = ∑
(m, j) r(m, j, β)ϑβ(m, j).

Then by recalling Guo and Hernández-Lerma (2009, (7.13)), the expected average cost
(loss) of β is

J (n, i, β) =
∑

(m, j)

r(m, j, β)ϑβ(m, j) = g(β) = ϑβ(r(·, ·, β)), (n, i) ∈ N0 × N0. (40)

Next we define the bias (or “potential”-see Guo and Hernández-Lerma (2009, Remark
3.2)) of β ∈ USM as

hβ(n, i) :=
∫ ∞

0
[Eβ

(n,i)r(Y (t), β) − g(β)]dt for (n, i) ∈ N0 × N0. (41)

Next we state a Proposition whose proof is in Guo and Hernández-Lerma (2009, Proposition
7.11).

Proposition 4 Under Assumptions 1, 2 and 3, for every β ∈ USM , the solution to the Poisson
equation for β are of the form

(g(β), hβ + z) with z any real number.

Moreover, (g(β), hβ) is the unique solution to the Poisson equation

g(β) = r(n, i, β) +
∑

(m, j)

hβ(m, j)πβ

(n,i)(m, j) ∀(n, i) ∈ N0 × N0 (42)

for which ϑβ(hβ) = 0.

5.1 The average-cost policy iteration algorithm

In view of Theorem 5 given below, one can use the policy iteration algorithm for computing
the optimal production rate β∗ that is described as follows:
The Policy Iteration Algorithm 5.1

Step 1 Take k = 0 and βk ∈ USM .
Step 2 Solve for the invariant probability measure ϑβk from the system of equations (see
Guo and Hernández-Lerma (2009, Remark 7.12 or Proposition C.12))

∑

(n,i)

π
βk
(n,i)(m, j)ϑβk (n, i) = 0 for (m, j) ∈ N0 × N0,

∑

(m, j)

ϑβk (m, j) = 1,

then calculate the loss, g(βk) = ∑
(m, j) r(m, j, βk)ϑβk (m, j) and finally, the bias, hβk

from the system of linear equations (see Proposition 4)
{

r(n, i, βk) + ∑
(m, j) π

βk
(n,i)(m, j)h(m, j) = g(βk)∑

(m, j) h(m, j)ϑβk (m, j) = 0.
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Step 3 Define the new stationary policy βk+1 in the following way: Set βk+1(n, i) :=
βk(n, i) for all (n, i) ∈ N0 × N0 for which

r(n, i, βk(n, i)) +
∑

(m, j)

π
βk
(n,i)(m, j)hβk (m, j)

= inf
β̃∈[γ,R]

{

r(n, i, β̃) +
∑

(m, j)

π
β̃

(n,i)(m, j)hβk (m, j)

}

; (43)

otherwise (i.e., when (43) does not hold), choose βk+1(n, i) ∈ [γ, R] such that

r(n, i, βk+1(n, i)) +
∑

(m, j)

π
βk+1
(n,i)(m, j)hβk (m, j)

= inf
β̃∈[γ,R]

{

r(n, i, β̃) +
∑

(m, j)

π
β̃

(n,i)(m, j)hβk (m, j)

}

. (44)

Step 4 If βk+1 satisfies (43) for all (n, i) ∈ N0 × N0, then stop because (by Theorem 5
below) βk+1 is average cost (AC) (or pathwise average cost optimal (PACO)); otherwise,
replace βk with βk+1 and go back to Step 2.

Remark 3 Now we discuss how the policy iteration algorithm works.
Let β0 ∈ USM be the initial policy in the policy iteration algorithm (see Step 1), and

let {βk} be the sequence of stationary policies obtained by the repeated application of the
algorithm.

