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Abstract
We carry on a long term analysis for Bitcoin price, which is currently among the most
renowned crypto assets available on markets other than Forex. In the last decade Bitcoin has
been under spotlights among traders all world wide, both because of its nature of pseudo–
currency and for the high volatility its price has frequently experienced. Considering that
Bitcoin price has earned over five orders ofmagnitude since 2009, the interest of investors has
been increasinglymotivated by the necessity of accurately predicting its value, not tomention
that a comparative analysis with other assets as silver and gold has been under investigation,
too. This paper reports two approaches for a long term Bitcoin price prediction. The first one
follows more standard paradigms from regression and least squares frameworks. Our main
contribution in this regard fosters conclusionswhich are able to justify the cyclic performance
of Bitcoin price, in terms of its Stock–to–Flow. Our second approach is definitely novel in the
literature, and indicates guidelines for long term forecasts of Bitcoin price based onMachine
Learning (ML) methods, with a specific reference to Support VectorMachines (SVMs). Both
these approaches are inherently data–driven, and the second one does not require any of the
assumptions typically needed by solvers for classic regression problems.
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1 Introduction

In this paper we consider a challenging price forecast problem, associated with a specific
asset class, namely the crypto assets. In particular, we focus on one of the most famous crypto
assets which is Bitcoin (Nakamoto, 2008), inasmuch as it currently corresponds also to the
largest market capitalization asset among the crypto ones (see also (Various Authors, 2011;
Nakamoto, 2014; Vigna & Casey, 2015).

Bitcoin was created in 2008 (Nakamoto, 2008) by an anonymous researcher (or possibly
a team of people), under the nickname of Satoshi Nakamoto. It represents a digital asset
whose implementation release protocol is open–source. What strongly characterizes Bitcoin
with respect to fiat currencies (as Dollar, Euro, Yen, Pound, etc.) is its decentralized nature.
Indeed, no private bank or national central bank is neither responsible formanaging the overall
amount of circulating bitcoins nor be able to issue new bitcoins. Bitcoin negotiations need
exchanges to finalize transactions. These are special intermediaries who allow the negotiation
of Bitcoin vs. the main fiat currencies or vs. other crypto assets. Nevertheless, peer–to–
peer movements on the Bitcoin network can be perfectly finalized without the need for
intermediaries, too. Transactions among users are validated by network nodes (computers),
after solving complex inverse cryptographic problems. Moreover, the transactions cannot be
removed from the Bitcoin network, since they are sequentially collected into blocks appended
to apublic distributed ledger calledblockchain.Newlymintedbitcoins are created every timea
block is added to the blockchain, by special nodes (computers) of the network, associatedwith
the so called miners, who are rewarded for solving the above complex inverse cryptographic
problems.Miners’ rewarding policy of Bitcoin network changes every four years, identifying
events in the history of Bitcoin known as halvenings, since they correspond indeed to halven
the reward associated to each mined block.

In order to foresee the long term price for Bitcoin, a number of different approaches were
considered in the literature (the interested reader can refer to the recent papers (Aggarwal et
al., 2020; Sreekanth Reddy & Sriramya, 2020) and therein references), so that an increasing
interest in the literature has grown in the last decade. Considering the wide range of stake-
holders for crypto assets, ranging from practitioners to investors, researchers and members
from private/public institutions, the quality of the literature on Bitcoin price prediction has
sometimes been methodologically questionable. However, one of the main difficulties for
Bitcoin price prediction relies on the high volatility of this asset (Baur & Dimpfl, 2021),
whose price can definitely show large oscillations in a short time period. The main reason of
this drawback is that Bitcoin is a relatively recent asset. Thus, considering its market capital-
ization (which is currently about one tenth of the overall gold capitalization), Bitcoin is often
the target of speculations which include highly leveraged transactions on Bitcoin derivatives
(i.e. futures and options).

Among the most recent contributions, for the assessment of the price of Bitcoin, we find
the recent paper (Aggarwal et al., 2020), that introduces a ML–based approach to provide
a quantitative model for Bitcoin price forecast. However, Aggarwal et al. (2020) basically
relies on using intrinsic mode functions (IMFs), coupled with SVMs, which attempt to cap-
ture the natural characteristics of the time series associated with Bitcoin prices. As another
contribution based on ML we find the analysis in Sreekanth Reddy and Sriramya (2020),
which relies on the optimization method LASSO for ML.

Unlike the cited references, ourmain approach here is twofold. On one handwe investigate
linear Least Squares models, to study the role played by the Stock–to–Flow ratio within
regression problems related to Bitcoin price forecast. We recall that the Stock–to–Flow ratio
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is defined as the ratio between the current overall stock of Bitcoin on the market, and the
quantity of bitcoinsminted in a given time period. On the other hand, we show that we can use
a ML–based technique (see Sect. 5), combining Mathematical Programming and SVMs, in
order to provide a long term measurement system for estimating Bitcoin price. We will show
that, under suitable assumptions, the two proposals provide similar results.We remark that our
second proposal does not rely on those theoretical assumptions (e.g. the normal distribution
of data) which are typically associated with regression formulations. More specifically, in
our second proposal we combine a preliminary multiobjective programming approach with
an SVM: this represents to our knowledge a completely novel framework in the literature.

Given the foregoing, it is possible to show that to some extent the price of Bitcoin shows
a dependency on its Stock–to–Flow ratio (SF). For instance, Fig. 1 represents 1295 pairs of
Bitcoin price vs. SF, corresponding to the period between January, 2011 and July, 2022,1 Data
has been transformed to allow easy processing, with respect to a logarithmic scale. The (red)
bullets represent Bitcoin prices corresponding to SF values, and it is not difficult to realize
the high volatility of Bitcoin price. Moreover, the time window length for computing the SF
is given by 463 days, as indicated by (Buy Bitcoin Worlwide, 2019). 2 The rationale behind
the determination of this value follows guidelines suggested by other scarce assets like, for
instance, gold and silver. Briefly, given the average length of the production cycle of bitcoins
between two consecutive halvenings (about 4 years, that is about 1, 460 days), practitioners
and professionals have identified within this cycle the following three consecutive market
phases: bull run, correction, and reversion to the mean. The lengths of these three phases are
estimated approximately equal among them, that is 4/3 years each, hence the (approximate)
value of 463 days for the time window length used to compute the Bitcoin SF.3 However,
this choice of the length of the time window may be itself questionable, and represents a key
parameter, as detailed in Sect. 4. All this said, the approximate solution of a linear regression
problem, to forecast Bitcoin price vs. its SF, through the solution of a linear least squares
problem, strongly depends on a number of issues and definitely requires specific cares. For
the sake of completeness we recall that the parallel continuous lines in Fig. 1 have equations
y = mx+q1 and y = mx+q2, respectively, wherem, q1 and q2 solve the linear programming
problem (each pair (x̄i , ȳi ) represents the Bitcoin price, i.e. ȳi , corresponding to its SF, i.e.
x̄i )

min
m,q2,q1

q2 − q1

ȳi ≥ mx̄i + q1, i = 1, . . . , 1295,

ȳi ≤ mx̄i + q2, i = 1, . . . , 1295,

that is the area between the two lines identifies the narrowest stripe containing all Bitcoin
transactions.

