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Abstract
Intermittent demand forecasting is an important yet challenging task in many organizations.
While prior research has been focused on traditional methods such as Croston’s method
and its variants, limited research has been conducted using advanced machine learning or
deep learning methods. In this study, we introduce Transformer, a recently developed deep
learning approach, to forecast intermittent demand. Its effectiveness is empirically tested
with a dataset of 925 intermittent demand items from an airline spare parts provider and
compared with that of two traditional methods such as Croston’s and the Syntetos–Boylan
approximation as well as several popular neural network architectures including feedforward
neural networks, recurrent neural networks, and long short-term memory. Our results based
on six different forecasting performance measures show that Transformer performs very well
against other methods in a variety of settings. We also examine how data sparsity impacts
model performance and find that different models perform similarly when sparsity is low.
Although the performance of all models generally gets worse as the sparsity level increases,
the advantage of Transformer over other models increases with sparsity.

Keywords Intermittent demand · Forecasting · Neural networks · Transformer · Deep
learning methods

1 Introduction

Intermittent demand forecasting remains an important yet challenging task in many organi-
zations. Intermittent demand items are common for firms with slow moving items such as
after-sales service parts and high-valued capital goods, as well as those with high number
of stock keeping units (SKUs). The number of these infrequent demand items as well as the
associated inventory cost could be significant, accounting for up to 60% or 70% of a firm’s
total inventory investment in some industries (Boylan & Syntetos, 2021; Hu et al., 2018;
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Johnston et al., 2003). Therefore, accurate forecasting of these items is essential to a firm’s
successful inventory planning and management. Boylan and Syntetos (2021) provide a nice
discussion of the economic and environmental benefits of accurate intermittent demand fore-
casting, including lower inventory holding costs, higher revenues through increased service
levels, and less environmental harm due to lower risk of obsolescence. The role of intermittent
demand in supply chain forecasting is reviewed by Syntetos et al. (2016).

Forecasting intermittent demand is challenging because intermittent demand occurs spo-
radically and at random.The intermittent demand time series is characterizedby zero demands
in many periods interspersed with non-zero demands that are often highly variable. Unlike
non-intermittent demand forecasting where only demand size is uncertain, both the timing of
a positive demand occurrence and the size of the demand are uncertain in intermittent demand
forecasting. Therefore, for intermittent demand forecasting, one is concerned with not only
the demand size, but also when a positive demand will occur. This may be the reason that
limited research attention has been given to intermittent demand forecasting (Nikolopoulos,
2021), although there has been an increasing interest in the topic in recent years.

Research on intermittent demand has largely followed Croston (1972) in which Croston
developed the first systematic approach to intermittent demand forecasting. To deal with
the aforementioned uncertainties inherent in intermittent demand time series, Croston esti-
mates the demand size and the inter-demand interval separately using exponential smoothing
and then the ratio of the two estimates is the demand forecast. Although Croston’s method
outperforms traditional exponential smoothing method for intermittent demand forecasting,
Syntetos and Boylan (2001) show that Croston’s method is positively biased. One of the
most well-known modifications to Croston’s method is proposed by Syntetos and Boylan
(2005) who correct the bias with an approximation method (known as the Syntetos–Boy-
lan Approximation or SBA in the literature), which has been shown to be generally more
effective than the Croston method (Babai et al., 2014; Boylan & Syntetos, 2007; Eaves &
Kingsman, 2004; Teunter & Sani, 2009). Other modifications include Babai et al. (2019),
Doszyn (2019), Leven and Segerstedt (2004), Prestwich et al. (2014), Shale et al. (2006),
Syntetos and Boylan (2001), Teunter et al. (2011), and Yang et al. (2021) among others.

Alternative methods have also been developed for intermittent demand forecasting. These
include the bootstrapping method (Hasni et al., 2019; Syntetos et al., 2015; Willemain et al.,
2004; Zhou &Viswanathan, 2011), the aggregate-disaggregate approach (Boylan and Babai,
2016; Nikolopoulos et al., 2011; Petropoulos et al., 2016), hybrid models (Hua & Zhang,
2006;Hua et al., 2007;Nasiri Pour et al., 2008; Zhuang et al., 2022), and others (Nikolopoulos
et al., 2016; Zhu et al., 2017). A good overview of intermittent demand forecasting methods
is provided by Boylan and Syntetos (2021). An extensive review of various methods for spare
parts demand forecasting is given in Pince et al. (2021).

Neural networks represent another category of promising methods due to their attractive
features for time series forecasting in general (Zhang et al., 1998) and intermittent demand
forecasting in particular (Kourentzes, 2013). The main advantage of neural networks is their
flexible, nonlinear modeling capability, allowing them to deal with complex structures in
the intermittent demand data as Pince et al. (2021) state that neural networks, as a versatile
tool, “can capture nonlinear patterns in the data, such as intermittence and lumpiness, better
than most time-series methods.” Although neural networks have received limited attention
in the intermittent demand forecasting literature, several different models have been used for
intermittent demand forecasting with varying levels of success (Babai, et al., 2020; Gutierrez
et al., 2008; Kourentzes, 2013; Lolli et al., 2017; Mukhopadhyay et al., 2012). The majority
of these models are feedforward and recurrent types of neural network.
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In this study, we propose the use of transformer neural networks (or transformers) for
intermittent demand forecasting. Transformers are newly developed neural network archi-
tectures based on the attention mechanism (Vaswani et al., 2017). The introduction of the
attention mechanism has improved the success of various deep learning models (Bahdanau
et al., 2015). Attention is a component of deep learning to capture important and relevant
sequential information in inputs to improve output prediction accuracy. The use of the atten-
tion mechanism in neural network architectures has been increasingly common (Niu et al.,
2021). Originally developed for natural language processing, transformers with the attention
mechanism have gained significant interest and achieved great success in many fields includ-
ing natural language processing, computer vision, and image analysis. Due to their capability
of modeling long-term dependencies and interactions in sequential data, transformers hold
great promise in time series modeling and forecasting. Although researchers have begun to
explore the use of transformers for time series forecasting (Wen et al., 2022), to the best
of our knowledge, no research has examined how effective transformers are in predicting
intermittent demand.

