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Abstract
As an energy-intensive industry, it is critical for airlines to enhance operation sustainability
under the circular economy. Airline crew pairing problem is to construct job itineraries.
Traditionally, crew pairings are developed based on pre-determined flight schedules. That is,
flight departure times, arrival times, and flying times are considered to be fixed according to
the schedule. However, analytics on historical data reveal that the actual flight duration often
varies according to the actual departure time, which may lead to a deviation of the actual
arrival time from the scheduled time point. Thus, propagated effects are generated as the
departure time and flying time of the next flight are also affected. Aircraft energy research has
revealed that the fuel consumptions and greenhouse gas emissions of aircraft are affected by
the actual flying speed and flight duration. Therefore, it is crucial to consider sustainability
cost factors (i.e., fuel consumptions and greenhouse gas emissions) when building crew
pairings. In this work, in order to enhance operation sustainability and promote circular
economy, we propose a novel crew pairing problem which aims to minimize the total basic
operation cost, the total fuel consumptions and greenhouse gas emissions, and the robustness
cost of the generated pairings. A column generation based solution algorithm is developed.
Computational experiments show that the proposed model can bring a 7.98% decrease in the
sustainability cost and an 1.81% decline in the robustness cost with only 0.55% increase in
the basic operation cost when all the three cost factors are with equal weightings.
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1 Introduction

The air transportation industry has played a crucial role for the current world (Choi et al.,
2019; Wen et al., 2022a, 2022b). It is reported that more than one hundred thousand flights
are operated each day during normal periods.1 As forecasted, air traffic demand will double
in the next twenty years,2 which will certainly lead to a higher traffic volume. The aviation
industry has long been well-known to be an energy-intensive industry. Thus, with the fast
development of circular economy, how to enhance the operation sustainability has become
a critical challenge for the aviation industry (Deveci et al., 2022; Pamucar et al., 2021; Sun
et al., 2021). In the US, 18.27 billion gallons of fuel was consumed by airlines in 2019.3

The figure for the world is 96 billion gallons.4 The associated greenhouse gas emission is
increasing rapidly. It is reported that the global aviation CO2 emissions grow 70% faster than
predicted from 2013 to 2018.5 Worldwide, the aviation industry produces 915 million tonnes
of CO2 in 2019, which occupies 2% of total human-generated carbon dioxide emissions.
The air transport is responsible for 12% of the total emissions among all transport sectors.6

Among various sectors in commercial airlines, air passenger transport generates 81% of the
total emissions. International Civil Aviation Organization (ICAO) expects that the aviation
carbon emission will triple by the year of 2050, which will account for 25% of the total
greenhouse gas emission all over the world (Graver et al., 2019). Therefore, it is obvious that
the fuel consumption andgreenhouse gas emissions are critical issues for the aviation industry.
Authorities have proposed diverse schemeswith the aim of enhancing the sustainability of the
industry (Pamucar et al., 2022). For example, in 2005, the EuropeanUnion (EU) launched the
Emissions Trading System (EU ETS) which covers all flights within the EU and between EU
ETS participating countries. Besides, ICAO proposes a basket of measures to help control
the sustainability issue of the aviation industry. The measures include improving aircraft
technologies with higher fuel efficiency, using sustainable fuels, market-based measures,
and improving air operations.7 Focusing on improving airline operational strategies and
promoting circular economy, this paper proposes a novel operational scheduling model with
fuel consumption and greenhouse gas emission considerations from the perspective of crew
pairing, in order to enhance the sustainability of the aviation transport industry.

Major airlines generally operate thousands of flights each week. Therefore, airline opera-
tional scheduling problem is generally divided into four sequential problems due to the large
problem scale, including flight scheduling, fleet assignment, aircraft maintenance routing,

1 https://www.quora.com/How-many-airplanes-fly-each-day-in-the-world Retrieved on 07 June 2022.
2 https://www.iata.org/contentassets/c81222d96c9a4e0bb4ff6ced0126f0bb/iata-annual-review-2019.pdf
Retrieved on 07 June 2022.
3 https://www.statista.com/statistics/197690/us-airline-fuel-consumption-since-2004/ Retrieved on 07 June
2022.
4 https://www.statista.com/statistics/655057/fuel-consumption-of-airlines-worldwide/ Retrieved on 07 June
2022.
5 https://www.theguardian.com/business/2019/sep/19/airlines-co2-emissions-rising-up-to-70-faster-than-
predicted Retrieved on 07 June 2022.
6 https://www.atag.org/facts-figures.html Retrieved on 07 June 2022.
7 http://www.afcac.org/en/index.php/programmes-activities-environment/global-market-based-measures-
mbm-scheme Retrieved on 07 June 2022.
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and crew scheduling (Deveci and Demirel, 2018a, 2018b). Among them, crew scheduling
assigns crews to serve the flights with a minimum cost. Due to the importance of air crews
for passenger safety, authorities, airlines, and labor unions have regulated diverse rigorous
working rules (like the feasible flight connection times, maximum duty period, and maxi-
mum number of flights allowed in a pairing), which further improves the complexity of the
airline crew scheduling problem. Accordingly, the “unmanageable” airline crew scheduling
problem is solved by sequentially dealing with a crew pairing problem and a crew rostering
problem. The crew pairing problem aims to generate sufficient anonymous legal pairings by
connecting flights to cover all flights. Next, in crew rostering problem, the pairings generated
in the crew pairing problem are connected to form monthly rosters to be assigned to specific
crew members. In some European airlines, crew preferences are considered during roster
construction to better satisfy crew’s needs (e.g., leave and training), while in some American
airlines, the bidding system is applied in which crew members bid for their preferred rosters
published by airlines. In recent years, crew scheduling has attracted increasing attention as the
crew-related cost becomes the second largest component of an airline’s total operation cost
(just after fuel consumption). Therefore, a variety of research has been devoted to reducing
the operation costs of air crews (Antunes et al., 2019; Deveci and Demirel, 2018a, 2018b).
However, as will be discussed later, the sustainability cost is also critical for the crew pairing
problem due to the flight duration variability led by different flight connections, which shall
be integrated into the decision framework.

The crew pairing problem constructs crew pairings to ensure that each scheduled flight
is covered by at least one legal pairing. A legal pairing is a sequence of flights to be served
by the same crew member while the various working rules are satisfied, which starts from
and ends at the crew’s home base. The objective of the traditional crew pairing problem
is to minimize the total operation costs. Traditionally, flights are connected to form crew
pairings according to the pre-determined flight schedules that are prepared several weeks
or even months ago. Flight departure times, arrival times, and flying times are assumed as
fixed. That is, flights are assumed to always depart and arrive on time, while flying times
are deterministic for each flight segment. However, the aviation industry is highly volatile.
Disruptions, like bad weathers, governmental traffic control, and airport congestions, always
lead to deviations of flight schedules. By analyzing historical flight data, previous studies
(Sun et al., 2020b; Wen et al., 2020) have identified that the actual flight duration is highly
related to the actual flight departure time, and the departure time in the day greatly affects
the flight on-time performance. According to Bureau of Transportation Statistics,8 the most
appropriate departure time in the day is 6am-7am, during which flights are mostly possible
to arrive at the destination on time. For every hour later, flight flying times are expected
to grow up by minutes or even hours in some extreme cases. The variation in flying times
inevitably lead to a deviation of the actual flight arrival time from the scheduled time point.
Thus, propagated effects are generated as the departure time and flying time of the next
flight are also affected. In other words, the actual departure time, flying time, and arrival
time of each flight may vary when the flight is covered by different pairings with different
preceding flights. Moreover, research on aviation energy consumption has found that the fuel
consumptions and greenhouse gas emissions of aircraft are dependent on the actual flying
time and flying speed (Aktürk et al., 2014). Therefore, constructing crew pairings just based
on the pre-determined flight schedule without considering flight flying time variability may
lead to poor sustainability performances, which is harmful for the environment and causes
damages for airline’s image.