1 Note that reliable data in the early years of Bitcoin history may be hardly retrieved, because in 2009–
2010 there were not yet observers in charge for accurate data collection. Hence, we decided to completely
revise and update our database including more recent data, but also discarding the pairs corresponding to
the years 2009–2010. In the attempt to collect more reliable data we downloaded and compared it from the
websites: https://www.blockchain.com/charts/total-bitcoins https://www.cryptocurrencychart.com/, https://
datahub.io/cryptocurrency/bitcoin, https://www.investing.com/crypto/bitcoin/historical-data, https://finance.
yahoo.com/cryptocurrencies.
2 In particular, see the webpage www.buybitcoinworldwide.com/stats/stock-to-flow/.
3 Note that 463 days is about 95% of 4/3 years..
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Fig. 1 The price of Bitcoin vs. its SF. Continuous green lines (support lines) delimit the narrowest stripe
containing all Bitcoin transactions. The dashed black line is the mid–line between the support lines and is
expected to give a trend for Bitcoin price, with respect to its SF. The natural logarithm is used for scaling
both the axes, and the reference time window for computing SF is 463 days [see also Sect. 4 and (Buy Bitcoin
Worlwide, 2019)]

Note that the linear model suggested by Fig. 1, that is

ln (Pricet ) = m̂ ln (SFt ) + q̂,

with m̂ and q̂ appropriate estimates of the slope and the intercept respectively, is very popular
among practitioners and professionals (see for instance (Buy BitcoinWorlwide, 2019; PlanB,
2019) and the really huge amount of more or less authoritative contributions in the so called
Socials). However, these investigations are generally not well founded, with possible negative
effects when used for professional trading purposes. One of the goals of this paper consists
exactly in providing the essentials of such foundations (see Sects. 3 and 4).

The remainder of this paper is organized as follows. In Sect. 2 we remind the reader some
details about the relationship between regression problems and least squares optimization
approaches. Section3 describes linear least squares schemes, where scaling on variables is
suitably investigated in view of the analysis for Bitcoin price. In Sect. 4 we give indications
about the computation of the SF ratio for Bitcoin, while Sect. 5 reports theoretical contribu-
tions and numerical results on long term Bitcoin price analyses which are based on Support
Vector Machines (SVMs) and SVMs coupled with the bootstrap method. Finally, Sect. 6
reports some conclusions and guidelines for future work.

As regards the symbols used in this paper, we indicate with E[v] the expected value of the
real random variable/vector v. With A � 0 [A � 0] we indicate that the matrix A is positive
definite [positive semidefinite]. Finally, |B| denotes the cardinality of the set B.
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2 Regression problems and least squares optimization

To better explain the reliability of solving linear least squares problems in the context of
linear regression formulations, assume we are given the 1+ p random variables Y and {Xi },
being

Y =
p∑

i=1

βi Xi + ui , βi ∈ IR, i = 1, . . . , p, (2.1)

where Y is the dependent variable and {Xi } are the independent unknowns. Moreover,
ui represents a statistical error, for any i , and satisfies E(ui |X1, . . . , X p) = 0. Then, if
Y , X1, . . . , X p are independent and identically distributed (i.i.d.) and a fewmild assumptions
are fulfilled, the solution of the Linear Regression problem

min
â,b̂

E

[
Y −

(
b̂ +

p∑

i=1

âi Xi

)]
, â ∈ IRp, b̂ ∈ IR (2.2)

can be equivalently obtained by solving the Linear Least Squares problem

min
a,b

N∑

j=1

[
Y ( j) −

(
b +

p∑

i=1

ai X ( j)
i

)]2

, a ∈ IRp, b ∈ IR (2.3)

where N represents the number of available samples for the randomvariables (Y , X1, . . . , X p).
We strongly remark that the solution of the minimization problem (2.3) is definitely appeal-
ing, since it is an unconstrained convex quadratic model. However, we also highlight that
the solutions of (2.2) and (2.3) might strongly differ in case the theoretical assumptions
on the quantities Y , X1, . . . , X p, u1, . . . , u p were not fulfilled. A typical example where we
experience the last drawback is the case in which the samples do not follow a normal distribu-
tion. Conversely, in case the random variables u1, . . . , u p admit the joint normal distribution
N (0, σ 2 I ), with zero expected value and the same variance for all the variables, then the
solutions of (2.2) and (2.3) coincide.

Typically in applied sciences (2.3) is often solved assuming the fulfillment of indispensable
theoretical assumptions, which unfortunately are often not satisfied, as specified above. Thus,
a test on the reliability of the solutions of (2.3) is usually sought (e.g. the R2 and the p–value
indicators).

In this paper we are interested about estimating the price (i.e. Y ) of Bitcoin vs. its SF (i.e.
X ), being Y = aX + u, with a ∈ IR; however, the error u is not normally distributed, so
that the solution of the linear least squares problem (2.3) might possibly represent a poor
estimator [see also the practical analysis on Graybill and Iyer (1994)].

3 Our setting for data scaling in Least Squares problems

On the guidelines of Sect. 2, we detail here the linear least squares setting we make reference
to. Note that in this section we propose some novel theoretical results, in order to address
and give foundation to claims and questions raised by practitioners, within the literature
on Bitcoin [see for instance Buy Bitcoin Worlwide (2019); PlanB (2019)]. Generally, these
results are simple from a mathematical standpoint (mainly, they refer to the classical Box-
Cox transformation approach Box and Cox (1964)) but are meaningful from the point of
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view of the Bitcoin price forecast. For these reasons, below we consider a couple of different
linear regression problem formulations, as general as possible, in order to take into account
a number of possible parameters that can affect Bitcoin price forecast.

Let us consider the N training pairs (x̄i , ȳi ) ∈ IR2, i = 1, . . . , N , and let us consider the
following least squares problem, where we assume that the training pairs are possibly subject
to a log–transformation, being α and β suitable positive parameters not equal to zero or one

min
m,q∈IR

N∑

i=1

[
logα(ω ȳi ) − m logβ(x̄i ) − q

]2
. (3.4)

In particular, in the pair (x̄i , ȳi ) the quantity x̄i is associated with Bitcoin SF value, while
ȳi represents the corresponding price of Bitcoin. The motivation for introducing in (3.4) the
parameter ω will be clear later on, and further specific motivations to recur to the log–scaled
expression (3.4) are given in Buy Bitcoin Worlwide (2019). They basically reduce to the fact
that, assimilating the pair (x̄i , ȳi ) to a determination of a two–dimensional random variable
(x, y), then (x, y) has not necessarily a normal distribution. In this regard, a log–transfor-
mation, with respect to at least one of the random variables, may possibly yield the pairs
{(x̄i , ȳi )} to better resemble a normal distribution.

Proposition 1 Given the problem (3.4) with α, β /∈ {0, 1} and positive, let

A =
N∑

i=1

[logβ(x̄i )]2, B =
N∑

i=1

[logα(ȳi )]2,

C = 2
N∑

i=1

logβ(x̄i ), D = 2
N∑

i=1

logα(ȳi ),

E = 2
N∑

i=1

logβ(x̄i ) logα(ȳi ).

