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Abstract
Non-independent and identical distribution (Non-IID) data and model heterogeneity pose a
great challenge for federated learning in cloud-based and edge-based systems. They are easy
to lead to inconsistency of gradient updates during the training stage andmismatch of gradient
dimensions during the aggregation stage, resulting in the degradation of the global model
performance and the consumption of a lot of training time. To solve these problems, this
paper proposes a Heterogeneous Hierarchical Federated Mutual Learning (HFML) method
in an edge-based system. We design a model assignment mechanism in which clients and
edge servers individually fork global models of different structures, and the untrained local
models learn mutually with the edge models in deep mutual learning. We use partial periodic
aggregation to approximate global aggregation to achieve fast convergence. Our experiments
show that HFML obtains state-of-the-art performance than three approaches on common
datasets like CIFAR-10/100. Our method improves accuracy up to 2.9% and reduces training
time by 30% under homogeneous and heterogeneous models.

Keywords Federated learning · Non-independent and identical distribution (Non-IID) ·
Heterogeneous models · Deep mutual learning

1 Introduction

The recent development of centralized federated learning has drawn dramatic attention to
some powerful computing platforms, e.g., cloud-based and edge-based systems. Federated
learning applies in some fields, such as the Internet of Things (IoT), Natural Language
Processing (NLP), and Image Processing. A central server accesses massive information
from clients with excessive communication overhead in a cloud-based system. In an edge-
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based system, a center server pushes computation resources to the edge servers, which allows
clients to jointly train deepmodels within the communication range (Wang et al., 2019; Liu et
al., 2020; Li et al., 2022). In centralized federated learning, each client runs stochastic gradient
descent (SGD) locally and a central server aggregates parameter updates from clients for the
next round until model convergence. Figure 1a shows the diagram of a round of federated
averaging algorithm (FedAvg).

FedAvg (McMahan et al., 2017) is a gradient-based and well-established centralized fed-
erated learning algorithm, that allows clients to collaboratively train a model without raw
data. When client data is independent and identical distribution (IID), local gradients are
unbiased estimates of full gradients, which performs well under standard assumptions (Li et
al., 2020; Kairouz&McMahan, 2021). However, thismethod relies heavily on data quantities
and data distribution. When the client data collected from different sources is Non-IID, aver-
aging different local models generates biased gradients and deviates from the true results. To
alleviate this impact, the studies (Zhu et al., 2021;Wang et al., 2021) propose some solutions,
such as sharing partial private data as public data (Zhao et al., 2018), fine-tuning (Li et al.,
2021; Karimireddy et al., 2020) and distillation-based approaches (Jeong et al., 2018; Zhang
et al., 2021; Feng et al., 2021). The method of fine-tuning adjusts the weight divergence
of local and global models by adding the regulation term to improve model performance,
but it’s limited by model structures. However, the mismatch of gradient dimensions leads to
degrading performance during the aggregation stage when different clients design different
network structures according to computing power (Li & Wang, 2019). Model complexity
affects the learning ability of the model and is affected by model size and data distribution
(Mohri et al., 2018; Hu et al., 2021). Distillation-based approaches can compress the model’s
size and improve the performance of small models, which starts with a large and pre-trained
teacher model and trains a smaller student model, which isn’t limited by model structures,
but the performance of the student model can’t outperform the teacher model. Deep mutual
learning (DML) (Zhang et al., 2018) isn’t a one-way transfer method between static teacher
and student models and is integrated with federated learning (Li et al., 2022; Shen et al.,
2020), which ensembles of student models and learns collaboratively, and all model parame-
ters are updated throughout the training process. In Fig. 1b, the client forks the initial global
model as a meme model for local mutual training, and uploads a meme model to the cloud
server.

In this paper, we propose a Heterogeneous Hierarchical Federated Mutual Learning
(HFML) method in the edge-based framework. We introduce deep mutual learning to mine
knowledge from local data and use partial aggregation to guide local updates per client when
local and edge models are heterogeneous. Our contributions are listed as follows:

• We propose an edge-based federated learning framework and design a model assignment
mechanism that allows the client frequently performs the local update and transfers local
knowledgewith the edgemodel by deepmutual learning through the edge layer to achieve
fast convergence.