The effectiveness of transformer models (Transformer hereafter) for intermittent demand
is tested with a data set of weekly demand series for 925 SKUs from an airline spare parts
provider. We compare the performance of Transformer with that of two traditional methods
of Croston’s and SBA as well as several neural network architectures including feedforward
neural networks, recurrent neural networks, and long short-term memory. Our results based
on six different forecasting performance measures show that Transformer is the overall best
method under a variety of settings.

The rest of the paper is organized as follows. In the next section, we provide a focused
review of the relevant studies in intermittent demand forecasting with neural networks.
Section 3 describes data and methodology. Section 4 reports the results. Finally, Sect. 5
concludes the paper.

2 Intermittent demand forecasting with neural networks

Although neural networks have been widely used for time series forecasting (Zhang et al.,
1998), only a few studies have used neural networks for intermittent demand forecasting
(Lolli et al., 2017). One of the first studies is conducted by Guitierrez et al. (2008) who
compare the performance of neural networks with that of several traditional methods such as
the Croston’s, single exponential smoothing, and SBA. Using 24 intermittent demand time
series each with 967 daily observations, they find that the three-layer feedforward neural
network architecture they proposed with two input nodes (representing the previous period
demand and the number of periods separating the last two nonzero demands), three hidden
nodes, and one output node (for the predicted demand) generally outperforms the traditional
methods.

Nasiri Pour et al. (2008) is another early study that adopts neural networks for intermittent
demand forecasting. They propose a hybrid approach with neural networks used to forecast
the occurrence of non-zero demand, and traditional methods used to predict the demand
size. The results using 30 spare parts demand series with 69 monthly observations show that
the hybrid model performs better than SBA and several standalone neural network models
including feedforward, recurrent, and generalized regression networks.

Using the same data from Guitierrez et al. (2008), Mukhopadhyay et al. (2012) conduct
another comparative study involving the feedforward neural network. They find that the
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neural network model and the 5-day weighted moving average model perform well relative
to several traditional methods including simple exponential smoothing (SES), Croston’s, and
SBA. The neural network used in the study has the same basic structure as Guitierrez et al.
(2008) except that one of the input nodes represents the cumulative number of successive
periods with zero demand instead of the number of periods separating the last two non-zero
demands. Mukhopadhyay et al. (2012) also examine the effect of different data splitting
strategies, forecast lead time, and performance measures on the forecasting performance of
each method.

Kourentzes (2013) proposes two feedforward neural networkmodels inspired byCroston’s
method. Both models use non-zero demands and inter-demand intervals as inputs, while the
output layer differs in that one employs two nodes to represent predicted demand and inter-
demand interval separately (NN-Dual), while the other employs just one node to represent
predicted demand rate (NN-Rate). Based on 1000 simulated intermittent time series, the
results show that these models perform worse than Croston’s method and several modified
Croston’s methods in terms of forecast accuracy. However, the neural networks, especially
NN-Rate, performmuch better thanCroston’smethod and its variantswith regard to inventory
metrics (i.e. service levels).

All of the above-mentioned studies adopt feedforward type of neural networks. In addi-
tion to the feedforward network, Lolli et al. (2017) also consider two other types of neural
networks: recurrent and time-delay, for intermittent demand forecasting. They use three
input nodes in their networks: last demand size, the number of periods separating the last
two nonzero demands, and the cumulative number of successive periods with zero demand,
which is the combined set of inputs used by Guitierrez et al. (2008) andMukhopadhyay et al.
(2012).With an experiment study using two different learning approaches (back-propagation
and extreme learning machine), two learning mode (batch and online), and three neural net-
work architectures (feedforward, recurrent, and time-delay) as well as 24 weekly auto spare
parts demand intermittent time series with varying length from 61 to 414 observations, they
find that neural network models generally perform well relative to Croston’s method and
SBA in terms of forecast accuracy.

A more recent study by Babai et al. (2020) makes a further modification of the neural
network structure proposed by Guitierrez et al. (2008). In addition to the same two inputs
(i.e., the last period demand and the number of periods separating the last two nonzero
demands) used by Guitierrez et al. (2008), Babai et al.’s (2020) proposed model also adds
multiple lagged demands prior to the last period and the number of periods between the
forecast period and the last zero demand period. In addition, they consider varying numbers
of hidden nodes such as three, five and nine, instead of three used in Guitierrez et al. (2008).
Using a monthly demand dataset of 5,135 SKUs from an airline each with 123 observations
and considering both forecasting and inventory performance metrics, their results are some-
what mixed depending on the performance metrics used. Generally speaking, the proposed
neural network models outperform those of Guitierrez et al. (2008) and are better than or
comparable to the parametric methods. Surprisingly, the results also show that SES performs
very well overall in terms of both forecast accuracy and inventory efficiency, while the two
bootstrapping methods examined do not perform well.

