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Abstract
The statistical process control chart is primarily applied to monitor the production process or
service process and detect the process shifts as soon as possible. The EWMA (exponentially
weighted moving average) control chart has been widely used to detect small shifts in the
process mean. Sheu and Lin (Qual Eng 16:209–231, 2003) proposed the GWMA (generally
weighted moving average) control chart, for detecting small process mean shifts of inde-
pendent observations. The GWMA control chart is the extended version of EWMA control
chart. The GWMA control chart has been widely investigated. In this paper, the definition,
and properties of the GWMA control chart are being further analyzed and investigated for
detecting small process mean shifts of autocorrelated observations. The weight of GWMA
technique depends on time t. Thus, there is no recursive formula for the GWMA technique.
The GWMA technique has no Markovian property. The GWMA control chart is more prac-
tical for detecting small process mean shifts of autocorrelated observations. A numerical
simulation comparison shows that the GWMA control chart outperforms the EWMA control
chart for detecting small process mean shifts of autocorrelated observations.
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1 Introduction

Statistical process control (SPC) charts can be used to assure the quality of a product or
process in the manufacturing industry or service industry. Statistical process control charts
are primarily used tomonitor a production process or service process and detect process shifts
as soon as possible. Based on our understanding, the reliability and quality of a product are
highly interrelated. Reliability means quality over time. A high-quality product will regularly
be of high reliability. Practically, the higher the level of quality, the greater the product will
be reliable. Control charts are very useful tools to improve productivity and product quality.
Shewhart (1931) first introduced the Shewhart control chart to detect relatively large shifts in
the process mean (≥ 1.5σ ). Page first introduced the cumulative sum (CUSUM) control chart
in (1954).TheEWMAcontrol chartwas introducedbyRoberts (1959).TheEWMAtechnique
gives the weighted averages of past observations with more weight to recent observations
and less weight to past observations. Roberts used simulation to evaluate its properties and
revealed that the EWMA control chart is more sensitive to detect small shifts in the process
mean. The EWMA control chart has found wide application in the manufacturing industries.
The CUSUM and EWMA control charts accumulate information over time to detect small
shifts in the process mean. These two control charts are well-known memory-type control
charts as they use past information to set up the control charts. The Shewhart control chart,
CUSUM control chart, and EWMA control chart are three of the most widely used process
control charts. It has been observed that the CUSUM and EWMA control charts surpass the
Shewhart control charts to detect small shifts in the process mean (Crowder, 1987; Hunter,
1986; Lucas & Saccucci, 1990; Ng & Case, 1989; Woodall, 1997). The adaptive EWMA
(AEWMA) control chart which combines an EWMA and a Shewhart chart is introduced by
Capizzi and Masarotto (2003). The AEWMA is very powerful to detect both large and small
process shifts. For more details about the EWMA control charts, the reader is referred to the
works of Liu and Xue (2015) and Mitra et al. (2019).

The double EWMA (DEWMA) control chart was first introduced by Shamma and
Shamma (1992). The triple EWMA (TEWMA) control chart was introduced by Alevizakos
et al. (2021). Haq (2012) introduced a new hybrid exponentially weighted moving average
(HEWMA) control chart for monitoring the process mean shifts. The result shows that the
TEWMA control chart is better than the EWMA control chart and the DEWMA control chart
for detecting small shifts in the process mean. The DEWMA control chart is better than the
EWMA control chart for detecting small shifts in the process mean. The quadruple exponen-
tially weighted moving average (QEWMA) control chart was introduced by Alevizakos et al.
(). The result shows that the (QEWMA) is better than the EWMA control chart, DEWMA
control chart, and the TEWMA control chart for detecting small shifts in the process mean.

Sheu and Lin (2003) used the concept of Sheu and Griffith (1996) and Sheu (1988)
to extend the EWMA control chart to the GWMA control chart for monitoring the small
process mean shifts of independent observations. Their results indicated that the GWMA
control chart is more sensitive than the EWMA control chart for detecting process mean
shifts of independent observations. Yang and Sheu (2007) showed that the GWMA median
control chart surpasses the corresponding EWMA median control chart. Sheu and Chiu
(2007) indicated that the GWMA c control chart surpasses the corresponding Shewhart and
EWMA c control charts for detecting small shifts in the process mean. Sukparungsee (2018)
proposed the GWMA p control chart and showed that it surpasses the corresponding EWMA
p control chart for detecting small shifts in the process mean.
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The originated GWMA control chart has been further extended to the double GWMA
(DGWMA) control chart by Sheu and Hsieh (2008). The DGWMA control chart outper-
formsGWMAcontrol charts and double exponentially weightedmoving average (DEWMA)
control charts for detecting small shifts in the process mean. For more details about the dou-
ble GWMA control charts, the reader is referred to the works of Alevizakos et al. (2018),
Karakani et al. (2018), Alevizakos et al. (2022a, 2022b) and Chatterjee et al. (2023).

Sheu and Tai (2006) first introduced the GWMA S2 control chart to monitor process vari-
ability and indicated that the GWMA control chart is more sensitive than the EWMA control
chart to detect the variance of process. Yang and Sheu (2006) introduced the multivariate
generally weighted moving average (MGWMA) control chart which is the extended version
of the multivariate exponentially weighted moving average (MEWMA) control chart. Yang
and Sheu (2006) showed that integrating a multivariate engineering process control (MEPC)
with multivariate generally weighted moving average (MGWMA) control chart is more sen-
sitive than the MEPC with MEWMA control chart to detect the small shifts of the mean
vector. Sheu et al. (2013) proposed the maximum GWMA (Max GWMA) control chart to
simultaneously detect both increases and decreases in the mean and/or variance of a process.
Mabude et al. (2020a, 2020b, 2020c) provided an overview and perspectives of the GWMA
control charts. For more details about the GWMA control charts, the reader is referred to
the works of Ali and Haq. (2017), Alevizakos and Koukouvinos (2019), Chen et al. (2019),
Mabude et al. (2020a, 2020b, 2020c), Haq and Abidin (2020), Mabude et al. (2020a, 2020b,
2020c), Chatterjee et al. (2021), Li et al. (2021) and Mabude et al. (2022).

A fundamental assumption in the traditional application of statistical process control
(SPC) is that the observations are independent (uncorrelated). In practical application, the
independence assumption is often violated in the continuous manufacturing process for the
chemical and pharmaceutical industries. The autocorrelation has a great influence on the
control charts. Ignoring autocorrelation, the effect of constructing a control chart for the
autocorrelated observations is that it produces control limits that are much tightened than
desired. Hence, this decreases the ability of detecting the process mean shifts and generates
a high false alarm rate.

We can use two different approaches to solve the problem for detecting the process mean
shifts of autocorrelated observations. Firstly, the model-free approach, it uses the classical
standard control charts, and adjusts the control limits to take account of the autocorrelation,
and estimate the true process variance (see e.g., Vasilopoulos & Stamboulis, 1978; Schmid,
1995, 1997; Schmid & Schore, 1997; VanBrackle & Reynolds, 1997). Secondly, the model-
based approach, applies an appropriate time seriesmodel to fit the autocorrelated observations
so that forecasts of each observation can be made using the previous observations. Hence,
we can get the residuals and then use the traditional control charts for the residuals (see
e.g., Alwan & Roberts, 1988; Montgomery & Mastrangelo, 1991; Harris & Ross, 1991;
Mastrangelo & Montgomery, 1995; Lu & Reynolds, 1999a, 1999b; Koehler et al., 2001;
MacCarthy & Wasusri, 2001).

The work that has been published on residual control charts indicates that the EWMA
control chart of residualswill usually offer better performance than the Shewhart control chart
of residuals. Lu and Reynolds (1999a, 1999b) considered the performance of the EWMA
control chart of the residuals and an EWMA control chart of the observations for monitoring
processes that produce autocorrelated data. Sheu and Lu (2008, 2009a, 2009b) and Lu (2016)
introduced GWMA control charts for monitoring autocorrelation data and showed that the
GWMA control chart is more sensitive than the EWMA control chart for detecting small
shifts in the process mean of autocorrelation data. Since 2003, the year of publication of the
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GWMAcontrol chart paper, there have been a total of 183 publications on theGWMA-related
monitoring control charts and their enhancements.

In this paper, the definition, and properties of the GWMA control chart are being further
analyzed and investigated for detecting small process mean shifts of autocorrelated obser-
vations. The GWMA control chart, for detecting small process mean shifts of independent
observations is extended to the GWMA control chart for detecting small process mean shifts
of autocorrelated observations. This paper is structured as follows: Sect. 2 presents the gen-
erally weighted moving average technique. The GWMA control chart for detecting small
process mean shifts of autocorrelated observations is shown in Sect. 3. An example is shown
in Sect. 4. Conclusions are drawn in Sect. 5.