• We develop an easy-to-implement heterogeneous hierarchical federated mutual learning
method namedHFML in an edge-based system.We leverage partial model aggregation to
reduce the number of local iterations and training time while maintaining stable accuracy
when client data is Non-IID data.

• Weconductmultiple experiments inNon-IID settings for image classification. The results
show that HFML outperforms FedAvg, FedProx, and FML methods on metrics such as
accuracy, training time, and model complexity.
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Fig. 1 Three centralized federated learning frameworks. a FedAvg b FML c HFML

In this paper, Sect. 2 reviews the relevant studies onNon-IID data andmodel heterogeneity.
Section 3 describes related preliminaries. We propose the HFML scheme in Sect. 4. Section
5 describes the experiments and analyzes the results. In Sect. 6, we summarize the content
of this paper.

2 Related work

2.1 Non-IID data

Data partition strategies are used to simulate real-world data distributions, includingDirichlet
distribution, skewed feature distribution, skewed label distribution, and quantity imbalance
(Caldas et al., 2018; Li et al., 2021; Hsieh et al., 2020; Hsu et al., 2020). Note that Non-IID
means that local distribution hardly represents global distribution. Local and global models
can be regarded as containers of knowledge and rely heavily on massive data and data
distribution. In ref (Li et al., 2019), the convergence of the FedAvg algorithm for strongly
convex problems in the Non-IID setting is proved. Fine-tuning reduces weight divergence
discrepancy between local and global models with the same structure (Munir et al., 2022; Li
et al., 2018; Karimireddy et al., 2020). Aggregating multiple local models trained on Non-
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IID data is affected by inconsistent updates, which reduces model accuracy and convergence
speed.

2.2 Model heterogeneity

Model heterogeneity reflects differences in data presentation and learning ability. Knowledge
distillation integratedwith federated learning is used to compressmodels (Hinton et al., 2015;
Anil et al., 2018; Seo et al., 2020; Chan et al., 2021; Jiang et al., 2020; Afonin et al., 2022;
Yu et al., 2022), which transfers knowledge from large models to small models and is suited
to the low-memory device. FedGKD (Pan & Sun, 2021) fuses global historical information
to guide local models and weakens the over-fitting of local models. FedUFO (Zhang et
al., 2021) addresses optimization inconsistency and feature divergence issues by modifying
two consensus losses and extracting group data information from global and local models.
FedHeNN (Makhija et al., 2022) allows agnostic architecture across peer clients and guides
the simultaneous training on each client.

2.3 Periodic aggregation

Periodic model aggregations reduce the communication cost in an edge-based system.
Increasing parallel computing on clients can reduce communication times in a centralized
federated learning framework (Konecny et al., 2016; Rothchild et al., 2020; Matsuda et al.,
2022). Lin et al. (2018) proves that 99% of gradient exchange is redundant in the communi-
cation process, and the exchange of a large number of parameters increases the unnecessary
communication cost and extends the aggregation period. Tier-based federated learning is
segmented according to privacy levels and model performance to accelerate convergence
under data heterogeneity (Wu et al., 2021; Chai et al., 2020, 2021; Mhaisen et al., 2022; Luo
et al., 2020). HierFAVG (Liu et al., 2020) allows multiple edge servers to perform partial
model aggregation on an edge-based system. For periodic aggregation optimization, FedBCD
(Liu et al., 2019) presents that each client performs different local updates before uploading
parameters to adjust the update direction. Ref (Lee et al., 2022) proposes a partial model
averaging method to solve the problem of slow convergence due to model discrepancy across
the clients.

3 Preliminaries

In this section, we describe the federated averaging algorithm and model complexity. Then,
we introduce the deep mutual learning method and related federated learning schemes.