(3.5)

Assume without loss of generality that B �= 0 and the sequence {logβ(x̄i )} contains at least
two non–coincident entries. Then the optimal solution m∗, q∗ to (3.4) satisfies the following
properties:

1. m∗ is independent of ω, being

m∗ = 2N E − C D

4N A − C2 ;

2. q∗ is not independent of ω, being

q∗ = logα(ω) − C E − 2AD

4N A − C2 .

Proof We rewrite (3.4) as

min
m,q∈IR

N∑

i=1

[
logα(ω) + logα(ȳi ) − m logβ(x̄i ) − q

]2
,

so that after computing the square in the sum and collecting the terms we equivalently obtain
the problem

min
m,q∈IR N

[
logα(ω)

]2 + Am2 + Nq2 + B − C logα(ω)m − 2N logα(ω)q + D logα(ω) + Cmq − Em − Dq
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and after a few arrangements

min
m,q∈IR N

{[
logα(ω)

]2 + q2 − 2 logα(ω)q
}

+ Am2 − Cm
[
logα(ω) − q

]

+D
[
logα(ω) − q

] − Em + B

or equivalently

min
m,q∈IR N

[
logα(ω) − q

]2 + Am2 + (D − Cm)
[
logα(ω) − q

] − Em + B.

Thus, after setting s = logα(ω) − q we equivalently have to solve the problem

min
m,s∈IR ψ(s, m) ≡ Ns2 + Am2 + (D − Cm)s − Em + B.

Now observe that the Hessian matrix of the last quadratic function is constant and is given
by

∇2ψ(s, m) =
⎛

⎝
2N −C

−C 2A

⎞

⎠ ,

so that it is positive definite. Indeed N , A ≥ 0 and det
[∇2ψ(s, m)

] = 4N A − C2, with
|C | ≤ 2‖v‖1 and

v =
⎡

⎢⎣
logβ(x̄1)

...

logβ(x̄N )

⎤

⎥⎦ .

Hence, C2 ≤ 4‖v‖21 so that

det
[∇2ψ(s, m)

] = 4N A − C2 ≥ 4N‖v‖22 − 4‖v‖21
= 4(

√
N‖v‖2 + ‖v‖1)(

√
N‖v‖2 − ‖v‖1).

Since ‖v‖1 ≤ √
N‖v‖2 (see Fact 9.8.12 in Bernstein,2009), then det

[∇2ψ(s, m)
] ≥ 0.

Moreover, since at least two entries of v are non coincident, then ψ(s, m) is a strictly convex
function in IR2, inasmuch as 4N A − C2 > 0. Now, first order stationarity conditions applied
to ψ(s, m) yield

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ψ(s∗, m∗)
∂s

= 2Ns∗ + (D − Cm∗) = 0

∂ψ(s∗, m∗)
∂m

= 2Am∗ − Cs∗ − E = 0,

so that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m∗ = 2N E − C D

4N A − C2

s∗ = C E − 2AD

4N A − C2 ,

(3.6)
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i.e. the statement of the proposition definitely holds. 
�
Similarly to the previous proposition we also have the following result, where the scaling

parameter ω is applied to the sequence {x̄i }, i.e. now we refer to the case where problem (3.4)
becomes

min
m,q∈IR

N∑

i=1

[
logα(ȳi ) − m logβ(ωx̄i ) − q

]2
. (3.7)

Proposition 2 Given the problem (3.7) with α, β /∈ {0, 1} and positive, let us consider the
positions (3.5). Assume without loss of generality that B �= 0, A + C logβ(ω) > 0 and the
sequence {logβ(x̄i )} contains at least two non–coincident entries. Then the optimal solution
m∗, q∗ to (3.7) satisfies the following properties:

1. m∗ is independent of ω, being

m∗ = 2N E − C D

4N A − C2 ;
2. q∗ is not independent of ω, being

q∗ = −2N E − C D

4N A − C2 logβ(ω) − C E − 2AD

4N A − C2 .

Proof Following the guidelines of Proposition 1 we can equivalently rewrite (3.7) as

min
m,q∈IR

N∑

i=1

[
logα(ȳi ) − m

[
logβ(ω) + logβ(x̄i )

] − q
]2

,

i.e.

min
m,q∈IR ψ(m, q) ≡ B + Nm2 [

logβ(ω)
]2 + Am2 + Cm2 logβ(ω) + Nq2 − Dm logβ(ω)

−Em − Dq + 2Nmq logβ(ω) + Cmq.

Observe that by the assumptions the Hessian matrix

∇2ψ(m, q) =
⎛

⎝
2N

[
logβ(ω)

]2 + 2A + 2C logβ(ω) 2N logβ(ω)

2N logβ(ω) 2N

⎞

⎠

is positive definite (indeed the assumption A + C logβ(ω) > 0 implies that both its determi-
nant and its trace are positive), so that ψ(m, q) is strictly convex on IR2.

Now, first order stationarity conditions applied to ψ(m, q) yield
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ψ(m∗, q∗)
∂m

= 2Nm∗ [
logβ(ω)

]2 + 2Am∗ + (2Cm∗ − D) logβ(ω) − E

+ 2Nq∗ logβ(ω) + Cq∗ = 0

∂ψ(m∗, q∗)
∂q

= 2Nq∗ − D + 2Nm∗ logβ(ω) + Cm∗ = 0,

so that from the second equation

q∗ = D − m∗ [
2N logβ(ω) + C

]

2N
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and replacing into the first equation we have after some computations

m∗ = 2N E − C D

4N A − C2 .

Note also that, similarly to Proposition 1, the assumptions ensure that the denominator 4N A−
C2 of q∗ is strictly positive. Finally, we also obtain after some computations

q∗ = D − m∗ [
2N logβ(ω) + C

]

2N
= −m∗ logβ(ω) + D − m∗C

2N

= −2N E − C D

4N A − C2 logβ(ω) − C E − 2AD

4N A − C2 ,

which completes the proof. 
�
Observation 3.1 We highlight that whatever the value of ω in the linear regression problems
(3.4) and (3.7), Propositions 1 and 2 give the same optimal m∗s, and that in case ω = 1
in (3.4) and (3.7), then evidently the optimal q∗s from Propositions 1 and 2 (as expected)
coincide. Moreover, the assumption A + C logβ(ω) > 0 in Proposition 2 is not particularly
restrictive for Bitcoin, as detailed in Sect.4.

Observation 3.2 We stress that the outcomes according to which both (3.4) and (3.7) have
optimal m∗s independent of ω imply that the value of ω does not affect the forecast of the
Bitcoin price variation.

As for the roles played by the bases of the logarithms α and β, with respect to the natural
one, we provide the following results.

Corollary 1 Let us consider the problem (3.4) with α = α′, β = β ′ /∈ {0, 1} and positive,
and let us consider the same problem with α = β = e. Then the problem using the natural
base has the optimal intercept q∗

e such that:

q∗
e = 1

logα′(e)
q∗.

Proof The proof directly holds performing a straightforward computation. 
�
Corollary 2 Let us consider the problem (3.7) with α = α′, β = β ′ /∈ {0, 1} and positive,
and let us consider the same problem with α = β = e. Then the problem using the natural
base has the optimal intercept q∗

e such that:

q∗
e = 1

logα′(e)
q∗.