2 The generally weightedmoving average technique

Sheu and Lin (2003) used the concept of Sheu and Griffith (1996) and Sheu (1988) to
extend the EWMA control chart to the GWMA control chart. Their results indicated that the
GWMA control chart is more sensitive than the EWMA control chart for detecting small
process mean shifts of independent observations. Now we give the precise definition of the
GWMA technique and investigate its properties of GWMA technique.

Suppose events S and F are mutually exclusive and complementary events. Let T count
the number of periods until the first occurrence of event S since the last occurrence of event
S. Let Pt = P(T > t) as the survival function of T . That is, Pt is the probability of only
event F occurring in the first t periods. We assume that 1 = P0 ≥ P1 ≥ P2 ≥ P3 . . .

The symbol {Pt} is an abbreviation for the probabilities of a sequence. The sequence
{Pt} is supposed to be known. Let

θt = P(T = t) = P(T > t − 1) − P(T > t) = Pt−1 − Pt = Pt−1

(
1 − Pt

Pt−1

)
, (1)

where t = 1, 2, 3, . . .
Equation (1) shows that event F occurs with probability qt = Pt

Pt−1
at the t-th period

whereas event S occurs with probability pt = 1− qt = 1− Pt

Pt−1
. Evidently, the probability

of event S occurrence depends on time t . If Pt = qt which is a geometric distribution, then

qt = Pt

Pt−1
= qt

qt−1 = q and pt = 1 − qt = 1 − q which does not depend on time t .

Thus, the sum of the probabilities is given below:

∞∑
j=1

P(T = j) = P(T = 1) + P(T = 2) + · · · + P(T = t) + P(T > t)

= (
P0 − P1

) + (
P1 − P2

) + · · · + (
Pt−1 − Pt

) + Pt = P0 = 1, (2)

whereas {P(T = j)} j=1,2,... can be considered as the weight of GWMA technique. The
weighted averages of past observations with more weight to recent observations and less
weight to the past observation. In other words, the weight of the current period is P(T = 1).
The weights of GWMA technique depend on the time. Thus, there is no recursive formula
for the GWMA technique. The GWMA technique has no Markovian property. The GWMA
control chart is more practical to monitor the process mean shifts of the production process
or service process. The GWMA technique can be parameterized as below. We consider the
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random vector X of size t is given by:

X = [X1, X2, . . . , Xt ]
′
1×t =

⎡
⎢⎢⎢⎣
X1

X2
...

Xt

⎤
⎥⎥⎥⎦
t×1

, (3)

The mean of the random vector X is vectorμ. The variance–covariance matrix of the random
vector X is

∑
. We also assume that X1, X2, . . . , Xt have the samemean u and same variance

σ 2
X . The GWMA technique can be defined by the linear transformation

Y = AX + y0C, (4)

where Y is t × 1 random vector and

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

P0 − P1 0 0
P1 − P2 P0 − P1 0
P2 − P3 P1 − P2 P0 − P1

· · ·
0
0
0

...
. . .

...

Pt−1 − Pt Pt−2 − Pt−1 Pt−3 − Pt−2 · · · P0 − P1

⎤
⎥⎥⎥⎥⎥⎥⎦
t×t

, (5)

is t × t matrix and C is t × 1 vector with the form

C = [
P1, P2, . . . , Pt

]′
1×t =

⎡
⎢⎢⎢⎢⎢⎢⎣

P1

P2

P3
...

Pt

⎤
⎥⎥⎥⎥⎥⎥⎦
t×1

, (6)

where y0 is an initial scalar value that can be represented as the starting value for the GWMA
technique.

From Eq. (4), we can get

Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

Y1
Y2
Y3
...

Yt

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

(
P0 − P1

)
X1 + P1y0(

P1 − P2
)
X1 + (

P0 − P1
)
X2 + P2y0(

P2 − P3
)
X1 + (

P1 − P2
)
X2 + (

P0 − P1
)
X3 + P3y0

...(
Pt−1 − Pt

)
X1 + (

Pt−2 − Pt−1
)
X2 + · · · + (

P0 − P1
)
Xt + Pt y0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(7)

Hence, the GWMA statistic at the t-th period is given below

Yt =
t∑

j=1

P(T = j)Xt− j+1 + P(T > t)y0 =
t∑

j=1

(
P j−1 − P j

)
Xt− j+1 + Pt y0. (8)

Remark 1

a. For easy computation, consider the case Pt = qt
α
, for t = 0, 1, 2, . . . , 0 ≤ q < 1 and

α > 0 which is a discrete Weibull distribution (Nakagawa & Osaki, 1975). In this case,
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if we put Pt = qt
α
in Eq. (8), we can get:

Yt =
t∑

j=1

(
q( j−1)α − q jα

)
Xt− j+1 + qt

α

y0. (9)

b. If we consider the case Pt = qt
α
, for t = 0, 1, 2, . . . , 0 ≤ q < 1 and α = 1, then

Pt = qt which is a geometric distribution. If we put Pt = qt in Eq. (8), we get:

Yt =
t∑

j=1

(
q( j−1) − q j

)
Xt− j+1 + qt y0

= (1 − q)

t∑
j=1

q( j−1)Xt− j+1 + qt y0. (10)

If we put q = 1 − λ and 1 − q = λ in Eq. (10), we can get:

Yt = λ

t∑
j=1

(1 − λ) j−1Xt− j+1 + (1 − λ)t y0, (11)

which is the EWMA technique. Hence the EWMA technique is a special case of our
GWMA technique

c. Consider the k-term weighted moving average (WMA) with the weight w1 ≥ w2 ≥
· · · ≥ wk and

∑k
i=1 wi = 1, then P0 = 1, P1 = 1 − w1, P2 = 1 − w1 − w2, P3 =

1−w1−w2−w3, . . . , Pk−1 = 1−w1−w2−· · ·−wk−1, Pk = 1−w1−w2−· · ·−wk = 0
and P j = 0 for j ≥ k. In this case, if we put P0 = 1, P1 = 1− w1,P2 = 1− w1 − w2,
P3 = 1 − w1 − w2 − w3, · · · , Pk−1 = 1 − w1 − w2 − · · · − wk−1, Pk = 1 − w1 −
w2 − · · · − wk = 0 and P j = 0 for j ≥ k in Eq. (10), we can get:

Yt =
k∑
j=1

w j Xt− j+1; for t = k, k + 1, . . . , (12)

which is the weighted moving average (WMA) technique. Hence WMA technique is a
special case of our GWMA technique. Consider the special case where w j = 1/k with
all j , then this yields the k-term simple moving average below

Yt = 1

k

k∑
j=1

Xt− j+1; for t = k, k + 1, . . . , (13)

which is the arithmetic average of the k-terms
d. If P0 = 1, P j = 0 for j ≥ 1, then Y = X . This is clear from Eq. (4), when P0 =

1, P j = 0 for j ≥ 1 we have A = I (where I is the identity matrix) and C = 0 which
is a zero vector and thus has all components equal to zero, so that,

Y = AX + y0C = I X + y00 = X , (14)

which is a random walk without a drift.
e. Since the weight of GWMA technique depends on time t, thus, there is no recursive

formula for the GWMA technique. The GWMA technique has no Markovian property.
The GWMA control chart is more practical for detecting small process mean shifts of
autocorrelated observations.
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Properties By applying the expectation operation to Eq. (4), we can get

E(Yt×1) = E(At×t Xt×1 + y0Ct×1) = At×t E(Xt×1) + y0Ct×1

= At×tμt×1 + y0Ct×1, (15)

and by letting μt×1 = u1t×1 and y0 = u then

E(Y ) = Aμ1t×1 + μCt×1 = u(A1t×1 + Ct×1) = u1t×1, (16)

where 1t×1 is the vector of ones.

The variance covariance matrix of random vector Y is given as follows:

Var(Y ) = Var(AX + y0C) = A�A
′ = σ 2

X ARA
′
, (17)

where R represents the autocorrelation matrix of random vector X . The variance of the
GWMA statistic at the time i is the i-th diagonal element of (17). The autocovariance of the
GWMA statistic at lag(i− j) = lag( j−i) is the (i, j)-th off-diagonal element of (17). We can
show that the variance of GWMA statistic Yt at any time t > 0 is given as follows:

Var(Yt ) = σ 2
X

⎡
⎣ t∑

i=1

(
Pi−1 − Pi

)2 + 2
t−1∑
i=1

t∑
j=i+1

(
Pi−1 − Pi

)(
P j−1 − P j

)
ρ j−i

⎤
⎦. (18)

where σ 2
X is the variance of original process {Xt }, and ρn = ρ−n represents the lag n

autocorrelation of original process {Xt }.

Remark 2

a. For easy computation, we can consider the case Pt = qt
α
, t = 0, 1, 2, . . . , 0 ≤ q < 1,

α > 0 which is a discrete Weibull distribution. If we put Pt = qt
α
in Eq. (18), then we

can get:

Var(Yt ) = σ 2
X

⎡
⎣ t∑

i=1

(
q(i−1)α − qi

α
)2 + 2

t−1∑
i=1

t∑
j=i+1

(
q(i−1)α − qi

α
)(

q( j−1)α − q jα
)
ρ j−i

⎤
⎦.