If

βk = βk+1 for some k,

then it follows from Proposition 4 that the pair (g(βk), hβk ) is a solution to the ACOE, and
thus, by Theorem 3, βk is AC optimal. Hence, to analyze the convergence of the policy
iteration algorithm, we will consider the case

βk �= βk+1 for every k ≥ 0. (45)

Define, for k ≥ 1 and (n, i) ∈ N0 × N0,

ε(n, i, βk) :=
[

r(n, i, βk−1) +
∑

(m, j)

π
βk−1
(n,i)(m, j)hβk−1(m, j)

]

−
[

r(n, i, βk) +
∑

(m, j)

π
βk
(n,i)(m, j)hβk−1(m, j)

]

,

which by Proposition 4 can be expressed as

ε(n, i, βk) = g(βk−1) −
[

r(n, i, βk) +
∑

(m, j)

π
βk
(n,i)(m, j)hβk−1(m, j)

]

. (46)

Observe (byStep 3 above) that ε(n, i, βk) = 0 ifβk(n, i) = βk−1(n, i), whereas ε(n, i, βk) >

0 if βk(n, i) �= βk−1(n, i).
Hence, ε(n, i, βk) can be interpreted as the “improvement” of the nth iteration of the

algorithm.
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Fig. 8 Optimal policy corresponding to average-cost policy iteration algorithm

Numerical example

Figure 8 shows the results obtained from the above algorithm using the same parameters
as in the previous experiments with the exception of α. Due to computational challenge
in obtaining results for n, i ≤ 25, we limit our numerical example with n, i ≤ 10 for the
average-cost policy iteration algorithm. Unlike the discounted cost case where current and
immediate state transition rewards are prioritized, average cost criterion calculates optimal
policies according to the long run expected value of each state.We can observe that the optimal
production rates align precisely with the boundary values γ and R even in this example case
of the average cost criterion. This is likely due to the presence of multiple alternate optimal
solutions. In cases where one of these optimal solutions comprises the boundary values of
β, the algorithm tends to converge towards such policies quickly.

Next by Guo and Hernández-Lerma (2009, Lemma 7.13), we have the following Lemma.

Lemma 2 Under Assumptions 1, 2 and 3, suppose that (45) is satisfied. Then the following
statements hold

(a) The sequence {g(βk)} is strictly decreasing and it has a finite limit.

(b) For every (n, i) ∈ N0 × N0, ε(n, i, βk) → 0 as k → ∞.

To get the optimal policy from the policy iteration algorithm 5.1, we prove the following
Theorem.

Theorem 5 Suppose that Assumptions 1, 2 and 3 hold, and let β1 ∈ USM be an arbitrary
initial policy for the policy iteration Algorithm 5.1. Let {βk} ⊂ USM be the sequence of
policies obtained by the policy iteration Algorithm 5.1. Then one of the following results
holds.
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(a) Either

(i) the algorithm converges in a finite number of iterations to an AC optimal policy;
Or

(ii) as k → ∞, the sequnce {g(βk)} converges to the optimal AC function value g∗, and
any limit point of {βk} is an AC optimal stationary policy.

(b) There exists a subsequence {βl} ⊂ {βk} for which
g(βl) → g [Lemma 2], βl → β, and

hβl → h [pointwise].

In addition, the limiting triplet (g, β, h) ∈ R × USM × BW (N0 × N0) satisfies

g = r(n, i, β) +
∑

(m, j)

π
β

(n,i)(m, j)h(m, j)

= inf
β̃∈[γ,R]

{

r(n, i, β̃) +
∑

(m, j)

π
β̃

(n,i)(m, j)h(m, j)

}

. (47)

Proof Note that it is enough to prove part (b).
Let {βk} satisfy (45). In view of Lemma 2, since USM is compact and hβl ∈ BW (N0 × N0),
there exists a subsequence {βl} ofβk such that hβl converges pointwise to some h ∈ BW (N0×
N0). So, we have

g(βl) → g, βl → β, and

hβl → h. (48)

Now, by Proposition 4 and the definition of the improvement term ε(n, i, βl+1) in (46), we
have

g(βl) =
[

r(n, i, βl) +
∑

(m, j)