8 https://www.transtats.bts.gov/ONTIME/ Retrieved on 07 June 2022.
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The main contributions of this study are as follows. First, we improve the sustainability
level of airline crew schedules by proposing a novel crew pairing model which integrates the
basic operation costs and the sustainability cost (i.e., fuel consumptions and greenhouse gas
emissions) into the decision framework. Moreover, we also introduce the pairing robustness
cost, i.e., the total deviations of flight departure/arrival times in the constructed pairings
from the scheduled flight departure/arrival times, into the optimization objective. Second,
when constructing pairings in this study, we calculated the departure-dependent flight flying
times and the expected flight departure and arrival times based on the recursive relationship
developed in our previous study (Sun et al., 2020b; Wen et al., 2020). Thus, we are able to
compute the expected fuel consumption and carbon emissions for each flight in the generated
pairings, as well as the total arrival/departure time deviations. Therefore, our proposed model
can identify a trade-off among operation costs, sustainability costs, and robustness costs
during pairing construction. With this new model, airlines are able to not only contribute to
the environment through reduction in energy consumption and gas emission, but also develop
their corporate social responsibility which is beneficial in image construction. Computational
experiments based on real flight schedules show that the proposed model can bring a 7.98%
decrease in the sustainability cost and an 1.81% decline in the robustness cost with only
0.55% increase in the basic operation cost when all the three cost factors are with equal
weightings.

The rest of the paper is structured as follows. Section 2 reviews the related literature,
while Sect. 3 introduces the problem definition. Then, the proposed novel crew pairing
model is presented in Sect. 4, and Sect. 5 proposes the solution approach. Section 6 conducts
computational experiments, and Sect. 7 concludes this work.

2 Literature review

We review the related literature from two aspects: (i) Airline crew pairing problems and (ii)
airline scheduling with energy consumption considerations.

2.1 Airline crew pairing problems

The aviation industry has long performed an important role in worldwide economy (Choi,
2021; Feng et al., 2022; Li et al., 2021; Prakash et al., 2022). Among the airline scheduling
problems, airline crew pairing problem has been long attracting great attention from both the
industry and the academia (Haouari et al., 2019). After an airline has made the flight schedul-
ing plan, fleet assignment plan, and aircraft routing plan, it is crucial to assign sufficient crew
members to operate those scheduled flights on specific aircrafts (Quesnel et al., 2019). On
one hand, modern airlines are operation thousands of flights per week. For a flight sched-
ule with thousands of flights, there might be millions or even billions of possible pairings.
Selecting a sub-set of pairings from the whole pairing pool with a minimum cost to cover
all the scheduled flights is very difficult. On the other hand, the diverse rigorous working
rules for crew members further complicate the crew pairing problem. If crew members are
not arranged well, flight operations may be disrupted due to manpower problem (Wen et al.,
2022a, 2022b).

As a standard optimization problem, the crew pairing problem has been studied exten-
sively in the operations research society. Date back to 1970s, Marsten et al. (1979) reported a
successful application of the integer programming approach for the crew planning problem.
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From then on, the airline crew pairing problem is generally modelled as a set-covering prob-
lemor a set-partitioning problem.As the number of possible pairings is enormous, researchers
traditionally adopted a “once for all generation technique”. In this technique, a sufficiently
large number of “good” pairings are generated by using heuristics. Then, a set-covering or
set-partitioning problem is applied to identify a sub-set of pairings with a minimum cost
through using integer programming techniques like branch-and-bound, cutting planes, and
sub-gradient optimization. Later in 1980s, Lavoie et al. (1988) made a remarkable progress
in the solution approach for the crew pairing problem by proposing a column generation
based technique to deal with the large scale of the problem.

The objective of the crew pairing problem is to determine a set of legal pairings (p ∈ P)
with a minimum cost, to ensure that each flight is covered by one pairing (set-partitioning
problem) or at least one pairing (set-covering problem), as modelled below.

min
∑

p∈P

cpxp,

s.t .
∑

p∈P

ap f · xp = (≥)1,∀ f ∈ F,

xp ∈ {0, 1},∀p ∈ P.

cp . represents the cost of Pairing p, while apj means whether Pairing p covers Flight f .
When ap f = 1, Flight f is involved in Pairing p; Otherwise, ap f = 0. xp , as the decision
variable, equals 1 if Pairing p is selected, and 0 otherwise.

In recent years, the research on the airline crew pairing problem is divided into two
major directions. The first direction integrates the crew pairing problem with other stages
of airline scheduling problems. For example, Cacchiani and Salazar-González (2017) deal
with a fleet assignment, aircraft routing, and crew pairing integrated problem with the aim of
minimizing the number of crew pairings, the number of aircraft, and thewaiting time of crews
between flights. Similarly, Shao et al. (2017) utilize the Benders decomposition approach
to solve an integrated scheduling problem which involves the fleet assignment problem,
aircraft maintenance routing problem, and crew pairing problem. The second direction tires
to consider side constraints in the crew pairing framework in addition to the traditional flight
coverage constraint. For instance, Quesnel et al. (2019) consider the language requirement in
the pairing decisions and construct a new crew pairing problem variant. Wen et al., (2022a)
integrate the manpower availability constraint into the stage of crew pairing problem to
alleviate the shortcoming of the rigid separated airline crew scheduling approach to some
extent.

In addition to the standard airline crew pairing problem, under the concept of disruption
management, researchers also pay attention to enhancing the robustness of the pairings gen-
erated against potential disruptions or make recovery plans if disruptions occur. For example,
Sun et al. (2020b) propose a bi-criteria robust crew pairing model. They first formulate the
flying time variability and flight departure/arrival interdependency through data analytics on
historical flight schedules. Then, a novel crew pairing model which minimizes not only the
traditional financial costs, but also the robustness costs incurred by the differences between
the scheduled flight departure/arrival times and the calculated expected values. Numerical
analyses demonstrate that the proposed bi-criteria robust crew pairing approach can sig-
nificantly improve the solution reliability without sacrificing too much financial costs. The
research of Khan et al. (2021) also shows that flight flying time varies greatly depending on
the actual flight departure time, which validates the importance of considering the uncertain
flight duration in airline scheduling. To build airline crew recovery plans against maintenance
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problems or severe weather conditions, Lettovský et al. (2000) propose a new solution frame-
work to reassign crew members to restore a disrupted schedule. Computational experiments
based on real data collected from a major air carrier show the crew recovery efficiency of the
proposed model (Lettovský et al., 2000).

2.2 Airline scheduling with energy consumption considerations

The carbon emissions released from human production activities have become increasingly
serious (He et al., 2022). Especially, the fuel consumption is intensive in the aviation trans-
portation industry (Justin et al., 2022), which not only incurs high costs, but also generates
great burden to the environment due to the mass greenhouse gas emissions (Khan et al., 2019;
Wang et al., 2020). As revealed by Base of Aircraft Data (BADA) project of the air traffic
management organization of Europe (EUROCONTROL, 2012), the total fuel consumption
during cruise stage is dependent on the actual flying time, flying speed, as well as other
parameters like aircraft properties and air density. Previous research has found that, instead
of being fixed as planned, the actual flying time always fluctuates according to the actual
flight departure time. Accordingly, it is reasonable that airline scheduling decisions impose
great impacts on the actual energy consumption for airlines, which further affects the sus-
tainability level of the company. However, in the airline scheduling literature, sustainability
issues (like fuel consumption and carbon emission) are studied rather less compared with the
financial costs. Some studies considered the environmental factors from the perspective of
cruise speed controllability which is utilized to optimize the scheduling problems for airlines.
We review the related literature as follows.

