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Abstract
By employing the Multifractal detrended fluctuation (MFDFA) analysis methods, the mul-
tifractal nature is revealed in the high-frequency data of two typical indexes, the Shanghai
Stock Exchange Composite 180 Index (SH180) and the Shenzhen Stock Exchange Com-
posite Index (SZCI). It is found that there is a statistically significant relationship between
excess returns and multifractal characteristics, which can be applied to forecast the returns.
The in-sample and out-of-sample tests on the return predictability of multifractal character-
istics indicate that the multifractal spectral width is a significant return predictor. Additional
tests on the S&P 500 index, the exchange rate between Bitcoin and US dollar, four Chi-
nese commodity futures, and the SH180 and SZCI in different sub-periods reveal that the
predicting ability of multifractality is robust to the asset type and sample period. The under-
lying explanation is that multifractal characteristic width contains the information of market
volatility and downside tail risk. Our results shed new lights on the application of multifractal
nature in asset pricing.

Keywords Multifractal characteristics · Multifractal detrended fluctuation analysis · Return
predictability
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α The local singularity exponent.
f (α) The multifractal spectrum.
�α The width of multifractal spectrum.
� f The difference between the proportion of the subset with the minimum

probability measure and that with the maximum probability measure.
B The asymmetry of multifractal spectrum.
R2
OS The percent reduction in mean square forecast error for the predictive

regression forecast relative to the historical average benchmark forecast.
MSFE_Adj The adjustedMSFE statistic, indicating the statistical significance of R2

OS .
U The mean-variance utility function.
r p The return of the portfolio allocated between a risky asset and a risk-free

asset by maximizing the mean-variance utility function U .
ωt The optimal portfolio weight for the risky asset.
�U The utility gain between the portfolio based on the multifractal predicting

model and the portfolio based on the historical mean model.
RV The realized volatility.
VaR The value at risk.
ES The expected shortfall.

1 Introduction

As we know, stock returns exhibit nonlinear long memory behaviors, which correspond to
the multifractal nature (Muzy et al., 2001; Calvet & Fisher, 2002; Jiang&Zhou, 2011) . Two
stylized facts in financial returns, including fat-tailed distribution and long range dependence,
are considered as sources of multifractality (Zhou, 2009; Jiang & Zhou, 2008b; Zhou, 2012;
Grahovac & Leonenko, 2014) . Multifractal nature in returns makes the price dynamics
deviate from the Brownian process, triggering the studies of applying multifractality on
uncovering market efficiency (Wang & Wu, 2013; Liu et al., 2010) , designing trading
strategies (Dewandaru et al., 2015) , constructing measures for predicting volatility (Wei
&Wang, 2008; Chen &Wu, 2011; Wei et al., 2013; Chen et al., 2014) , and to list a few. New
theoretical models including multifractal random walk (MRW) (Bacry et al., 2001) , the
multifractalmodel of asset returns (MMAR) (Calvet&Fisher, 2002) , andMarkov-switching
multifractal model (MSM) (Calvet & Fisher, 2001) have been proposed to replicate the
multi-scaling price behaviors. In comparison of other competitive econometric models, these
models can improve the performance of forecasting volatility (Calvet & Fisher, 2001, 2004;
Duchon & Robert, 2012; Chuang et al., 2013; Lux et al., 2014; Nasr et al., 2016; Segnon
et al., 2017; Wang et al., 2016) , predicting financial duration (Chen et al., 2013; Žikeš
et al., 2017) , and estimating VaR (Batten et al., 2014; Lux & Kaizoji, 2007; Chuang et
al., 2013; Lee et al., 2016; Lux et al., 2016; Herrera et al., 2017) . The forecasting power
of multifractality on volatility indicates that the multifractal characteristics in price dynamic
could have a strong connection to the market risk. As high market risk is accompanied with
high return, we could infer that strong multifractality in price dynamic will lead to high
return. However, such inference is still lack of empirical evidence.

Return predictability has been received considerable research interests, because it can
highlight the understanding of asset pricing in academy and improve the performance of stock
investments in industry. However, the predictability of stock returns is still under controversy.
On the one hand, Welch and Goyal (2008) perform both in-sample and out-of-sample tests
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on return predictability with the factors from earlier academic researches and find that those
factors are unstable or even spurious. On the other hand, recent researches reveal that the
factors, including unexpected changes of oil prices (Casassus & Higuera, 2012) , cash flow
volatility (Narayan&Westerlund, 2014) , aligned technical indicator (Lin, 2018) , curvature
of the oil futures curve (Chiang & Hughen, 2017) , price-to-fundamental ratios (Lawrenz
& Zorn, 2017) , and daily internet search volume index (SVI) (Chronopoulos et al., 2018)
, can significantly and economically predict the excess return. However, the predictors lost
the forecasting ability when they are published (Mclean & Pontiff, 2016) , supporting that
the predictors usually exhibit time-varying predictability (Devpura et al., 2018) .

Multifractality captures the nonlinear scaling behavior for all moments of stock returns
and many empirical studies uncover that higher order moments of returns, like skewness and
kurtosis (namely ex ante volatility), contain the information of future returns (Conrad et
al., 2013) . Chang et al. (2013) reveal that the market skewness risk premium is statistically
and economically significant and cannot be explained by the common risk factors, such as
market excess return, the size, book-to-market, momentum, market volatility factors, and
firm characteristics. Furthermore, other forms of higher order moments, such as the higher
order moments of conditional return distribution and the asymmetry of the cross-sectional
distribution, are also good predictors of future returns (Perez-Quiros & Timmermann, 2001;
Garcia et al., 2014) . In emerging markets, the skewness is mostly positive and idiosyncratic,
which can be applied to build an optimal portfolio to have sizeable certainty-equivalent
gains (Ghysels et al., 2016) . Hwang & Satchell (2001) found that the emerging markets
can be better explained by the high-moment CAPMs, which consider the additional risks of
skewness and kurtosis.