Several observations can be made following the above discussion. First, neural networks
are promising for intermittent demand forecasting. Although there are mixed findings, neural
networks generally outperform traditional parametric or nonparametric methods in terms of
forecasting and/or inventory performances. Second, the number of intermittent time series
and the number of observations in each series vary quite significantly in published studies.
For example, both Guitierrez et al. (2008) and Lolli et al. (2017) use 24 time series in their
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studies, but Lolli et al.’s (2017) time series length varies from 61 to 414 observations while
Guitierrez’s et al. (2008) time series all have 967 observations. On the other hand, Babai et al.
(2020) employ over 5,000 time series, but with a relatively small number of observations
(123) in each series. Third, although the focus has been on forecasting accuracy, there is
no consensus on best forecast accuracy or error measures. Thus, different error measures
are used by different researchers. Finally, the neural network architectures considered in
the literature are similar with the feedforward multiple layer networks the most popular.
Guitierrez et al. (2008) neural network model appears influential because many subsequent
studies either adapt their model with different inputs or use the model as a benchmark for
comparison purposes.

3 Data andmethods

3.1 Data

The data used for this study is from an airline service parts provider/distributor that is located
in the Southeast region of U.S. The company provides us with weekly demand data for a
total of 5,800 SKUs from January 2018 to December 2021. Following the literature (e.g.,
Willemain et al. 1994), we use the squared coefficient of variation of demand (CV2) and
the average demand interval (ADI) to identify noise and intermittence levels. Then using the
classification scheme devised by Syntetos et al. (2005) with their cutoff points of 0.49 for
CV2 and 1.32 for ADI, we divide our data into four categories: intermittent, lumpy, smooth,
and erratic. Because each category has its unique characteristics, we elect to focus in this
study on SKUs in the intermittent category (CV2 < 0.49 andADI > 1.32). There are 925 items
in this category. Because the starting and ending dates may differ for different SKUs, the
length of time series varies. The minimum number of observations is 106 and the maximum
is 207.

Table 1 provides a summary of demand characteristics for our sample. It shows that there
is a high degree of variation in both demand size and demand intermittence. For example, the
mean demand is 2.55 with the minimum of 1.07 and the maximum of 404.75.While the mean
demand interval is 9.27 weeks, the minimum mean interval is 1.26 weeks and the maximum
mean interval is 184 weeks. The demand per period also shows significant lumpiness with
the lowest equal to 0.07 and the largest equal to 10.87.

Table 1 Demand characteristics

Demand size (units) Demand interval (weeks) Demand per period

Mean Std dev Mean Std dev Mean Std dev

Min 1.07 1.66 1.26 0.00 0.07 0.28

25th 2.25 0.89 5.09 4.68 0.16 0.65

Median 2.55 1.29 9.27 8.32 0.30 0.94

75th 2.94 1.70 16.18 15.25 0.57 1.33

Max 404.75 203.36 184.00 91.92 10.87 71.74
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Table 2 Sparsity frequency
distribution Sparsity level Zero percentage Number of SKUs

1 [0.2, 0.3) 3

2 [0.3, 0.4) 4

3 [0.4, 0.5) 14

4 [0.5, 0.6) 32

5 [0.6, 0.7) 78

6 [0.7, 0.8) 126

7 [0.8, 0.9) 280

8 [0.9, 1.0) 388

Because different methods may vary in performance due to different levels of demand
intermittence, we group SKUs in our sample based on sparsity defined as the percentage
of zero demand periods in each time series. Table 2 shows the frequency distribution of
the SKUs with regards to different levels of sparsity. Since no SKUs have zero demand
percentage below 0.2, we have a total of eight different levels of sparsity starting from level
1 which is for SKUs with zero demand percentages between 0.2 and 0.3, level 2 with zero
percentages between 0.3 and 0.4, and so on. Interestingly, the number of SKUs increases
with the sparsity level with only 3 at level 1 and 388 at level 8. Most SKUs (794 or 85.8%)
are at levels 6–8, indicating an overall high degree of demand intermittence in our data.

All data are normalized using the Min–Max transformation so that all values are between
0 and 1. Normalizing numeric inputs generally avoids the problem that when some values or
features dominate others in magnitude because the model performance is likely impacted by
very high input values and thus under-weigh low valued inputs regardless of their potential
contributions. In addition, we partition the data into three parts: 60% in the training set, 20%
in the validating set, and 20% in the testing set.

3.2 Methods

3.2.1 Croton’s method

While simple exponential smoothing (SES) has been widely used for forecasting, it has
significant limitation in intermittent demand forecasting because it weights recent data more
heavily than older observations. As a result, the SES would produce a forecast biasedly high
after a demand occurs but low before a demand realizes, creating unnecessarily high stock
levels. Croston (1972) tries to address this bias by estimating the demand size and demand
interval separately. To make the method easier to implement, he uses SES to estimate these
quantities. Specifically, let Zt (Dt) be the estimated (actual) non-zero demand for time t, Pt

(Qt) be the estimated (realized) inter-demand interval since the last nonzero demand. The
Croston’s updating formulae based on SES are given below:

Zt = αDt + (1 − α)Zt−1 (1)

Pt = αQt + (1 − α)Pt−1 (2)

where α is a smoothing constant between 0 and 1. Note that Croston’s original method
uses the same smoothing constant for updating both smoothed estimates, although different
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smoothing constants can be used in the above equations. Croston (1972) suggests a range
between 0.1 and 0.3 for α. We use the same smoothing coefficient as indicated in the above
updating equations in this study.