Focusing on airline scheduling, Gürkan et al. (2016) take the cruise time control into
account for a flight scheduling, fleet assignment, and aircraft routing integrated optimization
problem, where a nonlinear mixed integer programming model is proposed for fuel con-
sumption and CO2 emissions. Interestingly, Gürkan et al. (2016) find that changing cruise
time of flights can increase energy utilization and reduce the number of aircraft required.

In the domain of robust airline scheduling, cruise speed control is used to improve the
robustness of solutions. For example, to improve the robustness of fleet assignment decisions,
Şafak et al. (2017) control cruise speed to ensure passenger connections. In Şafak et al.
(2017), the costs related to fuel consumption and gas emissions are considered, in addition
to the traditional considerations like passenger demand and flight timing. A similar study
can be found in Duran et al. (2015). However, only fuel consumption is considered, and the
greenhouse gas emissions are ignored in Duran et al. (2015).

In terms of recovery operations, Aktürk et al. (2014) develop a flight re-scheduling model
with cruise speed control on both disrupted and undisrupted flights. Aircraft Swapping is
applied in Aktürk et al. (2014) to achieve recovery as quickly as possible (Aktürk et al.,
2014). The fuel burn and gas emission functions further complicates the recovery model of
Aktürk et al. (2014). Focusing on the recovery of aircraft and passengers, Arıkan et al. (2016)
adopt the strategy of cruise speed control and several passenger recovery actions to achieve
itineraries recovery under disruptions. The nonlinearity of fuel consumption is integrated into
the recovery model of Arıkan et al. (2016). Their model is shown to be capable to identify the
optimal tradeoff between passenger-related costs and operation costs in real time. A similar
study is Arıkan et al. (2017). However, both Arıkan et al. (2016) and Arıkan et al. (2017)
ignore the impact of carbon emissions.
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2.3 Research gaps

From the above discussion, it is seen that despite the great importance, sustainability issues
are considered rather less in the airline scheduling problems, compared with the traditional
operation costs. However, the scheduling problems are crucial for the sustainability level of an
airline, as the related decisions directly affect the actual flying times for each individual flight,
which further influences the total fuel consumptions and greenhouse gas emissions. Existing
research has integrated the fuel and gas considerations in flight scheduling, fleet assignment,
aircraft routing and their related robust scheduling and recovery problems. However, none
of the current studies have considered the fuel consumption and gas emission factors in the
critical airline crew pairing problem. Due to the importance of crew pairing for the overall
quality of airline scheduling, it is valuable to explore how the sustainability considerations
affect the airline crew pairing solutions, and study how an airline can optimize their crew
itinerates which can benefit both the airline and the environment. Our study thus fulfills this
important research gap.

3 Problem description

In this section, we first introduce terminologies and definitions of the airline crew pairing
problem. Then, the duty-based flight network is constructed for pairing generation. Last,
the flight flying time variability and flight departure-arrival interdependency relationship are
discussed. The major notations used in this work are summarized in Appendix.

3.1 Definitions

With a flight schedule containing flight departure/arrival airports, flight departure/arrival
times, and flight flying times, the crew pairing problem identifies sufficient legal pairings to
cover all scheduled flights, while satisfying all the working rules regulated by labor unions,
civil aviation departments, and airlines (Wen et al., 2021). A duty is a sequence of flights
connected by sits (or transits). A briefing at the start and a debriefing at the end are necessary
for a duty. A duty period refers to the elapsed time from the start of to the end of the duty.
Between two consecutive duties, a rest is required, during which crew members are free of
any work. A pairing is a series of duties separated by rests which starts from and ends at the
home base of the crew member. A pairing is operated by one crew member, while a pairing
is legal (or feasible) if all the working rules are satisfied. A typical pairing generally lasts
for two to five days. The total pairing elapse time is the time away from base (TAFB) (Wen
et al., 2020).

3.2 Working rules

To ensure the safety level of passengers, airlines should comply with a variety of strict rules
and regulations in scheduling crew members. In this work, we consider the following rules
based on the practical operations of a major Hong Kong airline and The Avoidance of Fatigue
in Aircrews (CAD 371) published by the Civil Aviation Department of the Government of
the Hong Kong Special Administrative Region. First of all, two flights can be connected only
when the arrival airport of the first flight is the departure airport of the second flight. The
minimum and maximum sit time (or transit time) are 75 and 240 min, respectively. Second,
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Fig. 1 An example of the duty-based flight network

the briefing (before a duty) and debriefing (after a duty) last for 60 and 30 min, respectively.
Regarding the longest length of a duty, it varies based on the local starting time and the
number of flights in the duty. For example, if a duty starts at 07:30 in local time with two
flight sectors, the longest duty period is then 12.25 h. Third, two duties can be connected
by a rest if the destination of the first duty is the origin of the second duty. A rest should
last between 720 and 2160 min if the former duty lasts less than twelve hours. Otherwise,
a minimum 840-min rest is compulsory. At last, maximum five duties, twelve flights, and
7200-min TAFB are allowed for a pairing.

3.3 Duty-based flight network

Aduty-based flight network is developed for the crew pairing problem.F represents the set of
flights (indexed by j). P stands for the set of feasible pairings in the duty-based flight network
(indexed by p). Figure 1 shows an example of a duty-based flight network. The network is
denoted by G = (N , A). N is the set of nodes (including a source node (s) representing
home base, a sink node (k) representing home base, and duty nodes (d)), and A represents
the set of arcs. A duty (d) is composed of a sequence of flights connected by sit arcs. The set
of sit arcs in duty d is denoted by SAd , The set of flights covered by duty d is Fd , while the
set of flights contained in Pairing p is Fp . Duties shall be constructed based on the diverse
working rules. Duties are connected with each other by rests. All duties starting from the
home base connect with s through a starting arc, and all duties ending at the home base link
with k through an ending arc. The sets of starting and ending arcs are indexed by As and
Ae, respectively. For the duties that do not start from s, a deadhead starting arc is developed
to connect s with the duty. Similarly, for the duties that do not end at k, a deadhead ending
arc is utilized to link the duty with k. We use Ads and Ade. to represent the sets of deadhead
starting arcs and deadhead ending arcs, respectively. A legal (or feasible) pairing refers to a
resource-feasible s-k path in network. The set of arcs involved in Pairing p is denot by Ap .

3.4 Flying time variability

Each flight has a scheduled departure time (ϑ s
f ), a scheduled arrival time (θ sf ), and the asso-

ciated scheduled flying time. However, from our preliminary analysis, we find that the actual
flight departure/arrival time, as well as the actual flying times usually fluctuate significantly.
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For instance, if a flight departs late from its origin airport at a peak time (e.g., due to the
traffic congestion at the origin airport), the aircraft can fly faster to meet its scheduled arrival
time. If a flight arrives in peak times, the total flying time will increase accordingly due to
the long landing queue. Other factors, like bad weather and governmental traffic control also
affect the actual flying time. Researchers have paid attention to exploring the relationship
among flying times, flight departure times, and arrival times to improve the decision making
in the industry (Chung et al., 2017). Following previous studies (Sun et al., 2020a;Wen et al.,
2020), the heteroscedastic regression model is used to characterize the uncertain flight dura-
tion which depends on the actual flight departure time, as shown in Eq. (1). ζ f (K ) represents
the flight duration of Flight f if the flight departs at Time K . α f (K ) is the regression mean
flight duration of Flight f if the flight departs at Time K , while β f (K ) is the related regres-
sion standard deviation. ∂ is a random variable that follows the standard normal distribution.
Then, two-year historical flight data provided by a local major airline are used to estimate
the regression mean and variance of the duration of flights that depart in the same time slot
at the same airport (Sun et al., 2020a; Wen et al., 2020). The ordinary least squares criterion
and weighted least squares methods are applied for coefficient estimation and refinement.