3.1 Federated averaging algorithm

Suppose the network includes K clients. Given dataset S = {xi , yi }ni=1 includes n samples
of M classes, the k-th client holds the nk samples over data distributions Dk(xi , yi ), n =∑K

k=1 nk , pk = nk
n . The global objective function f (w) formulates as follow:
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minw f (w) =
K∑

k=1

pk Fk(w) (1)

Fk(w
k) = 1

nk

K∑

i=1

fi (w
k) (2)

where Fk(·) is local objective function of k-th client, fi (wk) = l(xi , yi ;wk) represents loss
function on samples nk made with weight parameters of local model wk .

wk ← wk − η∇Fk(w
k) (3)

wglobal ←
K∑

k=1

pkw
k (4)

where wglobal is the weight of the global model. Note that when Dk is IID data,
| FSUM − FFED |≤ δ and EDK [Fk(w)] = f (w) holds, where federated learning per-
formance approximates centralized computing, δ is a non-negative real number (Yang et
al., 2019). Clients update local parameters by SGD method and aggregate local models at a
server, performing the above operations to update the global model until converges during
the whole process.

3.2 Deepmutual learning

Deep mutual learning (Zhang et al., 2018) can be viewed as bidirectional knowledge transfer
between student networks and is suitable for training on heterogeneous models. At each
iteration, we compute the predictions of the two models and update both models’ parameters
according to the predictions of the other.

Suppose there are two models θ1 and θ2. For multi-class image classification task, the
probability of class m for sample xi by model θ1 is computed as

pm1 (xi ) = exp(zm1 )
∑M

m=1 exp(z
m
1 )

(5)

where the logit zm1 is the output of the softmax layer in model θ1. p1(·) represents the
prediction of the model θ1, named soft targets. Deep mutual learning includes two losses:
a conventional supervised learning cross-entropy loss LCE between the hard labels and the
soft targets and a mimicry loss DKL(·), named Kullback Leibler (KL) Divergence which
quantifies the match of the soft predictions.

LCE = −
N∑

i=1

M∑

m=1

I (yi )log(p
m
i (xi )) (6)

DKL (p2‖p1) =
K∑

i=1

M∑

m=1

pm2 (xi )log
pm2 (xi )

pm1 (xi )
(7)

where I is an indicator function. I (yi ) =
{
0 yi = m

1 yi �= m
, loss functions of model θ1 and θ2

can be computed as.
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Table 1 Notations
Sedge , Sclient Edge/clients set

zCi , zCi j
Edge/local model logit

pCi , pCi j
Edge/local probability prediction

LCi , LCi j
Edge/local model loss function

wglobal , w
m
edge , w

k
local Global/edge/local model parameter

Ci , Ci j Edge/local model

Lθ1 = LC1 + DKL(p2‖p1) (8)

Lθ2 = LC2 + DKL(p1‖p2) (9)

Deep mutual learning is integrated with federated learning from invisible data to learn
knowledge. In FML (Shen et al., 2020), the meme model as a medium between the global
models and the local models is used to solve the problem of data, objective, and model
heterogeneity (DOM) in Fig. 1b. Student models can train mutually instead of learning
from the pre-trained teacher model. The loss functions L(·) of Clocal and Cmeme describe as
follows:

Llocal = αLClocal + (1 − α)DKL (pmeme‖plocal)
Lmeme = βLCmeme + (1 − β)DKL(plocal‖pmeme)

(10)

where α and β are the hyper-parameters which use to control the proportion of knowledge
transfer from data or model. When β = 1, the federated mutual learning algorithm would
degrade into a typical federated averaging algorithm.

4 Methodology

In this section, we describe the Heterogerous Hierarchical Federated Mutual Learning
(HFML) method in an edge-based federated learning system which includes cloud servers,
edge servers, and clients. Fig. 1c shows the diagram of a round of HFML.

4.1 Formulation

Edge servers are denoted by Sedge = {mi , i = 1, · · · , M} and clients are denoted by Sclient =
{ci j , i j = 1, · · · , N }. The edge models are marked as {Ci , i = 1, · · · , N }. The client models
connected to edge server mi are marked as {Ci j , i j = 1, · · · , K }, ci j represents j-th client
connected to the i-th edge server and each edge server connects same number of clients
(Table 1).