With the aim of testing whether multifractal characteristics can be used to predict future
returns, this paper is organized as follows. Data and methods are given in Sect. 2. Section3
presents the results of empirical multifractality. The in-sample and out-of-sample tests on
return predictability based on multifractality are elaborated in Sect. 4. The robustness tests
are given in Sect. 5. Section6 explains the return predictability of multifractal characteristics.
And Sect. 7 concludes.

2 Data andmethods

2.1 Data sets

Our data, including the Shanghai Stock Exchange Composite 180 Index (SH180) and the
Shenzhen Stock Exchange Composite Index (SZCI) in the Chinese stock markets, are
retrieved from the finance database of Resset (http://www.resset.cn). Both indexes cover
a period from February 14, 2003 to May 23, 2022 including 4583 trading days in total. By
removing the days having recording errors, we left 4569 days for SH180 and 4579 days for
SZCI, respectively. There are four trading hours (240min) on each trading day. For each
index, we have the price pm at each minute on each trading day and thus we define the
minutely return rm(t) as,

rm(t) = ln pm(t) − ln pm(t − 1). (1)

We regard the last price on each trading day as the closing price pc(d) on that day and the
daily return rd is defined in the following,

rd(d) = ln pc(d) − ln pc(d − 1). (2)
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2.2 Multifractal detrended fluctuation analysis (MFDFA)

For a given window of minutely returns rm(i), i = 1, · · · , N , we can define y(i) as follows,

y(i) =
i∑

u=1

rm(i), i = 1, 2, · · · , N . (3)

The series y is covered by Ns disjoint boxes and each box has the same size s. For our
convenience, we label the sub-series in each box as,

Yk(i) = {y(i) | (k − 1)s + 1 ≤ i ≤ ks}, (4)

In some cases, the whole series y cannot be exactly covered by Ns boxes, which means that
we have to neglect some data points at the end of the series. In order to avoid this situation,
we can utilize 2Ns boxes to cover the series, where Ns boxes cover from the beginning and
Ns boxes cover from the end. In each box, the sub-series Yk is regressed by a polynomial
gl(·) of order l (in our work l = 1). The overall detrended fluctuation Fq(s) of the sub-series
Yk is defined via the sample variance of the fitting residuals as follows,

Fq(s) =
{

1

2Ns

2Ns∑

k=1

[Fk(s)]q
}1/q

. (5)

where q can take any real value except for q = 0. While q = 0, we have

F0(s) = exp

{
1

2Ns

2Ns∑

k=1

ln[Fk(s)]
}

. (6)

according to the L’Hôpital’s rule. By varying the value of s in the range from smin = 20 to
smax = N/4, one can expect that the detrended fluctuation function Fq(s) scales with the
size s, which reads

Fq(s) ∼ sh(q), (7)

where h(q) is the generalized Hurst index. Note that while q = 2, h(2) is nothing but
Hurst index H . The scaling exponents τ(q), which is used to reveal the multifractality in
the standard multifractal formalism based on the partition function, can be obtained from the
following traditional function for each q ,

τ(q) = qh(q) − D f , (8)

where D f is the fractal dimension of the geometric support of the multifractal measure (in
our case D f = 1). The local singularity exponent α of the measure μ and its spectrum f (α)

are related to τ(q) through the Legendre transformation (Halsey et al., 1986) ,
{

α = dτ(q)/dq

f (α) = qα − τ(q)
. (9)

Taking into account the statistical significance of the estimation of overall fluctuation func-
tions, we focus on q ∈ [−4, 8].

We further employ three parameters (�α, � f , and B) to capture the characteristics of the
multifractal spectrum. Parameter �α stands for the width of multifractal spectrum, defined
as �α = αmax − αmin. �α quantitatively describes the dispersion of singularity exponents
α, and measures the degree of heterogeneity for the probability measure of subsets on the
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overall fractal structure (Zhou, 2007) . In practice, �α is widely used to gauge the degree
of multifractality (Jiang & Zhou, 2008a, b; Zhou, 2009) . The larger the value of �α is, the
stronger the multifractal nature is. Parameter� f is estimated via� f = f (αmin)− f (αmax),
depicting the difference between the proportion of the subset with the minimum probability
measure and that with the maximum probability measure. Thus, more measures at the peak
leads to � f < 0 and more measures at the trough gives � f > 0. Parameter B is obtained
by fitting the f (α) ∼ α curve to the following quadratic function f (α) = A(α − α0)

2 +
B(α − α0) +C (Shimizu et al., 2002; Munõz-Diosdado & Río-Correa , 2006) . B captures
the asymmetry of the spectrum. The spectrum curve are symmetric when B = 0. B < 0
means that the spectrum curve is right-hooked, indicating that the data set is dominated by
the subsets with large probability measures. In contrast, B > 0 means that the spectrum
exhibits a left-hooked pattern, suggesting that the subsets with small probability measures
take the leading role in the data set.

The shape of the multifractal spectrum and the definition of � f and B underlie a pos-
itive correlation between � f and B. When B > 0 (respectively, B < 0), the multifractal
spectrum is left-hooked (respectively, right-hooked), which means f (αmin) > f (αmax)

(respectively, f (αmin) < f (αmax)), and then we have � f > 0 (respectively, � f < 0).
When B approaches 0, the multifractal spectrum gradually becomes symmetric, which leads
to f (αmin) ≈ f (αmax) and we will obtain � f ≈ 0. However, � f and B have very different
physical meaning. � f measures the proportion difference between the minimum measure
and the maximum measure, while B indicates which type of measures plays a leading role
in the data sets, large measures or small measures.