Proof Again the proof directly holds performing a straightforward computation. 
�
Corollary 3 Let us consider the problems (3.4) and (3.7) with α = α′, β = β ′ /∈ {0, 1} and
positive, and let us consider the same problems with α = β = e. Then both the problems
using the natural base have the same optimal slope m∗

e such that:

m∗
e = logβ ′(e)

logα′(e)
m∗.

Proof The proof follows the guidelines for Corollaries 1 and 2. 
�
Observation 3.3 We remark that in case α′ = β ′ with α′, β ′ /∈ {0, 1} and positive, then m∗

e =
m∗. This sheds some lights on possible doubts raised within the literature for practitioners,
about the possible dependency of Bitcoin price forecast on the bases α, β in (3.4) and (3.7)
(see PlanB (2019)).
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4 The assessment of the SF for Bitcoin

As reported in Sect. 1, several authors in the literature have observed a relationship between
the price of Bitcoin and its SF value (see e.g. Buy Bitcoin Worlwide (2019), among the first).
Here we want to better investigate the last conclusion, in view of Propositions 1 and 2. In
particular, we want to show that the SF value for Bitcoin strongly relies on the time window
we use to compute it: this motivates the introduction of the parameter ω in the formulation
(3.7), in case ȳi represents the i–th price of Bitcoin and x̄i is associated with the i–th value
of the SF.

As a preliminary example, recalling that the SF is the ratio between the current stock of
an asset and its flow within a given time window, assume the flow is computed in a time
interval of one year (i.e. 365 days as in Fig. 1). Then, SF essentially represents the number
of years, at the current annual production rate, that are necessary to obtain its current stock.
Hence, the higher the SF the scarcer the asset. Now, let us consider in our example the pairs
price vs. SF of Bitcoin, from January 1st, 2011, to July 15th, 20224. Then, the formula to be
adopted for the computation of the SF for Bitcoin should be (as an example the stock in the
formula refers to the end of September, 2021)

SFBitcoin ≈ 18, 700, 000
24·60
10 · 463 · 6.25 ≈ 44.9. (4.8)

The quantities in the last computation duly keep into consideration the following facts:

• every day about 24 · 60/10 newly mined blocks are added to Bitcoin blockchain (i.e.
around one block every 10min);

• for each newly added block to the blockchain of Bitcoin, exactly 6.25 bitcoins are minted
and rewarded to miners, so that they can be possibly negotiated (i.e. they are potentially
available) on the market. Moreover, the value 6.25 will be successively halved in 2020+
4k, for any k = 1, 2, . . ., up to about 2140;

• the time window for computing the stock is different with respect to 365 days (being
indeed 463 days as suggested in Buy BitcoinWorlwide (2019)), so that the corresponding
value is used in the denominator of (4.8), in place of 365.

We comparatively observe that the current SF of the gold is a bit larger than 60, so that we
conclude that the scarcity of Bitcoin to some extent compares with that of the gold (hence
the widely used nickname of digital gold for Bitcoin). Figure2 reports a plot of Bitcoin price
vs. its SF: the dashed line is a regression line obtained from solving either the problems (3.4)
or (3.7), after setting ω = 1. The slope of the resulting regression line is m∗ ≈ 2.68084 and
q∗ amounts to ≈ 0.40596, while red points represent the pairs (ln(price), ln(SF)). Thus,
relation

ln(price) = 2.680 ln(SF) + 0.405 (4.9)

immediately yield the Bitcoin price forecast. For instance, considering the value of the SF in
(4.8) (i.e. at the end of September, 2021), we had

price = SF2.680 · e0.405 = 44.92.680 · e0.405 ≈ 40, 171$.

4 For further information on data for Bitcoin prices and the number of minted bitcoins, the reader may refer
to the footnote at page 2.
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Fig. 2 The price of Bitcoin vs. its SF (the flow is computed with respect to a time window of 463 days), where
data refers to the period between January 1st, 2011 and July 15th, 2022. The black dashed line represents a
regression line from solving either the problems (3.4) or (3.7), after setting ω = 1. The natural logarithm (i.e.
α = β = e) is used for scaling both the axes. The slope of the regression line is m∗ ≈ 2.68084

For the sake of completeness observe that R2 and p-value, associated with the computation
of the linear regression model (4.9), are given by

R2 = 0.639, p � 0.05,

which shows that the linear regression model is only partially reliable. Furthermore, we
remark that there is no discrepancy between the outcomes of Figs. 1 and 2, since in both the
figures the flow, in the SF for Bitcoin, is computed with respect to the same time window
(i.e. 463 days). This conclusion highlights the importance of introducing the parameter ω in
(3.7), inasmuch as the following observations hold:

• when in (3.7) x̄i represents a value of Bitcoin SF and we set ω = 1, then it means we are
adopting exactly the formula (4.8) for the SF;

• when in (3.7) x̄i represents a value of Bitcoin SF and we set ω = 365/463, then it means
we are adopting the formula (4.8), with the number 365 in place of 463.

Hence, the parameter ω duly takes into account the time window adopted for computing
the SF of Bitcoin, and according with Proposition 2 it does not influence the slope m∗ of
the corresponding regression line. This is to our knowledge a remarkable novel result in the
literature.

Observation 4.1 We highlight that the choice of the value of ω affects the values of the optimal
q∗s given by Propositions 1 and 2, and consequently influences the Bitcoin price forecast.
Therefore, in order to improve the quality of the forecast, a more general optimization process
might be considered, also taking into consideration ω itself as unknown, in addition to q and
m. It will be a point of our future research on this topic. Nevertheless, in general, for trading
purposes what really matters is possibly not the forecast of the asset price, but rather the
forecast of the asset price variation. In this regard, as stressed in Observation 3.2, the value
of ω does not affect the Bitcoin price variation forecast. So that, from an operational point
of view, the choice of such parameter might be not so crucial.

123



370 Annals of Operations Research (2024) 336:359–381

Lastly, given that the linear model is inherently data–driven, we point out that the assump-
tions needed by the solver to address the corresponding regression problem has to be satisfied.
In this regard, we recall that one of the main assumptions underlying the considered regres-
sion problem is that the probability distribution of Y conditional on (X1, . . . , Xi , . . . , X p)

is normal (see (2.1)).
In order to verify this assumption, we carried out the test of Jarque and Bera (see 1987)

as follows {
H0: the probability distribution of u is normal
H1: the probability distribution of u is not normal

where u
.= (u1, . . . , uN ) is the vector of the residuals coming from the regression problem

min
m,q

N∑

j=1

[
ln(price)( j) − m ln(SF)( j) − q

]2
, m, q ∈ IR.

In particular, we performed the test for the overall period considered in the example presented
in this section, that is from January 1st, 2011 to July 15th, 2022, and for each of the thirteen
time-windows considered in Sect. 5.2. For all such time periods, the null hypothesis has been
accepted at the 5% significance level, with p-values ranging in the interval [0.1170, 0.1666].
Hence, given this matter of fact, we decided to admit the use of the linear regression approach
when reporting the comparative results in Sect. 5.2.