π
βl
(n,i)(m, j)hβl (m, j)

]

= min
β̃∈[γ,R]

{

r(n, i, β̃) +
∑

(m, j)

π
β̃

(n,i)(m, j)h(m, j)

}

+ ε(n, i, βl+1). (49)

Taking l → ∞, we have

g =
[

r(n, i, β) +
∑

(m, j)

π
β

(n,i)(m, j)hβ(m, j)

]

= inf
β̃∈[γ,R]

{

r(n, i, β̃) +
∑

(m, j)

π
β̃

(n,i)(m, j)h(m, j)

}

∀(n, i) ∈ N0 × N0. (50)

Hence β is AC optimal and g is the optimal AC function. ��

6 Average optimality for pathwise costs

In Sect. 5, we have studied the optimality problem under the expected average cost J (n, i, β).
However, the sample-path reward r(Y (t), β) corresponding to an average-reward optimal
policy that minimizes an expected average cost may have fluctuations from its expected
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value. To take these fluctuations into account, we next consider the pathwise average-cost
(PAC) criterion.

In the next theorem, we find the existence of the solution of the pathwise average cost
optimality equation (PACOE).

Here we give an outline of the proof of the following optimality Theorem; for details, see
Guo and Hernández-Lerma (2009, Theorem 8.5).

Theorem 6 Under Assumptions 1, 2, 3 and 4, the following statements hold.

(a) There exist a unique g∗, a function u∗ ∈ BW (N0×N0), and a stationary policyβ∗ ∈ USM

satisfying the average-cost optimality equation (ACOE)

g∗ = inf
β̃∈[γ,R]

{

r(n, i, β̃) +
∑

(m, j)

u(m, j)πβ̃

(n,i)(m, j)

}

= r(n, i, β∗(n, i)) +
∑

(m, j)

u(m, j)πβ∗
(n,i)(m, j) ∀(n, i) ∈ N0 × N0. (51)

(b) The policy β∗ in (a) is PAC-optimal, and Pβ∗
(n,i)(Jc(n, i, β∗) = g∗) = 1 for all

(n, i) ∈ N0 × N0, with g∗ as in (a).

(c) A policy in USM is PAC-optimal iff it realizes the minimum in (51).

Proof (a) Note that part (a) has been obtained in Theorem 3, see Guo and Hernández-Lerma
(2009, Remark 8.4). The proof is based on the fact that if βk , g(βk), and hβk are as in
(43)–(46), then there exist a subsequence {βkl } of βk , β∗ ∈ USM , u∗ ∈ BW (N0 × N0),
and a constant g∗ such that for each (n, i) ∈ N0 × N0,

lim
l→∞ hβkl

=: u∗, lim
l→∞ βkl = β∗, and lim

l→∞ g(βkl ) = g∗. (52)

The triplet (g∗, u∗, β∗) satisfies (51).
(b) To prove (b), for all (n, i) ∈ N0 × N0, β ∈ USM let

�(n, i, β(n, i)) := r(n, i, β(n, i)) +
∑

(m, j)

u∗(m, j)πβ

(n,i)(m, j) − g∗, (53)

h̄(n, i, β) :=
∑

(m, j)

u∗(m, j)πβ

(n,i)(m, j). (54)

We define the (continuous-time) stochastic process

M(t, β) :=
∫ t

0
h̄(Y (y), β)dy − u∗(Y (t)) for t ≥ 0. (55)

By similar arguments as in Guo and Hernández-Lerma (2009, Theorem 8.5), we have

M(t, β) = −
∫ t

0
r(Y (y), β)dy +

∫ t

0
�(Y (y), β)dy − u∗(Y (t)) + tg∗. (56)

Then from (14), (51) and (53) we get �(n, i, β) ≤ 0 and �(n, i, β∗) = 0 for all
(n, i) ∈ N0 × N0. Thus by Guo and Hernández-Lerma (2009, Theorem 8.5, equations
(8.31), (8.32)) and (56), we get

Pβ

(n,i)(Jc(n, i, β) ≥ g∗) = 1 and
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Pβ∗
(n,i)(Jc(n, i, β∗) = g∗) = 1. (57)

Since β ∈ USM and (n, i) ∈ N0 × N0 are arbitrary, we get part (b).
(c) See Theorem 3 (b) or Guo and Hernández-Lerma (2009, Theorem 8.5 (c)).