ζ f (K ) = α f (K ) + β f (K )∂ (1)

Denote the actual flight departure time for Flight f as ϑ f and the actual arrival time as θ f .
Please note thatϑ f and θ f are random variables, which are different from the scheduled times
ϑ s
f and θ sf . E[(·)] and V [(·)] stand for mean and variance, respectively. Based on ζ f (K ),

we can formulate the arrival time and departure time for each flight recursively. First of all,
the flight arrival time θ f is equal to the flight departure time plus the flight duration, as in
Eq. (2). Taking expectation for θ f , we could obtain the expected flight arrival time for Flight
f , as formulated in Eq. (3). Besides, the variance of flight arrival time for Flight f , can also
be obtained as in Eq. (4).

θ f = ϑ f + ζ f
(
ϑ f

)
(2)

E
[
θ f

] = E
[
ϑ f

] + α f
(
E

[
ϑ f

])
(3)

V
[
θ f

] = (1 + α f
(
E

[
ϑ f

])2
V

[
ϑ f

] + β2
f

(
E

[
ϑ f

])
(4)

The above formulations are based on the knowledge of the mean and variance of the
actual flight departure time. That is, E

[
ϑ f

]
and V

[
ϑ f

]
, which can be further obtained by

ϑ f = Max
{
ϑ s
f , θ f − + M

}
, whereM represents theminimumcrew transit time between two

flights. The reason that ϑ f takes the maximum between ϑ s
f and θ f − +M can be explained as

follows. First of all, if the arrival of the previous flight (i.e., f −) would not affect the on-time
departure of the considered flight (i.e., Flight f ), then Flight f will depart as scheduled (i.e.,
ϑ s
f ). On the other hand, if the arrival delay of the previous flight makes it impossible for Flight

f to depart on time, then this flight should depart with a legal miminum transit period after the
arrival of the previous flight (i.e., θ f − + M). Consequently, the mean and variance of flight
departure time can be obtained as in Eq. (5) and Eq. (6), respectively. Note that � and φ are
the cumulative distribution function (cdf) and probability distribution function (pdf) of the
standard normal distribution. For presentation simplicity, we use ρ f to represent the expected
flight duration if the flight departs at E

[
ϑ f

]
. That is, ρ f = E

[
θ f

] − E
[
ϑ f

] = α f
(
E

[
ϑ f

])
.

Besides, for traceability, all random variables are considered to follow the normal distribution
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in this study.

E
[
ϑ f

] = ϑ s
f φ

⎛

⎝ϑ s
f − E

[
θ f −

] − M
√
V

[
θ f −

]

⎞

⎠ + E
[
arr

(
j−

)]
φ

⎛

⎝ E
[
θ f −

] + M − ϑ s
f√

V
[
θ f −

]

⎞

⎠

+
√
V

[
θ f −

]
φ

⎛

⎝ϑ s
f − E

[
θ f −

] − M
√
V

[
θ f −

]

⎞

⎠ (5)

V
[
ϑ f

] = E
[
ϑ2
f

]
− E2[ϑ f

](
E

[
ϑ2
f

]
= E

[
Max

{
ϑ s
f , θ f − + M

}2]

= ϑ s2
f �

⎛

⎝ϑ s
f − E

[
θ f −

] − M
√
V

[
θ f −

]

⎞

⎠ + (
V

[
θ f −

] + E2[θ f −
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⎠

(6)

Thus, with E
[
θ f

]
, V

[
θ f

]
, E

[
ϑ f

]
, V

[
ϑ f

]
, and ζ f (K ), we could calculate the expected

flight departure and arrival time for each flight contained in a crew pairing connected by
transit periods. The first flight in the duty is assumed to have a zero mean and variance of
v to initiate the computing, while the overnight rest between two duties are assumed to be
able to absorb all disruptions encountered in daytime. Accordingly, we are able to compute
the expected fuel consumption and the related carbon emission based on the expected flight
durations. Therefore, a novel decision support system for crew pairing which can consider
the fuel-related sustainability cost can thus be developed (see Sect. 4).

Note that the arrivals before the scheduled arrival time point are regarded as arrival on
time. Figure 2 demonstrates an example of the recursive expected flight departure/arrival
times. In this example, a duty involves F1, F2, and F3. The expected departure time for F1
is its scheduled departure time (i.e., E[ϑ1] = ϑ s

1). Due to the flight duration variability, the
expected arrival time for F1 is later than the scheduled point (i.e., E[θ1] > θ s1 ). Accordingly,
the expected departure time for F2 is also later than its scheduled timepoint (i.e., E[ϑ2] > ϑ s

2).
The delay propagates to the following flight F3. As we can see from Fig. 2, if we only apply
the scheduled departure/arrival times for the flights on the schedule without considering flight
duration variability in the pairing generation process, crews can easily encounter disruptions.
Moreover, flight durations deviate from the plan, which affects fuel consumptions and carbon
emissions.

Fig. 2 An example of flight duration variability
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Fig. 3 An illustration figure for Flight 26

4 Crew pairing with sustainability considerations

Based on the flight duration variability introduced in Sect. 3.4, in this section, we develop
a novel decision support system for the airline crew pairing problem with sustainability
considerations. To be specific, the novel crew pairingmodel canminimize the basic operation
cost, the fuel consumption and greenhouse gas emission (named as sustainability cost in the
following), and also the pairing robustness cost. The sustainability cost for Pairingp is denoted
by csp (as explained in Sect. 4.1). The basic operation cost for Pairing p is denoted by cop
(as described in Sect. 4.2). Section 4.3 introduces the robustness cost (crp). Then, Sect. 4.4
formulates the mathematical model.

4.1 Sustainability costs (fuel consumption & carbon emission)

The cost related to fuel usage is the largest composition of an airline’s total costs, while
carbon emission control has become one of the most important topics for airlines in recent
years along with the increasing awareness of the society for environmental sustainability.
To formulate flight fuel consumptions and carbon emissions, we follow the cruise stage fuel
consumption methodology proposed by the Base of Aircraft Data (BADA) project of the air
traffic management organization of Europe (EUROCONTROL, 2012).

4.2 Fuel consumption

Fuel consumption in kg (i.e., FUj
(
ρ f

)
) for a flight duration (ρ f ) for Flight j is estimated in

Eq. (7).

FUj
(
ρ f

) = R j
1

ρ f
+ R j

2(
ρ f

)2 + R j
3 · (

ρ f
)3 + R j

4 · (
ρ f

)2 (7)

In the function of FUj
(
ρ f

)
, R j

1, R j
2, R j

3, and R j
4 are coefficients related to aircraft

properties andphysical conditions.Referring toEUROCONTROL(2012), Şafak et al. (2017),
and Gürkan et al. (2016), the detailed expressions ofR j

1,R j
2,R j

3, andR j
4 are shown in Eq. (8)

to Eq. (11). To be specific,C1,C2,C3,C4, and C5 are aircraft fuel consumption coefficients.
S j is the surface area of the aircraft wing (m2), while w j is the mass of the aircraft (kg).
Besides, g is the air density at the given altitude (kg/m3), g is the gravitational acceleration
(m/s2), while ϕ is bank angle. The distance of Flight j is d j .

R j
1 = C1 · C2 · C4 · ℊ · S j · d2j

2
(8)
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R j
2 = C1 · C2 · C4 · ℊ · S j ·d3j

2 · C3
(9)

R j
3 = 2 · C1 · C2·C5 · w j

2 · g2
ℊ·S j · cos(ϕ)2 · d2j

(10)

R j
4 = 2 · C1 · C2 · C5 · w j

2 · g2
C3 · ℊ·S j ·cos(ϕ)2 · d j

(11)

We denote the unit fuel price (per kg) by c f uel . Therefore, the fuel cost for Flight j
(FC j

(
ρ f

)
) is formulated as follows (i.e., Eq. (12)).

