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Abstract

The statistical process control chart is primarily applied to monitor the production process or
service process and detect the process shifts as soon as possible. The EWMA (exponentially
weighted moving average) control chart has been widely used to detect small shifts in the
process mean. Sheu and Lin (Qual Eng 16:209-231, 2003) proposed the GWMA (generally
weighted moving average) control chart, for detecting small process mean shifts of inde-
pendent observations. The GWMA control chart is the extended version of EWMA control
chart. The GWMA control chart has been widely investigated. In this paper, the definition,
and properties of the GWMA control chart are being further analyzed and investigated for
detecting small process mean shifts of autocorrelated observations. The weight of GWMA
technique depends on time ¢. Thus, there is no recursive formula for the GWMA technique.
The GWMA technique has no Markovian property. The GWMA control chart is more prac-
tical for detecting small process mean shifts of autocorrelated observations. A numerical
simulation comparison shows that the GWMA control chart outperforms the EWMA control
chart for detecting small process mean shifts of autocorrelated observations.
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1 Introduction

Statistical process control (SPC) charts can be used to assure the quality of a product or
process in the manufacturing industry or service industry. Statistical process control charts
are primarily used to monitor a production process or service process and detect process shifts
as soon as possible. Based on our understanding, the reliability and quality of a product are
highly interrelated. Reliability means quality over time. A high-quality product will regularly
be of high reliability. Practically, the higher the level of quality, the greater the product will
be reliable. Control charts are very useful tools to improve productivity and product quality.
Shewhart (1931) first introduced the Shewhart control chart to detect relatively large shifts in
the process mean (> 1.50). Page first introduced the cumulative sum (CUSUM) control chart
in (1954). The EWMA control chart was introduced by Roberts (1959). The EWMA technique
gives the weighted averages of past observations with more weight to recent observations
and less weight to past observations. Roberts used simulation to evaluate its properties and
revealed that the EWMA control chart is more sensitive to detect small shifts in the process
mean. The EWMA control chart has found wide application in the manufacturing industries.
The CUSUM and EWMA control charts accumulate information over time to detect small
shifts in the process mean. These two control charts are well-known memory-type control
charts as they use past information to set up the control charts. The Shewhart control chart,
CUSUM control chart, and EWMA control chart are three of the most widely used process
control charts. It has been observed that the CUSUM and EWMA control charts surpass the
Shewhart control charts to detect small shifts in the process mean (Crowder, 1987; Hunter,
1986; Lucas & Saccucci, 1990; Ng & Case, 1989; Woodall, 1997). The adaptive EWMA
(AEWMA) control chart which combines an EWMA and a Shewhart chart is introduced by
Capizzi and Masarotto (2003). The AEWMA is very powerful to detect both large and small
process shifts. For more details about the EWMA control charts, the reader is referred to the
works of Liu and Xue (2015) and Mitra et al. (2019).

The double EWMA (DEWMA) control chart was first introduced by Shamma and
Shamma (1992). The triple EWMA (TEWMA) control chart was introduced by Alevizakos
et al. (2021). Haq (2012) introduced a new hybrid exponentially weighted moving average
(HEWMA) control chart for monitoring the process mean shifts. The result shows that the
TEWMA control chart is better than the EWMA control chart and the DEWMA control chart
for detecting small shifts in the process mean. The DEWMA control chart is better than the
EWMA control chart for detecting small shifts in the process mean. The quadruple exponen-
tially weighted moving average (QEWMA) control chart was introduced by Alevizakos et al.
(). The result shows that the (QEWMA) is better than the EWMA control chart, DEWMA
control chart, and the TEWMA control chart for detecting small shifts in the process mean.

Sheu and Lin (2003) used the concept of Sheu and Griffith (1996) and Sheu (1988)
to extend the EWMA control chart to the GWMA control chart for monitoring the small
process mean shifts of independent observations. Their results indicated that the GWMA
control chart is more sensitive than the EWMA control chart for detecting process mean
shifts of independent observations. Yang and Sheu (2007) showed that the GWMA median
control chart surpasses the corresponding EWMA median control chart. Sheu and Chiu
(2007) indicated that the GWMA c control chart surpasses the corresponding Shewhart and
EWMA c control charts for detecting small shifts in the process mean. Sukparungsee (2018)
proposed the GWMA p control chart and showed that it surpasses the corresponding EWMA
p control chart for detecting small shifts in the process mean.
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The originated GWMA control chart has been further extended to the double GWMA
(DGWMA) control chart by Sheu and Hsieh (2008). The DGWMA control chart outper-
forms GWMA control charts and double exponentially weighted moving average (DEWMA)
control charts for detecting small shifts in the process mean. For more details about the dou-
ble GWMA control charts, the reader is referred to the works of Alevizakos et al. (2018),
Karakani et al. (2018), Alevizakos et al. (2022a, 2022b) and Chatterjee et al. (2023).

Sheu and Tai (2006) first introduced the GWMA $2 control chart to monitor process vari-
ability and indicated that the GWMA control chart is more sensitive than the EWMA control
chart to detect the variance of process. Yang and Sheu (2006) introduced the multivariate
generally weighted moving average (MGWMA) control chart which is the extended version
of the multivariate exponentially weighted moving average (MEWMA) control chart. Yang
and Sheu (2006) showed that integrating a multivariate engineering process control (MEPC)
with multivariate generally weighted moving average (MGWMA) control chart is more sen-
sitive than the MEPC with MEWMA control chart to detect the small shifts of the mean
vector. Sheu et al. (2013) proposed the maximum GWMA (Max GWMA) control chart to
simultaneously detect both increases and decreases in the mean and/or variance of a process.
Mabude et al. (2020a, 2020b, 2020c) provided an overview and perspectives of the GWMA
control charts. For more details about the GWMA control charts, the reader is referred to
the works of Ali and Haq. (2017), Alevizakos and Koukouvinos (2019), Chen et al. (2019),
Mabude et al. (2020a, 2020b, 2020c), Haq and Abidin (2020), Mabude et al. (2020a, 2020b,
2020c), Chatterjee et al. (2021), Li et al. (2021) and Mabude et al. (2022).