��

6.1 The pathwise average-cost policy iteration algorithm

In viewofTheorem6 andProposition 7 given below, one can use the policy iteration algorithm
for computing the optimal production rate β∗. To compute this optimal production rate β∗,
we describe the following policy iteration algorithm.
The Policy Iteration Algorithm 6.1 See the Policy Iteration Algorithm 5.1 for computing the
optimal production rate β∗.
Next in view of Theorem 6 (c), we have the following Proposition.

Proposition 7 Suppose that Assumptions 1, 2, 3 and 4 hold. Then any limit point β∗ of the
sequence {βk} obtained by the Policy Iteration Algorithm 5.1 is PAC-optimal.

Remark 4

(1) If the state and action spaces are finite, then all assumptions of the present manuscript
are satisfied by some suitable Lyapunov functions and constants. In this case, one can
easily apply control theory for continuous-time Markov chain to obtain the value and
policy iteration algorithms, by analogous results of this article, for details see Guo and
Hernández-Lerma (2009).

(2) The policy iteration algorithm is the same for both average cost and pathwise average
cost criteria, see policy iteration Algorithm 5.1 and policy iteration Algorithm 6.1. We
observe from the numerical computation for policy iterationAlgorithm6.1 corresponding
to the pathwise average cost criterion, it gives the same result as we have obtained for
policy iteration Algorithm 5.1. As a result, for both cases, we get the same optimal policy.
Consequently, we have omitted the numerical result from Sect. 6.

7 Dynamic production-inventory system through semi-Markov
processes

One can use semi-Markov theory to deal with a production-inventory model when the state
and action spaces are finite using the following construction. In ourmodel,wehave considered
a single-product inventory system in which the demand process is described by a Poisson
process and the inventory position can be replenished at any time. Here, the decision epochs
are the demand epochs and they occur randomly in time. Now let us consider the action space
to be limited to, let us say, maximally three choices, e.g. βL < βN < βH (for all states),
standing for respectively a low, a normal, and a high production rate with larger production
costs for higher production rates and switching costs for changing the production rate. Then
we set up a semi-Markov decision model (SMDM) with state space

S = {(n, i, β, e) : n = 0, 1, 2, . . . ; i = 0, 1, 2, . . . ;β ∈ {βL , βN , βH }; e = 0, 1, 2},
where e is the type of event that triggers a state change: e = 0 stands for the arrival of
new demand, e = 1 stands for a service completion, and e = 2 stands for the completion
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of production. The action set is A(n, i, e) = {βL , βN , βH } for each state. Next, calcu-
late the transition probabilities, distribution of time until the next transition from a state
(n, i, β, e) to another state (n′, i ′, β ′, e′), distribution of the holding time at a state (n, i, β, e),
the expected times and expected costs, respectively, as p[(n′, i ′, β ′, e′)|(n, i, β, e), β ′],
Ft ((n, i, β, e), β ′, (n′, i ′, β ′, e′)), Ht ((n, i, β, e), β ′), τ(n, i, β, e, β ′), and η(n, i, β, e, β ′)
with the following meaning.

• p[s′|s, a] is the probability that the next state is s′, given that in state s, action a is chosen.
• Given that the next state to be entered is state s′, the time until the transition from s to s′

occurs has distribution Ft (s, a, s′), given that action a is chosen.
• Let Ht (s, a) denote the distribution of time that the semi-Markov process spends time in

state s before making a transition, given that action a is chosen. That is, by conditioning
on the next state, we obtain

Ht (s, a) =
∑

s′
p[s′|s, a]Ft (s, a, s′).