3 Empirical multifractal characteristics

Using a moving window with a size of 5 days, we perform the multifractal analysis on
the returns in each window by means of the MFDFA method. To have an impression that
the multifractal spectrum is able to quantitatively capture the market dynamics, we present
the results of multifractal analysis on three typical price trajectories, corresponding to the
declining, rising, and sideways trend, in three windows for SH 180. Window 1 covers a
period from 7 April, 2004 to 13 April, 2004. As shown in Fig. 1 a, b, and c, in window 1, we
observe that the price exhibits an decreasing pattern and contains many small returns, which
leads to a left-hooked multifractal spectrum. Window 2 spans a period from 16 January,
2004 to 3 February, 2004 and in that window the price has an increasing pattern and the
return is dominated by large values, which results in a right-hooked multifractal spectrum,
as illustrated in Fig. 1 d, e, and f. Window 3 is from 6 December, 2004 to 10 December, 2004
and the corresponding results are plotted in Fig. 1 g, h, and i. Due to the fact that the price
is in a sideways trend and the fraction of large and small returns are almost equal, one can
observe a symmetric multifractal spectrum.

We also estimate the three characteristic parameters (�α,� f , B) ofmultifractal spectrum
in the three windows and obtain �α = 0.33, � f = 0.21, and B = 0.20 for window 1,
�α = 0.20, � f = −0.13, and B = −0.18 for window 2, and �α = 0.11, � f = 0.01,
and B = −0.003 for window 3, respectively. For the width of multifractal spectra, we have
�αWindow1 > �αWindow2 > �αWindow3, which is in consistent with the observation that
the price in window 1 is the most volatile and the price in window 3 is the least volatile.
This indicates that the spectral width �α can be used to quantitatively capture the market
volatility. Wei and Wang (2008) have proposed a volatility measure based on the width of
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Fig. 1 Results of multifractal analysis on SH180 in three windows, in which the prices exhibit a declining,
rising, and sideways trend, respectively. a–c Results of window 1, spanning from 7 April 2004 to 13 April
2004. d–f Results of window 2, spanning from 16 January 2004 to 3 February 2004. g–i Results of window
3, spanning from 6 December 2004 to 10 December 2004. a, d, g Plots of the price trajectories. b, e, h Plots
of returns. c, f, i Plots of the multifractal spectrum

multifractal spectrum and achieve better VaR measures comparing with the GARCH-type
models (Wei et al., 2013) . We also find that the values of � f and B in these three windows
are in consistent with the geometric features of their multifractal spectra.

By performing the multifractal analysis on the returns in each moving window, we will
accumulate three series of multifractal characteristics (�α, � f , and B). Table 1 lists the
basic information of cumulative return (

∑
rm) and multifractal characteristics (�α,� f , and

B) for SH180 and SZCI. In Panel A, one can see that the skewness is positive and the kurtosis
is much greater than 3 for

∑
rm , �α, � f , and B, indicating that the four variables exhibit

a right-skewed and fat-tailed distribution. It is also observed that for �α and � f the gap
between the mean and the median are very small and for B the mean is less than the median,
indicating that the extreme values in �α, � f , and B have negligible effects on their mean
values.

In Panel B of Table 1, one can find that there is no correlation between the daily returns
rd on the day exactly after the moving windows and three multifractal parameters (�α, � f ,
and B), as their correlation coefficients are very close to 0 and none of them is significant.
The cumulative returns in moving windows

∑
rm are found to be negatively and weakly

correlated with �α for SH180 and significantly correlated with � f for both indexes. The
correlation of �α and � f is weak, positive, and significant for both indexes, because both
coefficients are around 0.05. We also see that � f and B are significantly positive correlated
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and the correlation coefficients are 0.14 and 0.13 for SH180 and SZCI, agreeing with the
underlying correlation between � f and B inferring from their definitions and the geometric
features of multifractal spectrum.

In Panel C of Table 1, we find that �α and � f exhibit very strong autocorrelating behav-
iors, since their autocorrelation coefficients of lags 1 and 5 are positive, large, and significant.
The autocorrelation coefficient of cumulative returns

∑
rm in moving windows is around

0.78 at lag 1 for both indexes and quickly fall to 0 with the increasing of lag, as the autocor-
relation coefficient of lag 5 approaches 0. The autocorrelation in B is weak, because only the
coefficient at lag 1 is significantly positive and the values are less than 0.1 for both indexes.
In addition, the Ljung and Box Q statistics of lags 30 and 50 are statistically significant for
the four variables, showing that the null hypothesis of no autocorrelation is rejected at the 1%
level. Such results imply the existence of autocorrelation in

∑
rm , �α, � f , and B, which

can be attributed to the fact that the four variables are estimated from overlapping moving
windows.

We report the results of augmented Dickey-Fuller (ADF) unit root tests and ARCH tests
in Panels D and E of Table 1. For the ADF unit root test, the optimal lag length is determined
according to the Schwarz information criterion. For both indexes, the ADF statistics suggest
that the null hypothesis of having a unit root in the series of

∑
rm ,�α,� f , and B is rejected

at the 1% level, indicating the stationarity of the four series. Panel F lists the F-statistics
of the ARCH tests at lags 1, 5, 10 and 15, suggesting that the null hypothesis of no ARCH
effects is rejected at any level of significance. The results clearly speak for the presence of
heteroscedasticity in the series of

∑
rm , �α, � f , and B for both indexes.