The forecast demand for the next time period, Zt+1, is then estimated as a ratio of the
above quantities:

Zt+1 = Zt/Pt (3)

Note that Pt is strictly positive. If the actual demand (Dt) is zero, then Zt , Pt , and Zt+1

will remain the same, i.e., no updating occurs. On the other hand, if demand occurs in every
period (Pt = 1), then Zt+1 = Zt , or Croston’s method would produce the same forecasts as
SES.

In order to find the best smoothing coefficient, we conduct an experiment with α varying
from 0.1 to 0.5 with a step size of 0.01. The best coefficient for each time series is chosen
by minimizing the mean squared error (MSE) as Lolli et al. (2017) suggested that using
MSE as an accuracy measure is analogous to the neural network training method. However,
unlike Lolli et al. (2017) who use the training set to determine the optimal parameters, we
use the validation set as this is more in line with how the neural network model building and
parameter estimation are performed.

3.2.2 Syntetos–Boylan approximation

Because of the positive bias in Croston’s method, several adjustments or modifications to
Croston’s method have been proposed (Syntetos & Boylan, 2001, 2005; Teunter & Sani,
2009). Among them, the Syntetos–Boylan approximation (SBA) developed by Syntetos and
Boylan (2005) has received the most attention from the literature and most studies use it as a
benchmark. The SBAmethod adjusts the Croston forecast downward by multiplying a factor
of (1- α/2) as follows:

Zt+1 =
(
1 − α

2

)
Z
t
/Pt (4)

The optimal smoothing coefficient for the SBA method is obtained using the same
approach as with Croston’s method. That is, we select the smoothing constant over the
range of 0.1 to 0.5 in steps of 0.01 that minimizes MSE of the validation sample.

3.2.3 Feedforward and recurrent neural networks

We use the same feedforward neural network (FNN) and recurrent neural network (RNN)
architectures as in Lolli et al. (2017). Both FNN and RNN models are fully connected with
a single hidden layer. In addition, we use the following three inputs in these networks: the
demand at time period t, the number of periods separating the last two non-zero demand
transactions at the end of the immediately preceding period, and the cumulative number of
successive periods with zero demand. See Lolli et al. (2017) for details on the structures of
these models as well as how the models are trained.

3.2.4 Long short-termmemory model

The long short-termmemory (LSTM)model is proposed to improve the performance of RNN
due to RNN’s shortcomings of potential information loss or vanishing/exploding gradient
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Fig. 1 Illustration of the LSTM architecture

problems, especially over long time periods (Hochreitier and Schmidhuber, 1997; Zhang
et al., 2021). LSTM is a special type of RNN that is capable of modeling long-term depen-
dencies. Specifically, LSTM adds four gates/cells to an RNN model as shown in Fig. 1:

• Forget gate: this gate helps decide what type of information to keep and what information
to forget. This is useful for long time series because it helps keep themost useful or relevant
information. At any time t, an LSTM receives input vector Xt ∈ Rn×d , the previous time
period hidden state Ht−1 ∈ Rn×h , the previous time period cell stateCt−1 ∈ Rn×h where n
represents the number of samples in a batch, h is the number of cells in the hidden layer, and
d is the number of inputs. The gate with the sigmoid activation function (σ(x) = 1

1+e−x )
determines what information to be removed from Xt and Ht−1 (Zhang et al., 2021). At the
Forget gate, the model takes the input of Xt with the hidden state information Ht−1, and
outputs the following:

Ft = σ
(
XtWx f + Ht−1Whf + b f

)

whereWx f and Wh f are weight parameters, and b f is a bias parameter. Note that the range
of sigmoid function is between 0 and 1, the values of Ft will be no more than 1 as well,
essentially keeping part of the information for further processing.

• Input gate: this gate is used to quantify the importance of the information from the input.
With the input vectors of Xt and Ht−1 through the sigmoid activation function, the output
concatenates the two vectors, which further becomes part of the input to the memory state:
where� refers to the elementwise Hadamard product operator; C̃t is a term that represents
what current information is kept for future memory updating purpose. Its values are in the
range of (−1, 1) by utilizing the tanh function as shown below,

It = σ
(
XtWx f + Ht−1Whf + b f

)

• Memory gate: the primary purpose of this gate is to determine what information to carry
over to the next stage/period. The next period memory information considers information
from the previous period, the current period output from the forget gate, the hidden state,
and the current period input:

Ct = Ft � Ct−1 + It � C̃t
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where� refers to the elementwise Hadamard product operator; C̃t is a term that represents
what current information is kept for future memory updating purpose. Its values are in the
range of (−1, 1) by utilizing the tanh function as shown below,

C̃t = tanh(XtWxc + Ht−1Whc + bc)

• Output gate: the output gate serves two purposes. The first is to generate the output val-
ues/vectors for the current period if such outputs are needed. Specifically, the output
combines the input and hidden state with the sigmoid function:

Ot = σ(XtWxo + Ht−1Who + bo)

The second purpose of this gate is to derive the hidden state information for the next period
from the current output and the long-term memory (Ct):

Ht = Ot � tanh(Ct )

Overall, the next period hidden state depends on the current period output and concatenates
with the current period memory state after the tanh activation function.