5 Our second approach for long term Bitcoin price prediction

In this section we describe our second approach for the long term Bitcoin price forecast. In
particular, first, in Sect. 5.1, we show that combining a Multiobjective Technique (MT), from
Nonlinear Programming, with a SVM, from ML (see also Cristianini and Shawe-Taylor,
2000; Vapnik, 1995; 1998; Hastie et al., 2008; Deng et al., 2013; Marsland, 2015), we can
recover results similar to those from the first approach, without requiring any assumption
typically needed by regression frameworks. Then, in Sect. 5.2 we couple the above SVM–
based approach with a bootstrap method, in order to possibly improve the quality of its
performance. Finally, we apply both such developed methodologies to the long term forecast
of Bitcoin price.

5.1 The algorithmMT–SVM

In order to combine MTs with SVMs, let (x̄i , ȳi ), i = 1, . . . , N , be the pairs of SF and
Bitcoin price, within a given time interval. Then, we preliminarily identify the two subsets
Lmax and Lmin of {(x̄i , ȳi )}, each associated with a different weak Pareto front. In particular,
consider Fig. 3. We compute the sets Lmax and Lmin, being now respectively Lmax indicated
by LW est−North and Lmin indicated by L East−South , as

• L East−South : the weak Pareto front (red points) associated with both the maximization
of the stock–to–flow SF and the minimization of Bitcoin price;

• LW est−North : the weak Pareto front (cyan points) associated with both the minimization
of the stock–to–flow SF and the maximization of Bitcoin price.

For a more formal definition of these last sets of points, the reader can consider that the
point (x̄i , ȳi )will be classified as a point in Lmax if it satisfies the properties (non–dominated
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Fig. 3 The fronts L East−South and LW est−North among the pairs Bitcoin price vs. its SF. Data is reported
using ln() transformation

point with respect to maximization of ȳ and minimization of x̄)

(x̄i , ȳi ) ∈ Lmax if � j ∈ {1, . . . , N }, with (x̄ j , ȳ j ) �= (x̄i , ȳi ) ,

s.t. x̄ j < x̄i and ȳ j > ȳi .

Similarly, the point with coordinates (x̄i , ȳi ) will be classified as a point in Lmin if it satisfies
the properties (dominated point with respect to minimization of ȳ and maximization of x̄)

(x̄i , ȳi ) ∈ Lmax if � j ∈ {1, . . . , N }, with (x̄ j , ȳ j ) �= (x̄i , ȳi ) ,

s.t. x̄ j > x̄i and ȳ j < ȳi .

Broadly speaking, the front Lmax includes (desirable) points with high price performance
for Bitcoin vs. its SF. On the contrary, Lmin contains (undesirable) points with poor price
performance for Bitcoin vs. its SF. Therefore, the sets Lmax and Lmin include points which
may be associated with extreme opposite performances of Bitcoin price, and can be used in
our SVM–based classification framework to possibly model long term Bitcoin price.

In the remaining part of this section we propose an iterative procedure which relies on the
following definition (all the theoretical results in the current section refer to the set {(x̄i , ȳi )},
with x̄i ∈ IR and ȳi ∈ IR. Nevertheless, in Pontiggia and Fasano (2021) the authors proved
that they can be immediately extended to the set {(x̄i , ȳi )}, with x̄i ∈ IRp , p ≥ 2, ȳi ∈ IR,
too).

Definition 1 Given the points (x̄i , ȳi ) ∈ IR2, i = 1, . . . , N , and the values zi ∈ {−1,+1}, i =
1, . . . , N , let us define the nonempty sets A = {(x̄i , ȳi ) zi = +1} and B = {(x̄i , ȳi ) zi = −1}.
Then, we say that A and B are linearly separable in IR2 if there exists a line H(β, β0; x, y) =
0, with coefficients β, β0 ∈ IR, such that

⎧
⎨

⎩

H(β, β0; x̄i , ȳi ) > 0, ∀i : zi = +1

H(β, β0; x̄i , ȳi ) < 0, ∀i : zi = −1.
(5.10)

The procedure in our proposal starts by setting A0 = Lmax and B0 = Lmin; then, we generate
the sequences of sets {Ak} and {Bk}, with k = 0, 1, 2, . . ., accordingwith the next two distinct
phases:
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• first, we solve an SVM classification problem that computes the line

H
(
β(k), β

(k)
0 ; x, y

)
= 0

which linearly separates (see Definition 1) the sets Ak and Bk , and is maximally distant
(maximum margin) from their points;

• second, a point
(

x̄ (k)
max, ȳ(k)

max

)
in {(x̄i , ȳi ), i = 1, . . . , N } \ {Ak ∪ Bk} is identified and

assigned with a label zk ∈ {−1,+1}. In case zk = +1 we generate the novel sets

Ak+1 = Ak ∪
{(

x̄ (k)
max, ȳ(k)

max

)}
and Bk+1 = Bk , otherwise we set Ak+1 = Ak and

Bk+1 = Bk ∪
{(

x̄ (k)
max, ȳ(k)

max

)}
.

More formally, our proposal is summarized in the Algorithm MT–SVM of Table 1, whose
steps are briefly commented as follows.

In apreliminary initializationwe setχ = {(x̄i , ȳi ), i = 1, . . . , N } and set A0 and B0, using
Lmax and Lmin defined above. Then,we compute the best (i.e. the onemaximizing themargin)

separating line H
(
β(0), β

(0)
0 ; x, y

)
= 0 between A0 and B0, whose parameters are given

by β(0) and β
(0)
0 , using an SVM method. Thus, H

(
β(0), β

(0)
0 ; x, y

)
= 0 is the maximally

distant line with respect to both the sets A0 and B0. In particular, in Algorithm MT–SVM
we indicate with SV M(Ak, Bk) the solution of the SVM problem which computes the best
(maximally distant) separating line between Ak and Bk .Note that theSVMproblem reduces to
a convex linearly constrained quadratic minimization problem which always admits solution
(see Cristianini and Shawe-Taylor, 2000).

Therefore, at any step k we first pick the point
(

x̄ (k)
max, ȳ(k)

max

)
in χ\{Ak ∪ Bk} with the

largest distance from H
(
β(k), β

(k)
0 ; x, y

)
= 0. Moreover, depending on the half space

where
(

x̄ (k)
max, ȳ(k)

max

)
is located, with respect to the line H

(
β(k), β

(k)
0 ; x, y

)
= 0, we update

the novel sets Ak+1, Bk+1 starting from the pair Ak , Bk . In the end, we increase the step and
iterate the procedure. The next results can be proved, which establishes theoretical properties
for Algorithm MT–SVM (see also Pontiggia and Fasano, 2021).

Lemma 1 Consider the set χ ⊂ IR2, with |χ | < +∞. Let Lmax, Lmin ⊆ χ . Then, the
Algorithm MT–SVM in Table 1 provides the pair of sets Am, Bm after m steps, with

m = |χ \ {Lmax ∪ Lmin}| ,
such that

⎧
⎨

⎩

Am ∪ Bm = χ

Am ∩ Bm = ∅.

