
Annals of Operations Research (2023) 322:631–659
https://doi.org/10.1007/s10479-022-05138-9

ORIG INAL RESEARCH

Theminimum covering Euclidean ball of a set of Euclidean
balls in IRn

P. M. Dearing1 ·Mark E. Cawood1

Accepted: 12 December 2022 / Published online: 29 December 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Primal and dual algorithms are developed for solving the n-dimensional convex optimization
problem of finding the Euclidean ball of minimum radius that coversm given Euclidean balls,
each with given center and radius. Each algorithm is based on a directional search method
in which a search path may be a ray or a two-dimensional conic section in IRn . At each
iteration, a search path is constructed by the intersection of bisectors of pairs of points, where
the bisectors are either hyperplanes or n-dimensional hyperboloids. The optimal stopping
point along each search path is determined explicitly.

Keywords Location · Convex programming · Minimum covering ball · One-center
location · Min–max location

1 Introduction

Let P = {p1, . . . ,pm} be a given set of m distinct points in IRn , and for each point pi ∈ P ,
let ri be a non-negative radius. Let [pi , ri ] = {x : ‖x−pi‖ ≤ ri } denote the closed Euclidean
ball where pi is the center, ri is the radius, and ‖x − pi‖ is the Euclidean distance between
pi and x. The problem of determining the minimum covering Euclidean ball of a set of
Euclidean balls requires the ball [x∗, z∗], with center x∗ and minimum radius z∗, that covers,
or contains, the balls [pi , ri ] for all pi ∈ P . The problem is denoted by M(P), and is written
as:

M(P) : min z
s.t. z ≥ ‖x − pi‖ + ri , pi ∈ P.

Adding a real constant to all the radii yields an equivalent problem, so the assumption
of non-negative radii is not necessary. However, non-negative radii are assumed to simplify
the presentatiion. If all the radii are equal, then all the radii may be assumed to be zero, and
the problem is to find the minimum covering ball of the points pi ∈ P , called the minimum
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covering ball problem. Problem M(P) has the following equivalent representation:

M(P) : min
x∈IRn

max
pi∈P

{‖pi − x‖ + ri }.

This version of the problem is known as the min–max location problem with fixed distance
and as the one-center delivery problem (Plastria, 2004). The center x is the location of a
facility that minimizes the maximum service to points pi ∈ P , where service is measured
as the travel distance from x to pi plus a fixed travel distance ri .

This paper presents primal and dual algorithms for solving problem M(P). At each itera-
tion of either algorithm, bisectors of pairs of points are intersected to construct a search path,
that is either a ray or a two-dimensional conic section in IRn . For the primal (dual) algorithm,
points on the search path maintain primal (dual) feasibility and complementary slackness.
The optimal stopping point along the search path is determined explicitly.

2 Literature

The problem of finding the minimum covering circle of a set of points in IR2 was first posed
by Sylvester (1857). Various geometric solutions were reported by Sylvester (1860), Chrystal
(1885), Blumenthal and Wahlin (1941), Rademacher and Toeplitz (1990), and Elzinga and
Hearn (1972a). Voronoi diagrams (Aurenhammer and Klein (2000)) have also been used to
solve the problem in IR2. Megiddo (1983a) reported an algorithm for M(P), with n = 3,
that is linear in m.

For the minimum covering ball problem of a set of points in IRn , Elzinga and Hearn
(1972a) solved the dual problem as a convex, quadratic programming problem. Hopp and
Reeve (1996) extended the Sylvester (1860) and Chrystal (1885) algorithm to IRn relying
on a heuristic without proof of convergence. Fischer et al. (2003) expanded the Hopp and
Reeve algorithm, gave a proof of finite convergence, and were able to solve problems for m
up to 10,000 and n up to 2000. Megiddo (1983b) reported an algorithm that is linear inm but
exponential inn.Dyer (1992) improved the time-complexity ofMeggido’s algorithm.Dearing
and Zeck (2009) reported a dual algorithm based on search paths constructed from bisectors
of pairs of points. Cavaleiro and Alizadeh (2018) presented computational improvements to
the Dearing and Zeck approach.

The literature for the minimum covering ball of a set of balls in IRn is more limited.
Elzinga and Hearn (1972b) presented a geometrical algorithm for the problem in IR2. Xu et
al. (2003) reported computational results for four general approaches to problem M(P) in
IR2: a second-order cone reformulation, a sub-gradient approach, a quadratic programming
scheme, and a randomized incremental algorithm. Two approaches for problem M(P) in
IRn were reported by Zhou et al. (2005): an unconstrained convex program whose objective
function approximates the maximum objective function, and a reformulation of M(P) as a
second-order cone programming problem. They solve problemswith n up to 10,000, andm up
to 5000. Applications of problem M(P) are referenced in Fischer et al. (2003) and Megiddo
(1983b). Plastria (2004) presents a survey of the min–max location problems. Cavaleiro and
Alizadeh (2021) present a dual simplex-type algorithm for the smallest enclosing ball of balls
using a search path parameterized by the objective function value.
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3 Properties of problemM(P)

The following properties of problem M(P) are used to develop the algorithms.

Property 1 There exists a unique minimum solution x∗ ∈ IRn to M(P).

Proof The function f (x) = maxpi∈P { fi (x)}, where fi (x) = ‖x−pi‖+ri , is strictly convex,
and therefore continuous, on IRn since each fi (x) is strictly convex. For any x0 ∈ IRn , with
z0 = max{ fi (x0)}, the sub-level set Lz0( f ) = {x ∈ IRn : f (x) ≤ z0} is non-empty
and compact since it is the intersection of non-empty compact sub-level sets: Lz0( f ) =
∩pi∈P {x ∈ IRn : fi (x) ≤ z0}. Thus, there exists a unique x∗ ∈ Lz0( f ) that minimizes f (x)
over Lz0( f ), and x

∗ minimizes f (x) over IRn since for x ∈ IRn \ Lz0( f ), f (x) > f (x∗). �	
For points p j ,pk ∈ P , the ball [pk, rk] is contained in the ball [p j , r j ] if and only if r j −rk ≥
‖pk − p j‖. In this case, the point pk is redundant to p j , since any ball [x, z] that covers
[p j , r j ] also covers [pk, rk]. The point pk can be eliminated from the set P with no effect on
the optimal solution. If each point in P is redundant to p j , then the ball [x, z] = [p j , r j ] is
the optimal solution for M(P) and is called the trivial solution.

The point pk is non-redundant to p j if and only if r j − rk < ‖pk − p j‖, and two points
p j ,pk are (mutually) non-redundant if neither is redundant to the other, that is, |r j − rk | <

‖p j − pk‖. Observe that if pk is redundant to p j , then p j is non-redundant to pk , and if
rk ≥ r j , pk is non-redundant to p j .

The bisector of two non-redundant points p j ,pk ∈ P , with radii r j and rk respectively, is
the set

Bj,k = {x : ‖x − p j‖ + r j = ‖x − pk‖ + rk}. (1)

If r j = rk , then p j and pk are two non-redundant points (since P consists of distinct
points), and Bj,k = {x : (p j − pk)x = (p j − pk)(p j + pk)/2}, is the hyperplane that is
orthogonal to the line through p j and pk , and contains the midpoint between p j and pk .

If r j > rk , and if pk is non-redundant to p j , then the bisector Bj,k = {x : ‖pk − x‖ −
‖p j − x‖ = r j − rk} is one sheet of an n-dimensional hyperboloid of two sheets, symmetric
about the line through the focal points p j and pk . This follows by setting 2a j,k = r j −rk > 0,
and noting that pk is non-redundant to p j if and only if 2a j,k < ‖p j − p j‖. Then the set
HBj,k = {x : |‖pk − x‖ − ‖p j − x‖| = 2a j,k} satisfies the definition, given by equation
(32) in the “Appendix”, of an n-dimensional hyperboloid of two sheets with focal points p j

and pk , and the bisector Bj,k satisfies the definition, given by equation (33), of the sheet of
HBj,k closest to p j .

The bisector Bj,k is characterized by the axis vector v j,k = (p j − pk)/‖p j − pk‖, center
c j,k = (p j+pk)/2, vertex a j,k = c j,k+a j,kv j,k , which is the intersection of Bj,k and the line
through the focal points, focal distance c j,k = ‖p j−pk‖/2, and eccentricity ε j,k = c j,k/a j,k .

Each point x ∈ Bj,k is the center of a ball [x, zx], with radius zx = ‖p j − x‖ + r j =
‖pk −x‖+rk , that contains, and is internally tangent to, the two balls [p j , r j ] and [pk, rk]. If
Bj,k is the sheet of the hyperboloid closest to p j , its vertex a j,k is the center of the smallest
ball containing, and internally tangent to, the two balls [p j , r j ] and [pk, rk]. If Bj,k is the
hyperplane, then (p j + pk)/2 is the center of the smallest ball containing, and internally
tangent to, the two balls [p j , r j ] and [pk, rk].
Property 2 For non-redundant points p j , pk ∈ P , and for each x ∈ Bj,k , x 
= p j and x 
= pk .

Proof The Property is true for any x not on the line through p j and pk . The only point on the
line through p j and pk and on Bj,k is the vertex a j,k . Substitution of the vector and parameter
definitions implies ‖a j,k − p j‖ = c j,k − a j,k > 0 and ‖a j,k − pk‖ = c j,k + a j,k > 0. �	
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The primal and dual algorithms developed here are examples of the active set method of
mathematical programming, Gill et al. (1991). A set S = {pi1 , . . . ,pis } ⊂ P , with its points
ordered by non-decreasing radii, ri1 ≥ . . . ≥ ris , is an active set of a ball [xS, zS] if S satisfies
the following three conditions: (1) the points in S are affinely independent, (2) the constraint
of M(P) corresponding to each point in S holds at equality, that is, ‖pi j − xS‖ + ri j = zS ,
for each pi j ∈ S, and (3) if s > 1, pi j is non-redundant to pi1 , for j = 2, . . . , s, that is, Bi1,i j
is a bisector for j = 2, . . . , s. Observe that if a set S ⊂ P satisfies conditions (1) and (2), but
not (3), S may be transformed into an active set by deleting the points pi j that are redundant
to pi1 . Also, there may be more than one active set corresponding to a ball, and any subset
of an active set of a ball is also an active set of that ball.

Each iteration of the primal and dual algorithms corresponds to a ball [xS, zS] and an
active set S. The points in S are used to check for optimality and to determine the search
path. The size of S may increase, decrease, or remain unchanged at each iteration.

Observe that a ball [xS, zS] and an active set S with s = 1 are optimal if and only if
[xS, zS] is the trivial solution, that is, [xS, zS] = [pi1 , ri1 ] and S = {pi1}.
Property 3 At any iteration of the primal or the dual algorithm, let S = {pi1 , . . . ,pis }, with
points ordered by non-increasing radii, and with s > 1, be an active set corresponding to the
ball [xS, zS]. Then xS 
= pi j , for j = 1, . . . , s.

Proof For each pi j ∈ S, Bi1,i j is a bisector and by Property 2, xS 
= pi1 and xS 
= pi j . �	
Property 3 implies that at each iteration of the primal or the dual algorithm with active set
S, and for each pi j ∈ S, the Euclidean distance ‖x − pi j ‖ is differentiable with respect to x
over the set IRn \ S. Then the Karush Kuhn Tucker (KKT) conditions for optimality, Gill et
al. (1991), may be written as follows.