In summary, through these four different gates, LSTM is able to mitigate part of the
gradient vanishing or exploding problem of RNN by transferring and keeping only some of
the useful information from the past over time.1

We use the standard three-layer LSTMmodel in our study. For the LSTMmodel training,
the hyperbolic tangent (tanh) is used as the activation function. We consider both the number
of hidden neurons and the batch size as parameters and the optimal numbers are chosen from
a fixed set of [5, 10, 20, 30, 40, 50, 60, 70] for the neurons and from the set of [10, 20, 30,
40, 50] for the batch size. The models are trained with the Adam optimization algorithm
(Kingma & Ba, 2017), an extension to stochastic gradient descent that has been increasingly
used in deep learning applications. The number of epochs is set at 100 with proper early
stopping.

3.2.5 Transformer

Transformer represents a relatively new deep learning architecture proposed by Vaswani
et al. (2017). It relies entirely on the self-attention mechanism to compute representations
of input and output without resorting to recurrent or convolutional layers. At a high level,
a Transformer model is composed of two components: position-wise feedforward network
layer and multi-head attention layer. Position-wise network is a fully connected feedforward
network, which is applied to each position separately and identically. This approach can
ensure the position information of each symbol in the input sequence during the operation.
Multi-head attention allows the model to focus on information from different representation
subspaces fromdifferent positions by stackingmultiple self-attention layers, just likemultiple
channels of a convolutional network.

When the sequence of inputs is long, LSTM may still have difficulty in interpreting the
information. Part of the reason is that the input is sequential and entered one at a time. In
contrast, transformers can take all the input at one time instead of sequentially (Vaswani
et al., 2017). However, one challenge for simultaneous inputs is about how to treat various
inputs differently by utilizing important information while ignoring noisy types of inputs.

1 https://d2l.ai/chapter_recurrent-modern/lstm.html.
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Fig. 2 Illustration of the
self-attention

Fig. 3 Illustration of different
components of the self-attention
mechanism

Self-attention is an important mechanism that allows inputs to interact with each other and
find out what information should be paid more attention to. It can extract importance of
different period inputs, and assign weights to different inputs that will be aggregated into the
final output. Figure 2 provides a high-level comparison between recurrent neural networks
without and with self-attention. Note that when there is no self-attention mechanism in RNN
(top part of the figure), inputs are taken into consideration sequentially, and they are treated
equally. In comparison, when there is self-attention (lower part of the figure), each period
takes inputs of all previous periods, and through training, weights can be assigned to each
input, thus differentiating inputs by their importance.

Figure 3 shows a more detailed view of the self-attention mechanism regarding its major
components. Each input is represented by three elements of query (Q), key (K), and value (V)
vectors (Vaswani et al., 2017).2 The core of the mechanism is to calculate the self-attention
score, which is a measure of relevance between the current input and any other inputs in the
previous sequence. In particular, the self-attention scores go through a softmax activation
function defined as so f tmax(zi ) = ezi∑N

j=1e
z j
, which scales to be a percentage of total focus

that is given to an input in the sequence. Using the softmax function, the attention score by

2 https://medium.com/mlearning-ai/transformer-implementation-for-time-series-forecasting-a9db2db5c820.
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Fig. 4 Illustration of the
transformer-decoder architecture

utilizing input vectors Q, K, and V can be calculated as:

Attention (Q, K , V ) = softmax

(
QKT

√
dk

)
V

Note that self-attention scores are calculated by comparing query of the current input to
the keys of all other inputs. In particular, it is scored as the dot product between the query
vector of the current input and the key vector of the input being scored. Each input vector is
multiplied by the corresponding softmax score. After which, the current input is encoded by
summing all of the above scaled values.

The encoded input then goes to the Transformer-decoder as shown in Fig. 4. In each
decoder component, first the self-attention scores are masked, meaning that certain values
are hidden. The masks hide the ground truth information and help derive the right weights
in the model during training. The question of how much information to hide/mask is treated
as a hyperparameter, which can be derived by the prediction error in the training process.
Themasked self-attention scores pass through a fully connected feedforward neural network.
And finally a linear model combines all relevant decoded values to generate an output as the
predicted value. Note that the Transformer adopts an encoder and decoder scheme in which
the encoder is used to derive the self-attention scores as illustrated in Fig. 3 while the decoder
is used for prediction as shown in Fig. 4.

We use PyTorch, a machine learning framework based on the Python programming lan-
guage to configure and train the transformer model. We make an effort to ensure that the
encoder layer matches the input dimension size and the decoder layer fits the forecasting
requirement for the dependent feature. The number of variables used as inputs to the model
in encoder layer is three, which is the same as the input dimension size.3 Since we are fore-
casting the intermittent demand in this study, the decoder layer is implemented as a linear
layer. Aswith LSTM, transformermodels are trained for 100 epochswith theAdamoptimizer
and MSE loss function.4

3 https://www.medium.com/mlearning-ai/transformer-implementation-for-time-series-forecasting-
a9db2db5c820
4 https://www.medium.com/mlearning-ai/transformer-implementation-for-time-series-forecasting-
a9db2db5c820.
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3.3 Accuracy measures

Although there is no consensus onwhat forecast accuracy (or error) measures aremost appro-
priate to evaluate intermittent demand forecasting methods, several measures are commonly
used in the literature.Whilemost studies adopt two or three suchmeasures (Babai et al., 2014;
Lolli et al., 2017), we elect to use five error measures, including the Mean Error (ME), the
Mean Absolute Error (MAE), the Mean Absolute Percentage Error (MAPE), the Root Mean
Squared Error (RMSE), and the Mean Absolute Scaled Error (MASE). We use the scaled
measures as they are appropriate for intermittent time series forecasting. The formulas to
calculate these measures are given below:

ME =
∑n

t=1(Zt − Dt )∑n
t=1 Dt

, MAE =
∑n

t=1|Zt − Dt |∑n
t=1 |Dt − 1

n

∑n
t=1 Dt |

, RMS =

√
1
n

∑n
t=1(Zt − Dt )

2

1
n

∑n
t=1 Dt

MAPE =
∑n

t=1|Zt − Dt |∑n
t=1 Dt

, MASE =
1
n

∑n
t=1|Zt − Dt |

1
n1−1

∑n1
t=2 |Dt − Dt−1|

where Dt and Zt are actual demand and the forecast, respectively; n is the number of periods
in the test sample and n1 is the number of periods in the training sample. In addition to these
overall forecast error measures, we also use the percentage of best forecasts (PB) with a
particular error measure to compare the performance of various methods. PB has been used
by Gutierrez et al. (2008), Mukhopadhyay et al. (2012), and more recently Doszyn (2019).

4 Results

We largely follow the approach used byDoszyn (2019) to report results.We first report results
for all data combined. Then we delve into how the performance of various methods varies
with data sparsity. Because of potential outliers in results, we calculate bothmean andmedian
performance measures. While most prior studies on intermittent demand forecasting report
only mean performance, Doszyn (2019) focuses exclusively on the median performance
level.

Table 3 provides a summary ofmean andmedian performancemetrics (ME,MAPE,MAE,
RMSE, and MASE) with different methods across all 925 SKUs. Several observations can
be made based on the results in Table 3. First, SBA performs consistently better than Croston
judged by both overall bias (ME) and forecast error measures with both means and medians.
Second, Transformer is the best performer based on almost all error measures except for the
median RMSE, in which case, its overall median RMSE is 3.100 which is lower than that for
Croston and SBA, but higher than that with FNN, RNN, and LSTM. Although Transformer
also has the lowest ME based on the mean, it is not the lowest with the median. The lowest
median ME is achieved by LSTM although FNN, RNN, and SBA are not far behind. It is
interesting to note that except for the median ME with the transformer, all methods yield
negative MEs, suggesting that the methods generally overforecast demand. However, the
positive bias is much higher with Croston than with all other methods based on both mean
and median MEs. Because of the similarity in results using either the mean or the median,
we will focus on the mean results in the following discussion.

To examine how data sparsity impacts forecasting performance, we divide our data into
eight different buckets based on the percentage of zero demand in each time series as discussed
in Sect. 3.1. Table 4 shows the results ofmeanMEwith different levels of sparsity that are also
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Table 4 Mean ME results with sparsity

Sparsity Croston SBA FNN RNN LSTM Transformer

1 − 0.0803 − 0.0475 − 0.0835 − 0.0665 − 0.0623 − 0.0227

2 − 0.0454 0.0089 − 0.1202 − 0.1249 − 0.0958 − 0.1324

3 − 0.0654 0.0199 − 0.0291 − 0.0389 − 0.0197 0.0442

4 − 0.1369 − 0.0394 − 0.0963 − 0.0948 − 0.0972 − 0.0743

5 − 0.1077 − 0.0144 − 0.0579 − 0.0640 − 0.0633 0.0142

6 − 1.3991 − 0.9140 − 0.4156 − 0.2146 − 0.4689 − 0.4353

7 − 0.6485 − 0.3498 − 0.2831 − 0.2133 − 0.2789 − 0.2923

8 − 1.9409 − 1.1576 − 1.0037 − 0.6874 − 0.8271 − 0.3638

ME

Fig. 5 Mean ME at different sparsity levels

reflected in Fig. 5. We find that mean MEs are almost all negative for all models at different
sparsity levels except for SBA at the sparsity levels of 2 and 3, and Transformer at the sparsity
levels of 3 and 5, again suggesting that overall, the models overestimate demand. However, at
lower levels of sparsity (sparsity levels 1–5), MEs are close to zero for all models, indicating
relatively low forecasting bias. As the sparsity level increases especially at high levels (from
6 to 8), the bias generally increases as well. We also find that while Transformer’s overall
performance in ME is among the best across all sparsity levels, Croston is clearly the worst
especially at higher sparsity levels.

Tables 5, 6, 7 and 8 report results of meanMAPE,MAE, RMSE, andMASE, respectively,
with different sparsity levels. The corresponding Figs. 6, 7, 8 and 9 show graphically how
the performance of different models varies with sparsity. In general, we observe an upward
trend across all models with each error measure as sparsity increases. This suggests that the
higher the sparsity level is, the worse forecast accuracy is for every model. In other words, it
becomes more difficult to forecast accurately as sparsity gets higher. We also observe that at
low levels of sparsity (5 and lower), the overall performance of all models is similar while at
high levels of sparsity (6 and higher), there are noticeable differences in performance among
these methods with Croston being the worst and Transformer either the best or close to the
best.
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Table 5 Mean MAPE results with sparsity