Proof By Table 1, recalling that |χ | is finite, the index k ranges from 0 to |χ\{A0 ∪ B0}| ≤
|χ | < +∞. Moreover, since by construction |Ak ∪ Bk | = |Ak−1 ∪ Bk−1| + 1, then m is
exactly given by the number of points in χ which are neither present in Lmax nor in Lmin. 
�
Proposition 3 Let be given the nonempty sets Lmax, Lmin ⊆ χ , and consider the Algorithm
MT–SVM in Table 1. If Lmax and Lmin are linearly separable, as by Definition 1, then the
sets Ak and Bk are linearly separable, for any k ≥ 0.

Proof The proof can be found in Pontiggia and Fasano (2021). 
�
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Table 1 Description of our SVM–based procedure applied to the points {(x̄i , ȳi ), i = 1, . . . , N } in the set χ

We can also give a couple of additional results, to better clarify the properties of the solution
provided byAlgorithm MT–SVM, either in case Lmax and Lmin are / are not linearly separable.

Lemma 2 Let be given the nonempty sets Lmax, Lmin ⊆ χ , and consider the Algorithm
MT–SVM in Table 1. If Lmax and Lmin are linearly separable, then

123



374 Annals of Operations Research (2024) 336:359–381

Fig. 4 The fronts L East−South and LW est−North , for the problem of forecasting Bitcoin price vs. its SF ratio.
Applying Algorithm MT–SVM and stopping right after iteration k = 0 we obtain the circled points (support
vectors) and the side lines (support lines). (Blue) crosses identify all the pairs Bitcoin price vs. its SF. Data is
reported using ln() transformation

• for any k ≥ 1 the margin W (k) of the SVM problem SV M(Ak, Bk) satisfies

W (k) = min
{

W (k−1), 2d(k)
max

}
; (5.11)

• the sequence
{
W (k)

}
is monotonically nonincreasing, with

W (k) ≤ 2d( j)
max, j = 0, . . . , k. (5.12)

Moreover, assume that at step k of the Algorithm MT–SVM we set d(k)
max ← d̂ , being d̂ =

d[(x̂, ŷ), H(β(k), β
(k)
0 ; x, y)] with

d̂ /∈ argmax(xi ,yi )∈χ\{Ak∪Bk }
{

d[(xi , yi ), H(β(k), β
(k)
0 ; x, y)]

}
.

Then, we have W (k) ≤ 2d̂ .

Proof The proof can be found in Pontiggia and Fasano (2021). 
�
Observation 5.1 Let be given the nonempty sets Lmax, Lmin ⊆ χ , and consider theAlgorithm
MT–SVM in Table 1. Then, it can be also proved (see Pontiggia and Fasano, 2021) that under
mild assumptions the misclassified points when solving SV M(Ak+1, Bk+1) are a subset of the
misclassified points when solving SV M(Ak, Bk). This remarks once more the importance of
selecting in our procedure A0 = Lmax and B0 = Lmin, being Lmax and Lmin likely separable
in practice.

Figure4 shows the overall outcome of Algorithm MT–SVM for k = 0. In particular, we
have A0 = Lmax = LW est−North and B0 = Lmin = L East−South , being A0 and B0 linearly
separable as in Definition 1. The picture also reports three parallel lines: one central line and
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two side lines. The central line represents the separating line computed by SV M(A0, B0),

i.e. the line of equation H
(
β(0), β

(0)
0 ; x, y

)
= 0. Conversely, the two side lines delimit the

largest region (stripe) where none of the points in A0 ∪ B0 is included. Finally, the circled
points in the picture represent so called support vectors (see Cristianini and Shawe-Taylor,
2000), i.e. those points in A0 ∪ B0 which are the closest to the central line of equation

H
(
β(0), β

(0)
0 ; x, y

)
= 0. Of course, applying the procedure in the Algorithm MT–SVM also

for k ≥ 1, the stripe delimited by the two side lines will reduce its thickness, so that the
three lines tend to become closer and closer as k increases. Their slope identifies a possible
trend–line (which is expected to change with k) for Bitcoin price vs. its SF. As by Figs. 3 and
4 the common slope of the three lines when k = 0 is m∗ ≈ 2.9324, which is not pretty close
to the value 2.680 obtained with our first proposal in Sect. 4. In particular, similarly to (4.9)
we have now the line

ln(price) = 2.9324 ln(SF) − 0.35052,

so that considering for instance the value of the SF in (4.8) (i.e. at the end of September,
2021), we obtain

price = SF2.9324 · e−0.35052 = 44.92.9324 · e−0.35052 ≈ 49, 297$.

Observe that this last Bitcoin price forecast is appreciably different with respect to the one
obtained using (4.9). Moreover, observing historical data of Bitcoin prices we can immedi-
ately realize that 40, 171$was a bit closer to the actual value (i.e.≈ 41, 500 $)we experienced
in practice, with respect to the value 49, 297$ obtained with our second approach. Figure4
includes the same information of Fig. 3, and additionally reports also the (remaining) points
of the set {(x̄i , ȳi ), i = 1, . . . , N } which are not in Lmax ∪ Lmin.

Observing the parallel lines in Figs. 3 and 4, our SVM–based approach suggests also
that the two side lines (i.e. the support hyperplanes following the taxonomy of SVMs) have
respectively the equations
⎧
⎨

⎩

ln(price) = 2.9324 ln(SF) + (−0.35052 + 0.11629) = 2.9324 ln(SF) − 0.23423,

ln(price) = 2.9324 ln(SF) + (−0.35052 − 0.11629) = 2.9324 ln(SF) − 0.46681,

so that considering again the value of the SF in (4.8), we obtain for Bitcoin price forecast at
the end of September 2021 the range of possible values

price ∈ [
44.92.9324e−0.46681 , 44.92.9324e−0.23423] ≡ [ 43, 884.8$ , 55, 376.1$ ]. (5.13)

This last result reveals that the actual price of 41,500 $ for Bitcoin, at the end of September
2021, was not included in the interval indicated by (5.13), though the relative error εSV M =
[43, 884.8−41, 500]/41, 500, using our SVM–based approach (lowest extreme in the interval
in (5.13)), and the relative error εL S = [40, 171 − 41, 500]/41, 500, using a more standard
regression approach, are not distant. This indeed explains why we considered to report our
numerical experience with reference to the end of September 2021: it was indeed the case in
which our second proposal performs most poorly with respect to the regression analysis. A
couple of final considerations should also be highlighted:

• our second approach in the current section does not require any of the assumptions
typically neededwhen solving linear least squares problems. This implies that our second
approach is not subject to any specific validation test;
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• as any approach based on linear regression, our first proposal is capable of producing
both a point relation between the Bitcoin price and its SF (see (4.9)) and a confidence
interval for the price itself. Nevertheless, the calculation of this interval is easy only
under suitable theoretical assumptions on the probability distribution of the data (e.g.
the normal one which is typically associated with regression formulations). Conversely,
our second approach always gives an interval of reliability for the pair of Bitcoin price
vs. its SF, identified by the stripe delimited by the side lines in Fig. 3, regardless of the
data probability distribution. Thus, in this regard our second proposal shows to some
extent higher versatility and possibly robustness of the outcomes. Moreover, it provides
a tentative information about long term Bitcoin price, that possibly expert investors may
decide to refine or even integrate with their own trusted methods.