Property 4 A ball [xS, zS], with active set S and |S| > 1, is the optimal solution to M(P) if
and only if there exist variables λ j ≥ 0 for pi j ∈ S and λ j = 0 for pi j /∈ S such that

zS ≥ ‖xS − p j‖ + r j p j ∈ P (2)
∑

pi j ∈S
λ j = 1 (3)

∑

pi j ∈S

(xS − pi j )

‖xS − pi j ‖
λ j = 0 (4)

λ j ≥ 0 pi j ∈ S (5)

(zS − ‖xS − p j‖ − r j )λ j = 0 p j ∈ P. (6)

Property 5 At optimality, statements (3), (4), and (5) of the KKT conditions are equivalent
to:

∑

pi j ∈S
π j = 1 (7)

∑

pi j ∈S
(xS − pi j )π j = 0 (8)

π j ≥ 0 pi j ∈ S. (9)
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Proof Since ‖xS −pi j ‖ > 0, for all pi j ∈ S, the change of variables π j = λ j /‖xS−pi j ‖∑
pi j

∈S λ j /‖xS−pi j ‖

and λ j = ‖xS−pi j ‖π j∑
pi j

∈S ‖xS−pi j ‖π j
for each pi j ∈ S, shows the equivalence of conditions (3), (4),

and (5) to conditions (7), (8), and (9). �	
Properties 4 and 5 lead to additional properties of an optimal ball [xS, zS].

Property 6 The non-trivial minimum covering ball [xS, zS] for problem M(P) is determined
by an active set S of at most n + 1 affinely independent points in P , and the optimal center
xS ∈ conv(S), the convex hull of S.

Proof Conditions (7) and (8) determine a linear systemwith n+1 linear equations. A solution
is determined by at most n+1 linearly independent columns of the system which correspond
to at most n+1 affinely independent points from P . Conditions (7), (8), and (9) are equivalent
to xS ∈ conv(S). �	

The complementary slackness conditions (6) imply the following necessary condition for
optimality.

Property 7 If [xS, zS] is optimal to problem M(P) with active set S, and |S| > 1, then xS is
on at least one bisector of a pair of points in S.

If S is an active set of size s corresponding to an optimal covering ball [xS, zS], there
may be more than s constraints that are active. At each iteration of either the primal or dual
algorithm, the points in the active set S are sufficient to determine the ball [xS, zS].

If S is an active set corresponding of the ball [xS, zS], then xS ∈ Bi j ,ik for each pair of
points pi j ,pik ∈ S, so that xS is on the intersection of bisectors Bi j ,ik over all pairs of points
pi j ,pik ∈ S, denoted by BS . That is, xS ∈ BS = ∩{pi j ,pik }⊆S Bi j ,ik .

At each iteration of the primal and dual algorithms a search path XS = {x(α), αS ≤
α ≤ αm} is constructed so that XS ⊂ BS . Property 23 shows that x(α) ∈ Bi j ,ik for all
{pi j ,pik } ⊆ S, and αS ≤ α ≤ αm , and that the complementary slackness conditions (6) are
maintained at each point on the search path XS .

If all the points in S have equal radii, then all the bisectors are hyperplanes, and BS is a
linear manifold of dimension n − |S| + 1. In this case, the search path is a ray.

If some points in S have unequal radii, then at least one bisector is a hyperboloid. Property
22 shows that the vectors and parameters of BS may be computed by intersecting the hyper-
boloid bisector with |S|−2 hyperplanes, and Property 19 shows that the resulting intersection
is a conic section of dimension n − |S| + 2.

4 Primal algorithm

At each iteration of the primal algorithm there is a ball [xS, zS] and an active set S that satisfy
expressions (2) and (6) of the KKT conditions, but do not satisfy expressions (3), (4), and
(5) of the KKT conditions. That is, S and [xS, zS] are primal feasible but not dual feasible.

Since [xS, zS] is primal feasible at each iteration, zS is an upper bound on the optimal
objective function value of M(P). Assuming non-degeneracy, the radius zS is shown to
decrease at each iteration of the primal algorithm.

The primal algorithm may be initialized by choosing xS to be any point in IRn, computing
zS = maxpi∈P ‖xS − pi‖ + ri = ‖xS − p j‖ + r j , for some p j ∈ P , and choosing S = {p j }.
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Observe that [xS, zS] is primal feasible, but xS /∈ aff(S), which implies xS /∈ conv(S) so that
xS is not dual feasible.
Primal search phase

Given a primal feasible ball [xS, zS] and an active set S, a search path XS = {x(α) : αS ≤
α ≤ αm} is constructed so that XS ⊂ BS , x(αS) = xS , and x(αm) ∈ aff(S). If all the points
in S have equal radii, the search path will be a ray, but if some points in S have unequal radii,
the search path will be a two-dimensional conic section in IRn .

For a search path XS that is either a ray or a conic section, Property 23 shows that S
is an active set for the ball [x(α), z(α)] for α ≥ αS , and that S and [x(α), z(α)] satisfy
the complementary slackness conditions (6). Property 24 shows that z(α) is decreasing for
α ≥ αS .

For each pk ∈ P \ S, the parameter αk ≥ αS is determined, if it exists, so that XS

intersects the bisector Bi1,k at x(αk). If x(αk) ∈ XS ∩ Bi1,k , then x(αk) ∈ XS ∩ Bi j ,k for
each pi j ∈ S. That is, XS simultaneously intersects the bisectors Bi j ,k at x(αk). Thus, it
suffices to consider the intersection of XS with only Bi1,k . At the point x(αk) ∈ XS ∩ Bi1,k ,
the constraint corresponding to the point pk is active. The Update Phase chooses α∗ =
min{αm,minpk∈P\S αk}, and the ball [x(α∗), z(α∗)] is checked for optimality.

Case 1: All points in S have equal radii
The points in the active set are denoted by S = {pi1 , . . . ,pis }, where ri j = ri1 for pi j ∈ S.

In this case, the search path is the ray

XS = {x(α) = xS + αdS, αS ≤ α ≤ αm}, (10)

where αS = 0, αm = [(pi1 − xS)dS]/‖dS‖2 > 0, and dS ← Projection((pi1 − xS), R),
with R = {(pi1 − pi2), . . . , (pi1 − pis )}. If |S| = 1, dS = (pi1 − xS)/‖pi1 − xS‖.

Algorithm Projection(v, R)

Input: Vector v and set of vectors R
Output: Vector u, the normalized component of v orthogonal to the projection of v

onto span(R)
1: u′ ← v − Projspan(R)v
2: u ← u′/‖u′‖

For each pk ∈ P \S, the parameter αk ≥ αS is determined, if it exists, so that XS intersects
the bisector Bi1,k at x(αk). There are two sub-cases to consider for computing αk depending
on whether the radius ri1 equals the radius rk .
Case 1a: ri1 = rk Then Bi1,k is a hyperplane. The point x(αk) ∈ XS ∩ Bi1,k is determined by
solving for α in the equation (pi1 − pk)x(α) = (pi1 − pk)(pi1 + pk)/2. If (pi1 − pk)dS = 0,
αk ← ∞, else

αk = (pi1 − pk)(pi1 + pk)/2 − (pi1 − pk)xS
(pi1 − pk)dS

. (11)

If αk < 0, αk ← ∞.
Case 1b(i) ri1 > rk . Then pi1 is non-redundant to pk . If pk is redundant to pi1 , eliminate pk
from P , and continue. Otherwise, pk is non-redundant to pi1 so that Bi1,k is a hyperboloid
and the parameter αk is determined so that x(αk) ∈ XS ∩ Bi1,k .
Case 1b(ii) ri1 < rk . Then pk is non-redundant to pi1 . The point pi1 is redundant to pk if and
only if rk − ri1 = ‖pi1 − pk‖, in which case, αk = 0. Otherwise, pi1 is non-redundant to pk
so that Bi1,k is a hyperboloid and the parameter αk is determined so that x(αk) ∈ XS ∩ Bk,i1 .
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The intersection of XS and Bi1,k is determined by substituting x(α) = xS + αdS for x,
and ci1,k , ci1,k , ai1,k , vi1,k , and εi1,k , for c, c, a, v, and ε, respectively, in expression (36) for
Bi1,k as a quadratic form. This gives the quadratic equation

Aα2 + Bα + C = 0, (12)

where A = (dS)2 − ε2i1,k(dSvi1,k)
2, B = 2(xS − ci1,k)dS − 2ε2i1,k[(xS − ci1,k)vi1,k][dSvi1,k],

and C = (xS − ci1,k)
2 − ε2i1,k[(xS − ci1,k)vi1,k]2 − a2i1,k + c2i1,k . The parameter αk is chosen

as the smallest positive real solution to (12).

Case 2: At least two points in S have unequal radii
The points in the active set are denoted by S = {pi1 , . . . ,pis }, where ri1 ≥ · · · ≥ ris .

By assumption ri1 > ris , and by construction Bi1,is is a bisector. Property 22 shows that
BS = Bi1,is ∩s−1

k=2 Hk , where each Hk = {x : hkx = hkdk} is a hyperplane such that
Bi1,ik ∩ Bi1,is = Bi1,ik ∩ Hk = Bi1,is ∩ Hk , for k = 2 . . . , s − 1. Thus, BS is a conic section
of dimension n − s + 2.

Algorithm Intersections gives the closed-form expressions, based on Property 19, for
computing the parameters and vectors of BS : (vS, cS, εS, aS, bS, cS) ← Intersections
(S, {ri j : pi j ∈ S}). The algorithm starts with the vectors and parameters of Bi1,is , and each

iteration computes the vectors and parameters of Bi1,is ∩k−1
j=2 Hj ∩ Hk given the vectors and

parameters of Bi1,is ∩k−1
j=2 Hj , for k = 2, . . . , s − 1.

If εS > 1, then BS is one branch of a hyperboloid; if εS < 1, BS is an ellipsoid; and if
εS = 1, BS is a paraboloid.

Algorithm BisectorParameters
(
p j ,pk, r j , rk

)

Input: Points p j , pk with radii r j ≥ rk
Output: Hyperboloid parameters c, v, d, ε, a, b, and c
1: a ← |r j − rk |/2
2: c ← ‖p j − pk‖/2
3: b ← √

c2 − a2

4: ε ← c/a
5: c ← (

p j + pk
)
/2

6: v ← (
p j − pk

)
/‖p j − pk‖

7: d ← c + (a2/c)v

Case 2a: εS > 1Then BS is a hyperboloid. Property 14 shows that for any vectoru orthogonal
to vS , X̂ S = {x(α) = cS + aS sec(α)vS + bS tan(α)u : −π < α < π} is one branch of a
two-dimensional hyperbola with X̂ S ⊂ BS ∩ aff(cS, vS,u). Also, X̂ S has the same vectors
and parameters as BS , with vertex x(0) = aS .

The search path XS is constructed by computing the vector uS ← Projection((cS −
xS), {vS}), so that uS is orthogonal to vS , and by restricting the domain to αS ≤ α ≤ αm ,
where αS = arctan{(uS(xS − cS))/bS} < 0, and αm = 0. Then xS = x(αS), and x(0) =
aS ∈ aff(S). The search path is defined by

XS = {x(α) = cS + aS sec(α)vS + bS tan(α)uS : αS ≤ α ≤ αm}. (13)

For each pk ∈ P \ S, compute αk , if it exists, such that x(αk) ∈ XS ∩ Bi1,k . If pk is
redundant to pi1 , eliminate pk from P and continue to the next point in P \ S. If pi1 is

123



638 Annals of Operations Research (2023) 322:631–659

redundant to pk , αk = 0, and the algorithm continues to the next point in P \ S. Else, pk
is not redundant to pi1 so that Bi1,k is a bisector and the parameter αk is determined so that
x(α) ∈ XS ∈ Bi1,k .