A fundamental assumption in the traditional application of statistical process control
(SPC) is that the observations are independent (uncorrelated). In practical application, the
independence assumption is often violated in the continuous manufacturing process for the
chemical and pharmaceutical industries. The autocorrelation has a great influence on the
control charts. Ignoring autocorrelation, the effect of constructing a control chart for the
autocorrelated observations is that it produces control limits that are much tightened than
desired. Hence, this decreases the ability of detecting the process mean shifts and generates
a high false alarm rate.

We can use two different approaches to solve the problem for detecting the process mean
shifts of autocorrelated observations. Firstly, the model-free approach, it uses the classical
standard control charts, and adjusts the control limits to take account of the autocorrelation,
and estimate the true process variance (see e.g., Vasilopoulos & Stamboulis, 1978; Schmid,
1995, 1997; Schmid & Schore, 1997; VanBrackle & Reynolds, 1997). Secondly, the model-
based approach, applies an appropriate time series model to fit the autocorrelated observations
so that forecasts of each observation can be made using the previous observations. Hence,
we can get the residuals and then use the traditional control charts for the residuals (see
e.g., Alwan & Roberts, 1988; Montgomery & Mastrangelo, 1991; Harris & Ross, 1991;
Mastrangelo & Montgomery, 1995; Lu & Reynolds, 1999a, 1999b; Koehler et al., 2001;
MacCarthy & Wasusri, 2001).

The work that has been published on residual control charts indicates that the EWMA
control chart of residuals will usually offer better performance than the Shewhart control chart
of residuals. Lu and Reynolds (1999a, 1999b) considered the performance of the EWMA
control chart of the residuals and an EWMA control chart of the observations for monitoring
processes that produce autocorrelated data. Sheu and Lu (2008, 2009a, 2009b) and Lu (2016)
introduced GWMA control charts for monitoring autocorrelation data and showed that the
GWMA control chart is more sensitive than the EWMA control chart for detecting small
shifts in the process mean of autocorrelation data. Since 2003, the year of publication of the
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GWMA control chart paper, there have been a total of 183 publications on the GWMA-related
monitoring control charts and their enhancements.

In this paper, the definition, and properties of the GWMA control chart are being further
analyzed and investigated for detecting small process mean shifts of autocorrelated obser-
vations. The GWMA control chart, for detecting small process mean shifts of independent
observations is extended to the GWMA control chart for detecting small process mean shifts
of autocorrelated observations. This paper is structured as follows: Sect. 2 presents the gen-
erally weighted moving average technique. The GWMA control chart for detecting small
process mean shifts of autocorrelated observations is shown in Sect. 3. An example is shown
in Sect. 4. Conclusions are drawn in Sect. 5.

2 The generally weighted moving average technique

Sheu and Lin (2003) used the concept of Sheu and Griffith (1996) and Sheu (1988) to
extend the EWMA control chart to the GWMA control chart. Their results indicated that the
GWMA control chart is more sensitive than the EWMA control chart for detecting small
process mean shifts of independent observations. Now we give the precise definition of the
GWMA technique and investigate its properties of GWMA technique.

Suppose events S and F are mutually exclusive and complementary events. Let 7 count
the number of periods until the first occurrence of event S since the last occurrence of event
S.Let P, = P(T > t) as the survival function of T. That is, P, is the probability of only
event F occurring in the first # periods. We assume that 1 = Py>P;>Py>P;3...

The symbol {P,} is an abbreviation for the probabilities of a sequence. The sequence
{P,} is supposed to be known. Let

— I P,
6,=P(T=t)=P(T>t—1)—P(T>t)=P,_1—P,=P,_1<1—P[ ) 1)
t—1

wheret =1,2,3,... B
Equation (1) shows that event F occurs with probability ¢, = FP ’1 at the #-th period

whereas event S occurs with probability py =1 —¢q; =1 — FP . Evidently, the probability
t—1

of event S occurrence depends on time . If P; = ¢’ which is a geometric distribution, then
) t
g =35-= q’,{l =gq and p; = 1 — g, = 1 — g which does not depend on time ¢.

t—1

Thus, the sum of the probabilities is given below:

Y PT=j)=P@T=D)+PT =2+ +PT=0)+P(T >0
j=1

:(?0—?1)4—(?1—ﬁ2)+"'+(ﬁ171_ﬁt)_’_ﬁt:?():l’ (2)

whereas {P(T = j)};=; . can be considered as the weight of GWMA technique. The
weighted averages of past observations with more weight to recent observations and less
weight to the past observation. In other words, the weight of the current period is P(T = 1).
The weights of GWMA technique depend on the time. Thus, there is no recursive formula
for the GWMA technique. The GWMA technique has no Markovian property. The GWMA
control chart is more practical to monitor the process mean shifts of the production process
or service process. The GWMA technique can be parameterized as below. We consider the
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random vector X of size ¢ is given by:

X1

X
X=[X1,X2, ... Xtljs = : , 3)

Xt tx1

The mean of the random vector X is vector . The variance—covariance matrix of the random
vector X is ) . We also assume that X, X3, ..., X, have the same mean u and same variance
0}2(. The GWMA technique can be defined by the linear transformation

Y = AX + yoC, 4)
where Y is t x 1 random vector and
Po—P; O 0 0
P, — Py Pp— P 0 0
A= P, — P3 Py — Py, Pp— Py 0 , 5)

Fl—l _ﬁt Fz—z _Ft—l Fz‘—3 - Ft—Z T ?o - ?1

txt

is t x t matrix and C is ¢t x 1 vector with the form

C=[P,Pr....P ] =|P3 ©6)

tx1

where y is an initial scalar value that can be represented as the starting value for the GWMA
technique.