(19)

b. If we consider the case Pt = qt
α
, t = 0, 1, 2, . . . , 0 ≤ q < 1, α = 1, then Pt = qt

which is a geometric distribution. If we put Pt = qt in Eq. (18), we can get:

Var(Yt ) = σ 2
X

⎡
⎣ t∑

i=1

(
(1 − q)qi−1

)2 + 2
t−1∑
i=1

t∑
j=i+1

qi−1(1 − q)q j−1(1 − q)ρ j−i

⎤
⎦,

(20)

If we put q = 1 − λ and 1 − q = λ in Eq. (20), we can get:

Var(Yt ) = σ 2
Xλ2

⎡
⎣ t∑

i=1

(1 − λ)2(i−1) + 2
t−1∑
i=1

t∑
j=i+1

(1 − λ)(i−1)+( j−1)ρ j−i

⎤
⎦, (21)

which agrees with Eq. (9) in Perry (2010).
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Assume that Var(Yt ) → σ 2
Y , as t → ∞, where σ 2

Y denotes the steady-state variance of
the EWMA process {Yt , t > 0}. As ∣∣(1 − λ)(i−1)+( j−1)ρ j−i

∣∣ < 1 for all j and i , σ 2
Y can

be written as

σ 2
Y = σ 2

X

⎛
⎝ λ

(2 − λ)
+ 2λ2

∞∑
i=1

∞∑
j=i+1

(1 − λ)(i−1)+( j−1)ρ j−i

⎞
⎠, (22)

which agrees with Eq. (10) in Perry (2010).
c. If X1, X2, X3 . . . are independent (i.e., uncorrelated process), then

1. Equation (18) reduces to

Var(Yt ) = σ 2
X

t∑
i=1

(
Pi−1 − Pi

)2
, (23)

2. Equation (19) reduces to

Var(Yt ) = σ 2
X

t∑
i=1

(
q(i−1)α − qi

α
)2

(24)

3. Equation (20) reduces to

Var(Yt ) = σ 2
X (1 − q)2

t∑
i=1

q2(i−1), (25)

4. Equation (21) reduces to

Var(Yt ) = σ 2
Xλ2

t∑
i=1

(1 − λ)2(i−1), (26)

5. Equation (22) reduces to

σ 2
Y = σ 2

X

(
λ

2 − λ

)
, (27)

which agrees with Eq. (11) in Perry (2010).

The initial value for y0.

The impact of y0 on Yt for large t is insignificant. Therefore, if t is large, we can select
any value for y0 and its influence on Yt should be negligible. In practice, we can use the

arithmetic average of historical data for the initial value y0 = X =
∑t

i=1 Xi
t . We also can

select y0 = X1.
In the next section, we will discuss the applications of the GWMA technique in quality

engineering.

3 The GWMA control chart for detecting small process mean shifts
of autocorrelated observations

Roberts first proposed the EWMA control chart to monitor the process mean in 1959. The
EWMA control chart is also called the geometric moving average (GMA) control chart.
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Sheu and Lin (2003) proposed the GWMA control chart, which is the extended version of
the EWMAcontrol chart. A numerical simulation comparison shows that the GWMAcontrol
chart is more sensitive than the EWMA control chart for detecting small process mean shifts
of independent observations. Suppose that L is the width of control limits. The L is usually
selected based upon an acceptable false alarm rate and is the distance of the control limits
from the center line, expressed in standard deviation units. If u0 represents the target value
of the process mean used as the center line of the control chart, then the LCL (lower control
limit), the UCL (upper control limit), and the CL (center line) of a GWMA control chart can
be written as follows:

UCL = u0 + L
√
Var(Yt )

CL = u0

LCL = u0 − L
√
Var(Yt ), (28)

where Var(Yt ) can choose one of these Eqs. (18), (19), (20), (21), (22), for detecting small
process mean shifts of autocorrelated observations and Var(Yt ) can choose one of these
Eqs. (23), (24), (25), (26), and (27) for detecting small process mean shifts of independent
observations. The GWMA control chart would be built by plotting Yt versus the sample time
t. If Yt exceeds one of these control limits, then the process is considered out-of-control and
some corrective action needed to be taken.

Observations from continuous manufacturing process in the chemical and pharmaceutical
industries are frequently autocorrelated. The autocorrelation has a great influence on the
control charts. An effect of autocorrelation is to decrease the ability of detecting the process
mean shifts and generates a high false alarm rate. Here we use a model-free approach to solve
the problem of detecting the small process mean shifts of autocorrelated observations. We
use the classical standard control charts and adjust the control limits to take account of the
autocorrelation and estimate the true process variance.

For an autocorrelated process, an ARIMA (p, d, q) model may be appropriate for the
observations from the autocorrelated process. We will restrict our work to control chart for
autocorrelated observations that can be modeled with an autoregressive AR(1) model. The
AR(1) model can be represented as follows:

Xt − u0 = φ(Xt−1 − u0) + εt , or (29)

Xt = (1 − φ)u0 + φXt−1 + εt , (30)

where Xt is the observed time series at time t , φ is the autocorrelation coefficient satisfying
|φ| < 1, εt is assumed to be independent and identically normally distributed with mean 0
and variance σ 2

ε (i.e., εt ∼ N
(
0, σ 2

ε

)
). It is assumed that Xt will be normal distribution with

a mean of u0 and a variance

σ 2
X = Var(Xt ) = σ 2

ε(
1 − φ2

) for all t ≥ 1. (31)

The covariance between Xt−i and Xt is φiσ
2
X for t ≥ i , and from this, it follows that the

correlation coefficient between Xt−i and Xt is φi .
A process that is operating in the presence of assignable causes is said to be out of control.

When an assignable cause occurs, the effect of this assignable cause is to shift the process
mean from u0 to u0 + δ. Here, we assume u0 = 0. The GWMA control chart and EWMA
control chart were developed for monitoring small shifts in the process mean.
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The following dataset simulation illustrates the unexpected variation in the process of
autocorrelated observation on the EWMA control chart and GWMA control chart respec-
tively.

From the Eqs. (8) and (30), the GWMA statistics at the timet is defined as

Yt =
t∑

j=1

(
P j−1 − P j

)
Xt− j+1 + Pt y0, (32)

where Xt is the observed time series at time t . The initial value y0 is the mean of Xt . Hence,
we have Y0 = u0 and

Yt =
t∑

j=1

(
P j−1 − P j

)
Xt− j+1 + Ptu0. (33)

The expected value of GWMA statistic Yt computed as

E(Yt ) = E

⎡
⎣ t∑

j=1

(
P j−1 − P j

)
Xt− j+1 + Ptu0

⎤
⎦ = u0. (34)

From the Eq. (18), the variance of GWMA statistic Yt is

Var(Yt ) = σ 2
X

⎡
⎣ t∑

i=1

(
Pi−1 − Pi

)2 + 2
t−1∑
i=1

t∑
j=i+1

(
Pi−1 − Pi

)(
P j−1 − P j

)
ρ j−i

⎤
⎦, (35)

where σ 2
X = σ 2

ε

(1−φ2)
is the variance of the original process {Xt } and ρn = ρ−n = φn

represents the lag n autocorrelation of the original process {Xt }. For easy computation, we
can consider the case Pt = qt

α
, t = 0, 1, 2, .., 0 ≤ q < 1, α > 0 which is a discrete Weibull

distribution. If we put Pt = qt
α
in Eq. (33), then the GWMA statistics at timet is

Yt =
t∑

j=1

(
q( j−1)α − q jα

)
Xt− j+1 + qt

α

u0. (36)

If we put Pt = qt
α
, σ 2

X = σ 2
ε

(1−φ2)
and ρ j−i = φ j−i in Eq. (35), then we can get:

Var(Yt ) = σ 2
ε(

1 − φ2
)
⎡
⎣ t∑

i=1

(
q(i−1)α − qi

α
)2 + 2

t−1∑
i=1

t∑
j=i+1

(
q(i−1)α − qi

α
)(

q( j−1)α − q jα
)
φ j−i

⎤
⎦. (37)

The time-varying control limits of the GWMA control chart for monitoring the small process
mean shifts of autocorrelated observations can be written as follows:

UCL = u0 + L
√
Var(Yt )

CL = u0

LCL = u0 − L
√
Var(Yt ) (38)

where Var(Yt ) is given by Eq. (37), L denotes the width of the control limits, and is deter-
mined by the professional to achieve the desired in-control ARL for GWMA control charts.
If we consider the case Pt = qt

α
, for t = 0, 1, 2.., 0 ≤ q < 1, andα = 1, then Pt = qt
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which is a geometric distribution. If we put Pt = qt in Eq. (33), we get the EWMA statistic
Zt at the time t :

Zt =
t∑

j=1

(
q( j−1) − q j

)
Xt− j+1 + qtu0,= (1 − q)

t∑
j=1

q( j−1)Xt− j+1 + qtu0. (39)

If we put q = 1 − λ and 1 − q = λ in Eq. (39), we can get

Zt = λ

t∑
j=1

(1 − λ) j−1Xt− j+1 + (1 − λ)t u0. (40)

Hence, the EWMA statistic Zt is the special case of our GWMA statistic Yt .