FC j
(
ρ f

) = c f uel · FU j
(
ρ f

)
(12)

4.2.1 Carbon emission

Regarding carbon emission, we apply the aircraft engine emission standard developed by
International Civil Aviation Organization. It is stated that the carbon emission (i.e., CO2) is
around 3.15 times (i.e., b) the weight of fuel burnt. Accordingly, the cost related to carbon
emission (EC j

(
ρ f

)
) ismodeled as in Eq. (13), where cemi stands for the unit carbon emission

cost, like carbon tax.

EC j
(
ρ f

) = cemi · b·FUi
(
ρ f

)
(13)

Accordingly, the total fuel consumption and carbon emission cost (FE j
(
ρ f

)
for a flight

can be obtained as shown in Eq. (14).

FE j
(
ρ f

) = FC j
(
ρ f

) + EC j
(
ρ f

)

= (c f uel + cemi · b)[R
j
1

ρ f
+ R j

2

(ρ f )
2 + R j

3·(ρ f )
3 + R j

4·(ρ f )
2] (14)

Therefore, the flight duration based sustainability cost of a pairing can be formulated
as csp = ∑

j∈Fp
FE j

(
ρ f

)
. During the pairing construction process in our study, we apply

the computed ρ f to calculated csp . That is, the fuel consumption and carbon emissions are
computed based on the expected flight durations considering flight duration variability.

4.3 Basic operation costs

Traditionally, only the basic operation costs are considered in the crew pairing problem. A
crew pairing’s basic operation cost contains a fixed component (K) and arc-related costs. Arcs
are categorized into duty arcs (d−, d), (deadhead) starting arcs (s, d), and (deadhead) ending
arcs (d, k). For (d−, d), the arc-related cost (td−,d , Eq. (15)) is made up of the waiting cost
during flight connections (cw

d−,d , Eq. (18)), rest cost (c
r
d−,d , Eq. (20)), and pairing minimum

duty guaranteed (PMDG) cost (cDd−,d , Eq. (21)). To be specific, the waiting cost is a function
(g j−(·)) related to the flight connection time (δ f −, f ). Besides, the rest cost is a function
(ld−(·)) related to the rest length between two duties (δd−,d ). Readers are referred to Saddoune
et al. (2013) and Chung et al. (2017) for the details of g j−(·) and ld−(·). The PMDG cost can
force the algorithm to develop longer duties. If the credit flying time of a duty (vd ) is shorter
than a threshold (Vmin), a unit PMDG cost (v) will be generated. For (s, d), the arc-related
cost (ts,d , Eq. (16)) is composed of waiting cost of flight connections (cw

s,d , Eq. (19)), pairing
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minimum duty guaranteed cost (PMDG) (cDs,d , Eq. (22)), and deadhead cost (chs,d , Eq. (23)
if this arc is deadhead and Eq. (24) otherwise). For (d, k), the arc-related cost (td,k , Eq. (17))
only involves the deadhead cost (chd,k , Eq. (25) if this arc is deadhead and Eq. (26) otherwise).
Note that the deadhead cost is ℵ for each deadhead starting or ending arc.

Arc-related
basic
operation cost

td−,d = cw
d−,d + crd−,d + cDd−,d ,

∀(
d−, d

) ∈ {A − Ae − Ade − As − Ads},
(15)

ts,d = cw
s,d + cDs,d + chs,d , ∀(s, d) ∈ {As + Ads}, (16)

td,k = chd,k , ∀(d, k) ∈ {Ae + Ade}, (17)

Waiting cost cw
d−,d = ∑

( f −, f )∈SAd
g f −

(
δ f −, f

)
,∀(

d−, d
) ∈

{A − Ae − Ade − As − Ads},
(18)

cw
s,d = ∑

( f −, f )∈SAd
g f −

(
δ f −, f

)
,∀(s, d) ∈ {As + Ads}, (19)

Rest cost crd−,d = ld−
(
δd−,d

)
, ∀(

d−, d
) ∈ {A − Ae − Ade − As − Ads}, (20)

PMDG cost cDd−,d = v ∗ max{0, (Vmin − vd)},∀
(
d−, d

) ∈
{A − Ae − Ade − As − Ads},

(21)

cDs,d = v ∗ max{0, (Vmin − vd)},∀(s, d) ∈ {As + Ads}, (22)

Deadhead cost chs,d = ℵ, ∀(s, d) ∈ Ads , (23)

chs,d = 0, ∀(s, d) ∈ As , (24)

chd,k = ℵ, ∀(d, k) ∈ Ade, (25)

chd,k = 0, ∀(d, k) ∈ Ae. (26)

Finally, the total basic operation cost for this pairing cop can be formulated as in Eq. (27),
where Ap represents all arcs contained in Pairing p (including a (deadhead) starting arc, duty
arcs, and a (deadhead) ending arc).

cop = K +
∑

(n−
p ,n p)∈Ap

tn−
p ,n p

(27)

4.4 Robustness cost

As discussed, a flight’s departure time and arrival time are dependent on those of the previous
flight (see the details in Sect. 3.4). Thus, crew members usually face flight operations which
are different from their schedules. For instance, they are supposed to arrive at an airport at
5 pm, while in operations, they land at 6 pm. Due to the recursive relationship of the flights in
a duty, the effect of flight duration variability will propagate from flights to flights. Therefore,
we would also like to minimize the total deviations of the computed expected flight depar-
ture/arrival times from the scheduled flight departure/arrival times. Besides, a pairing will
also be penalized if the computed duty elapse time is larger than the maximum allowed duty
duration. Therefore, crp is formulated as

∑
f ∈Fp

(E
[
ϑ f

] − ϑ f )
+ +∑

f ∈Fp
(E

[
θ f

] − θ f )
+ +
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∑
p∈P

∑
d∈Dp

(E
[
θ f lastd

]
− E

[
ϑ
f f irst
d

]
− Max AllowedDutyElapse)

+
. The first and sec-

ond parts of crp stand for the total (positive) deviation of the expected arrival/departure

time from the scheduled time points. In the third part, E
[
θ f lastd

]
− E

[
ϑ
f f irst
d

]
refers to

the duty time length by computing the difference between the expected arrival time of the
last flight in the duty with the expected departure time of the first flight in the duty. Thus,
∑

p∈P
∑

d∈Dp
(E

[
θ f lastd

]
− E

[
ϑ
f f irst
d

]
− Max AllowedDutyElapse)

+
computes the time

length of each duty exceeding the maximum allowed duty elapse time for all duties contained
in the pairing.

4.5 Themathematical model for the sustainable crew pairing problem

With the sustainability cost, basic operation cost and robustness cost built above, we can
build the novel decision support system for the crew pairing problem with sustainability
considerations mathematically, which are presented in Eq. (28) to Eq. (30). To be specific,
the objective is to minimize the weighted sum of the sustainability cost, basic operation cost,
and robustness cost, where csp is determined by Eq. (7) to Eq. (14), cop is decided by Eq. (15)
to Eq. (27), and crp is given in Sect. 4.3. w1, w2, and w3 (w1 + w2 + w3 = 1) represent
the weights for the basic operation cost, sustainability cost, and robustness cost respectively.
With this proposed objective, airlines can optimize the environmental burdens their flights
generate for the environment by limiting fuel consumption and greenhouse gas emissions.
Constraint Eq. (29) is used to ensure that each flight is covered by at least one pairing, while
Constraint Eq. (30) is to ensure that the decision variable is binary.

min
∑

p∈P

(w1c
o
p + w2c

s
p + w3c

r
p)xp, (28)

s.t .
∑

p∈P

ap f · xp ≥ 1,∀ f ∈ F (29)

xp ∈ {0, 1},∀p ∈ P (30)

5 Solution approach

A column-generation based solution approach is developed to deal with the proposed crew
pairing models. Column generation is a continuous optimization technology which can
implicitly consider the whole pairing pool of the large-scale crew pairing problem without
encountering the difficulty of explicitly dealing with all possible pairings. The crew pairing
problem is thus separated into a restricted master problem and a sub-problem as explained
in the following.