Algorithm Intersections(S, {ri j : pi j ∈ S})
Input: Active set S and radii {ri j : pi j ∈ S}
Output: Vectors and Parameters cS , vS , εS , aS , bS , cS
1: (c1, v1,d1, ε1, a1, b1, c1) ←BisectorParameters

(
pi1 ,pis , ri1 , ris

)

2: hp1 ← 0
3: for k = 2, . . . , (s − 1)
4:

(
c1,k, v1,k,d1,k, ε1,k, a1,k, b1,k, c1,k

) ← BisectorParameters
(
pi1 ,pik , ri1 , rik

)

5: if ri1 > rik
6: hrk ← (pi1 − pik )/(ri1 − rik ) − (pi1 − pis )/(ri1 − ris )
7: hk ← hrk/‖hrk‖
8: else hk ← (pi1 − pik )/‖pi1 − pik‖
9: hpk ← Projection

(
hk, {hp2, . . . ,hpk−1}

)

10: wk ← Projection
(
hpk, {vk−1}

)

11: vk ← Projection
(
vk−1, {hpk}

)

12: dk ← dk−1 +
(
v1,k (d1,k−dk−1)

v1,kwk

)
wk

13: ĥk ← hpk(dk − ck−1)

14: ρk ← vk−1vk
15: σk ← vk−1hpk
16: εk ← εk−1ρk
17: if εk = 1
18: c̃k ← εk−1σk ĥk/2

19: ĉk ←
(
(1 − ε2k−1σ

2
k )ĥ2k + b2k−1

)
/(4c̃k)

20: ck ← ck−1 + ĥkhpk + ĉkvk
21: else
22: c̃k ← ε2k−1ρkσk ĥk/(1 − ε2k )

23: a2k ←
(
(1 − ε2k−1)(a

2
k−1(1 − ε2k ) − ĥ2k)

)
/(1 − ε2k )

2

24: ck ← ck−1 + ĥkhpk + c̃kvk
25: if εk > 1
26: b2k ← −a2k (1 − ε2k )

27: c2k ← a2k + b2k
28: else
29: b2k ← a2k (1 − ε2k )

30: c2k ← a2k − b2k
31: end for
32: (cS, vS, εS, aS, bS, cS) ← (cs−1, vs−1, εs−1, as−1, bs−1, cs−1)

Property 20 shows that XS ∩ Bi1,k = XS ∩Hk for the hyperplane Hk = {x : hkx = hkdk},
where (hk,dk) ← Hyperplane (pi1 ,pis ,pk, ri1 , ris , rk). The point x(αk) ∈ XS ∩ Hk is
determined by solving for α using the equation hkx(α) = hkdk , which is equivalent to the
equation aShkvS sec(α) + bShkuS tan(α) = hk(dk − cS). Multiplying through by cos(α),
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which is positive for −π/2 < α < 0, and rearranging gives

A cos(α) + B sin(α) = C, (14)

where A = hk(dk − cS), B = −bShkuS , and C = aShkvS . Define φ = sin(α) for
−π/2 < α < 0. Note that φS = sin(αS). The solution αk is determined by φk ←
Computeφ(φS, A, B,C), and αk = arcsin(φk).

Algorithm Hyperplane
(
pi1,pis ,pk, ri1, ris , rik

)

Input: Points pi1 , pis , and pk , and radii ri1 , ris , and rk
Output: Normal vector hk and point dk of hyperplane Hk = {x : hkx = hkdk},

such that XS ∩ Bi1,k = XS ∩ Hk .
1:

(
p j1 ,p j2 ,p j3

) ← Sort
(
pi1 ,pis ,pk

)
, such that r j1 ≥ r j2 ≥ r j3

2: if
(
r j1 = r j2 > r j3

)

3: hk ← (
p j1 − p j2

)
/‖p j1 − p j2‖

4: dk ← (
p j1 + p j2

)
/2

5: else if
(
r j1 > r j2 = r j3

)

6: hk ← (
p j2 − p j3

)
/‖p j2 − p j3‖

7: dk ← (
p j2 + p j3

)
/2

8: else
9:

(
v j1, j2 , ε j1, j2

) ←BisectorParameters
(
p j1 ,p j2 , r j1 , r j2

)

10:
(
v j1, j3 , ε j1, j3

) ←BisectorParameters
(
p j1 ,p j3 , r j1 , r j3

)

11: hk ← (
ε j1, j2v j1, j2 − ε j1, j3v j1, j3

)
/‖ε j1, j2v j1, j2 − ε j1, j3v j1, j3‖

12: wk ← Projection
(
hk, {v j1, j3}

)

13: dk ← d j1, j3 +
(
v j1, j2 (d j1, j2−d j1, j3 )

v j1, j2wk

)
wk

14: end if

Algorithm Computeφ(φS, A, B,C)

Input: φS , A, B, C
Output: φ

1: if A2 + B2 − C2 > 0
2: D ← √

A2 + B2 − C2

3: θ ′ ← (AC + BD)/(A2 + B2)

4: θ ′′ ← (AC − BD)/(A2 + B2)

5: φ′ ← (BC − AD)/(A2 + B2)

6: φ′′ ← (BC + AD)/(A2 + B2)

7: if
(
θ ′ < 0 OR φ′ < φS

)
then φ′ ← ∞

8: if
(
θ ′′ < 0 OR φ′′ < φS

)
then φ′′ ← ∞

9: φ ← min
{
φ′, φ′′}

10: else if A2 + B2 − C2 = 0
11: φ ← B/C
12: θ ← A/C
13: if (θ < 0 OR φ < φS) then φ ← ∞
14: else φ ← ∞
15: end if
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Case 2b: εS < 1 Then BS is an ellipsoid. Corollary 1 shows that for any vector u orthogonal
to vS , X̂ S = {x(α) = cS + aS cos(α)vS + bS sin(α)u : 0 ≤ α ≤ 2π} is a two-dimensional
ellipse with X̂ S ⊂ BS ∩ aff(cS, vS,u).

The search path XS is constructed by computing uS ← Projection((cS − xS), {vS}), so
that uS is orthogonal to vS , and by restricting the domain to αS ≤ α ≤ αm , where αS =
arcsin{(uS(xS − cS))/bS} < 0, and αm = 0. Then xS = x(αS), and x(αm) = aS ∈ aff(S).
The search path is defined by

XS = {x(α) = cS + aS cos(α)vS + bS sin(α)uS : αS ≤ α ≤ αm}. (15)

The analysis for the elliptic search path is analogous to the hyperbolic search path. For
each pk ∈ P \ S, the parameter αk is determined, if it exists, so that XS intersects the bisector
Bi1,k at x(αk), with αS ≤ α ≤ 0. If pk is redundant to pi1 , eliminate pk from P and continue
to the next point in P \ S. If pi1 is redundant to pk , αk = 0, and the algorithm continues to
the next point in P \ S. Else, pk is not redundant to pi1 so that Bi1,k is a bisector and the
parameter αk is determined so that x(α) ∈ XS ∈ Bi1,k .

Property 20 shows that XS ∩ Bi1,k = XS ∩Hk for the hyperplane Hk = {x : hkx = hkdk},
where (hk,dk) ← Hyperplane (pi1 ,pis ,pk, ri1 , ris , rk). The point x(αk) ∈ XS ∩ Hk is
determined by solving for α using the equation hkx(α) = hkdk , which is equivalent to the
equation

A cos(α) + B sin(α) = C, (16)

where A = aShkvS , B = bShkuS , and C = hk(de − cS). Define φ = sin(α) for
−π/2 < α < π/2. Note that φS = sin(αS). The solution αk is determined by φk ←
Computeφ(φS, A, B,C), and αk = arcsin(φk).
Case 2c: εS = 1 Then BS is a paraboloid. Property 17 shows that for any vector u orthogonal
to vS , X̂ S = {x(α) = cS + c̃Sα2vS +2c̃Sαu : −∞ < α < ∞} is a two-dimensional parabola
with X̂ S ⊂ BS ∩ aff(cS, vS,u), and X̂ S has the same vectors and parameters as BS . The
search path XS is constructed by computing the vector uS ← Projection((cS − xS), {vS}).
Also, the domain is restricted to αS ≤ α ≤ αm , where αS = −(uS(cS − xS))/(2c̃S) ≤ 0,
and αm = 0. Then x(αS) = xS , x(αm) = cS ∈ aff(S), and the search path is defined by

XS = {x(α) = cS + c̃Sα
2vS + 2c̃SαuS : αS ≤ α ≤ αm}. (17)

For each pk ∈ P \ S, the parameter αk is determined, if it exists, so that XS intersects the
bisector Bi1,k at x(αk) for αk ≤ α ≤ 0.

Property 20 shows that XS ∩ Bi1,k = XS ∩ Hk for the hyperplane Hk = {x : hkx = hedk}
where (hk,dk) ← Hyperplane (pi1 ,pis ,pk, ri1 , ris , rk). The point x(αk) ∈ XS ∩ Hk is
determined by solving the equation hex(αk) = hkdk , for αk, which is equivalent to the
quadratic equation

Aα2 + Bα = C, (18)

where A = c̃ShkvS , B = 2c̃ShkuS , and C = hk(dk − cS). Then αk is chosen as the smallest
real solution such that αS ≤ αk .
Primal update phase

Let α∗ = min{αm,minpk∈P\S αk}. If α∗ = αm , then [xS, zS] ← [x(αm), z(αm)] and
xS ∈ aff(S). If xS ∈ conv(S), that is, there exists a solution to equations (3) and (4) of the
KKT conditions over the set S, where λi j ≥ 0 for all pi j ∈ S, then [xS, zS] is the optimal
solution. Else, xS /∈ conv(S), and λil < 0, for some pil ∈ S. Set S ← S\{pil }. The algorithm
returns to the Search Phase with [xS, zS] and active set S.

If α∗ = minpk∈P\S{αk}, set αe ← α∗, [xS, zS] ← [x(αe), z(αe)], and S ← S ∪ {pe}.
In this case, αe is the smallest parameter such that the ball [xS, zS] remains primal feasible
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and contains the ball [pe, re]. If xS ∈ conv(S), then [xS, zS] is the optimal solution. If
xS /∈ conv(S), but xS ∈ aff(S), then λil < 0 for some pil ∈ S and S ← S \ {pil }. The
algorithm returns to the Search Phase with [xS, zS] and active set S. Else, xS /∈ aff(S), then
the points in S are affinely independent, and the algorithm returns to the Search Phase with
[xS, zS] and active set S.

There may be a tie for the entering point pe, in which case the next iteration of the Search
Phase may be degenerate with zero change in the parameter αk . Cycling can be avoided by
an adaptation of Bland’s rule that chooses the point with the smallest index among all points
that are candidates for entering. That is, e = min{k : αk = α∗,pk ∈ P \ S}.
Property 8 If equations (3) and (4) of theKKTconditions, over the set S∪{pe},with [x∗, z∗] =
[xS, zS] have a solutionwithλil < 0, then the points in S∪{pe}\{pil } are affinely independent.
Proof Each column of the linear system over the set S determined by equations (3) and (4)
from theKKT conditionswith [x∗, z∗] = [xS, zS] corresponds to a point in S. Since the points
in S are affinely independent, the columns of this linear system are linearly independent. The
linear system over the set S ∪ {pe} \ {pil } has the same columns as the linear system over
the set S, except that the column corresponding to pe has replaced the column corresponding
to pil . Therefore the columns of the linear system over the set S ∪ {pe} \ {pil } are linearly
independent since the column corresponding to pe is a linear combination of the columns
determined by the set S, with a non-zero multiplier for the column corresponding to pil .
Therefore, the points in the set S ∪ {pe} \ {pil } are affinely independent. �	

The next property shows that if the point pil leaves S, because λil < 0, then the point pil
is covered by the ball [x(α), z(α)] during the next search phase.