5.2 Enhancement using bootstrap

Bootstrap represents awidely used technique to infer statistics on a population, by performing
re–sampling with replacement of the original dataset associated with the population. More
often, after defining a reference measure, bootstrap first implies re–sampling the original
dataset so that this measure is recomputed several times. Then, exploiting the Central Limit
Theorem (CLT), this measure is treated as a random variable whose simple statistics (i.e. the
mean value and the standard deviation) are sought. In this regard we recall that according
with the CLT, when i.i.d. random variables are summed up (or averaged), then their properly
normalized sum approaches a normal distribution, regardless of the original distribution of
the random variables (see Davison and Hinkley, 1997).

Bootstrap can be declined in several practical ways, though it basically reduces to repeat-
edly selecting a sample in a given population, calculating the statistics associated with some
measure, and finally taking the average of the computed statistics. To be more precise, a
general bootstrap technique can be summarized as by the following scheme:

1 Select the number N S of re–samplings and the sample size SS to perform;
2 For any i = 1 to N S

Compute the i–th sample (of size SS) with replacement of the population
Compute k ≥ 1 quantities related to the i–th sample

3 Compute the statistics associated with the k quantities.

Note that such a bootstrap technique is in some sense basic as it does not account for
possible presence of serial dependence in the considered time series (in that case, so-called
moving blocks bootstrapmethods should be used).Anyway, the choice to use a plain bootstrap
technique is deliberate in order to stress the robustness of ourAlgorithm MT–SVMwith respect
to specific features of the time series data.

When applying a MLmodel, whose outcomes yield random quantities, then it is desirable
that the results are provided with confidence intervals. We highlight that widely used tech-
niques within ML, like cross-validation, are unable to immediately give confidence intervals
for the quantities they report. In our SVM–based ML procedure we used bootstrap to esti-
mate the final mean value and the standard deviation of Bitcoin price, with reference to the
following 13 different time–windows for the pairs Bitcoin price vs. its SF:
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Time–window 1 January 1st, 2011 – March 31st, 2021
Time–window 2 January 1st, 2011 – April 30th, 2021
Time–window 3 January 1st, 2011 – May 31st, 2021
Time–window 4 January 1st, 2011 – June 30th, 2021
Time–window 5 January 1st, 2011 – July 31st, 2021
Time–window 6 January 1st, 2011 – August 31st, 2021
Time–window 7 January 1st, 2011 – September 30th, 2021
Time–window 8 January 1st, 2011 – October 31st, 2021
Time–window 9 January 1st, 2011 – November 30th, 2021
Time–window 10 January 1st, 2011 – December 31st, 2021
Time–window 11 January 1st, 2011 – January 31st, 2022
Time–window 12 January 1st, 2011 – February 28th, 2022
Time–window 13 January 1st, 2011 – March 31st, 2022

Table 2 Forecasts of the value of the logarithm for Bitcoin price, alongwith some related statistics, considering
1 month as prediction horizon

ln(Pt+1 month) SVM μSVM+B σSVM+B [·, ·]95% εSV M εSV M+B

10.9122 10.2932 10.2689 0.1501 [9.9748, 10.5630] −0.0567 −0.0590

10.4512 11.1474 11.1068 0.2241 [10.6676, 11.5460] 0.0666 0.0627

10.4639 12.2532 11.9440 0.3593 [11.2397, 12.6483] 0.1710 0.1414

10.6347 10.6400 10.4055 0.3344 [9.7500, 11.0610]∗ 0.0005 −0.0216

10.7975 10.6513 10.4186 0.3657 [9.7018, 11.1354]∗ −0.0135 −0.0351

10.6879 10.6566 10.4195 0.3012 [9.8291, 11.0099]∗ −0.0029 −0.0251

10.0388 10.6550 10.4042 0.2740 [9.8671, 10.9413]∗ 0.0614 0.0364

10.9559 11.5767 11.3024 0.2867 [10.7405, 11.8643]∗ 0.0567 0.0316

10.7605 10.6781 10.4266 0.2814 [9.8751, 10.9781]∗ −0.0077 −0.0310

10.5386 10.6764 10.4009 0.3112 [9.7910, 11.0108]∗ 0.0131 −0.0131

10.5371 10.6619 10.4448 0.3456 [9.7674, 11.1222]∗ 0.0118 −0.0088

10.7674 10.6795 10.4476 0.3258 [9.8091, 11.0861]∗ −0.0082 −0.0297

10.5903 10.6843 10.4560 0.2868 [9.8939, 11.0181]∗ 0.0089 −0.0127

The asterisk in Column 5 indicates that the true value of Bitcoin price falls within the confidence interval

The dataset associated with each time–window is used to apply the Algorithm MT –
SVM, in order to generate the parameters of the central line in Fig. 3. Then, the forecast
of Bitcoin price is computed in the subsequent three months (e.g. for Time–window 1 we
used the data in the interval January 1st, 2011 – March 31st, 2021, and computed a forecast
for Bitcoin price at the end of April 2021, May 2021 and June 2021). Finally, this last
scheme is repeated for N S re–samplings of data in the same time–window, so that a statistics
using bootstrap will be available. Following standard guidelines from the literature, we also
set in our bootstrap framework: number of re–samplings N S = 250; size of each sample
SS = the size of dataset in the current time–window.

In Tables 2, 3 and 4 we present the 13 forecasts achieved respectively for each of the
considered prediction horizons, i.e. after 1 month (Table 2), after 2 months (Table 3), and
after 3 months (Table 4). In particular, in each table: Column 1 reports the true value of
Bitcoin price; Columns 2 gives the value of the forecast obtained by the Algorithm MT–SVM;
Column 3 and Column 4 respectively provide the average value and the standard deviation
of the forecast obtained by the Algorithm MT–SVM coupled with the bootstrap method;
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Table 3 Forecasts of the value of the logarithm for Bitcoin price, alongwith some related statistics, considering
2 months as prediction horizon

ln(Pt+2 months) SVM μSVM+B σSVM+B [·, ·]95% εSV M εSV M+B

10.4512 11.1474 11.1156 0.1649 [ 10.7923, 11.4389 ] 0.0666 0.0636

10.4639 11.8058 11.7555 0.2399 [ 11.2853, 12.2257 ] 0.1282 0.1234

10.6347 10.6400 10.4208 0.3014 [ 9.8300, 11.0116 ]∗ 0.0005 −0.0201

10.7975 10.6513 10.4161 0.3348 [ 9.7598, 11.0724 ]∗ −0.0135 −0.0353

10.6879 10.6566 10.4236 0.3659 [ 9.7064, 11.1408 ]∗ −0.0029 −0.0247

10.0388 10.6550 10.4180 0.3012 [ 9.8277, 11.0083 ]∗ 0.0614 0.0378

10.9559 11.5767 11.2721 0.3034 [ 10.6774, 11.8668 ]∗ 0.0567 0.0289

10.7605 10.6781 10.4547 0.2610 [ 9.9431, 10.9663 ]∗ −0.0077 −0.0284

11.5386 10.6764 10.4250 0.2813 [ 9.8736, 10.9764 ] 0.0131 −0.0108

10.5371 10.6619 10.3872 0.3107 [ 9.7783, 10.9961 ]∗ 0.0118 −0.0142

10.7674 10.6795 10.4615 0.3463 [ 9.7828, 11.1402 ]∗ −0.0082 −0.0284

10.5903 10.6843 10.4521 0.3259 [ 9.8133, 11.0909 ]∗ 0.0089 −0.0130

10.2760 10.6619 10.4348 0.2861 [ 9.8741, 10.9955 ]∗ 0.0376 0.0155

The asterisk in Column 5 indicates that the true value of Bitcoin price falls within the confidence interval