4 Predictive power of multifractal characteristics

Practitioners and researchers have put great efforts on predicting future returns. One natural
thought is to use the information in the option market, since it reflects the expectation of the
market participants, to predict the future price movements. Bu et al. (2019) employ the VIX
volatility curve to forecast future stock returns in developed markets. And the variance risk
premium is also regarded as a potential predictor for returns (Pyun, 2019) . Factors such as
time-varying consumption-aggregate wealth ratio (Chang et al., 2019) , (time-varying) tail
risk dynamics (Chevapatrakul et al., 2019) are found to exhibit certain predictive ability
on the excess returns. In emerging markets, Chang et al. (2009) found that foreign capital
flows in the option market can be used to predict the underlying asset returns in Taiwan.
It is found that simple technical trading rules can yield positive excess returns even when
the trading costs is considered, showing the evidence of predictability (Chang et al., 2004;
Gunasekarage & Power, 2001) .

4.1 In-sample tests

The daily excess return r∗ on day d is defined as the difference between the index return rd
and the market risk-free return r f ,

r∗(d) = rd(d) − r f (d). (10)

And the corresponding multifractal characteristics on day d , denoted as �αd−4:d , � fd−4:d ,
and Bd−4:d , are estimated from day (d − 4) to day d . We first separate the multifractal
characteristic �αd−4:d into six groups based on the following bins (−∞, 0.05), [0.05, 0.1],
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Fig. 2 Illustration of the predictive power of multifractal characteristics (�α,� f , and B) on the future excess
returns for SH180 (top panels) and SZCI (bottom panels). a Plots of the average excess returns with respect
to the average �α on the left y-axis and the fraction of �α in each bin on the right y-axis. b The same as a,
but for � f . c The same as a, but for B

Table 2 Results of Granger causality tests between excess returns r∗ and multifractal characteristics

Index r∗
� �α �α � r∗ r∗

� � f � f � r∗ r∗
� B B � r∗

SH180 4.53∗ 17.42∗∗∗ 0.13 0.39 6.04∗ 0.10

SZCI 1.12 5.41∗ 0.50 1.24 8.00∗∗ 1.06

�α, � f , and B. x � y indicates the null hypothesis that x does not Granger cause y. Note that ∗, ∗∗, and
∗∗∗ indicate the significant level of 5%, 1%, and 0.1%, respectively

[0.1, 0.15), [0.15, 0.2), [0.2, 0.25), and [0.25,∞). In each group, we calculate the average
value of �αd−4:d and the average value of excess returns r∗

d+1 on day d + 1. In Fig. 2 a, we
illustrate the errorbar plots of the average excess return 〈r∗

d+1〉 with respect to the average
spectral width �αd−4:d on the left y-axis and the fraction of the spectral width �αd−4:d in
each bin on the right y-axis. The top panel is the results of SH180 and the bottom panel is
the results of SZCI. One can see that there is a slightly increasing trend for 〈r∗

d+1〉 with the
increasing of 〈�αd−4:d〉 for both indexes, indicating the predicting ability of �α on future
excess returns. For � f and B, we perform the same analysis. The corresponding results are
shown in Fig. 2 b, c. One can observe a slightly decreasing trend for 〈r∗

d+1〉with the increasing
of 〈� fd−4:d〉 for both indexes, implying that there exists to be a negative correlation between
� f and future excess returns. However, we cannot find any dependence between 〈B〉 and
〈r∗
d+1〉, suggesting no information of future excess returns in B.
We further conduct the Granger causality tests between the excess returns r∗ and the

multifractal characteristics �α, d f , and B. The corresponding null hypothesis of x � y is
that x does not Granger cause y. The results are listed in Table 2. One can see that the excess
return r∗ is the Granger causality of �α and B for SH180 at the level of 5% and of B for
SZCI at the level of 1%. The null hypothesis that�α does not Granger cause r∗ is rejected for
SH180 (respectively, SZCI) at the significant level of 0.1% (5%), indicating that the lagged
�α may contain the information of future excess returns r∗. For r∗ and � f , the Granger
tests cannot reject the null hypothesis, indicating no Granger causality between them.

A standard univariate predictive regression framework is employed to test the predictive
power of mulitfractal characteristics Md−4:d from day d − 4 to day d on the excess return
on day d + 1,

r∗
d+1 = αr + βr ,i Mi,d−4:d + εd , d = 5, · · · , T (11)

where M1 = �α, M2 = � f , M3 = B, M4 = �α� f , M5 = �αB, and M6 = � f B.
The corresponding results of in-sample tests are shown in Table 3 for both indexes, in which
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the regression slopes, intercepts, and the adjusted R2 statistics are reported. The p-values,
which are obtained from the NW t-tests (Newey & West, 1987) , are also listed in the
parentheses under the regression parameters. The null hypothesis of the NW t-tests is that
the regressing slopes (βr ,i ) are vanishing. If the null hypothesis is rejected for βr ,i , we can
conclude that multifractal characteristic Mi contains information of predicting future excess
return r∗

d+1. And accepting null hypothesis means that multifractal characteristic Mi is not a
return predictor.

In panel A of Table 3, we list the results of in-sample tests for SH180. One can find that
except �α,� f , and � f B the other multifractal characteristics give insignificant regres-
sion coefficients. The regression coefficient of �α is significant at the level of 1% and the
adjusted R2 statistics is 0.19%, meaning that �α can explain 0.19% of the excess returns.
In Panel B, we report the regressing results of in-sample tests for SZCI. One can observe
that the regressing coefficients of �α, � f , �α � f , and � f B are statistically significant. It
is also observed that the regression coefficients of other multifractal characteristics are not
statistically significant and the adjusted R2 are vanishing. Usually, �α can be regarded as
a measurement of volatility. The predicting ability of �α can be linked to the market risk.
Higher market risk, associating with high market volatility, results in higher risk premium
(Merton, 1980; French et al., 1987) .