Property 9 In the Update Phase, suppose the point pil is chosen to leave the set S because
λil < 0 in the solution to equations (3) and (4) of the KKT conditions over the set S ∪ {pe}.
In the Search Phase, the active set is S ∪ {pe} \ {pil }, and the search path is XS∪{pe}\{pil } =
{x(α) : αS∪{pe}\{pil } ≤ α ≤ 0}. Then the ball [x(α), z(α)] remains feasible with respect to
the leaving point pil , that is, [pil , ril ] ⊂ [x(α), z(α)] for αS∪{pe}\{pil } ≤ α ≤ 0.

Proof Let zi j (α) = ‖x(α) − pi j ‖ + ri j , for each pi j ∈ S, and let z′i j (α) = (x(α)−pi j )

‖x(α)−pi j ‖x
′(α),

where x′(α) is the normalized tangent vector to the search path at x(α). By construction of
the search path, with αS∪{pe}\{pil } ≤ α ≤ 0, zi1(α) = zi j (α), for each pi j ∈ S \ {pil }, which
implies the derivatives are equal, that is, z′i1(α) = z′i j (α), for each pi j ∈ S ∪ {pe} \ {pil } and
for αS∪{pe}\{pil } ≤ α ≤ 0. Property 24 shows that zi j (α) is decreasing along the search path,
that is, z′i j (α) < 0, for each pi j ∈ S \ {pil }, and for αS∪{pe}\{pil } ≤ α ≤ 0.

In equation (4) substitute x(α) for xS , and take the dot product of each summand with

the tangent vector x′(α), so that
∑

pi j ∈S\{pil }
(x(α)−pi j )

‖x(α)−pi j ‖x
′(α)λi j + (x(α)−pil )‖x(α)−pil ‖x

′(α)(λil ) =
∑

pi j ∈S\{pil } z
′
i j

(α)λi j + z′il (α)λil = 0. Substitute z′i1(α) = z′i j (α), for each pi j ∈ S \ {pil },
and apply equation (3), to get z′i1(α)(1−λil )+z′il (α)(λil ) = z′i1(α)+(z′il (α)−z′i1(α))λil = 0,
or z′i1(α) = −λil (z

′
il
(α) − z′i1(α)). Since z′i1(α) < 0 and λil < 0, then z′il (α) < z′i1(α) < 0

so that zil (α) is decreasing and decreasing at a faster rate than zi1(α). This shows that
[pil , ril ] ⊂ [x(α), z(α)] for αS∪{pe}\{pil } ≤ α ≤ 0. �	

If there is more than one component λi j < 0 in the solution to (3) and (4), an adaptation
of Bland’s rule is to choose the point to be deleted from S with the smallest index i j such
that λi j < 0, that is, il = min{i j : λi j < 0}.
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Property 10 The primal algorithm solves M(P) in a finite number of iterations.

Proof At each iteration of the search phase there is a primal feasible, but not dual feasible, ball
[xS, zS], and an active set S, such that xS /∈ aff(S). If the search phase yields α∗ = αm > αS ,
then z(α∗) < z(αS) by Property 24, and x(α∗) ∈ aff(S).

If the search phase yields α∗ = αk > αS , then z(α∗) < z(αS), and S ← S ∪ {pk}.
The search phase yields α∗ = αk = αS if and only if pk is active for the ball [xS, zS].

If x(α∗) ∈ conv(S ∪ {pk}), then [x(α∗), z(α∗)] is optimal. Else, if x(α∗) ∈ aff(S ∪ {pk}),
some point pil leaves S, and a new search is initiated with [xS, zS] = [x(α∗), z(α∗)] and
S \ {pil } ∪ {pk}.

To prohibit an active set from being repeated in the sequence of degenerate steps, a list
of points that have been eliminated from active sets occurring in the sequence of degenerate
steps is generated, and these points are prohibited from consideration as entering points.
After a finite number of degenerate iterations, either α∗ = αm > αS or α∗ = αk > αS and
z(α∗) decreases. Since there are a finite number of active sets, and z(α) is bounded below,
the algorithm finds a minimum ball [xS, zS] in a finite number of iterations. �	

5 Dual algorithm

At each iteration of the dual algorithm there is a ball [xS, zS] and an active set S that satisfy
expressions (3), (4), (5), and (6) of the KKT conditions, but do not satisfy expressions (2) of
the KKT condition. That is, S and [xS, zS] are dual feasible but not primal feasible.

Since [xS, zS] is a feasible covering of the balls [pi , ri ] for pi ∈ S, then [xS, zS] is an
optimal solution to the problem M(S), a relaxation of M(P). Therefore, zS is a lower bound
on the optimal objective function value for M(P). Assuming non-degeneracy, the radius zS
is shown to increase at each iteration of the dual algorithm.

The dual algorithm may be initialized by choosing the ball [xS, zS] = [p j , r j ] for any
point p j ∈ P , and S = {p j } as an active set. Then [xS, zS] and S are dual feasible.
Dual update phase

Adual feasible ball [xS, zS] and active set S are optimal toM(P) if they are primal feasible
to M(P), that is, if zS ≥ ‖pi − xS‖ + ri , for all pi ∈ P . If not optimal, then an infeasible
point pe ∈ P \ S is chosen to enter.

If the points in S ∪ {pe} are affinely independent, then |S ∪ {pe}| ≤ n + 1, and xS ∈
conv(S∪{pe}), so that [xS, zS] remains dual feasible with respect to S∪{pe}. The algorithm
enters the Search Phase with the ball [xS, zS], active set S, and the entering point pe. The
Search Phase searches for a new solution for which the set S ∪ {pe} is active.

If the points in S ∪ {pe} are affinely dependent, then a point pl ∈ S is chosen to leave S.
Since [xS, zS] is dual feasible to M(P), there exists a non-negative solution (π1, . . . , πs) to
the linear system (7), (8), over the set S. Since the points in S ∪ {pe} are affinely dependent,
the linear system (19) and (20) has a solution, and (19) implies λ j < 0, for some p j ∈ S.

∑

p j∈S
λ j = −1 (19)

∑

p j∈S
(xS − p j )λ j = −(xS − pe). (20)
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A leaving point pl is chosen by the “minimum ratio rule”:

πl

−λl
= min

p j∈S

{
π j

−λ j
: λ j < 0

}
. (21)

Algorithm Primal({p1, . . . ,pm} , {r1, . . . , rm})
Input: P = {p1, . . . ,pm} ⊂ IRn , {ri ≥ 0 : for pi ∈ P}
Output: The ball [x∗, z∗] with minimum z∗ such that [pi , ri ] ⊂ [x∗, z∗] for all pi ∈ P
1: Initialize: Choose xS arbitrarily
2: zS ← maxpi∈P ‖pi − xS‖ + ri = ‖pi1 − xS‖ + ri1 and S ← {pi1}
3: while xS /∈ conv(S)

4: For active set S = {pi1 , . . . pis } with ri1 ≥ · · · ≥ ris and primal feasible ball [xS, zS]
5: Primal Search Phase
6: if ri1 = ris
7: dS ← Projection((pi1 − xS), R), where R = {pi2 − pi1 , . . . pis − pi1}
8: αm ← [(pi1 − xS)dS]/‖dS‖2
9: for pk ∈ P \ S

10: if ri1 = rk then solve for αk using (11)
11: else solve for αk using (12)
12: else
13: (vS, cS, εS, aS, bS, cS) ← Intersections(S, {ri j : pi j ∈ S})
14: uS ← Projection((cS − xS), {vS})
15: φS ← sin(arctan{(uS(xS − cS))/bS})
16: (hk,dk) ← Hyperplane(pi1 ,pis ,pk, ri1 , ris , rk)
17: αm ← 0
18: if εS > 1
19: for pk ∈ P \ S
20: αk ← arcsin(Computeφ(φS, A, B,C)) using (14)
21: if εS < 1
22: for pk ∈ P \ S
23: αk ← arcsin(Computeφ(φS, A, B,C)) using (16)
24: if εS = 1
25: for pk ∈ P \ S
26: solve for αk using (18)
27: α∗ ← min{αm,minpk∈P\S αk}
28: [xS, zS] ← [x(α∗), z(α∗)] using (10), (13), (15), or (17)
29: Primal Update Phase
30: if α∗ = αm

31: if xS ∈ conv(S) then [xS, zS] is optimal
32: else S ← S \ {pil }, where λil < 0 in (3), (4)
33: else
34: S ← S ∪ {pe}, where e = min{k : αk = α∗,pk ∈ P \ S}
35: if xS ∈ conv(S) then [xS, zS] is optimal
36: else S ← S \ {pil }, where λil < 0 in (3), (4)
37: end while
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The next property states that the points in S ∪ {pe} \ {pl} are affinely independent and
that xS remains dual feasible for the set S ∪ {pe} \ {pl}. The proof is given in Dearing and
Thipwiwatpotjana (2006).

Property 11 Suppose that [xS, zS], and active set S, are dual feasible, but not optimal, to
M(P). Suppose that pe is the point chosen to enter the set S and that the set S ∪ {pe} is
affinely dependent. If the leaving point pl is chosen by (21), then the points in S∪{pe} \ {pl}
are affinely independent, and xS ∈ conv(S ∪ {pe} \ {pl}).

If the point pl leaves S, then the set S is reset to S ← S \ {pl}. Thus |S ∪ {pe}| ≤ n + 1,
and xS ∈ conv(S ∪ {pe}), so that [xS, zS] remains dual feasible with respect to S ∪ {pe}. The
updated set S remains active for [xS, zS]. The algorithm enters the Search Phase with the set
S, the ball [xS, zS], and the entering point pe. The Search Phase searches for a new solution
for which the set S ∪ {pe} will be active.
Dual search phase

Given a dual feasible ball [xS, zS], an active set S, and an entering point pe as determined
in the Update Phase, a search path XS = {x(α) : α ≥ αS} is constructed so that x(αS) = xS
and XS ⊂ BS . If all the points in S have equal radii, the search path will be a ray, but if some
points in S have unequal radii, the search path will be a two-dimensional conic section in
IRn .

For a search path XS that is either a ray or a conic section, Property 23 shows that S is
an active set for the ball [x(α), z(α)], and that S and [x(α), z(α)] satisfy the complementary
slackness conditions (6) for α ≥ αS . Property 24 shows that z(α) is increasing for α ≥ αS .

The parameter αe ≥ αS is determined, if it exists, so that XS intersects the bisector Bi1,e
at x(αe). If x(αe) ∈ XS ∩ Bi1,e, then x(αe) ∈ XS ∩ Bi j ,e for each pi j ∈ S. Thus it suffices
to consider the intersection of XS with only Bi1,e.