If we put Pt = qt , σ 2
X = σ 2

ε

(1−φ2)
and ρ j−i = φ j−i in Eq. (35), then we can get:

Var(Zt ) = σ 2
ε(

1 − φ2
)
⎡
⎣ t∑

i=1

(
(1 − q)qi−1

)2 + 2
t−1∑
i=1

t∑
j=i+1

qi−1(1 − q)q j−1(1 − q)φ j−i

⎤
⎦.

(41)

If we put q = 1 − λ and 1 − q = λ in Eq. (41), we can get

Var(Zt ) = σ 2
ε(

1 − φ2
)λ2

⎡
⎣ t∑

i=1

(1 − λ)2(i−1) + 2
t−1∑
i=1

t∑
j=1

(1 − λ)(i−1)+( j−1)φ j−i

⎤
⎦. (42)

The time-varying control limits of the EWMA control chart for monitoring the small process
mean shifts of autocorrelated observations can be written as follows:

UCL = u0 + L
√
Var(Zt )

CL = u0

LCL = u0 − L
√
Var(Zt ) (43)

where Var(Zt ) is given by Eq. (41) or (42).
The average run length (ARL) is defined as the average number of the sample (subgroups)

taken before an out-of-control signal is given on the control chart. The ARL is a performance
measure of the ability of a control chart to detect process mean shifts. When the process
is in control, we want the control chart to produce fewer false alarms, i.e., to have a large
in-control ARL.When a process is out of control, we want the control chart to signal quickly,
i.e., to have a small out-of-control ARL. The parameters for each control chart were defined
such that the in-control ARL is set to be nearly 370. The out-of-control is then compared
for a given process mean shift. According to the performance measure of the control chart, a
smaller out-of-control ARL corresponds to greater detection ability. The computation of the
ARL of an EWMA control chart has been studied by many authors. Crowder (1989) used the
integral equation method to evaluate run-length distributions of the EWMA control chart.
Lucas and Saccucci (1990) proposed theMarkov chain method to compute the accurate ARL
of the EWMA control chart with fixed control limits. Since the control limits of the GWMA
control chart vary over time, it is difficult to use theMarkov chainmethod or integral equation
method to compute the exact ARL for given control limits. Hence, we use the simulation
method to compute the ARL of the GWMA control chart. Sheu and Lu (2009a, 2009b)
recommended the following simulation steps:
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(a) Give parameters φ, the magnitude of σ 2
ε and the charting parameter (q, α, L)

(b) Generate a set of simulation data under an AR(1) process and compute the GWMA
statistics Y j by Eq. (40) at the target value u0 + δ.

(c) Record the run length when Y j exceeds the control limits and the trial halts. Run 20,000
iterations, we can obtain the ARL along with the specific parameters.

(d) We use the bisection method to modify the control limit constant (L) to reach the desired
in-control ARL.

(e) When the processmeans shifts,we apply the in-control parameters tomonitor the process
mean shifts and compute out-of-control ARL.

In practice, we can use the GWMA control chart to detect the small process mean shifts of
autocorrelated observations. We run the following simulations to compare the performance
of various GWMA control charts in detecting the small process mean shifts of autocorrelated
observations. Herein, the values ofφ which quantify the correlation coefficient between X j−1

and X j under AR(1) process are set to 0.1, 0.2, 0.3, 0.4, 0.8. We use the bisection approach to
obtain the control limit constant (L) corresponding to the desired in-control ARL. We adjust
the control limit constant (L) based on 20,000 iterations to maintain the in-control ARL at
approximately 370.4. The out-of-control ARLs of various GWMA control charts are used for
comparison. Table 1 presents theARL values for theGWMAcontrol chart for detecting small
process mean shifts of autocorrelated observations with time-varying control limits when the
processmean shifts from u0 to u0+δ(δ = 0.25, 0.5, 0.75, 1.00, 1.25, 2, 00, 3.00), the design
parameter q(q = 0.8, 0.85, 0.9), the correlation coefficient (φ = 0.1, 0.2, 0.3, 0.4, 0.8) and
the adjustable parameter α(α = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0). When α = 1, the GWMA
control chart reduces to the EWMA control chart. We conduct a sensitivity analysis by
comparing the out-of-control ARLs for one (q, α, L) combination to those associated with
another (q, α, L) combination. The optimal parameters are designed in the sense that for a
fixed in-control ARL, they yield the least possible out-of-control ARL for a specific process
mean shift δ and a given autocorrelation coefficient φ. The numerical results in Table 1
show that the GWMA control chart outperforms the corresponding EWMA control chart for
detecting small process mean shifts of autocorrelated observations with time-varying control
limits. The smallest ARLs value obtained to detect shifts δ in the process mean is highlighted
with boldface in Table 1. For example, when φ = 0.3, q = 0.85, the process mean shift
δ = 0.5, the ARL of the GWMA control chart with α = 0.6, and L = 2.811 is 46.03, which
compares with the ARL of the EWMA control chart with α = 1, L = 2.733 is 55.63.

4 An example

We use a set of simulated data to illustrate the GWMA control charts for detecting small
process mean shifts of autocorrelated observations. In Tables 2, 3, and 4, we use X j to
represent autocorrelated observations, Z j to represent EWMA statistics, and Y j to represent
GWMA statistics. In Table 2 we consider the GWMA control chart for detecting small
process mean shifts of autocorrelated observations which follow the AR(1) process with
φ = 0.2, σ 2

ε = 1. We assume that the process mean shift δ = 0.5 and 50 samples are
generated. Within Table 2, the threshold for in-control ARL is set to ARL ∼= 370. The
parameters q = 0.85, α = 0.7, L = 2.813 for the GWMA statistics and the parameters
q = 0.85, α = 1, L = 2.703 for the EWMA statistics. In Table 2 the EWMA control charts
detect an out-of-control signal at observation 37 whereas the GWMA control chart detects an
out-of-control signal at observation 33. In Table 3 we consider the GWMA control chart for
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Table 2 Example of GWMA and EWMA control charts for detecting small process mean shifts of autocorre-
lated observations from AR(1) when φ = 0.2 and process mean shift δ=0.5

j X j Z j EWMA Y j GWMA

LCL UCL LCL UCL

1 − 0.060 − 0.009 − 0.414 0.414 − 0.009 − 0.422 0.422

2 0.451 0.060 − 0.595 0.595 0.063 − 0.520 0.520

3 2.698 0.456 − 0.704 0.704 0.438 − 0.570 0.570

4 − 1.250 0.200 − 0.774 0.774 0.059 − 0.601 0.601

5 1.031 0.325 − 0.821 0.821 0.245 − 0.623 0.623

6 − 0.347 0.224 − 0.854 0.854 0.114 − 0.639 0.639

7 2.101 0.505 − 0.876 0.876 0.425 − 0.651 0.651

8 − 0.351 0.377 − 0.893 0.893 0.217 − 0.661 0.661

9 − 0.471 0.250 − 0.904 0.904 0.122 − 0.669 0.669

10 0.152 0.235 − 0.912 0.912 0.152 − 0.675 0.675

11 0.705 0.306 − 0.918 0.918 0.237 − 0.681 0.681

12 1.209 0.441 − 0.922 0.922 0.357 − 0.685 0.685

13 0.177 0.401 − 0.925 0.925 0.278 − 0.689 0.689

14 − 0.024 0.338 − 0.927 0.927 0.223 − 0.692 0.692

15 0.459 0.356 − 0.929 0.929 0.264 − 0.695 0.695

16 0.245 0.339 − 0.930 0.930 0.248 − 0.697 0.697

17 1.187 0.466 − 0.931 0.931 0.384 − 0.699 0.699

18 0.498 0.471 − 0.932 0.932 0.355 − 0.701 0.701

19 0.918 0.538 − 0.932 0.932 0.419 − 0.703 0.703

20 0.363 0.512 − 0.932 0.932 0.374 − 0.704 0.704

21 1.003 0.586 − 0.933 0.933 0.457 − 0.705 0.705

22 − 0.136 0.477 − 0.933 0.933 0.330 − 0.707 0.707

23 − 0.438 0.340 − 0.933 0.933 0.227 − 0.707 0.707

24 0.313 0.336 − 0.933 0.933 0.273 − 0.708 0.708

25 − 0.047 0.279 − 0.933 0.933 0.228 − 0.709 0.709

26 − 0.592 0.148 − 0.933 0.933 0.121 − 0.710 0.710

27 − 0.123 0.107 − 0.933 0.933 0.126 − 0.710 0.710

28 2.615 0.484 − 0.933 0.933 0.522 − 0.711 0.711

29 0.390 0.470 − 0.933 0.933 0.399 − 0.711 0.711

30 0.875 0.530 − 0.933 0.933 0.450 − 0.712 0.712

31 0.636 0.546 − 0.933 0.933 0.444 − 0.712 0.712

32 2.063 0.774 − 0.933 0.933 0.665 − 0.713 0.713

33 1.765 0.922 − 0.933 0.933 0.745 − 0.713 0.713

34 0.216 0.816 − 0.933 0.933 0.587 − 0.713 0.713

35 0.463 0.763 − 0.933 0.933 0.562 − 0.714 0.714

36 1.518 0.877 − 0.933 0.933 0.698 − 0.714 0.714
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Table 2 (continued)