We further run the in-sample regression by incorporating the market volatility, such that

r∗
d+1 = αr + βr ,i Mi,d−4:d + ψrvd−4:d + εd , d = 5, · · · , T (12)

where vd−4:d is the realizedmarket volatility fromday d−4 to d , given by summing the square
of minutely returns. The regression results of Eq. (12) are listed in Table 4. It is observed that
the results in Table 4 are in accordance with those in Table 3. We find that the coefficients
of �α are statistically significant for both indexes when adding the market volatility into the
regression, revealing that the multifractal characteristic �α do have additional information
beyond the market volatility.

4.2 Out-of-sample tests

Out-of-sample tests are usually encouraged to evaluate the return predictability by excluding
the using of future information and over-fitting in-sample tests. Two statistics, the R2

OS
statistic (Campbell & Thompson, 2008) and adjusted MSFE statistic (Clark & West,
2007) , are employed to assess the out-of-sample forecasting performance. The R2

OS statistic
is defined as follows,

R2
OS = 1 −

∑T−1
d=n

(
r∗
d+1 − r̂∗

d+1)

)2

∑T−1
d=n

(
r∗
d+1 − r̄∗

d+1

)2 (13)

where r∗
d+1 is the actual excess return, r̂∗

d+1 is the predicting excess return, and r̄∗
d+1 is

the benchmark of historical average returns. R2
OS measures the percent reduction in mean

square forecast error for the predictive regression forecast relative to the historical average
benchmark forecast. According to the definition, we can infer that R2

OS locates in the range
of (∞, 1]. The predictive regression forecast r̂∗

d+1 is better than the historical average r̄∗
d+1

from the perspective of mean squared forecasting errors (MSFE) when R2
OS > 0. The

adjustedMSFE statistic, proposed by Clark andWest (2007), is used to indicate the statistical
significance of R2

OS > 0 (Neely et al., 2014; Phan et al., 2015; Guo & Tao , 2017; Chen et

123



Annals of Operations Research

Ta
bl
e
3

In
-s
am

pl
e
te
st
s
of

pr
ed
ic
tin

g
th
e
ex
ce
ss

re
tu
rn

r∗ d
+1

on
da
y
d

+
1
w
ith

m
ul
tif
ra
ct
al
ch
ar
ac
te
ri
st
ic
s
M
d
−4

:d
fr
om

da
y
d

−
4
to

da
y
d

M
i,
d
−4

:d
β
r,
1

β
r,
2

β
r,
3

β
r,
4

β
r,
5

β
r,
6

α
r

R
2

Pa
ne
lA

:
SH

18
0

�
α

0.
00

41
∗∗

0.
00

01
0.
00

19

(0
.0
01

4)
(0
.0
00

2)

�
f

−0
.0
01

1∗
−0

.0
00

5∗
∗∗

0.
00

03

(0
.0
00

4)
(0
.0
00

1)

B
0.
00

01
−0

.0
00

5∗
∗∗

0.
00

01

(0
.0
00

1)
(0
.0
00

1)

�
α
�

f
0.
00

03
−0

.0
00

5∗
∗∗

0.
00

00

(0
.0
03

5)
(0
.0
00

1)

�
α
B

0.
00

14
−0

.0
00

5∗
∗∗

0.
00

03

(0
.0
01

2)
(0
.0
00

1)

�
f
B

−0
.0
01

4∗
−0

.0
00

5∗
∗∗

0.
00

13

(0
.0
00

6)
(0
.0
00

1)

Pa
ne
lB

:
SZ

C
I

�
α

0.
00

23
∗∗

−0
.0
00

9∗
∗∗

0.
00

05

(0
.0
00

7)
(0
.0
00

2)

�
f

−0
.0
01

6∗
−0

.0
00

5∗
∗∗

0.
00

06

(0
.0
00

8)
(0
.0
00

1)

123



Annals of Operations Research

Ta
bl
e
3

co
nt
in
ue
d

M
i,
d
−4

:d
β
r,
1

β
r,
2

β
r,
3

β
r,
4

β
r,
5

β
r,
6

α
r

R
2

B
0.
00

01
−0

.0
00

5∗
∗∗

0.
00

02

(0
.0
00

1)
(0
.0
00

1)

�
α
�

f
0.
01

49
∗∗

∗
−0

.0
00

6∗
∗∗

0.
00

41

(0
.0
03

5)
(0
.0
00

1)

�
α
B

−0
.0
02

1
−0

.0
00

5∗
∗∗

0.
00

06

(0
.0
01

2)
(0
.0
00

1)

�
f
B

−0
.0
03

9∗
∗∗

−0
.0
00

6∗
∗∗

0.
00

32

(0
.0
01

0)
(0
.0
00

1)

T
he

re
gr
es
si
on

m
od

el
is
r∗ d

+1
=

α
r

+
β
r,
iM

i,
d
−4

:d
+

ε
d
,
w
he
re

M
1

=
�

α
,
M
2

=
�

f,
,
M
3

=
B
,
M
4

=
�

α
�

f,
M
5

=
�

α
B
,
an
d
M
6

=
�

f
B
.
In

ea
ch

pa
ne
l,
w
e
lis
t

th
e
re
gr
es
si
on

co
ef
fic
ie
nt

β
,t
he

in
te
rc
ep
tα

,a
nd

th
e
ad
ju
st
ed

R
2
st
at
is
tic
.N

ot
e
th
at

∗ ,
∗∗
,a
nd

∗∗
∗ i

nd
ic
at
e
th
e
si
gn

ifi
ca
nt

le
ve
lo

f
5%

,1
%
,a
nd

0.
1%

,r
es
pe
ct
iv
el
y.
N
um

be
rs
in

pa
re
nt
he
se
s
ar
e
st
an
da
rd

de
vi
at
io
ns

123



Annals of Operations Research

Ta
bl
e
4

C
om

pa
ri
so
n
of

th
e
pr
ed
ic
tiv

e
ab
ili
ty

be
tw
ee
n
m
ul
tif
ra
ct
al
ch
ar
ac
te
ri
st
ic
an
d
m
ar
ke
tv

ol
at
ili
ty

M
i,
d
−4

:d
ψ
r

β
r,
1

β
r,
2

β
r,
3

β
r,
4

β
r,
5

β
r,
6

α
r

R
2

Pa
ne
lA

:
SH

18
0

�
α

0.
03

58
∗∗

∗
0.
00

42
∗∗

−0
.0
00

1
0.
00

46

(0
.0
09

9)
(0
.0
01

4)
(0
.0
00

2)