Geometrically, the searchmoves the center x(α) of the ball [x(α), z(α)] along the path XS ,
while the radius z(α) increases. At the point x(αe) ∈ XS ∩Bi1,e, the constraint corresponding
to pe is active. If x(αe) ∈ conv(S ∪ {pe}), then the ball [x(αe), z(αe)] and S are checked for
optimality. Otherwise, the parameter α∗ is determined so that x(α∗) ∈ conv(S ∪ {pe}). In
this case some point pil ∈ S is deleted from S, and the Update Phase is entered with the ball
[x(α∗), z(α∗)], the set S \ {pil }, and entering point pe.
Case 1: All points in S have equal radii

The points in the active set are denoted by S = {pi1 , . . . ,pis }, where ri j = ri1 , for pi j ∈ S.
In this case, the search path is the ray

XS = {x(α) = xS + αdS, αS ≤ α}, (22)

where αS = 0 and dS ← Projection((pe −xS), R)with R = {(pi1 −pi2), . . . , (pi1 −pis )}.
If s = 1, with S = {pi1}, dS = (pe − pi1)/‖pe − pi1‖.

There are two sub-cases to consider for computing αe depending on whether the radius
ri1 equals the radius re.
Case 1a: ri1 = re Then Bi1,e is a hyperplane. The intersection of XS and Bi1,e is determined by
solving for α using the equation (pi1 −pe)x(α) = (pi1 −pe)(pi1 +pe)/2. If (pi1 −pe)dS = 0,
αe ← ∞. Otherwise,

αe = (pi1 − pe)(pi1 + pe)/2 − (pi1 − pe)xS
(pi1 − pe)dS

. (23)

If αe < 0, αe ← ∞.
Case 1b: ri1 
= re Since zS = ‖pi j − xS‖ + r j for each pi j ∈ S, and zS < ‖pe − xS‖ + re,
then pe is non-redundant to each pi j ∈ S, and Bi1,e is a bisector. The intersection of XS and
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Bi1,e is determined by substituting x(α) = xS + αdS for x, and ci1,e, ci1,e, ai1,e, vi1,e, and
εi1,e for c, c, a, v, and ε, respectively, in the quadratic expression (36) for Bi1,e. This gives
the quadratic equation

Aα2 + Bα + C = 0, (24)

where A = (dS)2 − ε2i1,e(dSvi1,e)
2, B = 2(xS − ci1,e)dS − 2ε2i1,e[(xS − ci1,e)vi1,e][dSvi1,e],

and C = (xS − ci1,e)
2 − ε2i1,e[(xS − ci1,e)vi1,e]2 − a2i1,e + c2i1,e. The parameter αe is chosen

as the smallest positive real solution α to (24).

Algorithm ConvexHull(εS,wS, ṽS, ũS, aS, bS, αe, φS)

Input: εS , wS , ṽS , ũS , aS, bS, αe, φS

Output: FLAG or (il , αil )

1: FLAG ← FALSE

2: Solve T
[
γ ν μ

] =
[[

1
0

] [
0
ṽS

] [
0
ũS

]]
,

where T =
[

1 · · · 1 1
wS − pi1 · · · wS − pis wS − pe

]

3: if εS = 0 (Search path is a ray)
4: if (γ − αeν) ≥ 0 then FLAG ← TRUE
5: else
6: for pi j ∈ S
7: if νi j > 0 then αi j ← γi j /νi j
8: else αi j ← ∞
9: αil ← minpi j ∈S{αi j }

10: else if εS > 1 (Search path is a hyperbola)
11: if (γ − aS sec(αe)ν − bS tan(αe)μ) ≥ 0 then FLAG ← TRUE
12: else
13: for pi j ∈ S
14: φi j ← Computeφ(φS, γi j ,−bSμi j , aSνi j )
15: αi j ← arcsin(φi j )

16: αil = minpi j ∈S{αi j }
17: else if εS < 1 (Search path is an ellipse)
18: if (γ − aS cos(αe)ν − bS sin(αe)μ) ≥ 0 then FLAG ← TRUE
19: else
20: for pi j ∈ S
21: φi j ← Computeφ(φS, aSνi j , bSμi j , γi j )

22: αi j = arcsin(φi j )

23: αil = minpi j ∈S{αi j }
24: else if εS = 1 (Search path is a parabola)
25: if (γ − c̃Sα2

e ν − 2c̃Sαeμ) ≥ 0 then FLAG ← TRUE
26: else
27: for pi j ∈ S
28: αi j is smallest real positive solution to c̃Sνi j α

2 + 2c̃Sμi j α = γi j
29: αil = minpi j ∈S{αi j }
30: end if
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The following procedure, implemented by Algorithm ConvexHull, is used to determine
whether x(αe) ∈ conv(S∪{pe}). Substitute x(α) = xS +αdS for xS in equation (8), expand,
and simplify to obtain the linear system

Tπ(α) = e1 − α[0, ṽTS ]T , (25)

where T is defined in Step 2 of Algorithm ConvexHull, with wS = xS , and the right-hand
side of (25) is defined by ṽS = dS and ũS = 0. The matrix T is (n + 1)-by-(s + 1) with
rank s + 1. The linear system (25) has a solution since x(α) ∈ aff(S ∪ pe) for α ≥ 0. To
solve (25) for some value of α, solve Tγ = e1 for γ , and solve T ν = [0, ṽTS ]T for ν. Then
π(α) = γ − αν.

If π(αe) ≥ 0, then x(αe) ∈ conv(S ∪ {pe}). If some component of π(αe) is negative,
then x(αe) /∈ conv(S ∪ {pe}). In this case, a new parameter αil is determined so that αS =
0 ≤ αil < αe, and x(αil ) ∈ conv(S ∪ {pe}). Since the s + 1 points in S ∪ {pe} are affinely
independent, conv(S∪{pe}) is a simplexwith s+1 vertices and s+1 facets. The s+1 vertices
are the points in S ∪ {pe}. The s + 1 facets are denoted by Fi j = conv(S ∪ {pe} \ {pi j }), for
each pi j ∈ S, and by Fe = conv(S), for pe. Each point pi j ∈ S corresponds to the component
πi j (α) of π(α) and to the facet Fi j . The point pe corresponds to the component πe(α) of
π(α) and to the facet Fe.

Since x(0) ∈ conv(S∪{pe}), and x(αe) /∈ conv(S∪{pe}), XS must intersect some facet of
conv(S∪{pe}) between x(0) and x(αe). For each pi j ∈ S, the parameter αi j ≥ 0 is computed,
if it exists, so that x(αi j ) ∈ XS ∩ Fi j , which is equivalent to πi j (αi j ) = γi j − αi j δi j = 0.
That is, for each pi j ∈ S, with δi j > 0, set αi j = γi j /δi j . If δi j ≤ 0, αi j ← ∞. For the
point pe, γe = 0, implies αe = 0, so αe ← ∞. Cavaleiro and Alizadeh (2018) present an
equivalent procedure for finding αil in their approach to the minimum covering ball problem
of a set of points.

The intersection of XS and a facet of conv(S ∪ {pe}) first encountered along XS occurs at
αil , where αil = minpi j ∈S{αi j }. The point pil ∈ S is chosen to leave S. Then the solution to
the linear system (25) with x(αil ) substituted for xS , yields πil (αil ) = 0, and πi j (αil ) ≥ 0, for
pi j ∈ S ∪ {pe} \ {pil }, so that x(αil ) ∈ Fil . This construction shows that S \ {pil } is an active
set for [x(αil ), z(αil )] and that [x(αil ), z(αil )] is dual feasible with respect to S∪{pe} \ {pil }.
However, the constraint corresponding to pe is not active at [x(αil ), z(αil )], and pe is not
added to S.

Compute (FLAG, il , αil ) ← ConvexHull(εS, xS,dS, 0, 0, 0, αe, 0), and if FLAG =
TRUE, thenx(αe) ∈ conv(S∪{pe}). In this case, S ← S∪{pe}, and [xS, zS] ← [x(αe), z(αe)]
are checked for optimality by the Update Phase. If FLAG = FALSE, delete the point pil from
S. Reset S ← S \ {pil }, and [xS, zS] ← [x(αil ), z(αil )]. The Search Phase is re-entered with
the active set S, the entering point pe, and the ball [xS, zS].
Case 2: At least two points in S have unequal radii

The points in the active set are denoted by S = {pi1 , . . . ,pis }, where ri1 ≥ · · · ≥ ris . By
assumption ri1 > ris , and by construction Bi1,is is a bisector. The vectors and parameters
of BS = Bi1,is ∩s−1

k=2 Hk are computed using (vS, cS, εS, aS, bS, cS) ← Intersections
(S, {ri j : pi j ∈ S}). If εS > 1, then BS is one branch of a hyperboloid. If εS < 1, then BS is
an ellipsoid. If εS = 1, then BS is a paraboloid.
Case 2a: εS > 1Then BS is a hyperboloid. Property 14 shows that for any vectoru orthogonal
to vS , X̂ S = {x(α) = cS + aS sec(α)vS + bS tan(α)u : −π < α < π} is one branch of a
two-dimensional hyperbola with X̂ S ⊂ BS ∩ aff(cS, vS,u). Also, X̂ S has the same vectors
and parameters as BS , with vertex x(0) = aS .
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The search path XS is constructed by computing the vector uS ← Projection((pe −
cS), R) where R = {(pi1 −pi2), . . . , (pi1 −pis )}, and by restricting the domain to {αS ≤ α},
where αS = arctan{(uS(xS − cS))/bS}. If xS ∈ aff(S), then αS = 0, else αS > 0. Then

XS = {x(α) = cS + aS sec(α)vS + bS tan(α)uS : α ≥ αS}. (26)

The parameter αe is determined, if it exists, so that x(αe) ∈ Bi1,e and αS ≤ αe. Property
20 shows that XS ∩ Bi1,e = XS ∩ He for the hyperplane He = {x : hex = hede}, where
(he,de) ←Hyperplane (pi1 ,pis ,pe, ri1 , ris , re). The point x(αe) ∈ XS ∩ He is determined
by solving for α using the equation hex(α) = hede, which is equivalent to the equation
aShevS sec(α) + bSheuS tan(α) = he(de − cS). Multiplying through by cos(α), which is
positive for −π/2 < α < π/2, and rearranging gives

A cos(α) + B sin(α) = C (27)

where A = he(de − cS), B = −bSheuS , and C = aShevS . Let φ = sin(α) for
−π/2 < α < π/2. Note that φS = sin(αS). The solution αe is determined by φe ←
Computeφ(φS, A, B,C). and αe = arcsin(φe).

Compute (FLAG, il , αil ) ← ConvexHull(εS, cS, vS,uS, aS, bS, αe, φS). If FLAG =
TRUE, x(αe) ∈ conv(S ∪ {pe}). In this case, S ← S ∪ {pe}, and [xS, zS] ← [x(αe), z(αe)]
are checked for optimality by the Update Phase. If FLAG = FALSE, delete the point pil from
S. Reset S ← S \ {pil }, and [xS, zS] ← [x(αil ), z(αil )]. The set S is active with respect to
the ball [xS, zS], and [xS, zS] is dual feasible with respect to S ∪ {pe}. The Search Phase is
re-entered with the active set S, the entering point pe, and the ball [xS, zS].
Case 2b: εS < 1 Then BS is an ellipsoid. Corollary 1 shows that for any vector u orthogonal
to vS , X̂ S = {x(α) = cS + aS cos(α)vS + bS sin(α)u : −π ≤ α ≤ π} is a two-dimensional
ellipse with X̂ S ⊂ BS ∩ aff(cS, vS,u), and with the same vectors and parameters as BS .