j X j Z j EWMA Y j GWMA

LCL UCL LCL UCL

37 2.476 1.117 − 0.933 0.933 0.913 − 0.714 0.714

38 1.589 1.188 − 0.933 0.933 0.914 − 0.714 0.714

39 − 0.077 0.998 − 0.933 0.933 0.699 − 0.714 0.714

40 − 0.746 0.736 − 0.933 0.933 0.497 − 0.715 0.715

41 − 0.380 0.569 − 0.933 0.933 0.423 − 0.715 0.715

42 − 1.166 0.309 − 0.933 0.933 0.235 − 0.715 0.715

43 0.184 0.290 − 0.933 0.933 0.313 − 0.715 0.715

44 0.847 0.373 − 0.933 0.933 0.421 − 0.715 0.715

45 1.976 0.614 − 0.933 0.933 0.645 − 0.715 0.715

46 1.510 0.749 − 0.933 0.933 0.705 − 0.715 0.715

47 1.595 0.875 − 0.933 0.933 0.782 − 0.715 0.715

48 − 0.770 0.628 − 0.933 0.933 0.488 − 0.716 0.716

49 1.070 0.695 − 0.933 0.933 0.623 − 0.716 0.716

50 1.394 0.780 − 0.933 0.933 0.718 − 0.716 0.716

The parameters q = 0.9, α = 0.6 and L = 2.688 for theGWMAstatistics. The parameters and q = 0.9, α = 1
and L = 2.609 for the EWMA statistics. Bold values indicate the detection of an out-of-control signal for
observationswith their corresponding autocorrelated EWMAcontrol statisticsZj andGWMAcontrol statistics
Yj

detecting small process mean shifts of autocorrelated observations which follow the AR(1)
process with φ = 0.4, σ 2

ε = 1. In Table 3 we assume that the process means shift δ = 0.5
and 65 samples are generated. Within Table 3, the threshold for in-control ARL is set to ARL
∼= 370. The parameters q = 0.9, α = 0.6 and L = 2.688 for the GWMA statistics and the
parameters and q = 0.9, α = 1 and L = 2.609 for the EWMA statistics. In Table 3 the
EWMA control chart detects an out-of-control signal at observation 62 whereas the GWMA
control chart detects an out-of-control signal at observation 10. In Table 4 we consider the
GWMA control chart for detecting small process mean shifts of autocorrelated observations
which follow the AR(1) process with φ = 0.8, σ 2

ε = 1. In Table 4 we assume that the
process mean shift δ = 1 and 50 samples are generated. Within Table 4, the threshold for
in control ARL is set to ARL ∼= 370. The parameters q = 0.9α = 0.6 and L = 2.420 for
the GWMA statistics and the parameters q = 0.9 α = 1 and L = 2.453 for the EWMA
statistics. In Table 4, the EWMA control chart detects an out-of-control signal at observation
42 whereas the GWMA control chart detects an out-of-control signal at observation 27.
Figure 1 plots the GWMA and EWMA control charts for detecting small process mean shifts
of autocorrelated observations from AR(1) when φ=0.2 and process mean shift δ=0.5. The
parameters q = 0.9, α = 0.6 and L = 2.688 for the GWMA statistics. The parameters
q = 0.9, α = 1 and L = 2.609 for the EWMA statistics. Figure 2 plots the GWMA and
EWMA control charts for detecting small process mean shifts of autocorrelated observations
fromAR(1) when φ=0.4 and process mean shift δ=0.5. The parameters q = 0.9, α = 0.6 and
L = 2.688 for the GWMA statistics. The parameters q = 0.9, α = 1 and L = 2.609 for the
EWMA statistics. Figure 3 plots the GWMA and EWMA control charts for detecting small
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Table 3 Example of GWMA and EWMA control charts for detecting small process mean shifts of autocorre-
lated observations from AR(1) when φ=0.4 and process mean shift δ=0.5

j X j Z j EWMA Y j GWMA

LCL UCL LCL UCL

1 − 0.060 − 0.006 − 0.260 0.260 − 0.006 − 0.269 0.269

2 1.450 0.140 − 0.415 0.415 0.142 − 0.341 0.341

3 0.885 0.214 − 0.524 0.524 0.155 − 0.380 0.380

4 1.468 0.340 − 0.603 0.603 0.240 − 0.405 0.405

5 0.371 0.343 − 0.661 0.661 0.182 − 0.422 0.422

6 − 0.681 0.240 − 0.706 0.706 0.068 − 0.435 0.435

7 1.382 0.354 − 0.740 0.740 0.221 − 0.445 0.445

8 1.225 0.442 − 0.767 0.767 0.265 − 0.454 0.454

9 1.758 0.573 − 0.788 0.788 0.356 − 0.460 0.460

10 2.325 0.748 − 0.805 0.805 0.469 − 0.466 0.466

11 − 0.552 0.618 − 0.818 0.818 0.256 − 0.471 0.471

12 − 1.489 0.408 − 0.829 0.829 0.087 − 0.475 0.475

13 − 2.019 0.165 − 0.837 0.837 − 0.062 − 0.479 0.479

14 − 1.928 − 0.044 − 0.844 0.844 − 0.152 − 0.483 0.483

15 − 1.640 − 0.204 − 0.850 0.850 − 0.199 − 0.486 0.486

16 − 0.604 − 0.244 − 0.854 0.854 − 0.147 − 0.488 0.488

17 1.168 − 0.103 − 0.858 0.858 0.032 − 0.491 0.491

18 1.174 0.025 − 0.860 0.860 0.112 − 0.493 0.493

19 0.580 0.080 − 0.863 0.863 0.110 − 0.495 0.495

20 1.207 0.193 − 0.865 0.865 0.191 − 0.497 0.497

21 − 0.521 0.122 − 0.866 0.866 0.065 − 0.499 0.499

22 − 2.081 − 0.099 − 0.867 0.867 − 0.135 − 0.500 0.500

23 − 0.891 − 0.178 − 0.868 0.868 − 0.121 − 0.502 0.502

24 0.837 − 0.076 − 0.869 0.869 0.028 − 0.503 0.503

25 1.077 0.039 − 0.870 0.870 0.110 − 0.504 0.504

26 0.189 0.054 − 0.870 0.870 0.074 − 0.506 0.506

27 0.449 0.093 − 0.871 0.871 0.099 − 0.507 0.507

28 − 0.088 0.075 − 0.871 0.871 0.059 − 0.508 0.508

29 − 0.422 0.025 − 0.871 0.871 0.013 − 0.509 0.509

30 − 1.070 − 0.084 − 0.872 0.872 − 0.077 − 0.510 0.510

31 − 2.448 − 0.321 − 0.872 0.872 − 0.265 − 0.510 0.510

32 − 0.574 − 0.346 − 0.872 0.872 − 0.182 − 0.511 0.511

33 − 0.527 − 0.364 − 0.872 0.872 − 0.172 − 0.512 0.512

34 − 0.135 − 0.341 − 0.872 0.872 − 0.133 − 0.513 0.513

35 − 1.560 − 0.463 − 0.872 0.872 − 0.262 − 0.513 0.513

36 − 0.937 − 0.510 − 0.872 0.872 − 0.258 − 0.514 0.514

37 − 0.361 − 0.496 − 0.872 0.872 − 0.217 − 0.515 0.515

38 0.266 − 0.419 − 0.872 0.872 − 0.143 − 0.515 0.515

39 0.569 − 0.321 − 0.872 0.872 − 0.077 − 0.516 0.516

40 − 1.421 − 0.431 − 0.872 0.872 − 0.236 − 0.516 0.516
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Table 3 (continued)