�
f

0.
03

76
∗∗

∗
−0

.0
01

6
−0

.0
00

7∗
∗∗

0.
00

34

(0
.0
10

0)
(0
.0
00

9)
(0
.0
00

1)

B
0.
03

42
∗∗

∗
0.
00

01
−0

.0
00

7∗
∗∗

0.
00

34

(0
.0
10

0)
(0
.0
00

9)
(0
.0
00

1)

�
α

∗�
f

0.
03

49
∗∗

∗
−0

.0
01

5
−0

.0
00

7∗
∗∗

0.
00

27

(0
.0
10

0)
(0
.0
03

6)
(0
.0
00

1)

�
α

∗B
0.
03

39
∗∗

∗
0.
00

12
−0

.0
00

7∗
∗∗

0.
00

28

(0
.0
09

9)
(0
.0
01

2)
(0
.0
00

1)

�
f

∗B
0.
03

47
∗∗

∗
−0

.0
01

5∗
−0

.0
00

8∗
∗∗

0.
00

40

(0
.0
09

9)
(0
.0
00

6)
(0
.0
00

1)

Pa
ne
lB

:
SZ

C
I

�
α

0.
07

67
∗∗

∗
0.
00

07
∗∗

−0
.0
01

2∗
∗∗

0.
01

57

(0
.0
09

2)
(0
.0
00

2)
(0
.0
00

2)

�
f

0.
08

23
∗∗

∗
−0

.0
03

2∗
∗

−0
.0
01

2∗
∗∗

0.
01

77

123



Annals of Operations Research

Ta
bl
e
4

co
nt
in
ue
d

M
i,
d
−4

:d
ψ
r

β
r,
1

β
r,
2

β
r,
3

β
r,
4

β
r,
5

β
r,
6

α
r

R
2

(0
.0
09

2)
(0
.0
01

0)
(0
.0
00

1)

B
0.
07

71
∗∗

∗
0.
00

01
−0

.0
01

1∗
∗∗

0.
01

57

(0
.0
09

1)
(0
.0
00

1)
(0
.0
00

1)

�
α

∗�
f

0.
07

19
∗∗

∗
0.
00

76
∗

−0
.0
01

1∗
∗∗

0.
01

66

(0
.0
09

4)
(0
.0
03

6)
(0
.0
00

1)

�
α

∗B
0.
07

77
∗∗

∗
−0

.0
02

3
−0

.0
01

1∗
∗∗

0.
01

64

(0
.0
09

1)
(0
.0
01

2)
(0
.0
00

1)

�
f

∗B
0.
07

78
∗∗

∗
−0

.0
04

0∗
∗∗

−0
.0
01

2∗
∗∗

0.
01

90

(0
.0
09

1)
(0
.0
01

0)
(0
.0
00

1)

T
he

re
gr
es
si
on

m
od

el
ar
e
r∗ d

+1
=

α
r
+

β
r,
iM

i,
d
−4

:d
+

ψ
r
v
d
−4

:d
+

ε
d
,w

he
re

M
1

=
�

α
,M

2
=

�
f,

M
3

=
B
,M

4
=

�
α
�

f,
M
5

=
�

α
B
,a
nd

M
6

=
�

f
B
.I
n
ea
ch

pa
ne
l,
w
e

lis
tr
eg
re
ss
io
n
th
e
co
ef
fic
ie
nt
s
of

β
an
d

ψ
,t
he

in
te
rc
ep
tα

,a
nd

th
e
ad
ju
st
ed

R
2
st
at
is
tic
s.
N
ot
e
th
at

∗ ,
∗∗
,a
nd

∗∗
∗ i

nd
ic
at
e
th
e
si
gn

ifi
ca
nt

le
ve
lo

f
5%

,1
%
,a
nd

0.
1%

,r
es
pe
ct
iv
el
y.

N
um

be
rs
in

pa
re
nt
he
se
s
ar
e
st
an
da
rd

de
vi
at
io
ns

123



Annals of Operations Research

al., 2017) . The corresponding null hypothesis is R2
OS ≤ 0, meaning that the MSFE of the

historical average benchmark is less than or equal to that of predictive regression forecast.
Our out-of-sample tests are conducted in both moving windows and expanding windows.

Here is the detailed procedure. The predictive regression (Eq. (11)) is estimated in each
window and the obtained parameters are then used to generate the out-of-sample prediction
for the day following that window. These steps are repeated by expanding or sliding the
window till one reaches the end of sample period. The initial window includes the first 600
data points, about 2.5 years of data. The results are reported in Table 5. Panel A lists the results
of the out-of-sample tests for SH180, one can find that �α,� f, B and �αB have positive
R2
OS in bothmoving and expandingwindows, indicating that the predictive regression forecast

is superior to the historical average, and the other predictors have R2
OS < 0. According to the

adjusted MSFE statistics, we find that the R2
OS not greater than 0 is rejected for �α and � f

at the significant level of 0.1% and 5% in the moving window and the expanding window.
The results of the out-of-sample tests for SZCI are reported in Panel B of Table 5. One can see
that R2

OS corresponding to the predictors B and �αB are negative and the other predictors
all have positive R2

OS in the moving window and expanding window. However, only �α and
� f are statistically significant according to the adjusted MSFE statistics both in the moving
window tests and � f in the expanding window tests. We also find that including more data
points into the predictive regression forecast will shrink the predictive ability of predictors,
evidenced by lower R2

OS in expanding window tests comparing with that in moving window
tests. The out-of-sample tests reveal that the multifractal characteristics�α and� f are good
return predictors.