• τ(s, a) is the expected time until the next decision epoch, given that in state s, action a
is chosen.

• η(s, a) is the expected cost incurred until the next decision epoch, given that in state s,
action a is chosen.

Note that τ(n, i, β, e, β ′) > 0 for all n, i, β, e, β ′. As before, a stationary policy R is a
rule which adds to each state (n, i, β, e) a single action R(n, i, β, e) ∈ A(n, i, e) and always
prescribes to take this action whenever the system is observed in state (n, i, β, e) at a decision
epoch. Since the state space is finite, it can be shown that under each stationary policy, the
number of decisions made in any finite time interval is finite with probability 1. If we let ξ(t)
denote the state at any time, then {ξ(t), t ≥ 0} is called a semi-Markov process. Also, let

ζn = the state of the system at the nth decision epoch.

Then it follows that under a stationary policy R the embedded stochastic pro-
cess ζn is a discrete-time Markov chain with one-step transition probabilities
p[(n′, i ′, β ′, e′)|(n, i, β, e), R]. Define the random variable Z(t) by

Z(t) = the total costs incurred up to time t, t ≥ 0.

Fix now a stationary policy R. Denote by E(n,i,β,e),R the expectation operator when the initial
state ζ0 = (n, i, β, e) and the policy R is used. Then the limit

g(n,i,β,e)(R) = lim
t→∞

1

t
E(n,i,β,e),R[Z(t)]

exists for all (n, i, β, e) ∈ S . If the embeded Markov chain {ζn} has no two disjoint closed
sets, by Tijms (2003, Theorem 7.11, Chapter 7), we have

lim
t→∞

Z(t)

t
= g(R) with probability 1

for each initial state ζ0 = (n, i, β, e), where the constant g(R) is given by

g(R) =
∑

(n′,i ′,β ′,e′)∈S η((n′, i ′, β ′, e′), R)ϑR(n′, i ′, β ′, e′)
∑

(n′,i ′,β ′,e′)∈S τ((n′, i ′, β ′, e′), R)ϑR(n′, i ′, β ′, e′)

with ϑR(n′, i ′, β ′, e′) denoting the equilibrium distribution of the Markov chain {ζn}. Then,
using policy-iteration and value-iteration algorithm as in Tijms (2003, Chapter 7), we can
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easily get the required optimal production rate of the production inventory system for the
corresponding semi-Markov process.

8 Conclusions

In this article, we have examined a production-inventory dynamic control system for dis-
counted, average, andpathwise average cost criterion for risk-neutral cost (i.e., the expectation
of the total cost) criterion. Here, the demands arrive at the production workshop according
to a Poisson process, and the processing time of the customer’s demands is exponentially
distributed. Each production is one unit and the production is kept running until the inventory
level becomes sufficiently large, and the production is on a make-to-order basis. We assume
that the production time of an item follows an exponential distribution and that the amount of
time for the item produced to reach the retail shop is negligible. In addition, we have assumed
that no new customer joins the queue when there is a void inventory. This yields an explicit
product-form solution for the steady-state probability vector of the system. We further dis-
cuss the policy and value iteration algorithms for each cost criterion. Using these algorithms,
we obtain the optimal production rate that minimizes the discounted/average/pathwise aver-
age total cost per production using a Markov decision process approach. Through numerical
experiments, we validate the discussed algorithms and analyze how different parameters
affect the optimal policies. Finally, we briefly discuss the dynamic production-inventory
system through semi-Markov process as a special case.

Our proposed model with service time, production time, or lead time following a general
distribution can be direct extensions of this work. Another potential research would be to
conduct the same analysis under the risk-sensitive utility (i.e., the expectation of the expo-
nential of the total cost) cost criterion, which provides more comprehensive protection from
risk than the risk-neutral case.
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