Table 4 Forecasts of the value of the logarithm for Bitcoin price, alongwith some related statistics, considering
3 months as prediction horizon

ln(Pt+3 months) SVM μSVM+B σSVM+B [·, ·]95% εSV M εSV M+B

10.4639 11.8058 11.7681 0.1772 [ 11.4208, 12.1154 ]∗ 0.1282 0.1246

10.6347 10.3003 10.2722 0.2050 [ 9.8704, 10.6740 ]∗ −0.0314 −0.0341

10.7975 10.6513 10.4315 0.3018 [ 9.8399, 11.0231 ]∗ −0.0135 −0.0339

10.6879 10.6566 10.4211 0.3350 [ 9.7644, 11.0778 ]∗ −0.0029 −0.0250

10.0388 10.6550 10.4221 0.3659 [ 9.7050, 11.1392 ]∗ 0.0614 0.0382

10.9559 11.5767 11.2867 0.3333 [ 10.6333, 11.9401 ]∗ 0.0567 0.0302

10.7605 10.6781 10.4259 0.2747 [ 9.8874, 10.9644 ]∗ −0.0077 −0.0311

10.5386 10.6764 10.4531 0.2610 [ 9.9416, 10.9646 ]∗ 0.0131 −0.0081

10.5371 10.6619 10.4113 0.2809 [ 9.8608, 10.9618 ]∗ 0.0118 −0.0119

10.7674 10.6795 10.4038 0.3113 [ 9.7937, 11.0139 ]∗ −0.0082 −0.0338

10.5903 10.6843 10.4660 0.3465 [ 9.7869, 11.1451 ]∗ 0.0089 −0.0117

10.2760 10.6619 10.4309 0.3251 [ 9.7937, 11.0681 ]∗ 0.0376 0.0151

9.9173 10.6795 10.4515 0.2866 [ 9.8897, 11.0133 ]∗ 0.0769 0.0539

The asterisk in Column 5 indicates that the true value of Bitcoin price falls within the confidence interval

Column 5 shows the 95% confidence interval computed using the average value and standard
deviation in Column 3 and Column 4; Columns 6 and 7 present the relative errors respectively
associated to the forecasts from the Algorithm MT–SVM and from the Algorithm MT–SVM
coupled with the bootstrap method.

Observation 5.2 We highlight that for each forecast horizon, most of the true values to predict
fall within the confidence interval, namely 10 out of 13 for the one-month horizon, 10 out of
13 for the two-month horizon, and 13 out of 13 for the three-month horizon. Furthermore,
the other actual values not falling within this interval are generally close to it. Given the
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high volatility that the Bitcoin price has often experienced, our outcomes can be considered
more than satisfactory. Lastly note that, unlike what usually happens when forecasting time
series data, the above three ratios 10/13, 10/13 and 11/13 do not decrease as the forecast
horizon length increases.

Observation 5.3 We stress that for all the forecast horizons, the average of the relative error
associated to the Algorithm MT–SVM coupled with the bootstrap method (i.e. the average
of the values in the last column of Tables 2, 3 and 4) is lower than the average of the relative
error associated to theAlgorithmMT–SVM alone (i.e. the average of the values in the second
last column of Tables 2, 3 and 4), namely: 0.28% vs. 2.31% for the one-month horizon, 0.72%
vs. 2.71% for the two-month horizon, and 0.56% vs. 2.54% for the three-month horizon. We
also point out that the standard deviations of both the relative errors are very close between
them in each of the three considered forecast horizons.

All these results give numerical evidence that in this context coupling a bootstrap method
with a SVM–based approach can improve the quality of the forecast.

Lastly, as stated in the end of Sect. 4, we consider the linear regression model for com-
parative purposes with our SVM-based approach enhanced through bootstrap. In particular,
similarly to what done in the previous analyses, we applied the linear regression model to
predict the future price of Bitcoin with reference to the above same 13 time-windows and for
each of the above same forecast horizons.

All the main findings strongly suggest that the Algorithm MT–SVM coupled with the
bootstrap method performs better than the linear regression model. Figure5 shows that all
the 95% confidence intervals related to the former approach (graphically represented in
red) are strictly contained in the corresponding 95% confidence intervals related to the linear
regression model (graphically represented in black), this for all the considered time-windows
and all the forecast horizons.

Observation 5.4 We highlight that for all the forecast horizons, the average of the standard
error associated to the Algorithm MT–SVM coupled with the bootstrap method is lower
than the average of the standard error associated to the linear regression model, namely:
0.2959 vs. 0.9935 for the one-month horizon, 0.2941 vs. 0.9935 for the two-month horizon,
and 0.2926 vs. 0.9935 for the three-month horizon.

Observation 5.5 We point out that for all the forecast horizons, the average of the relative
error associated to the Algorithm MT–SVM enhanced using the bootstrap method is lower
(absolute value) than the average of the relative error associated to the linear regression
model, namely: 0.28% vs. −2.49% for the one-month horizon, 0.72% vs. −2.00% for the
two-month horizon, and 0.56% vs. −2.12% for the three-month horizon. We also stress that
the standard deviations of both the relative errors are very close between them in each of the
three considered forecast horizons.

These findings provide numerical evidences that, at least in this forecasting context,
coupling a bootstrap method with a SVM–based approach can improve the quality of the
performance with respect to the one obtained from the use of a linear regression model.

6 Conclusions and future work

This paper contributes to possibly investigate reliable long term models for Bitcoin price
forecast. We recall that in the last decade Bitcoin has become an observed digital asset, for
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Fig. 5 95% confidence intervals related to the Algorithm MT–SVM enhanced using the bootstrap method
(graphically represented in red) and to the linear regression model (graphically represented in black), consid-
ering: 1 month as prediction horizon (upper figure); 2 months as prediction horizon (middle figure); 3 months
as prediction horizon (lower figure). Each red confidence interval is strictly containedwithin the corresponding
black confidence interval. The two broken lines in each figure represent the forecasts of ln(price) as provided
by the two methods, respectively

possible investments by both private and institutional stakeholders. In this paper we have
specifically proposed a couple of models, following two different perspectives. The first one
was suggested by considering a more standard regression analysis, while the second one is
definitely novel in the literature, being obtained by combining a preliminary multiobjective
approach with a ML scheme, where a sequence of SVMs is indeed considered.

We are persuaded that several factors strongly contribute to affect long term Bitcoin price,
other than the SF. Nevertheless, the dependency of Bitcoin price on its SF was suggested
by several authors, and is also considered in the first proposal of this paper. In this regard,
a natural future extension for our analysis will have to consider a set of multiple elements
encompassing SF, so that our ML–based proposal will have to be enhanced.
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