The rounds are marked as D. The global communication round sets T between cloud and
edge servers, and the partial communication round sets t between clients and edge servers,
the local epoch sets E . pCi j

is computed as Eq. 5 and PI represents periodic predictions
aggregation.
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pI =

⎧
⎪⎪⎨

⎪⎪⎩

1

K

K∑

i j=1

pCi j
D mod E = 0

pCi j
D mod E �= 0

We rewrite the edgemodel loss function LCi and localmodel loss function LCi j
as follows:

LCi j
= LCi j

+ DKL(pCi j
‖pI )

LCi = αLCi + βDKL(pI ‖pCi j
)

(11)

where LCi j
and LCi are computed by Eq. 7. The hyper-parameters are used to adjust the

strength of learning ability from local data, defaulting to 0.5 for all experiments. The edge
and local models conduct DML and update model parameters.

wm+1
edge ← wm

edge − η∇LCi (w
m
edge, w

k
local) (12)

wk+1
local ← wk

local − η∇LCi j
(wm

edge, w
k
local) (13)

Partial periodic aggregation at the edge layer and global model aggregation in the cloud
are as follows.

w
mi
edge ←

K∑

ci j =1

w
ci j
local (14)

wglobal ←
M∑

mi=1

w
mi
edge (15)

In Fig. 1c, the edge servers download the global models (homogeneous or heterogeneous)
from the cloud as edge models, and the client downloads the edge model and trains mutually
and uploads the edge model to the edge layer. Finally, the cloud aggregates local models into
a global model. HFML is compatible with heterogeneous models on Non-IID data, where
the edge layer acts as a knowledge transfer hub between connected clients in Algorithm 1

5 Experiments

5.1 Models and datasets

We conduct extensive experiments on CIFAR-10 (Krizhevsky et al., 2014) and CIFAR-100
(Krizhevsky et al., 2009) datasets, which arewidely used in image classification task. CIFAR-
10 consists of 50000 training images and 10000 test images in 10 classes, with 5000 and 1000
images per class. CIFAR-100 has the same total number of images as CIFAR-10, but it has
100 classes. All images of CIFAR-10/100 are 3-channel 32x32 RGB images. We simulate
two settings by sorting and assigning label classes.

Global and local models include combinations of convolution neural network (CNN1,
CNN2, and Multi-Layer Perceptron (MLP)). CNN1 is a convolution neural network with
two 3x3 convolution layers (the first with 6 channels, the second with 16 channels, each
followed with 2x2 max pooling and ReLu activation) and two fully connected layers, and a
convolution neural network CNN2with three 3x3 convolution layers (eachwith 128 channels
followed with 2x2 max pooling and ReLu activation) and one fully connected layer. MLP
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Algorithm 1 HFML Algorithm.

1: Input: Sclient , Sedge , w0
global , w

1
global .

2: Parameters: local epochs E and edge epochs T.
3: Output: wglobal .
4: Cloud Server Executes
5: Init: global model w0

global and w1
global

6: Edge Server Executes
7: Fork: edge model wedge ← w0

global
8: for each edge m ∈ Sedge do
9: for each round t = 1, · · · , T do
10: for each client k ∈ Sclient in parallel do
11: wlocal,t+1, wedge,t+1 ←Updateclient(wlocal,t , wedge,t )
12: end for
13: end for
14: Merge: wedge ← ∑

wedge,t
15: end for
16: Merge: wglobal ← ∑

wedge
17:
18: Updateclient(wlocal,t , wedge,t )

19: Fork: local model wlocal ← w1
global

20: Download: edge model wedge
21: for each round n = 1, · · · , E do
22: conduct DML according to Eq. 12 and Eq. 13.
23: end for

is a special convolution neural network with three fully connected layers that contain the
nonlinear activation function ReLU. CNN1/CNN2 represents that the global model is CNN1
and the local models are CNN2; CNN2/CNN1 represents the global model is CNN2 and
local models are CNN1; CNN1 represents the global model and local models are CNN1, and
CNN2 represents that the global model and local models are CNN2, MLP/CNN2 represents
that global model is MLP and local models are CNN2; CNN2/MLP represents that global
model is CNN2 and local models are MLP.