5.1 Restrictedmaster problem

The restricted master problem is the linear relaxed version of the crew pairing problem
with a restricted number of initial feasible pairings. In each iteration, the restricted master
problem is solved to optimality by using linear programming technique. The dual prices
associated with each constraint are transferred to sub-problem. Then, better pairings (i.e.,
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those can further lower down the objective value) are identified to update the pairing pool of
the restricted master problem. If no better pairings can be found, then the optimal solution
for the restricted master problem is the optimal solution for the whole problem. Column
generation procedure thus terminates. Last, mixed integer programming (MIP) technique is
applied to obtain integer solutions.

5.2 Sub-problem

The sub-problemof the crewpairing problem is generallymodelled as a shortest path problem
with resource constraints. The aim of the sub-problem is to identify promising pairings with
negative reduced costs from the whole solution pool, which is transferred to finding the
shortest path in the flight network with resource constraints. Resources in the crew pairing
problem refer to the diverseworking rules, like themaximumnumber of flights andmaximum
time away from base allowed for a pairing. A pairing (path) is feasible (legal) only when
all working rules are satisfied. The identified better pairing is added to the solution pool of
the restricted master problem to start the next iteration. If no better pairings (paths) can be
identified, the algorithm terminates, and the restricted master problem reaches optimality.
Let π f stand for the dual price for the f th row (Flight f ) of the flight coverage constraint
(i.e., Eq. (29)). The reduced cost of xp (i.e., cp) can be modelled as in Eq. (31).

cp = w1c
o
p + w2c

s
p + w3c

r
p −

∑

f ∈F
apj · π f (31)

6 Computational experiments

In this section, we test the performances of our proposed sustainable crew pairing model
based on real-world collected flight schedules. Section 6.1 introduces parameter setting and
instance characteristics. Section 6.2 presents the model settings applied in the experiment.
Then, Sect. 6.3 discusses the findings from the perspectives of the basic operation cost,
sustainability cost, and robustness cost.

6.1 Parameter setting and instance characteristics

6.1.1 Parameters applied in the computational experiments

Following Şafak et al. (2017), we set the fuel price (per kg) (i.e.,c f uel ) as 0.6 USD. Two
types of aircraft are involved in our experiments. They are A320-111 and A320-212. For the
parameters related to fuel consumption for each aircraft type, we apply those used in Şafak
et al. (2017), as summarized in Table 1.

For air density coefficients, we follow the User Manual for the Base of Aircraft Data
(EUROCONTROL, 2012). Below tropopause, air density (g, kg/m3) is a function of tem-
perature (T ), and can be obtained by the following equation. In the equation, − g

KT ·R − 1
is approximated as 4.26. R is the real gas constant for air, g is the gravitational accelera-
tion, KT is the International Standard Atmosphere temperature gradient with altitude below
the tropopause. ℊ0 is the air density at sea level. In our experiment, we apply the standard
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Table 1 Fuel consumption
parameters by aircraft types Type of aircraft A320-111 A320-212

Mass (w, kilogram) 62,000 64,000

Surface (Si , square meter) 122.4 122.6

C1 0.94 0.94

C2 1.095 1.06

C3 50,000 100,000

C4 0.024 0.024

C5 0.0375 0.0375

MRC speed 855.15 868.79

atmosphere air density at sea level (i.e., ℊ0=1.225 kg/m
3).

ℊ = ℊ0

[
T (h)

T0

]− g
KT ·R −1

(32)

In Eq. (32), T0 is the temperature at sea level. We use the standard atmosphere seal level
temperature (i.e., T0 = 288.15K). For an altitude of h (in meters), the temperature T (h)

is calculated as Eq. (33). For the altitude, as under standard atmosphere conditions, the
tropopause is at 11,000 m altitude, we assume that flights fly at 11,000 m during cruise stage
(i.e., h = 11000 meters).

T (h) = T0 − 6.5 ∗ h/1000 (33)

Moreover, gravitational acceleration (g) is set as 9.81 m/s2, and we apply the nominal
bank angle for civil flights (i.e., ϕ=35 degree).

6.1.2 Instance characteristics

We test the proposedmodels by using the flight data applied inWen et al. (2020). Specifically,
5 flight data sets are involved (with 36, 39, 56, 89 and 98 flights). Instances 1, 4, 5, and 6
contain airports of OKA, GUM, HKG, TPE, KIX, SIN, and ICN. Instances 2 and 3 involve
airports of HKG, KIX, TPE, and ICN. By involving different types of aircraft, totally 10
instances are created.

6.2 Model setting

Recall that in the novel crew pairing model with sustainability considerations developed in
Sect. 4.4, the objective function is to minimize

∑
p∈P (w1cop +w2csp +w3crp)xp . Thus, based

on the weights (i.e., w1, w2, w3),9 we test 7 model settings. The details of the 7 settings are
illustrated in Table 2. For example, Model 1 only considers the basic operation cost, while
Model 4 considers all the three cost factors with equal weightings.

By running the model for each instance and for each model setting, we can obtain the cor-
responding operation costs, sustainability costs, and robustness costs. As they have different

9 Recall that w1, w2, and w3 (w1 + w2 + w3 = 1) represent the weights for the basic operating cost,
sustainability cost, and robustness cost respectively.
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Table 2 Model settings
Model setting w1 w2 w3

1 1 0 0

2 0.5 0.5 0

3 0 1 0

4 0.33 0.33 0.33

5 0 0.5 0.5

6 0.5 0 0.5

7 0 0 1

Table 3 Mean computation time
Instance Number of flights Computation time (s)

1 89 246

2 89 204

3 98 226

4 98 287

5 56 8

6 56 12

7 39 7

8 39 8

9 36 4

10 36 4

units, to ensure that the three cost factors are in a similar scale, a normalization process is
carried out. The upper bound and the lower bound of each cost factors are first estimated,
and the cost will then be converted into a normalized value between 0 to 1 in each iteration.
The mean computation time for the ten instances is summarized in Table 3. It is seen that the
computation time grows dramatically when the number of flights grows from 36 to 96. This
is because that the complexity of the corresponding flight network rises greatly due to the
sharp increase in the possible flight connections and duty combinations.

6.3 Analysis

In this section, we first use a simple example to demonstrate that the actual flight duration
may deviate from the scheduled time length greatly, thus imposing great effects on the
sustainability cost (i.e., fuel consumption and carbon emission). Then, we evaluate the model
performances in terms of sustainability cost, operation cost, and robustness cost for the six
settings.

6.3.1 An illustration example of flight flying time variability

We use Flight 26 in instance 1 in Model 1 to demonstrate flight duration variability and the
importance of considering sustainability cost (see Figure 3). The scheduled departure time
of Flight 26 is 6:05am. As Flight 26 is the first flight of this duty, its expected departure
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time is exactly the scheduled departure time. However, due to some reason (e.g., to avoid the
possible traffic congestion at the destination airport), this flight may accelerate during the
cruise stage and arrives earlier than scheduled (according to the calculation formula provided
in Sect. 3.4 based on massive historical data). That is, the expected arrival time (7:46am)
is earlier than the scheduled arrival time (8:09am), while the flight duration is reduced by
23 min. Thus, the fuel consumed and the carbon dioxide released by this flight can deviate
from airline’s plan significantly.