j X j Z j EWMA Y j GWMA

LCL UCL LCL UCL

41 0.816 − 0.306 − 0.872 0.872 − 0.076 − 0.517 0.517

42 − 0.690 − 0.344 − 0.872 0.872 − 0.166 − 0.517 0.517

43 − 0.152 − 0.325 − 0.872 0.872 − 0.140 − 0.518 0.518

44 − 1.377 − 0.430 − 0.872 0.872 − 0.257 − 0.518 0.518

45 0.074 − 0.380 − 0.872 0.872 − 0.166 − 0.519 0.519

46 − 0.710 − 0.413 − 0.872 0.872 − 0.218 − 0.519 0.519

47 − 0.041 − 0.376 − 0.872 0.872 − 0.170 − 0.519 0.519

48 − 0.254 − 0.363 − 0.873 0.873 − 0.175 − 0.520 0.520

49 0.295 − 0.298 − 0.873 0.873 − 0.119 − 0.520 0.520

50 0.543 − 0.214 − 0.873 0.873 − 0.067 − 0.520 0.520

51 − 0.060 − 0.198 − 0.872 0.872 − 0.094 − 0.516 0.516

52 0.550 − 0.123 − 0.872 0.872 − 0.036 − 0.517 0.517

53 − 1.045 − 0.216 − 0.872 0.872 − 0.166 − 0.517 0.517

54 2.135 0.019 − 0.872 0.872 0.100 − 0.518 0.518

55 0.847 0.102 − 0.872 0.872 0.084 − 0.518 0.518

56 1.721 0.264 − 0.872 0.872 0.196 − 0.519 0.519

57 2.129 0.451 − 0.872 0.872 0.302 − 0.519 0.519

58 0.793 0.485 − 0.872 0.872 0.243 − 0.519 0.519

59 1.355 0.572 − 0.873 0.873 0.298 − 0.520 0.520

60 2.422 0.757 − 0.873 0.873 0.437 − 0.520 0.520

61 1.772 0.858 − 0.873 0.873 0.452 − 0.520 0.520

62 1.352 0.908 − 0.872 0.872 0.445 − 0.519 0.519

63 − 0.278 0.789 − 0.873 0.873 0.296 − 0.520 0.520

64 − 1.303 0.580 − 0.873 0.873 0.132 − 0.520 0.520

65 0.035 0.526 − 0.873 0.873 0.175 − 0.520 0.520

The parameters q = 0.9, α = 0.6 and L = 2.688 for theGWMAstatistics. The parameters and q = 0.9, α = 1
and L = 2.609 for the EWMA statistics. Bold values indicate the detection of an out-of-control signal for
observationswith their corresponding autocorrelated EWMAcontrol statisticsZj andGWMAcontrol statistics
Yj

process mean shifts of autocorrelated observations from AR(1) when φ=0.8 and process
mean shift δ=1. The parameters q = 0.9α = 0.6 and L = 2.420 for the GWMA statistics.
The parameters q = 0.9α = 1 and L = 2.453 for the EWMA statistics. The solid line
in Figs. 1, 2, and 3 is GWMA statistics and the dashed line is the EWMA statistics. From
Figs. 1, 2, and 3 we can see that the GWMA control chart for detecting small process mean
shifts of autocorrelated observations needs less time to obtain an out-of-control signal than
the EWMA control chart. That is, the GWMA control chart outperforms the EWMA control
chart for detecting small process mean shifts of autocorrelated observations.
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Table 4 Example of GWMA and EWMA control charts for detecting small process mean shifts of autocorre-
lated observations from AR(1) when φ=0.8 and process mean shift δ=1

j X j Z j EWMA Y j GWMA

LCL UCL LCL UCL

1 0.440 0.044 − 0.245 0.245 0.044 − 0.242 0.242

2 2.114 0.251 − 0.442 0.442 0.232 − 0.341 0.341

3 2.304 0.456 − 0.606 0.606 0.347 − 0.410 0.410

4 0.854 0.496 − 0.743 0.743 0.286 − 0.462 0.462

5 1.598 0.606 − 0.856 0.856 0.362 − 0.503 0.503

6 2.063 0.752 − 0.951 0.951 0.452 − 0.537 0.537

7 0.599 0.737 − 1.029 1.029 0.365 − 0.564 0.564

8 − 1.201 0.543 − 1.094 1.094 0.166 − 0.587 0.587

9 − 0.748 0.414 − 1.147 1.147 0.116 − 0.607 0.607

10 − 1.107 0.262 − 1.191 1.191 0.032 − 0.624 0.624

11 − 0.305 0.205 − 1.228 1.228 0.055 − 0.638 0.638

12 0.022 0.187 − 1.258 1.258 0.078 − 0.651 0.651

13 1.958 0.364 − 1.283 1.283 0.276 − 0.662 0.662

14 3.396 0.667 − 1.303 1.303 0.512 − 0.671 0.671

15 3.471 0.947 − 1.320 1.320 0.658 − 0.680 0.680

16 2.310 1.084 − 1.334 1.334 0.657 − 0.688 0.688

17 0.610 1.036 − 1.345 1.345 0.528 − 0.694 0.694

18 0.156 0.948 − 1.354 1.354 0.444 − 0.701 0.701

19 − 0.894 0.764 − 1.362 1.362 0.296 − 0.706 0.706

20 0.331 0.721 − 1.368 1.368 0.338 − 0.711 0.711

21 − 0.193 0.629 − 1.373 1.373 0.282 − 0.716 0.716

22 0.311 0.597 − 1.377 1.377 0.302 − 0.720 0.720

23 1.062 0.644 − 1.380 1.380 0.376 − 0.724 0.724

24 2.128 0.792 − 1.383 1.383 0.515 − 0.727 0.727

25 2.912 1.004 − 1.385 1.385 0.669 − 0.731 0.731

26 2.403 1.144 − 1.387 1.387 0.715 − 0.734 0.734

27 2.270 1.257 − 1.388 1.388 0.756 − 0.736 0.736

28 1.524 1.284 − 1.390 1.390 0.724 − 0.739 0.739

29 1.525 1.308 − 1.391 1.391 0.729 − 0.741 0.741

30 − 0.207 1.156 − 1.391 1.391 0.565 − 0.744 0.744

31 − 1.423 0.898 − 1.392 1.392 0.373 − 0.746 0.746

32 − 0.442 0.764 − 1.393 1.393 0.361 − 0.748 0.748

33 − 0.093 0.678 − 1.393 1.393 0.358 − 0.750 0.750

34 0.317 0.642 − 1.393 1.393 0.380 − 0.751 0.751

35 − 0.705 0.508 − 1.394 1.394 0.279 − 0.753 0.753

36 − 0.078 0.449 − 1.394 1.394 0.290 − 0.754 0.754
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Table 4 (continued)

j X j Z j EWMA Y j GWMA

LCL UCL LCL UCL

37 2.515 0.656 − 1.394 1.394 0.538 − 0.756 0.756

38 3.524 0.942 − 1.394 1.394 0.750 − 0.757 0.757

39 2.487 1.097 − 1.394 1.394 0.778 − 0.759 0.759

40 1.255 1.113 − 1.394 1.394 0.710 − 0.760 0.760

41 2.694 1.271 − 1.394 1.394 0.847 − 0.761 0.761

42 2.583 1.402 − 1.395 1.395 0.906 − 0.762 0.762

43 1.718 1.434 − 1.395 1.395 0.872 − 0.763 0.763

44 − 0.099 1.280 − 1.395 1.395 0.696 − 0.764 0.764

45 − 0.346 1.118 − 1.395 1.395 0.595 − 0.765 0.765

46 − 1.144 0.891 − 1.395 1.395 0.450 − 0.766 0.766

47 − 2.319 0.570 − 1.395 1.395 0.242 − 0.767 0.767

48 − 0.100 0.413 − 1.395 1.395 0.246 − 0.768 0.768

49 0.146 0.387 − 1.395 1.395 0.319 − 0.769 0.769

50 0.839 0.432 − 1.395 1.395 0.402 − 0.769 0.769

The parameters q = 0.9α = 0.6 and L = 2.420 for the GWMA statistics. The parameters q = 0.9 α = 1
and L = 2.453 for the EWMA statistics. Bold values indicate the detection of an out-of-control signal for
observationswith their corresponding autocorrelated EWMAcontrol statisticsZj andGWMAcontrol statistics
Yj

Fig. 1 GWMAand EWMAcontrol chart for detecting small process mean shifts of autocorrelated observations
from AR(1) when φ = 0.2 and process mean shift δ = 0.5. The parameters q = 0.9, α = 0.6 and L = 2.688
for the GWMA statistics. The parameters and q = 0.9, α = 1 and L = 2.609 for the EWMA statistics
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Fig. 2 GWMAand EWMAcontrol chart for detecting small process mean shifts of autocorrelated observations
from AR(1) when φ = 0.4 and process mean shift δ = 0.5. The parameters q = 0.9, α = 0.6 and L = 2.688
for the GWMA statistics. The parameters and q = 0.9, α = 1 and L = 2.609 for the EWMA statistics

Fig. 3 GWMAand EWMAcontrol chart for detecting small process mean shifts of autocorrelated observations
from AR(1) when φ = 0.8 and process mean shift δ = 1. The parameters q = 0.9, α = 0.6 and L = 2.420
for the GWMA statistics. The parameters q = 0.9, α = 1 and L = 2.453 for the EWMA statistics

5 Conclusion

The statistical process control chart is primarily applied to monitor the production process
or service process and detect the process change as soon as possible. The EWMA (exponen-
tially weighted moving average) control chart has been widely used to detect small shifts in
the process mean. Sheu and Lin (2003) proposed the GWMA (generally weighted moving
average) control chartfor detecting small process mean shifts of independent observations.
The GWMA control chart is the extended version of the EWMA control chart. The GWMA
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control chart has been widely investigated. In this paper, the definition, and properties of the
GWMA control chart are being further analyzed and investigated for detecting small process
mean shifts of autocorrelated observations. Theweight of GWMA technique depends on time
t, thus, there is no recursive formula for the GWMA technique and the GWMA technique
has no Markovian property. The GWMA control chart is more practical for detecting small
process mean shifts of autocorrelated observations. The EWMA technique and the weighted
moving average (WMA) technique can be shown to be special cases of the GWMA tech-
nique. We also provided some properties of the GWMA technique, including its variance
and expected value. Finally, we discuss the applications of the GWMA technique in quality
engineering. A numerical simulation comparison shows that the GWMA control chart out-
performs the EWMA control chart for detecting small process mean shifts of autocorrelated
observations.