5.2 Experiment settings

For a fair comparison, our experiment performs image classification tasks on CIFAR-10/100
datasets with Non-IID settings of skewed label partitions. We compare proposed HFMLwith
FedAvg (McMahan et al., 2017), FML (Shen et al., 2020), and FedProx (Li et al., 2020)
schemes under the same conditions. The metrics include accuracy, training time, and model
size. We consider an edge-based federated learning system and assume each edge server
connects the same number of clients. The total communication round sets T between cloud
and edge servers, and partial communication round sets t between clients and edge servers,
and local epochs E . Two settings mean that each client has overlap label classes, such as label
classes and sample size are similar {3:3:4} for CIFAR-10, and label classes and sample size
are similar {30:30:40} for CIFAR-100, marked as setting 1; label classes and sample size are
large difference {6:2:2} for CIFAR-10, and label classes and sample size are large difference
{60:20:20} for CIFAR-100, marked as setting 2. The parameters include momentum = 0.9,
weight_decay = 5 × 10−4, learning rate η = 10−3 and batch size B = 128.
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Table 2 Training time of four approaches in setting 1

CIFAR-10 CNN1 CNN2 MLP CNN1/CNN2 CNN2/CNN1

FedAvg 6h22min 6h28min 6h31min – –

FedProx 7h4min 7h12min 6h47min – –

FML 7h34min 7h18min 7h27min 7h39min 7h38min

HFML 4h25min 4h30min 4h28min 4h23min 4h39min

CIFAR-100 CNN1 CNN2 CNN1/CNN2 CNN2/CNN1 CNN2/MLP

FedAvg 6h47min 6h30min – – –

FedProx 7h12min 7h21min – – –

FML 7h30min 7h37min 7h32min 7h11min 7h16min

HFML 4h15min 5h38min 5h11min 4h26min 4h42min

Bold values indicate the best results

5.3 Results

To compare the performance of the proposed method and the baseline methods, we run
multiple experiments using the homogeneous and heterogeneous models in all settings and
evaluate the training time, accuracy, and model complexity. In this paper, the accuracy rate
recorded in all figures is the best value for each round in the training stage, once it exceeds
the existing best value, and it is recorded and updated, otherwise, it remains unchanged.

5.3.1 Comparison of training time

We use deep mutual learning to improve performance during the training phase and partial
period aggregations to approximate global aggregations during the inference phase. Table 2
shows that HFML spends less training time than FedAvg, FedProx, and FML methods on
settings 1 under homogeneous and heterogeneousmodelswith the same conditions.While the
training time between different algorithms under homogeneous models on the same dataset
varies widely, HFML can reduce training time up to 30%. The training time of the same
method on datasets of different sizes is affected, such as CIFAR-10 and CIFAR-100. The
difference in the training time is only a few minutes under different models using the same
algorithm, such as MLP, CNN1, and CNN2.

5.3.2 Accuracy comparison

As shown inTable 3, the accuracy ofCNN2 is higher thanCNN1andMLP for four approaches
under homogeneous models in all settings. When global model and local models are het-
erogeneous on CIFAR-10/100, such as CNN1/CNN2, CNN2/CNN1, and CNN2/MLP, the
accuracy of HFML has 2.9% improvement than FML on CIFAR-10/100 in Figs. 2 and 3,
and improves 2.04% accuracy than other approaches when global model and local models
are MLP in setting 1. The model performance is related to the degree of label skew and the
model structure. When the global and local models are homogeneous, the accuracy of the
deep global model (CNN2) is higher than that of the shallow model (CNN1, MLP).