6.3.2 Operation cost

The basic operation costs obtained for each instance under eachmodel setting are summarized
in Table 4 and depicted in Fig. 4. Besides, using Model 1 as the benchmark, the comparisons
of the models in terms of operation costs are presented in Table 5. Recall that under Model
1, only the basic operation cost is considered (i.e., w1=1, w2 = 0, w3 = 0). Thus, it is

Table 4 The operation cost obtained for each instance under each model setting

Instance Operation cost

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

1 39.00 39.04 42.34 39.04 42.54 39.00 40.51

2 39.00 39.06 42.69 39.06 42.29 39.00 43.37

3 29.94 30.12 35.05 30.12 34.77 29.94 33.24

4 29.94 30.40 37.46 30.40 35.70 29.94 33.24

5 17.98 18.24 20.07 18.24 20.11 17.98 18.96

6 17.98 18.24 20.53 18.24 20.53 17.98 18.96

7 9.08 9.08 14.79 9.08 9.97 9.08 13.33

8 9.08 9.08 10.88 9.09 9.21 9.08 13.33

9 15.40 15.40 18.27 15.40 18.30 15.40 15.41

10 15.40 15.40 16.84 15.40 16.86 15.40 15.41

Fig. 4 Operation costs obtained by each instance under each model setting
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Table 5 The operation cost compared with that obtained under Model setting 1

Instance Compared with Model 1

Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Average

1 0.10% 8.57% 0.10% 9.10% 0.00% 3.88% 3.63%

2 0.15% 9.47% 0.17% 8.44% 0.00% 11.23% 3.65%

3 0.59% 17.07% 0.59% 16.13% 0.00% 11.04% 6.88%

4 1.53% 25.14% 1.53% 19.26% 0.00% 11.04% 9.49%

5 1.47% 11.67% 1.47% 11.86% 0.04% 5.46% 5.30%

6 1.47% 14.22% 1.45% 14.19% 0.04% 5.46% 6.27%

7 0.00% 63.00% 0.00% 9.80% 0.01% 46.86% 14.56%

8 0.06% 19.89% 0.15% 1.48% 0.01% 46.86% 4.32%

9 0.02% 18.66% 0.02% 18.88% 0.00% 0.10% 7.52%

10 0.02% 9.36% 0.02% 9.48% 0.00% 0.10% 3.78%

Average 0.54% 19.70% 0.55% 11.86% 0.01% 14.20% 7.81%

reasonable to see that Model 1 incurs the lowest cost among almost all model settings for
each instance, as other model settings construct crew pairings with other considerations (like
sustainability issues and robustness issues). On average, Model 2 to Model 7 generate 7.81%
more operation costs than Model 1. Among these 6 model settings, we witness that for the
settings where the operation cost is totally omitted (i.e., Model 3, Model 5 and Model 7), the
operation cost incurred grows dramatically (19.70% for Model 3, 11.86% for Model 5 and
14.20% for Model 7). On the other hand, as long as the operation cost is considered in the
optimization objective (e.g., Model 2, Model 4, and Model 6), considering other cost factors
would not increase the operation cost significantly (0.54% for Model 2, 0.55% for Model 4,
and only 0.01% for Model 6). One interesting finding is that for Model 6 (w1=0.5, w2 = 0,
w3 = 0.5), considering solution robustness imposes very tiny influence on the operation
cost. Specifically, under Model 6, the operation cost remains unchanged for instances 1–4,
and 9–10.

6.3.3 Sustainability cost

The sustainability costs generated under each model setting for each instance are given in
Table 6 and depicted in Fig. 5. Moreover, using Model 1 as the benchmark, the comparisons
of the models in terms of sustainability costs are presented in Table 7. Among all model
settings, setting 3 places the highest emphasis on the sustainability cost (w1=0, w2 = 1,
w3 = 0). Thus, it is reasonable to observe that Model 3 consumes the least fuel and release
the least carbon emissions (reduced by 11.41% compared with Model 1 on average). On
the contrary, Model 6 and Model 7 do not involve the sustainability cost factor, while we
still witness a reduction in this cost factor by a mean of 1.14% and 1.17%. Therefore, we
could conclude that maximizing pairing robustness could also help enhance energy efficiency
slightly. This might be explained as follows. As improving solution robustness may adjust
flight connections and affect flight durations strategically, the fuel consumption can thus be
influenced. This can also be further validated by the analysis for Model 2, Model 4, and
Model 5. Model 2 places equal emphasis on the operation cost and the sustainability cost.
Model 4 places equal emphasis on all the three cost factors. Model 5 places equal emphasis
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Table 6 The sustainability cost obtained for each instance under each model setting

Instance Sustainability cost

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

1 17.11 15.63 15.23 15.63 15.29 16.65 15.38

2 16.69 15.08 14.18 15.08 14.61 16.28 15.87

3 12.44 11.22 10.80 11.22 10.80 12.01 13.64

4 10.57 9.35 8.97 9.35 8.97 10.13 11.25

5 10.75 8.76 8.62 8.76 8.62 10.76 8.74

6 10.69 8.72 8.30 8.71 8.30 10.69 9.16

7 13.02 13.02 11.16 13.02 13.87 13.02 14.53

8 9.60 9.60 9.59 9.60 9.99 9.60 10.74

9 3.89 3.83 3.82 3.83 3.82 3.89 3.83

10 2.81 2.76 2.76 2.76 2.76 2.84 2.76

Fig. 5 Sustainability costs obtained by each instance under each model setting

on the sustainability cost and the robustness cost. We see that the sustainability cost reduction
compared with Model 1 is 7.97%, 7.98%, and 8.62%, respectively. It is witnessed that by
introducing the objective of minimizing the robustness cost and placing higher emphasis on
it, the reduction in sustainability cost becomes more evident. Overall, the instances reduce
the sustainability cost compared with the benchmark Model 1 by an average of 6.38%.

6.3.4 Robustness cost

Recall that the robustness cost considered in this study refers to the total deviations of the
expected flight departure/arrival times from the scheduled flight departure/arrival times. The
robustness costs obtained for each instance under eachmodel setting are summarized in Table
8, while the comparisons against model setting 1 are presented in Table 9. Model 7 places the
highest emphasis on robustness cost (w1=0,w2 = 0,w3 = 1). Thus, it is expected thatModel
7 achieves the least deviations from the scheduled flight departure/ arrival times (reduced by
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Table 7 The sustainability cost compared with that obtained under Model setting 1

Instance Compared with Model 1

Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Average

1 − 8.67% − 10.99% − 8.67% − 10.62% − 2.68% − 10.12% − 8.62%

2 − 9.62% − 15.02% − 9.62% − 12.45% − 2.48% − 4.90% − 9.84%

3 − 9.79% − 13.19% − 9.79% − 13.19% − 3.43% 9.62% − 9.88%

4 − 11.53% − 15.11% − 11.53% − 15.11% − 4.13% 6.47% − 11.48%

5 − 18.47% − 19.85% − 18.47% − 19.84% 0.09% − 18.70% − 15.31%

6 − 18.40% − 22.31% − 18.49% − 22.31% 0.04% − 14.30% − 16.29%

7 0.00% − 14.33% 0.00% 6.54% 0.00% 11.59% − 1.56%

8 0.00% − 0.05% 0.00% 4.03% 0.00% 11.85% 0.80%

9 − 1.55% − 1.61% − 1.55% − 1.61% 0.00% − 1.55% − 1.27%

10 − 1.66% − 1.67% − 1.66% − 1.67% 1.14% − 1.66% − 1.10%

Average − 7.97% − 11.41% − 7.98% − 8.62% − 1.14% − 1.17% − 6.38%

Table 8 The robustness cost obtained for each instance under each model setting

Instance Robustness cost

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

1 0.35 0.29 0.27 0.29 0.27 0.33 0.27

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 1.17 1.17 1.17 1.17 1.17 1.17 1.17

6 1.17 1.17 1.17 1.17 1.17 1.17 1.17

7 0.66 0.66 0.66 0.66 0.66 0.66 0.64

8 0.66 0.66 0.66 0.66 0.66 0.66 0.64

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2.86% compared with Model 1 on average). Moreover, we also see that all the other model
settings (i.e., Model 2 to Model 6) achieves reduction in the robustness cost, even if the
robustness cost factor is not considered in the objective function (like Model 2 and Model
3). This implies that considering sustainability cost generates a positive impact on solution
robustness enhancement. This finding is consistent with the previous finding that considering
solution robustness can help promote sustainability cost reduction. Thus, it is concluded that
solution robustness enhancement and sustainability cost reduction are mutually supported.
Therefore, it is reasonable to observe that Model 3 and Model 5 achieve more robustness
cost reduction, in which the two models place more emphasis on the robustness cost and the
sustainability cost (Fig. 6).
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Table 9 The robustness cost compared with that obtained under Model setting 1