From Eq. (4), we can get

Y 7(Fo —Flle tﬁl)’o B

) B 7(F1—P21X1 t(Po—Pl)thszo B
y=|Y3| = (PQ—P3)X1+(P1 —PQ)X2+(F0—P])X3+P3)}0

Yt (Fl—l —Ft)Xl + (Ft—Z _FI—I)XZ i (F() _Fl)Xt +?ty0

(N
Hence, the GWMA statistic at the #-th period is given below

t

t
Y=Y P(T=j)Xjp+PT>0y=Y (Pi1—P)Xijs1+Pyo. 8
j=1 j=1

Remark 1
a. For easy computation, consider the case P; = ¢'*, forr =0,1,2,...,0 < g < 1 and

o > 0 which is a discrete Weibull distribution (Nakagawa & Osaki, 1975). In this case,
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if we put P; = ¢ in Eq. (8), we can get:

t

Yo=Y (V" =) Xe 1+ 0" 0. ©)
j=1

b. Ewe consider the case P; = qta, fort = 0, 1,2,;.,0 < g < land ¢ = 1, then
P, = q' which is a geometric distribution. If we put P, = ¢’ in Eq. (8), we get:

t
Y, = Z(q”’” — /) Xi—ji1 +4' 0
j=1

t
=0-9)) qY "X j11+4" 0. (10)
j=1
Ifweputg =1—2Xand 1 — g = A in Eq. (10), we can get:

t
Ye=2y (=n""X i+ 0 =20y, (11)
Jj=1
which is the EWMA technique. Hence the EWMA technique is a special case of our
GWMA technique
c. Consider the k-term weighted moving average (WMA) with the weight w; > w; >
- > Wy ande-‘:lw,- =1, then Pop=1,Pi=1—w, Pa=1—w; —wy, P3 =

l—wi—wr—w3, ..., P11 =1—wi—wp— - -—wi—1, Py =1—wi—wr—--—wr, =0
andﬁj = 0 forj > k. In this case, ifweputﬁo =1,Pi=1—w,Pr=1—w; —wy,
Py=1l—-w —ws—w3, -, Proy=l—-wi—wr—-—wp—1, Pr =1 —w; —
wy — -0 — Wg :0andfj = 0 for j > k in Eq. (10), we can get:
k
Yo=Y wiX, i for t=kk+1,..., (12)
j=1

which is the weighted moving average (WMA) technique. Hence WMA technique is a
special case of our GWMA technique. Consider the special case where w; = 1/k with
all j, then this yields the k-term simple moving average below

k
Y,=%ZX,_,'+1; for t =k, k+1,..., (13)
j=1
which is the arithmetic average of the k-terms
d. If Pg = I,Fj = 0for j > 1, then Y = X. This is clear from Eq. (4), when Py =
1,P j =0for j > 1 wehave A = I (where I is the identity matrix) and C = 0 which
is a zero vector and thus has all components equal to zero, so that,

Y =AX 4+ yoC =1X + yo0 = X, (14)

which is a random walk without a drift.

e. Since the weight of GWMA technique depends on time ¢, thus, there is no recursive
formula for the GWMA technique. The GWMA technique has no Markovian property.
The GWMA control chart is more practical for detecting small process mean shifts of
autocorrelated observations.
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Properties By applying the expectation operation to Eq. (4), we can get

E(Y;x1) = E(Arxt Xix1 +Y0Crx1) = Arxt E(Xix1) + y0Crx1
= Arxitirx1 + Y0Cix1, (15)

and by letting ;1 = ul,x1 and yo = u then
E(Y) = Apulia +pCixt = u(Alixi + Cix1) = ulixi, (16)
where 1,41 is the vector of ones.
The variance covariance matrix of random vector Y is given as follows:
Var(Y) = Var(AX + yoC) = ASA = 0} ARA, (17)

where R represents the autocorrelation matrix of random vector X. The variance of the
GWMA statistic at the time i is the i-th diagonal element of (17). The autocovariance of the
GWMA statistic at lag(i_j) = lag =) is the (i, j)-th off-diagonal element of (17). We can
show that the variance of GWMA statistic Y; at any time ¢ > 0 is given as follows:

t
Var(Y) = o3| Y (Pi-1 — Pi)’ +2Z Z ic1 = Pi)(Pjo1—=Pj)pji | (18)
i=1 i=1 j=i+1

where 0)2( is the variance of original process {X;}, and p, = p_, represents the lag n
autocorrelation of original process {X;}.

Remark 2

a. For easy computation, we can consider the case P, = q’:,t =0,1,2,...,0<¢g < 1,
o« > 0 which is a discrete Weibull distribution. If we put P; = ¢ in Eq. (18), then we
can get:

Var(Y,):of( |:X[:(q(i—l)a ia) +2Z Z ( G- _ i )(q(j—l)a _qja)pj_ij|

i=1 i=1 j=i+1
19

b. If we consider the case P; = q’u,t =0, 1,72,...,0 <g<1l,a=1,then P; =g’
which is a geometric distribution. If we put P; = ¢’ in Eq. (18), we can get:

t

varry =o}| Y (01 -9 !)’ +22 Z g 1= @)g ™ (1= @i |

i=1 i=1 j=i+1
(20)
Ifweputg =1—Aand 1 — g = A in Eq. (20), we can get:
t ) t—1 t ) )

i=1 i=1 j=i+1

which agrees with Eq. (9) in Perry (2010).
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Assume that Var(Y;) — 03, ast — 0o, where cr}% denotes the steady-state variance of
the EWMA process {Y;,t > 0}. As ‘(1 — )L)(i_l)+(j_1)pj,i| < 1forall jandi, 03 can
be written as

)\' o o . .
o} =0 (2_/\)+2x22 PBRCETS iy § (22)
i=1 j=i+1

which agrees with Eq. (10) in Perry (2010).
c. If X1, X5, X3... are independent (i.e., uncorrelated process), then

1. Equation (18) reduces to
t
—\2
Var(Y;) =ox Y _(Pi-1— Pi), (23)
i=1
2. Equation (19) reduces to

t
a2
Var(Yt) = 0’)2(’ Z(q(l—l) _ ql ) (24)

i=1

3. Equation (20) reduces to

!
Var(Y;) =o3(1—¢)* ) _¢*", (25)
i=1

4. Equation (21) reduces to

t
Var(Y;) = o322y (1 — 120D, (26)

i=1

5. Equation (22) reduces to

A
o)% :U)%(T_)\), 27

which agrees with Eq. (11) in Perry (2010).

The initial value for yy.

The impact of yg on Y; for large ¢ is insignificant. Therefore, if ¢ is large, we can select
any value for yp and its influence on Y; should be negligible. In practice, we can use the
arithmetic average of historical data for the initial value yg = X = M We also can
select yo = X1.

In the next section, we will discuss the applications of the GWMA technique in quality
engineering.