Following Campbell and Thompson (2008); Rapach & Zhou (2013); Wang et al. (2018),
we employ the mean-variance utility function to test the economic significance of the return
predictability based on multifractality. Such utility-based method treats the predictions as
inputs of a specific trading rule or an asset allocation decision derived from maximizing
the expected utility. Supposing that a mean-variance investor with relative risk aversion
γ allocates his portfolio between a risky asset and a risk-free asset with the purpose of
maximizing the following utility function,

U = max
[
Et

(
r pt+1

) − γ

2
Vart

(
r pt+1

)]
(14)

where r pt+1 represents the return of the portfolio and γ measures the risk aversion. The
portfolio returns r pt+1 can be estimated as follows,

r pt+1 = r f
t+1 + ωt rt+1, (15)

whereωt corresponding to the optimal portfolioweight for the risky asset by solvingEq. (14),

ωt = 1

γ

(
r̂t+1

σ̂ 2
r ,t+1

)
(16)

where r̂t+1 is the expected excess returns, giving by the forecasting model and σ̂ 2
t+1 is the

variance of excess returns. Once we have the portfolio r pt at different time t , we are able to
calculate the utility U through Eq. (14).

By setting γ = 5 (for γ = 3 very similar results are obtained), we estimate the utility Û of
the portfolio constructed based on the excess returns given by our return forecasting model,
Eq. (11). For comparison, we also calculate the utility of the portfolio Ū obtained from a
benchmark model, in which the excess returns are given by the historical mean returns. The
utility gains �U is defined as the difference between the utility of two portfolios, that is
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Table 5 Out-of-sample tests of predicting the excess index return r∗
d+1 on day d + 1 with multifractal

characteristics Md−4:d from day d − 4 to day d

Moving window Expanding window

R2
OS (%) MSFE_adj �U (%) R2

OS (%) MSFE_adj �U (%)

Panel A: SH180

�α 0.63 3.01∗∗∗ 0.0052 0.05 1.50∗∗∗ 0.0002

� f 0.26 −0.12∗ 0.0014 0.11 0.97∗ 0.0001

B 0.63 0.98 0.0018 0.25 −0.54 0.0001

�α� f −0.87 −0.54 0.0014 −0.13 0.06 0.0000

�αB 0.48 0.81 0.0024 0.34 −0.41 0.0001

� f B −1.66 0.28 0.1096 −0.15 0.04 0.0036

Panel B: SZCI

�α 0.24 2.41∗ 0.0030 0.16 0.37∗ 0.0002

� f 0.01 1.82 ∗ ∗ 0.0037 0.11 2.62∗∗ 0.0004

B 0.93 −0.71 0.0019 0.27 −0.15 0.0002

�α� f 0.68 0.27 0.0036 0.09 1.08 0.0005

�αB 0.47 −0.36 0.0021 0.60 0.38 0.0002

� f B −0.62 0.60∗ 0.0325 −0.07 0.22 0.0089

This table lists the statistics of R2
OS , MSFEadj, and �U in the moving and expanding window analysis. R2

OS
measures the percent reduction in mean square forecast error for the predictive regression forecast based on
the multifractal characteristic given in the first column relative to the historical average benchmark forecast.
The adjusted MSFE statistic evaluates the significant level of R2

OS > 0. �U is the utility gain between the
portfolio based on the multifractal predicting model and the portfolio based on the historical mean model.
Note that ∗, ∗∗, and ∗∗∗ indicate the significant level of 5%, 1%, and 0.1%, respectively

�U = Û − Ū . This utility gain can be interpreted as the portfolio management fee that an
investor would be willing to pay to have access to the information in the predictive regression
forecast relative to the information in the historical average forecast alone (Rapach & Zhou,
2013) . Because of the trading constraint, the optimal ωt is limited in the range of [0, 1.5].
The utility gain �U is reported in Table 5 for different multifractal characteristics. We must
note that significant R2

OS doesn’t ensure positive utility gains, according to the results of the
south Asia stock market (Rahman et al., 2019) . Comparing with the expanding window, the
utility gains in themoving windows are muchmore volatile, which is in line with the intuition
that the latest information are more valuable for investments. And the positive utility gains
of the multifractal characteristic �α and � f for SH180 and SZCI in the moving window
tests and the expanding window tests indicate that a mean-variance investor is willing to
pay a portfolio management fee to follow the forecasting returns giving by our multifractal
predictive models, as opposed to the historical means.

5 Robustness tests

To check the predicting ability of multifractal characteristics on the financial returns in
different markets, we perform the same analysis on the S&P 500 index, the exchange rate
between Bitcoin and US dollar, and the Chinese commodity futures of bean pulp, corn,
copper, and natural rubber. The S&P 500 index covers from January 2, 1989 and the Bitcoin
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covers from February 10, 2014 to January 18, 2018. The prices of four commodity futures are
recorded fromMarch 10, 2005 toMay 23, 2022 for bean pulp, fromApril 11, 2005 toMay 23,
2022 for corn, from April 25, 2006 to May 23, 2022 for cooper, and from February 28, 2008
to May 23, 2022 for natural rubber. The corresponding results are reported in Table 6. One
can find that all R2

OS are significantly positive and all�U are not less than zero in the moving
window and expanding window analysis, supporting that the multifractal characteristic is a
robust excess return predictor in different markets.