Declarations

Conflict of interest The authors declare that they havenoknown funding and/or conflicts of interests/competing
interests that could have appeared to influence the work reported in this paper.

References

Alwan, L. C., &Roberts, H. V. (1988). Time-seriesmodeling for statistical process control. Journal of Business
& Economics Statistics, 6(1), 87–95. https://doi.org/10.2307/1391421

Ali, R., & Haq, A. (2017). A mixed GWMA–CUSUM control chart for monitoring the process mean.
Communications in Statistics-Simulation and Computation, 47(15), 4788–4803. https://doi.org/10.1080/
03610926.2017.1361994

Alevizakos, V., Koukouvinos, C., & Lappa, A. (2018). Monitoring of the time between events with a double
generally weighted moving average control chart. Quality and Reliability Engineering International.
https://doi.org/10.1002/qre.2430

Alevizakos, V., & Koukouvinos, C. (2019). A generally weighted moving average control chart for zero-
inflated Poisson processes. Quality and Reliability Engineering International. https://doi.org/10.1002/
qre.2599

Alevizakos, V., Chatterjee, K., & Koukouvinos, C. (2021). The triple exponentially weighted moving average
control chart.Quality Technology &Quantitative Management, 18(3), 326–354. https://doi.org/10.1080/
16843703.2020.1809063

Alevizakos, V., Chatterjee, K., Koukouvinos, C., & Lappa, A. (2022a). A double generally weighted moving
average control chart for monitoring the process variability. Journal of Applied Statistics. https://doi.org/
10.1080/02664763.2022.2064977

Alevizakos, V., Chatterjee, K., & Koukouvinos, C. (2022b). The quadruple exponentially weighted moving
average control chart.Quality Technology & Quantitative Management, 19(1), 50–73. https://doi.org/10.
1080/16843703.2021.1989141

Capizzi, G., & Masarotto, G. (2003). An adaptive exponentially weighted moving average control chart.
Technometrics, 45(3), 199–207. https://doi.org/10.1198/004017003000000023

Chen, R., Li, Z., & Zhang, J. (2019). A generally weighted moving average control chart for monitoring the
coefficient of variation. Applied Mathematical Modelling, 70, 190–205. https://doi.org/10.1016/j.apm.
2019.01.034

Chatterjee, K., Koukouvinos, C., & Lappa, A. (2021). A S 2-GWMA control chart for monitoring the process
variability. Quality Engineering, 33(3), 338–353. https://doi.org/10.1080/08982112.2021.1936553

Chatterjee, K., Koukouvinos, C., & Lappa, A. (2023). Monitoring process mean and dispersion with one
double generally weighted moving average control chart. Journal of Applied Statistics, 50(1), 19–42.
https://doi.org/10.1080/02664763.2021.1980506

Crowder, S.V. (1987). A simplemethod for studying run length distributions of exponentiallyweightedmoving
average control charts. Technometrics, 29, 401–407. https://doi.org/10.2307/1269450

Crowder, S. V. (1989). Design of exponentially weighted moving average schemes. Journal of Quality Tech-
nology, 21(3), 155–162. https://doi.org/10.1080/00224065.1989.11979164

123

https://doi.org/10.2307/1391421
https://doi.org/10.1080/03610926.2017.1361994
https://doi.org/10.1002/qre.2430
https://doi.org/10.1002/qre.2599
https://doi.org/10.1080/16843703.2020.1809063
https://doi.org/10.1080/02664763.2022.2064977
https://doi.org/10.1080/16843703.2021.1989141
https://doi.org/10.1198/004017003000000023
https://doi.org/10.1016/j.apm.2019.01.034
https://doi.org/10.1080/08982112.2021.1936553
https://doi.org/10.1080/02664763.2021.1980506
https://doi.org/10.2307/1269450
https://doi.org/10.1080/00224065.1989.11979164


Annals of Operations Research

Haq, A. (2012). A new hybrid exponentially weighted moving average control chart for monitoring process
mean.Quality and Reliability Engineering International, 29(7), 1015–1025. https://doi.org/10.1002/qre.
1453

Hunter, J. S. (1986). The exponentially weightedmoving average. Journal of Quality Technology, 18, 203–210.
https://doi.org/10.1080/00224065.1986.11979014

Harris, T. J., &Ross,W.H. (1991). Statistical process control procedures for correlated observations.Canadian
Journal of Chemical Engineering, 69(1), 48–57. https://doi.org/10.1002/cjce.5450690106

Haq, A., & Abidin, Z. U. (2020). An enhanced GWMA chart for process mean. Communications in Statistics
- Simulation and Computation, 49(4), 847–866. https://doi.org/10.1080/03610918.2018.1484479

Koehler, A. B., Marks, N. B., & O’Connell, R. T. (2001). EWMA control charts for autoregressive pro-
cesses. Journal of the Operational Research Society, 52(6), 699–707. https://doi.org/10.1057/palgrave.
jors.2601140

Karakani, H. M., Human, S. W., & Niekerk, J. V. (2018). A double generally weighted moving average
exceedance control chart. Quality and Reliability Engineering International. https://doi.org/10.1002/
qre.2393

Lu, C. W., & Reynolds, M. R., Jr. (1999a). EWMA control charts for monitoring the mean of autocorre-
lated processes. Journal of Quality Technology, 31(2), 166–188. https://doi.org/10.1080/00224065.1999.
11979913

Lu, C. W., & Reynolds, M. R., Jr. (1999b). Control charts for monitoring the mean and the variance of auto-
correlated processes. Journal of Quality Technology, 31(3), 259–274. https://doi.org/10.1080/00224065.
1999.11979925

Lucas, J. M., & Saccucci, M. S. (1990). Exponentially weighted moving average control schemes: Properties
and enhancements. Technometrics, 32(1), 1–12. https://doi.org/10.2307/1269835

Liu, Y.-M., & Xue, L. (2015). The optimization design of EWMA charts for monitoring environmental per-
formance. Annals of Operations Research, 228, 113–124. https://doi.org/10.1007/s10479-012-1223-9

Lu, S. L. (2016). Applying fast initial response features on GWMA control charts for monitoring autocorre-
lation data. Communication in Statistics-Theory and Methods. https://doi.org/10.1080/03610926.2014.
904348

Li, Q., Yang, J., Huang, S., &Zhao, Y. (2021). Generally weightedmoving average control chart formonitoring
two-parameter exponential distribution with measurement errors. Computers & Industrial Engineering.
https://doi.org/10.1016/j.cie.2021.107902

Montgomery, D. C., &Mastrangelo, C. M. (1991). Some statistical process control methods for autocorrelated
data. Journal of Quality Technology, 23(3), 179–204. https://doi.org/10.1080/00224065.1991.11979321

Mastrangelo, C. M., & Montgomery, D. C. (1995). SPC with correlated observations for the chemical and
process industries. International Journal of Reliability, Quality and Safety Engineering, 11(2), 79–89.
https://doi.org/10.1002/qre.4680110203

MacCarthy, B. L., & Wasusri, T. (2001). Statistical process control for monitoring scheduling perfor-
mance—addressing the problem of correlated data. Journal of the Operational Research Society, 52(7),
810–820. https://doi.org/10.1057/palgrave.jors.2601165

Mitra, A., Bok, L. K., & Chakraborti, S. (2019). An adaptive exponentially weighted moving average-type
control chart to monitor the process mean. European Journal of Operational Research, 279(3), 902–911.
https://doi.org/10.1016/j.ejor.2019.07.002

Mabude, K., Malela-Majika, J. C., & Shongwe, S. C. (2020a). A new distribution-free generally weighted
moving averagemonitoring scheme for detecting unknowmean shifts. International Journal of Industrial
Engineering Computations, 11(2), 235–254. https://doi.org/10.5267/j.ijiec.2019.9.001

Mabude, K.,Malela-Majika, J. C., Castagliola, P., &Shongwe, S. C. (2020b). Generallyweightedmoving aver-
age monitoring scheme: Overview and perspectives. Quality and Reliability Engineering International.
https://doi.org/10.1002/qre.2765