FedAvg and FedProx train failure between local and globalmodels due tomismatch of gra-
dient dimension. FedAvg depends on initializing the globalmodel and updatesmodel weights
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Fig. 2 The best accuracy on CIFAR-10 under heterogeneous models. a The global model is CNN1 and local
models are CNN2 in setting 1. b The global model is CNN2 and local models are CNN1 in setting 1. c The
global model is CNN1 and local models are CNN2 in setting 2. d The global model is CNN2 and local models
are CNN1 in setting 2

Fig. 3 The best accuracy on CIFAR-100 under heterogeneous models. a The global model is CNN1 and local
models are CNN2 in setting 1. b The global model is CNN2 and local models are CNN1 in setting 1. c The
global model is CNN1 and local models are CNN2 in setting 2. d The global model is CNN2 and local models
are CNN1 in setting 2

Fig. 4 The accuracy of fourmethods on CIFAR-10 under heterogeneousmodels in setting 1. Node 0 represents
as a global model and Node 1-6 respectively represent as local models

according to sample size at clients. FedProx modifies local and global updated weight by
adding a regularization term. FML aggregates meme models at the cloud server and controls
the proportion of the rate of data and model by hyper-parameters. HFML adjusts knowledge
fusion by partial periodic aggregation edge models to approximate global aggregation in an
edge-based system.

Figure 4 describes the accuracies of a global model and six local models on CIFAR-
10 when they are heterogeneous models (CNN1/CNN2, CNN2/CNN1, MLP/CNN2, and
CNN2/MLP). HFML improves the accuracy of both the global model and the local models.
The local performance is affected by the local data distribution and label classes, while the
global model is affected by the distribution gap between clients.

Figures 5 and 6 show that the best accuracy of the global model for homogeneous models
in setting 1 and setting 2 of four algorithms using CNN1 and CNN2, it can be seen that global
classification accuracy of the proposed method is higher than that of the baseline methods.
Figure 7a and b show that HFML achieves the best results on all cases for homogeneous
models (MLP) of four algorithms.

Figure 7c and d show that HFML improves the accuracy when global and local models
are heterogeneous. In Fig. 8a and b, the results show that the accuracy is affected by hyper-
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Fig. 5 The best accuracy of global model on CIFAR-10/100 under homogeneous models in setting 1. a The
global model and local models are CNN1 on CIFAR-10. b The global model and local models are CNN2 on
CIFAR-10. c The global model and local models are CNN1 on CIFAR-100. d The global model and local
models are CNN2 on CIFAR-100

Fig. 6 The best accuracy of the global model on CIFAR-10/100 under homogeneous models in setting 2. a
The global model and local models are CNN1 on CIFAR-10. b The global model and local models are CNN2
on CIFAR-10. c The global model and local models are CNN1 on CIFAR-100. d The global model and local
models are CNN2 on CIFAR-100

Fig. 7 The best accuracy of the global model on CIFAR-10. a The global model and local models are MLP
in setting 1. b The global model and local models are MLP in setting 2. c The global model is MLP and local
models are CNN2 in setting 1. d The global model is MLP and local models are CNN2 in setting 2

Fig. 8 The best accuracy of HFML with hyper-parameters on CIFAR-10 using homogeneous and heteroge-
neous models. a The accuracy of homogeneous models in setting 1. b The accuracy of heterogeneous models
in setting 2. c The accuracy of partial aggregations in setting 1. d The accuracy of partial aggregations in
setting 1
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Table 4 Model complexity on Non-IID settings