3 The GWMA control chart for detecting small process mean shifts
of autocorrelated observations

Roberts first proposed the EWMA control chart to monitor the process mean in 1959. The
EWMA control chart is also called the geometric moving average (GMA) control chart.
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Sheu and Lin (2003) proposed the GWMA control chart, which is the extended version of
the EWMA control chart. A numerical simulation comparison shows that the GWMA control
chart is more sensitive than the EWMA control chart for detecting small process mean shifts
of independent observations. Suppose that L is the width of control limits. The L is usually
selected based upon an acceptable false alarm rate and is the distance of the control limits
from the center line, expressed in standard deviation units. If u( represents the target value
of the process mean used as the center line of the control chart, then the LCL (lower control
limit), the UCL (upper control limit), and the CL (center line) of a GWMA control chart can
be written as follows:

UCL =up+ Ly/Var(Yy)

CL =ug
LCL = ug — L/Var(Y,), 28)

where Var(Y;) can choose one of these Egs. (18), (19), (20), (21), (22), for detecting small
process mean shifts of autocorrelated observations and Var(Y;) can choose one of these
Egs. (23), (24), (25), (26), and (27) for detecting small process mean shifts of independent
observations. The GWMA control chart would be built by plotting Y; versus the sample time
t. If Y; exceeds one of these control limits, then the process is considered out-of-control and
some corrective action needed to be taken.

Observations from continuous manufacturing process in the chemical and pharmaceutical
industries are frequently autocorrelated. The autocorrelation has a great influence on the
control charts. An effect of autocorrelation is to decrease the ability of detecting the process
mean shifts and generates a high false alarm rate. Here we use a model-free approach to solve
the problem of detecting the small process mean shifts of autocorrelated observations. We
use the classical standard control charts and adjust the control limits to take account of the
autocorrelation and estimate the true process variance.

For an autocorrelated process, an ARIMA (p, d, g) model may be appropriate for the
observations from the autocorrelated process. We will restrict our work to control chart for
autocorrelated observations that can be modeled with an autoregressive AR(1) model. The
AR(1) model can be represented as follows:

X: —ug = ¢(Xi—1 —ug) + &, or (29)

X =0 —=duo+ X1+ &, (30)

where X; is the observed time series at time ¢, ¢ is the autocorrelation coefficient satisfying
|¢| < 1, & is assumed to be independent and identically normally distributed with mean 0
and variance o2 (i.e., & ~ N (0, 02)). It is assumed that X, will be normal distribution with
a mean of uq and a variance

S

2 _ Og
oy =Var(X;) = /——— forall r>1. 31

(1-¢%)

The covariance between X,_; and X, is ¢’ ai for ¢t > i, and from this, it follows that the
correlation coefficient between X;_; and X; is ¢'.

A process that is operating in the presence of assignable causes is said to be out of control.
When an assignable cause occurs, the effect of this assignable cause is to shift the process
mean from uq to ug + 8. Here, we assume ug = 0. The GWMA control chart and EWMA
control chart were developed for monitoring small shifts in the process mean.
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The following dataset simulation illustrates the unexpected variation in the process of
autocorrelated observation on the EWMA control chart and GWMA control chart respec-
tively.

From the Eqgs. (8) and (30), the GWMA statistics at the timet is defined as

Z(] 1= Pj)Xi—j+1+ PiYo, (32)

where X; is the observed time series at time ¢. The initial value yg is the mean of X;. Hence,
we have Yy = ug and

ZC 1= Pj)Xi—j1+ Pruo. (33)

The expected value of GWMA statistic Y; computed as

t
EY)=E|Y (Pj1—P;)Xi—jy1+ P | = uo. (34)
j=1

From the Eq. (18), the variance of GWMA statistic Y; is

t
Var(Y) = o} | Y (Pioi — Py) +ZZZ i-t = Pi)(Pj1 = Pj)pj—i |. (39)
i=1 i=1 j=i+1
2
where 07 = (1‘_77‘(1)2) is the variance of the original process {X;} and p, = p_, = ¢"
represents the lag n autocorrelation of the original process {X,}. For easy computation, we
can consider the case P; = q‘a, t=0,1,2,..,0 < g < 1, ¢ > 0 which is a discrete Weibull

distribution. If we put P; = ¢'* in Eq. (33), then the GWMA statistics at timef is

t
V=30 (a97 =7 ) Ximjar + 0o, (36)

If we put P, =q’a,a§ = - ¢ ) and p;_; = ¢/~ in Eq. (35), then we can get:

o= [2( Y S Y (o -><qw-qf“)¢w}.<37>

i=1 j=i+l

The time-varying control limits of the GWMA control chart for monitoring the small process
mean shifts of autocorrelated observations can be written as follows:

UCL =ug+ L/ Var(Yy)
CL =uyg
LCL =ug— Ly/Var(Yy) (38)

where Var(Y;) is given by Eq. (37), L denotes the width of the control limits, and is deter-
mined by the professional to achieve the desired in-control ARL for GWMA control charts.
If we consider the case P, = ¢'*, fort = 0,1,2..,0 < g < 1, ande = 1, then P, = ¢'
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which is a geometric distribution. If we put P, = ¢’ in Eq. (33), we get the EWMA statistic
Z; at the time ¢ :

t

t
Z, = Z(q(j_l) - ‘Ij)X’—jH +4'uo, = (1 =)} gV X1 +q'uo. (39)
j=1 j=1

Ifweputg =1—2Aand 1 — g = A in Eq. (39), we can get

t
Zi=xy (1=2""Xjn+ 4= 0 uo. (40)
j=1
Hence, the EWMA statistic Z; is the special case of our GWMA statistic Y;.
— 2 .
If we put P; = ¢', 0)2( = (1%2) and p;_; = ¢’ 7" in Eq. (35), then we can get:

t

2 N2 = . -
Var(Z) = (lf_f—ipz) Y(a-od ) +2Y Y @ - 1 - ¢l
i=1 i=1 j=i+1

(41)

Ifweputg =1—Aand 1 — g = X in Eq. (41), we can get

2 t t—1 t
Var(z’):(liig(ﬁz)ﬁ Z(l_k)2<i71)+2zz(1_k)(i71)+(j71)¢j—i .42

i=1 i=1 j=1

The time-varying control limits of the EWMA control chart for monitoring the small process
mean shifts of autocorrelated observations can be written as follows:

UCL =upg+ L/ Var(Z;)

CL =ug
LCL =uy— L\/Var(Z,) (43)

where Var(Z,) is given by Eq. (41) or (42).