The search path XS is constructed by computing uS ← Projection((pe−cS), R), where
R = {(pi1 − pi2), . . . , (pi1 − pis )}, and by restricting the domain to {αS ≤ α ≤ π}, where
αS = arcsin{(uS(xS − cS))/bS}. If xS ∈ aff(S), then αS = 0, else αS > 0. Then the search
path XS is defined by

XS = {x(α) = cS + aS cos(α)vS + bS sin(α)u : αS ≤ α ≤ π}. (28)

The parameter αe is determined, if it exists, so that x(αe) ∈ Bi1,e and αS ≤ αe. Property
20 shows that XS ∩ Bi1,e = XS ∩ He for the hyperplane He = {x : hex = hede}, where
(he,de) ←Hyperplane (pi1 ,pis ,pe, ri1 , ris , re). The point x(αe) ∈ XS ∩ He is determined
by solving for α using the equation hex(α) = hede, which is equivalent to the equation

A cos(α) + B sin(α) = C, (29)

where A = aShevS , B = bSheuS , and C = he(de − cS). The solution αe is determined by
φe ← Computeφ(φS, A, B,C), and αe = arcsin(φe).

Compute (FLAG, il , αil ) ← ConvexHull(εS, cS, vS,uS, aS, bS, αe, φS). If FLAG =
TRUE, x(αe) ∈ conv(S ∪ {pe}). In this case, S ← S ∪ {pe}, and [xS, zS] ← [x(αe), z(αe)]
are checked for optimality by the Update Phase. If FLAG = FALSE, delete the point pil from
S. Reset S ← S \ {pil }, and [xS, zS] ← [x(αil ), z(αil )]. The set S is active with respect to
the ball [xS, zS], and [xS, zS] is dual feasible with respect to S ∪ {pe}. The Search Phase is
re-entered with the active set S, the entering point pe, and the ball [xS, zS].
Case 2c: εS = 1 Then BS is a paraboloid. Property 17 shows that for any vector u orthogonal
to vS , X̂ S = {x(α) = cS + c̃Sα2vS +2c̃Sαu : −∞ < α < ∞} is a two-dimensional parabola
with X̂ S ⊂ BS ∩ aff(cS, vS,u), and X̂ S has the same vectors and parameters as BS . The
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search path XS is constructed by computing the vector uS ← Projection((pe − cS), R),
where R = {(pi1 − pi2), . . . , (pi1 − pis )}. Also, the domain is restricted to αS ≤ α, where
αS = 0 if xS = cS ; otherwise αS = (uS(xS − cS))/(2c̃S) ≥ 0. Then the search path is
defined by

XS = {x(α) = cS + c̃Sα
2vS + 2c̃SαuS : αS ≤ α}. (30)

The parameter αe ≥ αS is determined, if it exists, so that x(αe) ∈ XS ∩ Bi1,e. Since pe is
infeasible, pe is non-redundant to pi1 so that Bi1,e is a bisector. If x(αe) ∈ XS ∩ Bi1,e, then
x(αe) ∈ XS ∩ Bi j ,e, for all pi j ∈ S. Thus, it suffices to determine the intersection of XS with
only Bi1,e.

Property 20 shows that XS ∩ Bi1,e = XS ∩ He for the hyperplane He = {x : hex = hede},
where (he,de) ← Hyperplane (pi1 ,pis ,pe, ri1 , ris , re). The point x(αe) ∈ XS ∩ He is
determined by solving the equation hex(α) = hede, for α, which gives the quadratic equation

Aα2 + Bα = C, (31)

where A = c̃ShevS , B = 2c̃SheuS , and C = he(de − cS). Then αe is chosen as the smallest
real solution such that αS ≤ αe, whichmust exist since pe is infeasible and z(α) is increasing.

Compute (FLAG, αil ) ← ConvexHull(εS, cS, vS,uS, aS, bS, αe, φS). If FLAG =
TRUE, x(αe) ∈ conv(S ∪ {pe}). In this case, S ← S ∪ {pe}, and [xS, zS] ← [x(αe), z(αe)]
are checked for optimality by the Update Phase. If FLAG = FALSE, delete the point pil from
S. Reset S ← S \ {pil }, and [xS, zS] ← [x(αil ), z(αil )]. The set S is active with respect to
the ball [xS, zS], and [xS, zS] is dual feasible with respect to S ∪ {pe}. The Search Phase is
re-entered with the active set S, the entering point pe, and the ball [xS, zS].

Regardless of the type of search path: a ray, hyperbola, ellipse, or parabola, if there is
more than one point pil ∈ S ∪ {pe} such that minpi j ∈S{αi j } = αil , then XS intersects the
corresponding facets simultaneously, and there is a tie for the leaving point. In this case
choose any candidate point to be deleted from S. The next Search Phase may lead to a
degenerate iteration at the next step with αil = 0 for some pil . Cycling will not occur since
at each degenerate iteration one point is deleted from the finite set S. After a finite number
of points are deleted, S is reduced to two points, and the parameter α will be positive at the
next iteration.

Property 12 The dual algorithm solves M(P) in a finite number of iterations.

Proof Given a dual feasible ball [xS, zS], an active set S, and an entering point pe /∈ S such
that ‖xS −pe‖+ rS > zS , the search phase finds a step size αe > αS , and a set S′ ⊆ S∪{pe}
such that the ball [xS′ , zS′ ] ← [x(αe), z(αe)] is dual feasible with active set S′. The search
phase may require intermediate iterations, each identifying a step size αil > αS and resulting
in a point pil leaving the current active set S′ ⊆ S. At most |S| − 1 intermediate iterations
are possible before x(αil ) ∈ conv(S′ ∪ {pe}). Property 24 shows that z(αe) > z(αS) at each
iteration, and z(αil ) > z(αS) at each intermediate iteration. Since the objective function value
is bounded above and there are only a finite number of active sets, the algorithm finds the
optimal solution in a finite number of iterations. �	

6 Computational results

Both algorithms were implemented inMATLAB [Release R2017a (9.20.556344)] on aMac-
Book Pro with a 2.7 GHz Intel Core i5 processor running macOS Catalina Version 10.15.5.
The primal algorithm code is roughly 700 lines long, and the dual algorithm code is roughly
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800 lines long. Both algorithms were run to solve Problem M(P) for problems with balls
whose centers and radii were drawn randomly from the following distributions:

• Points drawn from the uniform distribution within a hypercube centered at the
origin with each side of length 20. Test problems were created for each of the
dimensions n = 50, 100, 500, 1000 and for each of the number of points m =
n/10, n/5, n/2, n, 2n, 5n, 10n. Once a point was sampled, a value R was drawn from
the uniform distribution on the interval [0, 1]. This value of R was then multiplied by
each of the radius parameters r = 0, 1, 2, 4, 6, 8 to generate a problem instance with m
points in n dimensions, with radii r R. This generated problem instances in which the
balls were growing progressively larger for the same set of points. Forty values of R were
sampled, yielding a suite of 6,720 different hypercube test problems.

Algorithm Dual({p1, . . . ,pm} , {r1, . . . , rm})
Input: P = {p1, . . . ,pm} ⊂ IRn , {ri ≥ 0 : for pi ∈ P}
Output: The ball [x∗, z∗] with minimum z∗ such that [pi , ri ] ⊂ [x∗, z∗] for all pi ∈ P
1: Initialize: [xS, zS] = [p j , r j ] for some p j ∈ P , and S ← {p j }
2: while xS is not primal feasible
3: Dual Update Phase
4: Select any pe ∈ P \ S such that ‖xS − pe‖ + re > zS
5: if points in S ∪ {pe} are not affinely independent
6: choose pl to leave S using (19), (20), and (21)
7: S ← S \ {pl}
8: Dual Search Phase
9: For active set S = {pi1 , . . . pis } with ri1 ≥ . . . ≥ ris and dual feasible ball [xS, zS]

10: if ri1 = ris
11: dS ← Projection((pe − xS), R), where R = {pi2 − pi1 , . . . pis − pi1}
12: if ri1 = re then solve for αe using (23)
13: else solve for αe using (24)
14: (FLAG, αil ) ← ConvexHull(εS, xS,dS, 0, 0, 0, αe, 0)
15: if FLAG = TRUE then S ← S ∪ {pe}, [xS, zS] ← [x(αe), z(αe)]
16: else S ← S \ {pil }, [xS, zS] ← [x(αil ), z(αil )], Go To 10
17: else
18: (vS, cS, εS, aS, bS, cS) ← Intersections(S, {ri j : pi j ∈ S}).
16: uS ← Projection((pe − cS), R), where R = {pi1 − pi2 , . . . ,pi1 − pis }
17: (he,de) ← Hyperplane(pi1 ,pis ,pe, ri1 , ris , re)
18: if εS > 1 then αe ← arcsin(Computeφ(φS, A, B,C)) using (27)
19: else if εS < 1 then αe ← arcsin(Computeφ(φS, A, B,C)) using (29)
20: else if εS = 1 then solve for αe using (31)
21: (FLAG, αil ) ← ConvexHull(εS, cS, vS,uS, aS, bS, αe, φS)
22: if FLAG = TRUE then S ← S ∪ {pe}, [xS, zS] ← [x(αe), z(αe)]
23: else S ← S \ {pil }, [xS, zS] ← [x(αil ), z(αil )], Go To 10
24: end while

• In a similar manner, points drawn uniformly on the surface of a hypersphere of radius
10 centered at the origin. Test problems were created for each of the dimensions n =
50, 100, 500, 1000; for each of the number of pointsm = n/10, n/5, n/2, n, 2n, 4n; and
for each of the radius parameters r = 1, 1/2, 1/4, 1/16. Again, R was drawn from the
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uniform distribution on the interval [0, 1], and forty values of R were sampled, yielding
a suite of 3,840 different hypersphere test problems. Geometrically, the test problems
resembled a bumpy sphere.

All test problems were solved to optimality by both the primal and dual algorithms. For
the primal algorithm, the center of the initial covering ball was selected to be the arithmetic
mean of the set of points P . For the dual algorithm, the initial set S was the ball whose center
plus corresponding radius was farthest from the origin. For the dual algorithm, the entering
point was selected to be the center of the ball that was most infeasible. To avoid redundancy,
if there was a tie between two balls for being most infeasible, the ball with largest radius was
selected to enter S.

A numerical tolerance was set to 8nεmach/(1 − 8nεmach) for the dual algorithm and
100nεmach/(1 − 100nεmach) for the primal algorithm. This quantity was used to detect
primal feasibility, dual feasibility, eccentricity, etc. In solving all of the test problems, neither
the primal nor the dual algorithms ever encountered an elliptic or a parabolic search path.
Small test problems were constructed that did require elliptic or parabolic search paths, and
were easily solved. These examples required careful placements of points and assignments
of radius values.

For the primal algorithm, the computational complexity for each iteration is as follows:

1. For the Primal Search Phase, themost expensive operation is the calculation of the vectors
hpk , k = 2, . . . , (|S| − 1). This was done using the Gram-Schmidt algorithm, which has
complexity of O(2n|S|2).

2. For the calculation of the parameter α∗, each point pk in P \ S must be examined and
the associated parameter αk must be calculated. This has a complexity of O(53mn).

3. In the Primal Update Phase, the algorithm tests whether the KKT conditions are satisfied.
This involves using least squares to calculate the solution to an n-by-|S| system of linear
equations, which has a complexity of O(4n|S|2 − 4|S|3/3).

In conclusion, each iteration of the primal algorithm has complexity O(6n|S|2 − 4|S|3/3 +
53mn).