Sparsity Croston SBA FNN RNN LSTM Transformer

1 0.8525 0.8449 0.8405 0.8384 0.8349 0.8247

2 0.9253 0.9112 0.9241 0.9246 0.9132 0.9212

3 0.9974 0.9803 0.9935 0.9866 0.9837 0.9664

4 1.2026 1.1730 1.1821 1.1815 1.1772 1.1957

5 1.3884 1.3502 1.3602 1.3610 1.3625 1.3476

6 2.8516 2.4389 1.9600 1.7418 1.9836 1.9789

7 2.2863 2.0505 1.9987 1.9078 1.9820 2.0136

8 3.7146 2.9890 2.9077 2.5639 2.6811 2.2735

Table 6 Mean MAE results with sparsity

Sparsity Croston SBA FNN RNN LSTM Transformer

1 1.0387 1.0294 1.0254 1.0223 1.0183 1.0053

2 1.0526 1.0366 1.0546 1.0551 1.0423 1.0512

3 1.0540 1.0359 1.0489 1.0412 1.0378 1.0171

4 1.0449 1.0203 1.0248 1.0239 1.0198 1.0338

5 1.0473 1.0198 1.0245 1.0249 1.0255 1.0137

6 1.6785 1.4556 1.2178 1.1030 1.2263 1.2217

7 1.3086 1.1764 1.1464 1.0969 1.1360 1.1501

8 1.9516 1.5733 1.5284 1.3521 1.4112 1.1988

Table 7 Mean RMSE results with sparsity

Sparsity Croston SBA FNN RNN LSTM Transformer

1 1.0759 1.0727 1.0519 1.0571 1.0564 1.0482

2 1.1817 1.1732 1.1456 1.1533 1.1592 1.1456

3 1.2791 1.2734 1.2744 1.2647 1.2691 1.2684

4 1.4760 1.4684 1.4729 1.4705 1.4643 1.4817

5 1.7673 1.7590 1.7515 1.7472 1.7459 1.7534

6 3.4206 3.0882 2.5921 2.3910 2.5580 2.5536

7 3.2607 3.1808 3.1255 3.0386 3.0815 3.1077

8 5.5928 5.2315 5.4588 5.0514 5.0622 4.8711

The percentage best (PB) results are provided in Table 9 for all SKUs and in Table 10
with different sparsity levels. For each overall error measure (in the case of ME, we use the
absolute value), we identify the best method as the one associated with the lowest value of
the error measure, and then the percentage best for a method is calculated as the number of
times the method is the best divided by the total number of SKUs in the whole sample (Table
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Table 8 Mean MASE results with sparsity

Sparsity Croston SBA FNN RNN LSTM Transformer

1 0.8321 0.8245 0.8189 0.8173 0.8135 0.8005

2 0.8491 0.8358 0.8447 0.8456 0.8349 0.8423

3 0.8169 0.8031 0.8127 0.8071 0.8045 0.7897

4 0.9397 0.9173 0.9192 0.9186 0.9143 0.9302

5 0.9573 0.9319 0.9369 0.9384 0.9386 0.9286

6 2.1968 1.8377 1.3239 1.1410 1.3807 1.3648

7 1.4845 1.3235 1.2600 1.1973 1.2529 1.2777

8 2.7811 2.2116 2.1464 1.8201 1.9511 1.6274

Fig. 6 Mean MAPE at different sparsity levels

Fig. 7 Mean MAE at different sparsity levels
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Fig. 8 Mean RMSE at different sparsity levels

Fig. 9 Mean MASE at different sparsity levels

Table 9 Percentage best results for all SKUs

Error Croston SBA FNN RNN LSTM Transformer

|ME| 0.160 0.32 0.15 0.12 0.111 0.154

MAPE 0 0.22 0.08 0.13 0.070 0.497

MAE 0 0.22 0.08 0.13 0.069 0.499

RMSE 0.04 0.1 0.200 0.25 0.177 0.231

MASE 0 0.22 0.09 0.13 0.070 0.496

9) or at a specific sparsity level (Table 10). The best PB is in bold for each error measure. As
Doszyn (2019) discussed, the same lowest error measure could be associated with multiple
methods, causing the sum of percentage best across all methods not equal to one. But this
does not happen often with our results.
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Table 10 Percentage best results with different sparsity levels