The average run length (ARL) is defined as the average number of the sample (subgroups)
taken before an out-of-control signal is given on the control chart. The ARL is a performance
measure of the ability of a control chart to detect process mean shifts. When the process
is in control, we want the control chart to produce fewer false alarms, i.e., to have a large
in-control ARL. When a process is out of control, we want the control chart to signal quickly,
i.e., to have a small out-of-control ARL. The parameters for each control chart were defined
such that the in-control ARL is set to be nearly 370. The out-of-control is then compared
for a given process mean shift. According to the performance measure of the control chart, a
smaller out-of-control ARL corresponds to greater detection ability. The computation of the
ARL of an EWMA control chart has been studied by many authors. Crowder (1989) used the
integral equation method to evaluate run-length distributions of the EWMA control chart.
Lucas and Saccucci (1990) proposed the Markov chain method to compute the accurate ARL
of the EWMA control chart with fixed control limits. Since the control limits of the GWMA
control chart vary over time, it is difficult to use the Markov chain method or integral equation
method to compute the exact ARL for given control limits. Hence, we use the simulation
method to compute the ARL of the GWMA control chart. Sheu and Lu (2009a, 2009b)
recommended the following simulation steps:
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(a) Give parameters ¢, the magnitude of 032 and the charting parameter (¢, o, L)

(b) Generate a set of simulation data under an AR(1) process and compute the GWMA
statistics Y¥; by Eq. (40) at the target value ug + 6.

(c) Record the run length when Y; exceeds the control limits and the trial halts. Run 20,000
iterations, we can obtain the ARL along with the specific parameters.

(d) We use the bisection method to modify the control limit constant (L) to reach the desired
in-control ARL.

(e) When the process means shifts, we apply the in-control parameters to monitor the process
mean shifts and compute out-of-control ARL.

In practice, we can use the GWMA control chart to detect the small process mean shifts of
autocorrelated observations. We run the following simulations to compare the performance
of various GWMA control charts in detecting the small process mean shifts of autocorrelated
observations. Herein, the values of ¢ which quantify the correlation coefficient between X ;
and X ; under AR(1) process are set to 0.1, 0.2, 0.3, 0.4, 0.8. We use the bisection approach to
obtain the control limit constant (L) corresponding to the desired in-control ARL. We adjust
the control limit constant (L) based on 20,000 iterations to maintain the in-control ARL at
approximately 370.4. The out-of-control ARLs of various GWMA control charts are used for
comparison. Table 1 presents the ARL values for the GWMA control chart for detecting small
process mean shifts of autocorrelated observations with time-varying control limits when the
process mean shifts from ug toup+8(6 = 0.25, 0.5, 0.75, 1.00, 1.25, 2, 00, 3.00), the design
parameter g (g = 0.8, 0.85, 0.9), the correlation coefficient (¢ = 0.1, 0.2, 0.3, 0.4, 0.8) and
the adjustable parameter (¢ = 0.5,0.6,0.7,0.8,0.9, 1.0). When ¢ = 1, the GWMA
control chart reduces to the EWMA control chart. We conduct a sensitivity analysis by
comparing the out-of-control ARLs for one (g, o, L) combination to those associated with
another (g, «, L) combination. The optimal parameters are designed in the sense that for a
fixed in-control ARL, they yield the least possible out-of-control ARL for a specific process
mean shift § and a given autocorrelation coefficient ¢. The numerical results in Table 1
show that the GWMA control chart outperforms the corresponding EWMA control chart for
detecting small process mean shifts of autocorrelated observations with time-varying control
limits. The smallest ARLs value obtained to detect shifts § in the process mean is highlighted
with boldface in Table 1. For example, when ¢ = 0.3,¢ = 0.85, the process mean shift
6 = 0.5, the ARL of the GWMA control chart with « = 0.6, and L = 2.811 is 46.03, which
compares with the ARL of the EWMA control chart with = 1, L = 2.733 is 55.63.

4 An example

We use a set of simulated data to illustrate the GWMA control charts for detecting small
process mean shifts of autocorrelated observations. In Tables 2, 3, and 4, we use X; to
represent autocorrelated observations, Z; to represent EWMA statistics, and Y to represent
GWMA statistics. In Table 2 we consider the GWMA control chart for detecting small
process mean shifts of autocorrelated observations which follow the AR(1) process with
¢ = 0.2,062 = 1. We assume that the process mean shift § = 0.5 and 50 samples are
generated. Within Table 2, the threshold for in-control ARL is set to ARL = 370. The
parameters ¢ = 0.85,a¢ = 0.7, L = 2.813 for the GWMA statistics and the parameters
qg = 0.85, a0 =1, L = 2.703 for the EWMA statistics. In Table 2 the EWMA control charts
detect an out-of-control signal at observation 37 whereas the GWMA control chart detects an
out-of-control signal at observation 33. In Table 3 we consider the GWMA control chart for
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Table 2 Example of GWMA and EWMA control charts for detecting small process mean shifts of autocorre-
lated observations from AR(1) when ¢ = 0.2 and process mean shift §=0.5