Model_Dataset Parameters MAdd Flops MemR+W Memory

Setting1/2 _CIFAR10

CNN1 38626 660.29K 340.13K 215.41K 153KB

CNN2 303882 60.79M 30.54M 1.84M 1189KB

MLP 656810 1.31M 656.4K 2.52M 2567KB

FedAvg/FedProx_CNN1_CNN2 – – – – –

FML/HFML CNN1_CNN2 38626 660.29K 340.13K 215.41K 153KB

FedAvg/FedProx_CNN2_CNN1 – – – – –

FML/HFML CNN2_CNN1 303882 60.79M 30.54M 1.84M 1189KB

FML/HFML CNN2_MLP 303882 60.79M 30.54M 1.84M 1189KB

FML/HFML MLP_CNN2 656810 1.31M 656.4K 2.52M 2567KB

Setting1/2_CIFAR100

CNN1 44476 671.72K 345.89K 238.62K 176KB

CNN2 350052 60.88M 30.58M 2.02M 1369KB

FedAvg/FedProx_CNN1_CNN2 – – – – –

FML/HFML CNN1_CNN2 44476 671.72K 345.89K 238.62K 176KB

FedAvg/FedProx_CNN2_CNN1 – – – – –

FML/HFML CNN2_CNN1 350052 60.88M 30.58M 2.02M 1369KB

FML/HFML CNN2_MLP 350052 60.88M 30.58M 2.02M 1369KB

parameters but slightly. The edge layer acts as a knowledge transfer hub between clients to
guide local updates. We consider local epochs and partial periodic aggregation relatedness in
Fig. 8c and d. The results show that the accuracy decreases as the rounds of edge aggregations.

5.3.3 Model complexity comparison

We run the code in the same hardware and software environments. In Table 4, we found that
model parameters are related to model structures and dataset size, and different algorithms in
the same setting train under the same models to have the same numbers of model parameters.
For example, the global model parameters of CNN2/MLP are the same as CNN2, only the
local model parameters are different. The number of parameters of CNN2 is 10 times that of
CNN1. When the global model size is larger than the local models, such as CNN2/MLP or
CNN2/CNN1, the accuracy of the global model approximates CNN2 and consumes lower
resources, respectively 2.11M, 11.22M, and 17.55M, which reduces gradients size during
aggregation stage. FedAvg and FedProx train collaboratively a global model under homoge-
neous models. FML and HFML focus on training on Non-IID data under homogeneous and
heterogeneous models.

5.4 Discussion

In this paper, we discuss three aspects: data distribution, model structures, and training time.
We compare performance of four methods from the perspective of data heterogeneity under
heterogeneous and homogeneous models.
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5.4.1 Impact of non-IID data

HFML focus on training on Non-IID data under homogeneous and heterogeneous models.
Fine-tuning mainly occurs in the training phase and depends on model structures, and deep
mutual learning can transfer the knowledge of the last layer. Performance is affected bymodel
structures and data distribution during local multiple iterations and global aggregations. The
significant update deviation causes the global model to deviate from the true optimization
results.

5.4.2 Impact of heterogeneous models

Models are regarded as containers for storing knowledge from different data, and model
complexity is affected by model structures, model size, data distribution, and dataset size.
Increasing the number of hidden units or parameters, which leads to generalization errors.
When different algorithms train the model on the same condition, such as the model com-
plexity can be measured using LANN (Hu et al., 2020), e.g.,CNN2 > MLP > CNN1, the
accuracy of the deep model is better than a shallow model, but training time is longer. Table
4 shows that model complexity depends on global model structure and parameters, such
as CNN2 has the same model parameters as CNN2_CNN1. Deep mutual learning transfers
bidirectionally knowledge and is suitable for heterogeneous models. When the global model
size is smaller than the local model, the accuracy and storage of the global model are better
than that of the homogeneous model CNN1, but it loses accuracy more than CNN2 and can’t
trade off training time and accuracy.

5.4.3 Impact of edge layer

We set the same number of clients connected to the edge server in an edge-based system. The
hyper-parameters α and β are regarded as the knowledge transfer rate of data and models.

6 Conclusion

In this work, we propose a method named heterogeneous hierarchical federatedmutual learn-
ing (HFML) in an edge-based system, which solves the problems of the inconsistency of
gradient updates during the training stage and mismatch of gradient dimensions during the
aggregation stage in Non-IID settings. We use deep mutual learning to transfer and jointly
mine invisible knowledge from local models and edge models and achieve model updates.
We leverage partial aggregations to achieve fast convergence and reduce training time. In
terms of accuracy and training time, HFML outperforms than FedAvg, FedProx, and FML
schemes.
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