For the dual algorithm, the computational complexity for each iteration is as follows:

1. In the Dual Update Phase, it first must be determined whether the points in S ∪ {pe} are
affinely independent, which has complexity O(4n|S|2 − 4|S|3/3). If they are affinely
dependent, then solutions must be calculated for equations (7), (8), and (9), and for
equations (19) and (20). These computations have complexity O(2n|S|2 − 2|S|3/3) and
O(6n|S|2 − 2|S|3), respectively.

2. In the Dual Search Phase, vectors hpk , k = 2, . . . , (|S| − 1) were calculated using the
Gram-Schmidt algorithm, which has complexity of O(2n|S|2), and the calculation of the
vector uS has complexity O(2n|S|2 − 2|S|3/3). Finally, the calculation of the parameter
α∗ requires O(2n|S|2 − 2|S|3/3) operations.

3. Calculating whether the new dual feasible solution is also primal feasible requires
O(3mn) operations.

In conclusion, each iteration of the dual algorithm has complexity O(18n|S|2−4|S|3+3mn).
Observations

1. Table 1 shows that for the Hypercube data, the average number of iterations for both the
primal and dual closely tracts the average value of |S| at optimality. This means that a
point is added to S in most iterations, and there are very few iterations in which a point
leaves S.
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Table 1 Comparison of primal and dual algorithms for the hypercube dataset

(n,m) Avg |S| at Avg Time(sec) Avg Iterations

Optimality Primal Dual Primal Dual

(50, 5) 4.96 0.00103 0.00270 4.00 4.96

(50, 10) 8.40 0.00449 0.01154 8.27 8.40

(50, 25) 13.34 0.01089 0.01975 13.34 13.48

(50, 50) 16.50 0.01380 0.01673 16.55 16.95

(50, 100) 19.00 0.01912 0.01907 19.25 20.16

(50, 250) 21.33 0.03304 0.02062 21.88 23.28

(50, 500) 23.35 0.05858 0.02370 24.26 26.18

(100, 10) 9.49 0.00758 0.00998 8.89 9.49

(100, 20) 15.13 0.01236 0.01339 15.13 15.18

(100, 50) 22.42 0.01887 0.01817 22.42 22.63

(100, 100) 27.10 0.02880 0.02141 27.15 27.90

(100, 200) 30.03 0.04654 0.02412 30.19 31.60

(100, 500) 34.79 0.10227 0.03200 35.08 37.18

(100, 1000) 37.55 0.20142 0.04033 38.25 41.28

(500, 50) 37.07 0.04189 0.04178 37.07 37.11

(500, 100) 50.74 0.09324 0.07858 50.74 51.03

(500, 250) 65.46 0.23296 0.15783 65.47 66.41

(500, 500) 76.63 0.48139 0.19151 76.65 77.83

(500, 1000) 85.73 0.98211 0.27754 85.77 88.33

(500, 2500) 99.35 3.09055 0.49999 99.49 102.90

(500, 5000) 105.55 6.40139 0.73559 105.76 109.85

(1000, 100) 63.73 0.25193 0.18453 63.73 63.84

(1000, 200) 82.77 0.52855 0.51811 82.77 83.13

(1000, 500) 103.45 1.37670 1.01992 103.45 104.27

(1000, 1000) 120.10 3.07464 1.49074 120.10 121.74

(1000, 2000) 132.51 6.29294 1.92496 132.52 134.87

(1000, 5000) 150.80 17.25200 3.34911 150.85 154.46

(1000, 10,000) 162.98 36.36052 5.52762 163.05 167.53

2. Tables 1 and 2 show that the dual algorithm is faster than the primal algorithm over almost
all problem classes (n,m). This can be explained by the computational complexity of
the algorithms because at each iteration, the primal algorithm requires an operation for
each point in P \ S, while the dual algorithm requires an operation for each point in S.
Since |S| is small initially and increases by at most one at each iteration, mn dominates
|S| and contributes more to the computational effort.

3. Except in the Hypersphere test cases in which (n,m) = (50, 200) and (n,m) =
(100, 400), the algorithms use a similar number of iterations to solve the test problems
to optimality.

Areas of continued research for improving the computational efficiency of the algorithms
include the following:
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Table 2 Comparison of primal and dual algorithms for the hypersphere dataset

(n,m) Avg |S| at Avg Time(sec) Avg Iterations

Optimality Primal Dual Primal Dual

(50, 5) 5.00 0.00200 0.00157 4.00 5.00

(50, 10) 9.83 0.00650 0.00418 8.98 9.84

(50, 25) 19.79 0.01727 0.01273 19.79 20.68

(50, 50) 28.61 0.02161 0.01417 29.58 31.68

(50, 100) 35.84 0.04910 0.02501 52.78 48.05

(50, 200) 39.73 0.18351 0.03760 131.22 64.72

(100, 10) 9.94 0.00757 0.00535 9.00 9.94

(100, 20) 18.60 0.01488 0.01224 18.22 18.60

(100, 50) 35.52 0.02954 0.02223 35.58 36.58

(100, 100) 49.59 0.06062 0.04161 51.15 55.03

(100, 200) 61.05 0.16333 0.07442 83.36 77.89

(100, 400) 70.36 0.78824 0.12047 210.79 104.66

(500, 50) 42.88 0.05627 0.05854 42.57 42.90

(500, 100) 68.59 0.16850 0.15592 68.59 68.93

(500, 250) 114.22 0.67362 0.55144 114.29 117.54

(500, 500) 152.79 1.58460 1.18185 155.44 163.84

(500, 1000) 195.76 4.31656 2.54152 209.83 219.93

(500, 2000) 239.21 12.80964 5.46031 294.93 288.14

(1000, 100) 72.08 0.37321 0.30619 71.93 72.19

(1000, 200) 111.60 1.19929 1.14259 111.60 112.10

(1000, 500) 176.94 4.74913 4.67487 177.04 180.97

(1000, 1000) 235.04 11.62543 10.56394 236.73 246.53

(1000, 2000) 304.95 29.58509 21.92983 315.08 330.30

(1000, 4000) 386.62 85.54698 44.87798 431.09 439.17

• Use column update methods to solve sequential linear systems that differ by only one
column.

• Investigate alternative rules for starting solutions and for choosing candidate points to
enter an active set.

• For the primal algorithm, investigate optimizing sequentially over subsets of a partition
of P .

• For the primal algorithm, investigatewhether there are structures that allowpoints covered
by a feasible ball to remain covered by subsequent iterations.

• Investigate a primal-dual approach using the bisector search paths.
• Investigate the use of search paths generated by bisectors to other optimization problems.

Appendix: Results on conic sections and applications to the primal and
dual algorithms

Appendix A.1–A.4 present properties on the intersection of hyperplanes with conic sections
in IRn , and on the intersection of a sequence of hyperboloids with a common focal point.
The proofs are in Dearing (2017). These properties provide the basis for expressions in
algorithm Intersections used to compute the vectors and parameters of two-dimensional
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conic sections that define the search paths of the primal and dual algorithms. Appendix A.5
presents properties used to prove that the primal and dual algorithms compute the optimal
solution in a finite number for iterations.

A.1 Hyperboloids and ellipsoids

An n-dimensional hyperboloid of two sheets, symmetric about its major axis, is the set

H = {x ∈ IRn : |‖x − p1‖ − ‖x − p2‖| = 2a}, (32)

where p1,p2 ∈ IRn are the focal points, and a is a positive constant such that 2a < ‖p1−p1‖.
H is specified by the following vectors and parameters, all of which are determined by the
focal points and the constant a. The center c = (p1 + p2)/2 is the midpoint of the focal
points. The axis vector v = (p1 − p2)/‖p1 − p2‖ orients the hyperboloid and is parallel to
the major axis, which is the line through p1 and p2. The focal distance c = ‖p1 − p2‖/2 is
the distance from the center to each to the focal points. The eccentricity ε = c/a specifies
the shape of the hyperboloid.

The sheet of H closest to p1 is the set H1, and the sheet closest to p2 is the set H2, where

H1 ={x : ‖p2 − x‖ − ‖p1 − x‖ = 2a} = {x : ‖p1 − x‖ = εv(x − d1)} (33)

H2 ={x : ‖p2 − x‖ − ‖p1 − x‖ = −2a} = {x : ‖p2 − x‖ = εv(d2 − x)}. (34)

The directrix of H1 is {x : vx = vd1}, with directrix vector d1 = c + dv and d = a2/c.
The directrix of H2 is {x : vx = vd2}, with directrix vector d2 = c − dv. The vertex
a1 = c + av of H1 is the point of intersection between the major axis and H1. The vertex of
H2 is a2 = c − av. Observe that H = H1 ∪ H2.

The triangle inequality implies 2a = |‖p2 − x‖ − ‖p1 − x‖| ≤ ‖p2 − p1‖ = 2c, so that
a ≤ c and ε ≥ 1. By definition, H is a hyperboloid if a < c, or ε > 1. If a = c, so that
ε = 1, H is a degenerate hyperboloid where H1 = {x = p1 + αv, α ≥ 0}, the ray along the
major axis from p1 in the direction v, and H2 = {x = p2 − αv, α ≥ 0}, the ray from p2 in
the direction −v. If a > c, H = ∅.

An n-dimensional ellipsoid, symmetric about its major axis, is the set of points x ∈ IRn

such that the sum of the distances from x to two given points p1 and p2 equals a positive
constant 2a. That is,

E = {x :‖ p2 − x ‖ + ‖ p1 − x ‖= 2a}. (35)

An ellipsoid E is specified by the same vectors and parameters that specify a hyperboloid,
all of which are determined by the focal points p1 and p2 and the positive constant a.

The triangle inequality implies 2c =‖ p1 − p2 ‖≤‖ p1 − x ‖ + ‖ p2 − x ‖= 2a, so that
c ≤ a. If a = c, E is the line segment between p1 and p2, and is a degenerate ellipsoid. The
application to finding a minimum covering ball is concerned only with the case c < a, or
ε < 1.

The next property gives an equivalent representation of a hyperboloid or an ellipsoid as a
quadratic form. A version of this representation for hyperboloids in IR3 is reported in Leva
(1996). The proof for hyperboloids (or ellipsoids) expands expressions (32), (33), and (34)
(or (35) for ellipsoids) and applies the definition of related vectors and parameters to obtain
(36).

Property 13 Given the focal points p1 and p2 and a positive constant a, with corresponding
axis vector v, center point c, and eccentricity ε = c/a, let H be the hyperboloid determined
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by these vectors and parameters if c > a, and let E be the ellipsoid determined by these
vectors and parameters if c < a. Define the set Q by

Q = {x : (x−c)T [I −ε2vvT ](x−c) = a2−c2} = {x : (x−c)2−ε2(v(x−c))2 = a2−c2}.
(36)

Then Q = H if c > a, and Q = E if c < a.

Property 14 Suppose H is a hyperboloid in IRn with focal points p1 and p2, center c, axis
vector v, eccentricity ε, and sheets H1 and H2. If u is a unit vector orthogonal to the axis
vector v, then H1 ∩ aff(v,u, c) = {x1(α) = c + a sec(α)v + b tan(α)u, −π

2 < α < π
2 },

where b = √
c2 − a2, is one branch of a two-dimensional hyperbola with the same vec-

tors and parameters as H1. Furthermore, H2 ∩ aff(v,u, c) = {x2(α) = c − a sec(α)v +
b tan(α)u, −π

2 < α < π
2 } is one branch of a two-dimensional hyperbola with the same

vectors and parameters as H2.