j X; z EWMA Y; GWMA

LCL uCL LCL UCL
1 - 0.060 —0.009 —0414 0414 —0.009 — 0422 0.422
2 0.451 0.060 —0.595 0.595 0.063 —0520 0520
3 2.698 0.456 —0704 0704 0.438 —0570 0570
4 ~1.250 0.200 ~0774 0774 0.059 — 0.601 0.601
5 1.031 0325 —0.821 0.821 0.245 — 0623 0.623
6 — 0347 0.224 —0854 0854 0.114 —0.639 0.639
7 2.101 0.505 —0876 0876 0.425 — 0651 0.651
8 - 0351 0377 —0.893 0.893 0217 —0.661 0.661
9 — 0471 0.250 —0904 0904 0.122 — 0.669 0.669
10 0.152 0.235 —0912 0912 0.152 - 0675 0.675
11 0.705 0.306 - 0918 0918 0.237 —0.681 0.681
12 1.209 0.441 -0922 0922 0.357 —0.685 0.685
13 0.177 0.401 —0.925 0.925 0.278 —0.689 0.689
14 —0.024 0.338 —0.927 0.927 0.223 —0.692 0.692
15 0.459 0.356 —-0929 0929 0.264 - 0.695 0.695
16 0.245 0.339 —0930 0930 0.248 ~0.697 0.697
17 1.187 0.466 — 0931 0.931 0.384 —0.699 0.699
18 0.498 0471 —0932 0932 0.355 - 0.701 0.701
19 0.918 0.538 —0932 0932 0.419 - 0.703 0.703
20 0.363 0512 —0932 0932 0.374 0704 0704
21 1.003 0.586 —0.933 0.933 0.457 - 0.705 0.705
22 —0.136 0477 —0.933 0.933 0.330 - 0.707 0.707
23 — 0438 0.340 - 0933 0.933 0.227 - 0.707 0.707
24 0.313 0.336 - 0933 0.933 0.273 —0.708 0.708
25 - 0.047 0.279 ~0.933 0.933 0.228 - 0.709 0.709
26 ~ 0592 0.148 - 0933 0.933 0.121 —-0710 0710
27 -0.123 0.107 ~0.933 0.933 0.126 —-0710 0710
28 2.615 0.484 ~0.933 0.933 0.522 - 0711 0.711
29 0.390 0.470 —0.933 0.933 0.399 - 0711 0.711
30 0.875 0.530 —0.933 0.933 0.450 -0712 0712
31 0.636 0.546 —0.933 0.933 0.444 -0712 0712
32 2.063 0.774 —0.933 0.933 0.665 - 0713 0.713
33 1765 0.922 —0.933 0.933 0.745 -0.713 0.713
34 0.216 0.816 —0.933 0.933 0.587 - 0713 0.713
35 0.463 0.763 - 0933 0.933 0.562 —-0714 0714
36 1518 0.877 ~0.933 0.933 0.698 0714 0714
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Table 2 (continued)

j X; Z; EWMA Y; GWMA

LCL UCL LCL UCL
37 2.476 1.117 —-0.933 0.933 0.913 —-0.714 0.714
38 1.589 1.188 —-0.933 0.933 0.914 —-0.714 0.714
39 - 0.077 0.998 —-0.933 0.933 0.699 —-0.714 0.714
40 —0.746 0.736 —0.933 0.933 0.497 —0.715 0.715
41 —0.380 0.569 —0.933 0.933 0.423 —0.715 0.715
42 — 1.166 0.309 —0.933 0.933 0.235 —0.715 0.715
43 0.184 0.290 —0.933 0.933 0.313 —0.715 0.715
44 0.847 0.373 —0.933 0.933 0.421 —0.715 0.715
45 1.976 0.614 —0.933 0.933 0.645 —0.715 0.715
46 1.510 0.749 —0.933 0.933 0.705 —0.715 0.715
47 1.595 0.875 —-0.933 0.933 0.782 —0.715 0.715
48 - 0.770 0.628 —-0.933 0.933 0.488 —0.716 0.716
49 1.070 0.695 —-0.933 0.933 0.623 —0.716 0.716
50 1.394 0.780 —-0.933 0.933 0.718 —0.716 0.716

The parameters ¢ = 0.9, « = 0.6 and L = 2.688 for the GWMA statistics. The parametersandg = 0.9, = 1
and L = 2.609 for the EWMA statistics. Bold values indicate the detection of an out-of-control signal for
observations with their corresponding autocorrelated EWMA control statistics Z; and GWMA control statistics

Y;

detecting small process mean shifts of autocorrelated observations which follow the AR(1)
process with ¢ = 0.4, 052 = 1. In Table 3 we assume that the process means shift § = 0.5
and 65 samples are generated. Within Table 3, the threshold for in-control ARL is set to ARL
= 370. The parameters ¢ = 0.9, « = 0.6 and L = 2.688 for the GWMA statistics and the
parameters and ¢ = 0.9, = 1 and L = 2.609 for the EWMA statistics. In Table 3 the
EWMA control chart detects an out-of-control signal at observation 62 whereas the GWMA
control chart detects an out-of-control signal at observation 10. In Table 4 we consider the
GWMA control chart for detecting small process mean shifts of autocorrelated observations
which follow the AR(1) process with ¢ = 0.8, ‘7.92 = 1. In Table 4 we assume that the
process mean shift § = 1 and 50 samples are generated. Within Table 4, the threshold for
in control ARL is set to ARL = 370. The parameters ¢ = 0.9« = 0.6 and L = 2.420 for
the GWMA statistics and the parameters ¢ = 0.9 « = 1 and L = 2.453 for the EWMA
statistics. In Table 4, the EWMA control chart detects an out-of-control signal at observation
42 whereas the GWMA control chart detects an out-of-control signal at observation 27.
Figure 1 plots the GWMA and EWMA control charts for detecting small process mean shifts
of autocorrelated observations from AR(1) when ¢=0.2 and process mean shift §=0.5. The
parameters ¢ = 0.9, = 0.6 and L = 2.688 for the GWMA statistics. The parameters
q =09, = 1and L = 2.609 for the EWMA statistics. Figure 2 plots the GWMA and
EWMA control charts for detecting small process mean shifts of autocorrelated observations
from AR(1) when ¢=0.4 and process mean shift §=0.5. The parameters ¢ = 0.9, « = 0.6 and
L = 2.688 for the GWMA statistics. The parameters ¢ = 0.9, « = 1 and L = 2.609 for the
EWMA statistics. Figure 3 plots the GWMA and EWMA control charts for detecting small
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Table 3 Example of GWMA and EWMA control charts for detecting small process mean shifts of autocorre-
lated observations from AR(1) when ¢=0.4 and process mean shift §=0.5