We further separate the sample period of SH180 and SZCI into different sub-periods,
including the pre-COVID period (4 June, 2003–9 January, 2020), the COVID period (10
January, 2020 - 23 May, 2022), the period before the market crash in 2015 (4 June, 2003–15
June, 2015), the period after the market crash in 2015 (16 June, 2015–23 May, 2022), the
period of bull market (30 June, 2014–June 15, 2015), and the period of bear market (June 16,
2015–June 30, 2016). The predicting performance of multifractal characteristics is investi-
gated in these sub-periods. The statistics of performance are listed in Table 7. Again, one can
see that the regressing results in sub-periods are very similar to those in the entire periods.�α

and � f exhibit significant predictability as R2
OS is significantly positive and �U is not less

than zero. This result indicates that the return predicting power of multifractal characteristic
is robust in different sub-periods. Furthermore, it is also observed that multifractal charac-
teristics exhibit higher return predictability in the period after the market crash in 2015 and
the period of bear market. The possible reason is that volatile market increases the strength
of multifractality, and in turn improves the return predictability, which motivates us to test
the economic explanation on the return predictability of multifractal characteristics in the
following section.

6 Economic explanations

In this section, we try to explore the economic explanations on why the multifractal charac-
teristics can predict the future returns. As the multifractal characteristics are used to capture
the market volatility, one possible explanation is that the multifractal measurements reflect
the market volatility risks. As the multifractality is originated from the fat-tailed distribution
and more extreme events can lead to stronger multifractality, thus another possible explana-
tion is that multifractal characteristics reflect the the market tail risk. We thus employ the
realized volatility (RV ) (respectively, the value at risk (VaR) and expected shortfall (ES))
to measure the market risk (respectively, the tail risk) and run the following regression,

RFi,d+1 = αv +
∑

i

βi Mi,d−4·d + εd+1 (17)

where RF1 = RV , RF2 = VaR, RF3 = ES, M1 = �α, M2 = � f , M3 = B.
Table 8 reports the regressing results. For both indexes, the coefficients of �α are signif-

icant at the level of 0.1%, indicating that the spectral width �α is able to explain the three
risk measures and agrees with the idiosyncratic volatility puzzle and the idiosyncratic tail
risk puzzle in the Chinese stock markets (Nartea et al., 2013; Gu et al., 2018; Wan, 2018;
Long et al., 2018) . The predicator � f is also statistically significant for the RV , VaR and
ES of both indexes, indicating that the spectral height � f has explanatory power for the
volatility risk and the downside tail risk. Therefore, both �α and � f can be regarded as a
risk measure including the information of market volatility and downside tail risk.
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Table 8 Linking multifractal characteristics Md−4:d from day d−4 to day d with risk measures on day d+1

RV VaR ES RV VaR ES

Panel A: SH180 Panel B: SZCI

�α 0.0027∗∗∗ 0.0222∗∗∗ 0.0302∗∗∗ 0.0144∗∗∗ 0.0040 0.0185∗∗
(0.0006) (0.0050) (0.0056) (0.0024) (0.0053) (0.0067)

� f 0.0160∗∗∗ 0.0382∗∗∗ 0.0428∗∗∗ 0.0180∗∗∗ 0.0297∗∗∗ 0.0326∗∗∗
(0.0013) (0.0032) (0.0037) (0.0016) (0.0036) (0.0042)

B 0.0004∗∗ 0.0012∗∗ 0.0013∗∗ 0.0012∗∗∗ 0.0012∗ 0.0010

(0.0002) (0.0004) (0.0005) (0.0002) (0.0005) (0.0006)

R2 3.58% 3.81% 4.64% 3.81% 1.53% 1.78%

This table reports the regression coefficients β of realized volatility (RV ), value at risk (VaR), and expected
shortfall (ES), and the adjusted R2 statistics. Note that ∗, ∗∗, and ∗∗∗ indicate the significant level of 5%, 1%,

and 0.1%, respectively. Numbers in parentheses are standard deviations

7 Conclusion

In this paper, we apply MFDFA to detect the multifractal characteristics in high-frequency
data of SH180 and SZCI. We find that both indexes exhibit strong multifractality. We extract
three measures of multifractal spectra (�α, � f , and B) from returns in moving windows
with a size of five days and found that there is a positive correlation between �α and future
excess returns, and a negative correlation between � f and future excess returns. With the
factor model, the return predictability is observed for the multifractal spectral width �α

in both in-sample and out-of-sample tests, which is further corroborated by the robustness
tests on the S&P 500 index, the exchange rate between Bitcoin and US dollar, four Chinese
commodity futures, and the SH180 and SZCI in different sub-periods.

One possible explanation of such predicting ability is that multifractal characteristics can
be linked to market volatility and the return predictability may be economically explained
by the theory of risk premium. Another possible explanation is that the multifractality in
stock returns originates from the fat-tailed distribution, which may contain the information
of downside tail risks. Our work suggests that the multifractal characteristics �α and � f
jointly include the information ofmarket volatility and downside tail risk, which indicates that
multifractality may have potential applications on the riskmanagement. On the one hand, one
can design better risk measures based on multifractal characteristics. On the other hand, one
can develop hybrid models by combining multifractality and machine learning techniques to
improve the accuracy of volatility prediction (Pradeepkumar & Ravi, 2016; Pradeepkumar
& Ravi, 2017; Pradeepkumar & Ravi, 2017b; Pradeepkumar & Ravi, 2020; Ravi et al., 2017)
. Furthermore, the future work can also be focused on testing the return predictability of
multifractal characteristics on various industry sectors and regions, and developing trading
strategies based on multifractal characteristics.
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