Instance Compared with Model 1

Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Average

1 − 18.10% − 22.41% − 18.10% − 22.41% − 4.60% − 22.41% − 18.01%

2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

6 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

7 0.00% 0.00% 0.00% 0.00% 0.00% − 3.08% 0.00%

8 0.00% 0.00% 0.00% 0.00% 0.00% − 3.08% 0.00%

9 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

10 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Average − 1.81% − 2.24% − 1.81% − 2.24% − 0.46% − 2.86% − 1.90%

Fig. 6 Robustness costs obtained by each instance under each model setting

6.3.5 Discussions

Previous sections discuss the findings related to the operation cost, sustainability cost, and
robustness cost, respectively. Here, based on these findings, we would like to extract some
useful managerial insights regarding considering sustainability factors in airline crew pairing
generation under the impact of operation costs and pairing robustness costs.

First of all, when considering the sustainability cost (and the robustness cost), if the
operation cost is totally ignored from the optimization framework, the airline would suffer a
lot due to the dramatical growth in the financial burden in terms of the basic operation cost.
For instance, under Model setting 3, the airline will encounter a 19.7% increase in the basic
operation cost, to obtain a 11.41% reduction in the sustainability cost and a 2.24% decrease in
the robustness cost. On the other hand, it is interesting to find that simultaneously considering
other cost factors (i.e., sustainability/robustness costs) with the operation cost can lead to a
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satisfactory reduction in the sustainability/robustness cost, while imposing little influence on
the basic operation cost. For example, inModel setting 4where the three cost factors are given
equal weighting, a 0.55% increase in the basic operation cost can bring a 7.98% decrease in
the sustainability cost and an 1.81% decline in the robustness cost. Moreover, it is revealed
that the sustainability cost factor and the robustness cost factor are mutually supported, which
is possibly because these two cost factors would lead to cruise speed adjustment in order to
minimize the related cost value. Therefore, we observe that even if the sustainability cost is
not involved in the optimization decision framework, but the robustness cost is minimized
(i.e., Model 6), we still witness a reduction in the sustainability cost. Similarly, for Model 2
and Model 3 where the robustness cost is omitted while the sustainability cost is considered,
we obtain an 1.81% and a 2.24% decrease in the robustness cost, respectively. It is also
seen that by introducing the robustness cost into the objective function and placing higher
emphasis on it, the reduction in sustainability cost becomes more evident.

7 Conclusion

As a crucial sector in transportation (Pamucar et al., 2020;Wen et al., 2019), airline scheduling
problems have received massive attention from both the academia and the industry. In most
of the existing studies, crew pairings are constructed according to the pre-determined flight
schedules. However, existing research has shown that the actual flight flying time often
varies according to the actual flight departure time, which may lead to a deviation of the
actual flight arrival time from the schedule. Thus, propagated effects are generated as the
departure time and flying time of the subsequent flight may also be affected. Aircraft energy
research has revealed that the fuel consumptions and greenhouse gas emissions of aircraft
are determined by the actual flying speed and flight duration. Therefore, it becomes crucial to
consider sustainability cost factors when connecting flights to form crew pairings, as different
flight connection may lead to different flight durations. In this study, we propose a novel
crew pairing problem with sustainability considerations which aims to minimize the basic
operation cost, the total fuel consumptions and greenhouse gas emissions, and the robustness
cost of the generated pairings. By setting different weightings on the three cost factors, six
model settings are examined. Computational experiments based on real-world collected flight
schedules show that the proposed model can bring a 7.98% decrease in the sustainability
cost and an 1.81% decline in the robustness cost with only 0.55% increase in the basic
operation cost when all the three cost factors are with equal weightings. Besides, we identify
that simultaneously considering other cost factors (i.e., sustainability/robustness costs) with
the operation cost can lead to a satisfactory reduction in the sustainability/robustness cost,
while imposing little influence on the basic operation cost. Moreover, it is revealed that the
sustainability considerations and the robustness considerations can generate a synergy effect
as they are mutually supported.

7.1 Policy implications

With the scarcity in resources and increasing awareness in environmental sustainability
of consumers, circular economy has become prominent in many industries, including the
aviation industry (Modarress et al., 2020; Rutkowski, 2021; Salesa et al., 2022). As an
energy-intensive industry, aircraft consume massive amount of fuels and release a lot of
carbon emissions per flight. In order to better fit the goal of circular economy, airlines and
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aircraft manufacturers have made many efforts, like designing fuel-efficient aircraft models
(e.g., Airbus A320neo). In terms of airline scheduling, previous studies also investigate how
to reduce fuel consumption when determining the cruise speed of aircraft (Aktürk et al.,
2014). Airline crew scheduling, on the other hand, also imposes great effects on aircraft
flying time by the flight connections implied in the crew schedules, which further affects fuel
consumption and carbon emissions. However, although the airline crew scheduling problem
has been extensively studied, the majority of research focus is on the reduction of operational
costs and enhancement of schedule robustness, while little attention has been paid to the
environmental impact of the schedules in terms of fuel consumption and carbon emission.
As revealed from this study, ignoring the sustainability costs when constructing pairings may
cause very high environmental burden, leading to high fuel costs and damages to airlines
images, and harm the circular economy which airlines would like to achieve. Besides, we
show that minimizing the sustainability costs together with traditional costs can significantly
reduce environmental burden and promote circular economy. Although additional operation
cost may be incurred with such environment and sustainability considerations, some recent
surveys revealed that the travelers, nowadays, are more willing to pay for the reduction in
their carbon footprints. Investors or other stakeholders for the aviation industry have also
become increasingly interested in environmental, social and governance issues and weigh
them more heavily. Thus, it is highly suggested that airlines can take the varying flight time,
fuel consumption, and carbon emission into considerations when conducting scheduling for
crew members.
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Table 10 Major notations used in Sect. 3

Notation Meaning

ϑs
f The scheduled departure time of Flight f

θ sf The scheduled arrival time of Flight f

ζ f (K ) The flight duration of Flight f if the flight departs at Time K

α f (K ) The regression mean flight duration of Flight f if the flight departs at Time K

β f (K ) The α f (K ) related regression standard deviation

ϑ f The actual flight departure time for Flight f

θ f The actual arrival time for Flight f

E[(·)]/V [(·)] Mean/variance

M The minimum crew transit time between two flights

ρ f The expected flight duration if the flight departs at E
[
ϑ f

]

Table 11 Major notations used in Sects. 4 and 5

Notation Meaning

csp The sustainability cost for Pairing p

cop The basic operation cost for Pairing p

crp The robustness cost for Pairing p

FU j
(
ρ f

)
Fuel consumption in kg

R j
1 toR

j
4 The coefficients related to aircraft properties and physical conditions

C1toC5 The aircraft fuel consumption coefficients

S j the surface area of the aircraft wing

w j the mass of the aircraft

g the air density at the given altitude

g the gravitational acceleration

ϕ The bank angle

d j The distance of Flight j

FC j
(
ρ f

)
the fuel cost for Flight j

c f uel the unit fuel price

EC j
(
ρ f

)
the cost related to carbon emission

cemi the unit carbon emission cost

FE j
(
ρ f

)
the total fuel consumption and carbon emission cost

tn−
p ,n p

The cost related to arc (n−
p , n p)

w1 the weights for the basic operation cost

w2 the weights for the sustainability cost

w3 the weights for the robustness cost

π f the dual price for the f th row (Flight f ) of the flight coverage constraint
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