j X; z EWMA Y; GWMA

LCL uCL LCL UCL
1 - 0.060 — 0.006 —0260 0260 — 0.006 —0.269 0.269
2 1450 0.140 ~ 0415 0415 0.142 ~ 0341 0.341
3 0.885 0214 —0.524 0524 0.155 —0380 0380
4 1.468 0.340 —0.603 0.603 0.240 — 0405 0.405
5 0.371 0343 — 0.661 0.661 0.182 — 0422 0.422
6 —0.681 0.240 —0706 0706 0.068 — 0435 0.435
7 1382 0.354 —0.740 0740 0.221 — 0445 0.445
8 1225 0.442 —0.767 0.767 0.265 —0454 0454
9 1758 0.573 —0.788 0.788 0.356 —0460 0460
10 2.325 0.748 —0.805 0.805 0.469 — 0.466 0.466
11 - 0.552 0.618 — 0818 0.818 0.256 — 0471 0.471
12 — 1.489 0.408 ~0829 0829 0.087 - 0475 0.475
13 —2.019 0.165 —0.837 0.837 — 0.062 — 0479 0.479
14 ~1.928 —0.044 —0844 0844 —0.152 — 0483 0.483
15 — 1.640 —0.204 ~0850 0850 ~0.199 —0.486 0.486
16 —0.604 —0.244 —0854 0854 —0.147 —0.488 0.488
17 1168 —0.103 —0.858 0.858 0.032 — 0491 0.491
18 1.174 0.025 —0860  0.860 0.112 — 0493 0.493
19 0.580 0.080 —0.863 0.863 0.110 — 0495 0.495
20 1207 0.193 —0.865 0.865 0.191 — 0497 0.497
21 - 0.521 0.122 —0.866  0.866 0.065 —0.499 0.499
22 —2.081 —0.099 —0.867 0.867 —0.135 —0500  0.500
23 —0.891 —0.178 —0.868 0.868 —0.121 - 0.502 0.502
24 0.837 —0.076 —0869  0.869 0.028 - 0503 0.503
25 1.077 0.039 —0870 0870 0.110 —0504 0504
26 0.189 0.054 ~0870 0870 0.074 ~ 0.506 0.506
27 0.449 0.093 —0.871 0.871 0.099 —0.507 0.507
28 —0.088 0.075 —0.871 0.871 0.059 —0.508 0.508
29 — 0422 0.025 — 0871 0.871 0.013 —0.509 0.509
30 - 1.070 —0.084 —0872 0872 —0.077 —0510 0510
31 —2.448 - 0321 —0872 0872 —0.265 —0510 0510
32 - 0574 —0.346 —0872 0872 —0.182 - 0511 0.511
33 - 0527 —0.364 —0872 0872 ~0.172 — 0512 0.512
34 —0.135 —0.341 —0872 0872 —0.133 - 0513 0.513
35 — 1.560 —0.463 —0872 0872 —0.262 —0513 0.513
36 - 0937 — 0510 —0872 0872 —0.258 —-0514 0514
37 — 0361 — 0.496 —0872 0872 - 0217 - 0515 0.515
38 0.266 — 0419 —-0872 0872 —0.143 - 0515 0.515
39 0.569 - 0321 —0872 0872 —0.077 — 0516 0.516
40 — 1421 — 0431 —0872 0872 —0.236 — 0516 0.516
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Table 3 (continued)

j X; Z; EWMA Y; GWMA

LCL UCL LCL UCL
41 0.816 —0.306 —0.872 0.872 —0.076 - 0517 0.517
42 —0.690 —0.344 —0.872 0.872 —0.166 —0.517 0.517
43 —0.152 —0.325 —0.872 0.872 —0.140 — 0518 0.518
44 —1.377 —0.430 —0.872 0.872 —0.257 — 0518 0.518
45 0.074 —0.380 —0.872 0.872 —0.166 —0.519 0.519
46 —0.710 — 0413 —0.872 0.872 —0.218 — 0519 0.519
47 —0.041 —0.376 —0.872 0.872 —0.170 — 0519 0.519
48 —0.254 —0.363 —0.873 0.873 —0.175 —0.520 0.520
49 0.295 —0.298 —0.873 0.873 —0.119 —0.520 0.520
50 0.543 —0.214 —0.873 0.873 —0.067 —0.520 0.520
51 — 0.060 —0.198 —0.872 0.872 —0.094 — 0516 0.516
52 0.550 —0.123 —0.872 0.872 —0.036 - 0517 0.517
53 — 1.045 —0.216 —0.872 0.872 —0.166 —0.517 0.517
54 2.135 0.019 —0.872 0.872 0.100 — 0518 0.518
55 0.847 0.102 —0.872 0.872 0.084 — 0518 0.518
56 1.721 0.264 —0.872 0.872 0.196 —0.519 0.519
57 2.129 0.451 —0.872 0.872 0.302 — 0519 0.519
58 0.793 0.485 —0.872 0.872 0.243 — 0519 0.519
59 1.355 0.572 —0.873 0.873 0.298 —0.520 0.520
60 2422 0.757 —0.873 0.873 0.437 —0.520 0.520
61 1.772 0.858 —0.873 0.873 0.452 —0.520 0.520
62 1.352 0.908 —0.872 0.872 0.445 — 0519 0.519
63 —0.278 0.789 - 0.873 0.873 0.296 - 0.520 0.520
64 —1.303 0.580 —-0.873 0.873 0.132 - 0.520 0.520
65 0.035 0.526 - 0.873 0.873 0.175 - 0.520 0.520

The parameters g = 0.9, « = 0.6 and L = 2.688 for the GWMA statistics. The parametersandg = 0.9, = 1

and L = 2.609 for the EWMA statistics. Bold values indicate the detection of an out-of-control signal for
observations with their corresponding autocorrelated EWMA control statistics Z; and GWMA control statistics

Y;

process mean shifts of autocorrelated observations from AR(1) when ¢=0.8 and process
mean shift §=1. The parameters ¢ = 0.9« = 0.6 and L = 2.420 for the GWMA statistics.
The parameters ¢ = 0.9« = 1 and L = 2.453 for the EWMA statistics. The solid line
in Figs. 1, 2, and 3 is GWMA statistics and the dashed line is the EWMA statistics. From
Figs. 1, 2, and 3 we can see that the GWMA control chart for detecting small process mean
shifts of autocorrelated observations needs less time to obtain an out-of-control signal than
the EWMA control chart. That is, the GWMA control chart outperforms the EWMA control
chart for detecting small process mean shifts of autocorrelated observations.
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Table 4 Example of GWMA and EWMA control charts for detecting small process mean shifts of autocorre-
lated observations from AR(1) when ¢=0.8 and process mean shift §=1