Sparsity Error Croston SBA FNN RNN LSTM Transformer

1 |ME| 0.000 0.000 0.000 0.000 0.333 0.667

MAPE 0.000 0.333 0.000 0.000 0.000 0.667

MAE 0.000 0.333 0.000 0.000 0.000 0.667

RMSE 0.000 0.000 0.667 0.000 0.000 0.333

MASE 0.000 0.333 0.000 0.000 0.000 0.667

2 |ME| 0.000 0.750 0.250 0.000 0.000 0.000

MAPE 0.000 0.500 0.000 0.000 0.250 0.250

MAE 0.000 0.500 0.000 0.000 0.250 0.250

RMSE 0.000 0.500 0.250 0.000 0.000 0.250

MASE 0.000 0.500 0.000 0.000 0.250 0.250

3 |ME| 0.429 0.286 0.000 0.071 0.000 0.214

MAPE 0.000 0.143 0.143 0.071 0.143 0.500

MAE 0.000 0.143 0.143 0.071 0.143 0.500

RMSE 0.071 0.071 0.071 0.357 0.143 0.286

MASE 0.000 0.143 0.143 0.071 0.143 0.500

4 |ME| 0.250 0.344 0.094 0.125 0.094 0.094

MAPE 0.000 0.281 0.125 0.156 0.219 0.219

MAE 0.000 0.281 0.125 0.156 0.219 0.219

RMSE 0.125 0.125 0.188 0.188 0.219 0.156

MASE 0.000 0.281 0.125 0.156 0.219 0.219

5 |ME| 0.231 0.423 0.064 0.077 0.038 0.167

MAPE 0.000 0.244 0.128 0.077 0.077 0.474

MAE 0.000 0.244 0.128 0.077 0.077 0.474

RMSE 0.077 0.128 0.179 0.167 0.192 0.256

MASE 0.000 0.256 0.128 0.077 0.077 0.462

6 |ME| 0.238 0.325 0.095 0.119 0.087 0.135

MAPE 0.000 0.294 0.119 0.143 0.040 0.405

MAE 0.000 0.294 0.119 0.143 0.040 0.405

RMSE 0.056 0.087 0.183 0.183 0.206 0.286

MASE 0.000 0.286 0.119 0.151 0.040 0.405

7 |ME| 0.143 0.368 0.146 0.129 0.093 0.121

MAPE 0.004 0.243 0.082 0.154 0.064 0.454

MAE 0.004 0.239 0.086 0.154 0.064 0.454

RMSE 0.029 0.089 0.207 0.300 0.182 0.193

MASE 0.004 0.243 0.086 0.154 0.064 0.450

8 |ME| 0.119 0.263 0.162 0.124 0.152 0.180

MAPE 0.000 0.168 0.062 0.116 0.067 0.588

MAE 0.000 0.165 0.062 0.116 0.064 0.593

RMSE 0.036 0.106 0.206 0.250 0.162 0.240

MASE 0.000 0.165 0.062 0.116 0.067 0.590
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The PB results in Table 9 show that Transformer is the best method in terms of MAPE,
MAE, andMASE. Based on each of thesemeasures, Transformer performs the best for nearly
50% SKUs, which is much higher than that for any other method considered in this study.
It is also the 2nd best approach with regard to RMSE with PB = 23.1%. The overall best
method based on RMSE is RNN with PB = 24.6%. The best method based on |ME| is SBA
(PB = 32.1%) while Transformer is tied with the 3rd best (PB = 15.4%). Table 9 also shows
that Croston, FNN, and LSTM are among the worst judging from PB across different error
measures.

Considering different sparsity levels, Table 10 suggests that Transformer is the overall
best method especially at higher sparsity levels. For example, at sparsity levels 5 and 6, PB
for Transformer is the highest with respect to all error measures except for |ME|. At sparsity
levels 7 and 8, Transformer significantly outperforms other methods on three error measures
with dominant PB. Surprisingly, Transformer also performs very well at several lower levels
of sparsity (levels 1 and 3). On the other hand, we find that SBA is the best performer at
sparsity levels of 2 and 4 based on almost all error measures. In fact, SBA performs well at
other sparsity levels as its PB is often the 2nd highest among all methods considered.

Overall, wefind that Transformer performs consistentlywell judged by both the parametric
error measures and the nonparametric percentage best measure. This finding is different from
that obtained by Doszyn (2019) who finds that the best methods by means of parametric
measures (i.e., error measures) are different than those using the nonparametric measure
(i.e., PB).

5 Conclusions

Intermittent demand forecasting is an important and challenging problem facing many orga-
nizations. As a result, there is an increasing research effort in searching for better forecasting
systems for intermittent demand items. While most existing research has focused on tradi-
tional methods such as Croston’ method and its variants, machine learning based methods
have been proposed for intermittent demand forecasting in recently years.

This study proposes the use of Transformer, a newly developed deep learning method,
for intermittent demand forecasting. In addition to Transformer, we also consider five other
methods (Croston, SBA, feedforward neural networks, recurrent neural networks, and long
short-term memory networks). Our empirical setting is a dataset of 925 intermittent demand
items from an airline service parts provider. Six forecasting performance measures are
employed, including the mean error, the mean absolute percentage error, the mean abso-
lute error, the root mean squared error, the mean absolute scaled error, and the percentage
best. We also consider both mean and median results which are similar, suggesting that
outliers are not a major concern in our results.

The results show that overall, Transformer performs very well relative to all other methods
with different performance measures. We also find the at low sparsity levels, all methods per-
form similarly in terms of forecast error measures (ME, MAE, MAPE, RMSE, and MASE).
As sparsity increases, it becomesmore difficult tomake accurate forecasts, resulting in higher
error measures for all methods including Transformer. However, Transformer’s performance
advantages over the Croston method, SBA, and various conventional neural network models
(FNN, RNN, and LSTM) increase with the sparsity level. Using the measure of percentage
best, we find that Transformer once again the overall best performer, although SBA performs
well too especially at low sparsity levels.
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Our findings confirm prior research that no forecasting method is the universal best under
all circumstances. However, one method could be an overall better one for some forecasting
settings. This research shows the promise of Transformer in forecasting intermittent demand.
One of the limitations of this research is that we have only analyzed 925 time series from
the same industry. In addition, the data we used are classified as “intermittent” based on
Syntetos et al. (2005) classification scheme. Future research may extend this study by apply-
ing Transformer and other deep learning methods to different intermittent demand items in
different industries and with different characteristics. Finally, this study shows how sparsity
impacts the model performance. While sparsity is an important characteristic of intermittent
demand, capturing the average intermittence in a time series, another important dimension
is the variance of intermittence, which is a measure of how zero demand periods are dis-
persed. Studying how the variance of intermittence impacts the model performance could be
an interesting future research direction.

Funding The authors have no relevant financial or non-financial interests to disclose.
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