Mabude, K., Malela-Majika, J.-C., Aslam, M., Chong, Z. L., & Shongwe, S. C. (2020c). Distribution-free
composite Shewhart-GWMA Mann-Whitney charts for monitoring the process location. Quality and
Reliability Engineering International. https://doi.org/10.1002/qre.2804

Mabude, K., Malela-Majika, J.-C., Castagliola, P., & Shongwe, S. C. (2022). Distribution-free mixed
GWMA-CUSUM and CUSUM-GWMAMann-Whitney charts to monitor unknown shifts in the process
location. Communications in Statistics-Simulation and Computation. https://doi.org/10.1080/03610918.
2020.1811331

Nakagawa, T., & Osaki, S. (1975). The discrete Weibull distribution. IEEE Transactions Reliability, 24(5),
300–301. https://ieeexplore.ieee.org/document/5214915

Ng, C. H., & Case, K. E. (1989). Development and evaluation of control charts using exponentially weighted
moving average. Journal ofQuality Technology, 21(4), 242–250. https://doi.org/10.1080/00224065.1989.
11979182

123

https://doi.org/10.1002/qre.1453
https://doi.org/10.1080/00224065.1986.11979014
https://doi.org/10.1002/cjce.5450690106
https://doi.org/10.1080/03610918.2018.1484479
https://doi.org/10.1057/palgrave.jors.2601140
https://doi.org/10.1002/qre.2393
https://doi.org/10.1080/00224065.1999.11979913
https://doi.org/10.1080/00224065.1999.11979925
https://doi.org/10.2307/1269835
https://doi.org/10.1007/s10479-012-1223-9
https://doi.org/10.1080/03610926.2014.904348
https://doi.org/10.1016/j.cie.2021.107902
https://doi.org/10.1080/00224065.1991.11979321
https://doi.org/10.1002/qre.4680110203
https://doi.org/10.1057/palgrave.jors.2601165
https://doi.org/10.1016/j.ejor.2019.07.002
https://doi.org/10.5267/j.ijiec.2019.9.001
https://doi.org/10.1002/qre.2765
https://doi.org/10.1002/qre.2804
https://doi.org/10.1080/03610918.2020.1811331
https://ieeexplore.ieee.org/document/5214915
https://doi.org/10.1080/00224065.1989.11979182


Annals of Operations Research

Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2), 100–115. https://doi.org/10.1093/
biomet/41.1-2.100

Perry, M. B. (2010). The exponentially weighted moving average.Wiley Encyclopedia of Operations Research
and Management Science. https://doi.org/10.1002/9780470400531.eorms0314

Robert, S. W. (1959). Control chart tests based on geometric moving averages. Technometrics, 1(3), 239–250.
https://doi.org/10.1080/00401706.1959.10489860

Shewhart, W. A. (1931). Economic Control of Quality. D. Van Nostrand Co.
Sukparungsee, S. (2018). An approximation of average run length using the Markov chain of a generally

weighted moving average chart to monitor the number of defects. Songklanakarin Journal of Science
and Technology, 40(6), 1368–1377. https://doi.org/10.14456/sjst-psu.2018.168

Shamma, S. E., & Shamma, A. K. (1992). Development and evaluation of control charts using double expo-
nentially weightedmoving averages. International Journal of Quality & Reliability Management. https://
doi.org/10.1108/02656719210018570

Schmid, W. (1995). On the run length of a Shewhart chart for correlated data. Statistical Papers, 36(2),
111–130. https://doi.org/10.1007/BF02926025

Schmid, W. (1997). On EWMA charts for time series. In H. J. Lenz, P.-Th. Wilrich (Eds.), Frontiers of
Statistical Quality Control 5. Physica-Verlag. https://doi.org/10.1007/978-3-642-59239-3_10

Schmid, W., & Schore, A. (1997). Some properties of the EWMA control chart in the presence of autocorre-
lation. Annals of Statistics, 25(3), 1277–1283. https://doi.org/10.1214/aos/1069362748

Sheu, S. H. (1988). A generalized age and block replacement of a system subject to shock. European Journal
of Operational Research, 108(2), 345–362. https://doi.org/10.1016/S0377-2217(97)00051-9

Sheu, S. H., & Griffith, W. S. (1996). Optimal number of minimal repairs before replacement of a sys-
tem subject to shocks. Naval Research Logistics, 43(3), 319–333. https://doi.org/10.1002/(SICI)1520-
6750(199604)43:3<319::AID-NAV1>3.0.CO;2-C

Sheu, S. H., &Lin, T. C. (2003). The generally weightedmoving average control chart for detecting small shifts
in the process mean. Quality Engineering, 16(2), 209–231. https://doi.org/10.1081/QEN-120024009

Sheu, S. H., & Lu, S. L. (2008). Monitoring autocorrelated process mean and variance using a GWMA chart
based on residuals. Asia Pacific Journal of Operational Research, 25(6), 781–792. https://doi.org/10.
1142/S0217595908002012

Sheu, S. H., & Lu, S. L. (2009a). Monitoring the mean of autocorrelated observations with one generally
weighted moving average control chart. Journal of Statistical Computation and Simulation, 79(12),
1393–1406. https://doi.org/10.1080/00949650802338323

Sheu, S. H., & Lu, S. L. (2009b). The effect of autocorrelated observations on a GWMA control chart
performance. International Journal of Quality & Reliability Management, 26(2), 112–128. https://doi.
org/10.1108/02656710910928770

Sheu, S. H., & Chiu, W. C. (2007). Poisson GWMA control chart. Communications in Statistics Simulation
and Computation, 36(5), 1099–1114. https://doi.org/10.1080/03610910701540037

Sheu, S. H., & Hsieh, Y. T. (2008). The extended GWMA control chart. Journal of Applied Statistics, 36(2),
135–147. https://doi.org/10.1080/02664760802443913

Sheu, S. H., & Tai, S. H. (2006). Generally weighted moving average control chart for monitoring process
variability. The International Journal of Advanced Manufacturing Technology, 30, 452–458. https://doi.
org/10.1007/s00170-005-0091-0

Sheu, S. H., Huang, C. J., & Hsu, T. S. (2013). Maximum chi-square generally weighted moving average
control chart for monitoring process mean and variability. Communications in Statistics - Theory and
Methods, 42(23), 4323–4341. https://doi.org/10.1080/03610926.2011.647213

VanBrackle, L. N., & Reynolds, M. R., Jr. (1997). EWMA and CUSUM control charts in the presence of
correlation. Communications in Statistics-Simulation and Computation, 26(4), 979–1008. https://doi.
org/10.1080/03610919708813421

Vasilopoulos, A. V., & Stamboulis, A. P. (1978). Modification of control chart limits in the presence of
data correlation. Journal of Quality Technology, 10(1), 20–30. https://doi.org/10.1080/00224065.1978.
11980809

Woodall, W. H. (1997). Control charts based on attributes data: Bibliography and review. Journal of Quality
Technology, 29(2), 172–183. https://doi.org/10.1080/00224065.1997.11979748

Yang, L., & Sheu, S. H. (2006). Integratingmultivariate engineering process control andmultivariate statistical
process control. The International Journal of Advanced Manufacturing Technology, 29(1), 129–136.
https://doi.org/10.1007/s00170-004-2494-8

Yang, L., & Sheu, S. H. (2007). The generally weightedmoving averagemedian control chart.Quality Technol-
ogy and Quantitative Management, 4(3), 255–471. https://doi.org/10.1080/16843703.2007.11673162

123

https://doi.org/10.1093/biomet/41.1-2.100
https://doi.org/10.1002/9780470400531.eorms0314
https://doi.org/10.1080/00401706.1959.10489860
https://doi.org/10.14456/sjst-psu.2018.168
https://doi.org/10.1108/02656719210018570
https://doi.org/10.1007/BF02926025
https://doi.org/10.1007/978-3-642-59239-3_10
https://doi.org/10.1214/aos/1069362748
https://doi.org/10.1016/S0377-2217(97)00051-9
https://doi.org/10.1002/(SICI)1520-6750(199604)43:3\newentity lt319::AID-NAV1\newentity gt3.0.CO;2-C
https://doi.org/10.1081/QEN-120024009
https://doi.org/10.1142/S0217595908002012
https://doi.org/10.1080/00949650802338323
https://doi.org/10.1108/02656710910928770
https://doi.org/10.1080/03610910701540037
https://doi.org/10.1080/02664760802443913
https://doi.org/10.1007/s00170-005-0091-0
https://doi.org/10.1080/03610926.2011.647213
https://doi.org/10.1080/03610919708813421
https://doi.org/10.1080/00224065.1978.11980809
https://doi.org/10.1080/00224065.1997.11979748
https://doi.org/10.1007/s00170-004-2494-8
https://doi.org/10.1080/16843703.2007.11673162


Annals of Operations Research

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	The generally weighted moving average control chart for monitoring the process mean of autocorrelated observations
	Abstract
	1 Introduction
	2 The generally weighted moving average technique
	3 The GWMA control chart for detecting small process mean shifts of autocorrelated observations
	4 An example
	5 Conclusion
	References