j X; z; EWMA Y GWMA

LCL ucCL LCL UCL
1 0.440 0.044 —0.245 0.245 0.044 — 0242 0.242
2 2.114 0.251 —0.442 0.442 0.232 —0.341 0.341
3 2.304 0.456 — 0.606 0.606 0.347 — 0410 0.410
4 0.854 0.496 —0.743 0.743 0.286 — 0462 0.462
5 1.598 0.606 — 0.856 0.856 0.362 —0.503 0.503
6 2.063 0.752 —0.951 0.951 0.452 —0.537 0.537
7 0.599 0.737 —1.029 1.029 0.365 —0.564 0.564
8 - 1201 0.543 — 1.094 1.094 0.166 —0.587 0.587
9 —0.748 0.414 —1.147 1.147 0.116 — 0.607 0.607
10 — 1.107 0.262 — 1.191 1.191 0.032 —0.624 0.624
11 —0.305 0.205 —1.228 1228 0.055 —0.638 0.638
12 0.022 0.187 —1.258 1258 0.078 —0.651 0.651
13 1.958 0.364 —1.283 1283 0.276 — 0.662 0.662
14 3.396 0.667 —1.303 1303 0.512 —0.671 0.671
15 3.471 0.947 ~1.320 1.320 0.658 — 0.680 0.680
16 2.310 1.084 ~1.334 1334 0.657 —0.688 0.688
17 0.610 1036 —1.345 1345 0.528 —0.694 0.694
18 0.156 0.948 —1.354 1354 0.444 - 0.701 0.701
19 —0.894 0.764 —1.362 1362 0.296 —0.706 0.706
20 0.331 0.721 — 1.368 1368 0.338 - 0711 0.711
21 ~0.193 0.629 ~1.373 1373 0.282 - 0.716 0.716
22 0311 0.597 ~1.377 1377 0.302 - 0.720 0.720
23 1.062 0.644 — 1.380 1380 0.376 —0.724 0.724
24 2.128 0.792 —1.383 1383 0.515 - 0.727 0.727
25 2912 1.004 — 1.385 1.385 0.669 —0.731 0.731
26 2.403 1.144 ~1.387 1387 0.715 ~0.734 0.734
27 2.270 1257 —1.388 1388 0.756 —0.736 0.736
28 1524 1.284 —1.390 1390 0.724 —0.739 0.739
29 1525 1308 —1.391 1391 0.729 - 0741 0.741
30 — 0207 1.156 —1.391 1391 0.565 —0.744 0.744
31 — 1423 0.898 —1.392 1392 0.373 —0.746 0.746
32 — 0442 0.764 ~1.393 1393 0.361 —0.748 0.748
33 —0.093 0.678 —1.393 1393 0.358 - 0.750 0.750
34 0.317 0.642 —1.393 1393 0.380 —0.751 0.751
35 -0.705 0.508 —1.394 1394 0.279 —0.753 0.753
36 - 0078 0.449 —1.394 1394 0.290 ~0.754 0.754
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Table 4 (continued)

j X; zZ; EWMA Y GWMA

LCL ucL LCL UCL
37 2.515 0.656 —1.394 1394 0.538 - 0.756 0.756
38 3.524 0.942 —1.394 1394 0.750 - 0.757 0.757
39 2.487 1.097 —1.394 1394 0.778 —0.759 0.759
40 1255 1113 ~1.394 1394 0.710 —0.760 0.760
41 2.694 1.271 ~1.394 1394 0.847 - 0.761 0.761
4 2.583 1.402 —1.395 1395 0.906 - 0.762 0.762
43 1718 1.434 —1.395 1395 0.872 - 0.763 0.763
44 —0.099 1280 —1.395 1395 0.696 —0.764 0.764
45 — 0346 1118 —1.395 1395 0.595 - 0.765 0.765
46 —1.144 0.891 —1.395 1395 0.450 —0.766 0.766
47 ~2319 0.570 — 1.395 1395 0.242 - 0.767 0.767
48 —0.100 0413 — 1.395 1395 0.246 —0.768 0.768
49 0.146 0.387 —1.395 1395 0.319 —0.769 0.769
50 0.839 0.432 — 1.395 1395 0.402 —0.769 0.769

The parameters ¢ = 0.9a = 0.6 and L = 2.420 for the GWMA statistics. The parameters ¢ = 0.9 « = 1

and L = 2.453 for the EWMA statistics. Bold values indicate the detection of an out-of-control signal for
observations with their corresponding autocorrelated EWMA control statistics Z; and GWMA control statistics

Y;

The solid line 1s GWMA statistics. The dashed line i1s EWMA statistics.
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Fig. 1 GWMA and EWMA control chart for detecting small process mean shifts of autocorrelated observations

from AR(1) when ¢ = 0.2 and process mean shift § = 0.5. The parameters ¢ = 0.9, « = 0.6 and L = 2.688
for the GWMA statistics. The parameters and ¢ = 0.9, « = 1 and L = 2.609 for the EWMA statistics
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The solid line 1s GWMA statistics. The dashed line 1is EWMA statistics.
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Fig.2 GWMA and EWMA control chart for detecting small process mean shifts of autocorrelated observations
from AR(1) when ¢ = 0.4 and process mean shift § = 0.5. The parameters ¢ = 0.9, « = 0.6 and L = 2.688
for the GWMA statistics. The parameters and ¢ = 0.9, = 1 and L = 2.609 for the EWMA statistics

The solid line 1s GWMA statistics. The dashed line 1s EWMA statistics.
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Fig. 3 GWMA and EWMA control chart for detecting small process mean shifts of autocorrelated observations
from AR(1) when ¢ = 0.8 and process mean shift § = 1. The parameters ¢ = 0.9, « = 0.6 and L = 2.420
for the GWMA statistics. The parameters ¢ = 0.9, « = 1 and L = 2.453 for the EWMA statistics

5 Conclusion

The statistical process control chart is primarily applied to monitor the production process
or service process and detect the process change as soon as possible. The EWMA (exponen-
tially weighted moving average) control chart has been widely used to detect small shifts in
the process mean. Sheu and Lin (2003) proposed the GWMA (generally weighted moving
average) control chartfor detecting small process mean shifts of independent observations.
The GWMA control chart is the extended version of the EWMA control chart. The GWMA
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control chart has been widely investigated. In this paper, the definition, and properties of the
GWMA control chart are being further analyzed and investigated for detecting small process
mean shifts of autocorrelated observations. The weight of GWMA technique depends on time
t, thus, there is no recursive formula for the GWMA technique and the GWMA technique
has no Markovian property. The GWMA control chart is more practical for detecting small
process mean shifts of autocorrelated observations. The EWMA technique and the weighted
moving average (WMA) technique can be shown to be special cases of the GWMA tech-
nique. We also provided some properties of the GWMA technique, including its variance
and expected value. Finally, we discuss the applications of the GWMA technique in quality
engineering. A numerical simulation comparison shows that the GWMA control chart out-
performs the EWMA control chart for detecting small process mean shifts of autocorrelated
observations.
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