Corollary 1 Suppose E is an ellipsoid in IRn with focal points p1 and p2, center c, axis vector
v, eccentricity ε. If u is a unit vector orthogonal to the axis vector v, then E ∩ aff(v,u, c) =
{x(α) = c + a cos(α)v + b sin(α)u,−π < α < π}, where b = √

a2 − c2, is a two-
dimensional ellipse with the same vectors and parameters as E.

An n-dimensional right circular cone C , with center c, axis vector v, and eccentricity ε, is
also expressed in terms of the quadratic form Q with ε > 1, but with a right hand side value
of zero. That is,

C = {x : (x − c)T [I − ε2vvT ](x − c) = 0}. (37)

The cone C has two “sheets”: C1 = {x :‖ x − c ‖= εv(x − c)} is the subset of C that is
closest to the focal point p1, and C2 = {x :‖ x − c ‖= εv(c − x)} is the subset of C closest
to the focal point p2. Observe that C = C1 ∪ C2.

For any point x ∈ C , let γ be the angle between the vector x−c and the axis vector v. Then
the expression for C1 shows that v(x − c)/‖x − c‖ = cos(γ ) = 1/ε, or sec(γ ) = ε = c/a.
The next Property and its proof are analogous to Property 14.

Property 15 Given a coneC in IRn with center c, axis vector v, and sheetsC1 andC2, if u is a
unit vector orthogonal to v, thenC1∩aff(u, v, c) = {x̄1(β) = c+a|β|v+bβu,−∞ < β <

∞}, where b = √
c2 − a2, is one branch of a two-dimensional cone with the same center and

axis vector asC . Furthermore,C2∩aff(u, v, c) = {x̄2(β) = c−a|β|v+bβu,−∞ < β < ∞}
is one branch of a two-dimensional cone with the same vectors and parameters as C .

Property 16 If a cone C and a hyperboloid H have the same axis vector v, center c, and
eccentricity ε, then C is the asymptotic approximation of H .

A.2 Paraboloids

An n-dimensional paraboloid, symmetric about its major axis, is the set P of all points
x ∈ IRn such that the distance from x to a given point p1 on the major axis, equals the
distance from x to the hyperplane that is orthogonal to the major axis and contains a point
p2 on the major axis. A paraboloid is specified by the two points p1 and p2 only. The point
p1 is the focal point of the paraboloid. The major axis is the line through the points p1 and
p2. The axis vector v = (p1 − p2)/‖p1 − p2‖ is the unit vector parallel to the major axis. A
paraboloid P , defined by p1,p2 ∈ IRn , is the set

P = {x : ‖p1 − x‖ = v(x − p2)}. (38)
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The vertex of a paraboloid is the center c = (p1 + p2)/2, and is the intersection of the
paraboloid with the major axis. The focal distance c = ‖p1 − p2‖/2. The directrix of a
paraboloid P is the hyperplane with normal vector v containing the point p2. Observe that
c−p2 = cv, and c−p1 = −cv. All paraboloids have the same shape, so there is no parameter
ε or a. The next property characterizes a two-dimensional parabola that is a subset of a given
paraboloid P with the same parameters and vectors.

Property 17 Given a paraboloid P in IRn , with focal points p1 and p2, if u is a unit vector
orthogonal to the axis vector v, then P ∩ aff(v, c,u) = {x(α) = c+ cα2v+ 2cαu,−∞ <

α < ∞} is a two-dimensional parabola that is a subset of P and has the same vectors and
parameters as P .

Paraboloids may also be expressed in terms of a quadratic form similar to (36). However,
for a paraboloid, there is no eccentricity, and the right hand side is a linear expression of x.

Property 18 The paraboloid P has the equivalent expression

P = {x : (x − c)T [I − vvT ](x − c) = 4cv(x − c)}. (39)

A.3 Intersections of hyperplanes with conic sections in IRn

From the classical studies of conic sections in IR3, it is well known that if a plane and a
cone intersect at an appropriate angle, measured between the axis vector of the cone and the
normal vector of the plane, the intersection is either a two-dimensional hyperbola, ellipse, or
parabola. These results extend to the intersection of a hyperplane with each conic section in
IRn , and are reported below. For the intersection of a hyperplanewith a hyperboloid, or a cone,
conditions are given for identifying the resulting intersection as a hyperboloid, an ellipsoid
or a paraboloid of dimension n − 1. For the intersection of a hyperplane and an ellipsoid,
the resulting intersection is always an ellipsoid of dimension n − 1. For the intersection of
a hyperplane and paraboloid, conditions are given for identifying the resulting intersection
as a paraboloid or an ellipsoid of dimension n − 1. In each case, expressions are given
for computing the vectors and parameters of the resulting intersection. These expressions
are used in algorithm Intersections to compute the search paths for the primal and dual
algorithms.

Property 19 Suppose Q = {x : (x − c)T [I − ε2vvT ](x − c) = a2 − c2} is a hyperboloid in
IRn , centered at c = (c1, . . . , cn)T , with axis vector v of unit length, eccentricity ε > 1, and
parameters a and c, and suppose HP = {x : hx = h(c+ ĥh)} is a hyperplane with ‖h‖ = 1.
Let ρ = √

1 − (hv)2. Then Q ∩ HP is a hyperboloid of dimension n − 1 iff ερ > 1, or an
ellipsoid of dimension n−1 iff ερ < 1 and ĥ2 ≥ a2(1−ρ2ε2), or a paraboloid of dimension
n − 1 iff ερ = 1.

A.4 Applications to problemM(P)

Problem M(P) assumes a given a set P = {p1, . . . ,pm} ⊂ IRn , of distinct points and the set
of balls {[pi , ri ],pi ∈ P}, where ri is a non-negative radius corresponding to each pi ∈ P .
The bisector Bj,k of points p j ,pk ∈ P is defined by (1). If p j ,pk ∈ P are non-redundant
and r j > rk , then the bisector Bj,k is one sheet of a hyperboloid in IRn .

For problem M(P), the next result characterizes the intersection of three bisectors cor-
responding to a set of three non-redundant and affinely independent points in P . Using this

123



656 Annals of Operations Research (2023) 322:631–659

result, the intersection of any two bisectors may be determined by the intersection of either
bisectors in the pair with the hyperplane HT . This result leads to a procedure for finding the
intersection of bisectors determined by all pairs of points in a subset of P .

Property 20 extends a result in Leva (1996) that assumes only two hyperboloids with a
common focal point.

Property 20 Suppose that T = {p j ,pk,pl} is a subset of three affinely independent and
non-redundant points from P , ordered so that r j ≥ rk ≥ rl , with r j > rl , and suppose
B = {Bj,k, Bj,l , Bk,l} is the set of bisectors defined by each pair of points in T . Let HT =
{hT x = hT dT }, where hT = ε j,kv j,k − ε j,lv j,l , dT = d j,l + (v j,k (d j,k−d j,k )

v j,kuT
uT , and uT ←

Projection (hT , {v j,l}). Then the intersection of each pair of bisectors in B equals the
intersection of HT with either bisector of the pair. If any of the bisectors in B is a hyperplane,
it is identical to HT .

Given an active set S = {pi1 , . . . ,pis }, the following results show how to compute the
vectors and parameters of BS = ∩1≤ j<k≤s Bi j ,ik . If all the radii of the points in S are equal,
each bisector Bi j ,ik is a hyperplane, so that BS is a linear manifold of dimension n − s + 1.
If some of the radii are unequal, BS will be a conic section of dimension n − s + 2.

The next two properties give alternative representations for BS .

Property 21 BS = ∩s
j=2Bi1,i j .

Property 22 BS = Bi1,is ∩s−1
j=2 Hj , where for j = 2, . . . , s − 1, Hj = {h jx = h jd j }, is

determined by the set Tj = {pi1 ,pi j ,pis }, with ri1 ≥ ri j ≥ ris , and ri1 > ris .

A.5 Properties of search paths

Property 23 At each iteration of either the primal or dual algorithm with active set S, and for
either a linear, hyperbolic, elliptic, or parabolic search path XS = {x(α) : α ∈ D}, S is active
for the ball [x(α), z(α)], for α ∈ D. Furthermore, the complementary slackness conditions
(6) of the KKT conditions are satisfied by S and the ball [x(α), z(α)], for α ∈ D, where
z(α) = ‖x(α) − pi1‖ + ri1 .

Proof For either the primal or dual algorithm, consider a search path that is the ray XS =
{x(α) = xS + αdS, α ∈ D}. By construction, αS ∈ D, and xS = x(αS) ∈ XS ⊂ BS =
∩p j ,pk∈S B j,k . Then for α ∈ D, and each pair of points {pi j ,pik } ⊂ S, Bi j .ik = {x : (pi j −
pik )x = (pi j −pik )xS}, and (pi j −pik )x(α) = (pi j −pik )xS+α(pi j −pik )dS = (pi j −pik )xS
since by construction (pi j − pik )dS = 0. Thus for each {pi j ,pik } ⊂ S, x(α) ∈ Bi j ,ik . That
is, ‖x(α) − pi j ‖ + ri j = ‖x(α) − pik‖ + rik which implies S is active for [x(α), z(α)].

For either the primal or dual algorithm consider a search path XS that is either a hyperbola,
specified by (13), an ellipse specified by (15), or a parabola specified by (17). In each case,
for α ∈ D, substitution of x(α) for xS satisfies the expression (36) for BS which shows that
XS ⊂ BS . Thus, for each {pi j ,pik } ⊂ S, x(α) ∈ Bi1,i j which implies ‖x(α) − pi j ‖ + ri j =
‖x(α) − pik‖ + rik so that S is active for [x(α), z(α)] for α ∈ D.

Since the points in S are affinely independent, there exists a solution πi j for pi j ∈ S
to the linear system (7) and (8) with x(α) replacing x. This result along with the result
that S is active for [x(α), z(α)] for all cases of the search path and for α ∈ D, shows that
(z(α) − ‖x(α) − pi j ‖ − ri j )πi j = 0 for pi j ∈ S. For pi ∈ P \ S, choose πi = 0 so that
(z(α) − ‖x(α) − pi‖ − ri )πi = 0. Thus, the complementary slackness conditions (6) of the
KKT are satisfied at each point on the search path. �	
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Property 24 At each iteration of either the primal or dual algorithm with active set S, and a
search path XS = {x(α) : α ∈ D} that is either a ray, hyperbola, ellipse, or parabola, the
objective function z(α) is decreasing for the primal algorithm and increasing for the dual
algorithm.

Proof For either the primal or dual algorithm the linear search path is the ray XS = {x(α) =
xS + αdS, α ∈ D}. The objective function is z(α) = ‖xS + αdS − pi1‖ + ri1 and z′(α) =
[(xS − pi1)dS + αd2S]/‖x(α) − pi1‖.

For the primal algorithm D = {0 ≤ α ≤ αm}, αm = (pi1 − xS)dS/‖dS‖2 > 0, and
dS ← Projection((pi1 − xS), R), with R = {pi2 − pi1 , . . . ,pis − pi1}. By construction
(xS − pi1)dS < 0, so that z′(0) < 0, for 0 ≤ α < αm , z′(α) = 0, and z′(αm) = 0,

For the dual algorithm D = {0 ≤ α}, and dS ← Projection((pe − xS), R). Then
z′(α) = αd2S]/‖x(α) − pi1‖, since (xS − pi1)dS = 0. Thus for 0 < α, z′(α) > 0, and
z′(0) = 0,

For the primal or dual algorithm with a hyperbolic search path, XS = {xS(α) = cS +
aS sec(α)vS + bS tan(α)uS, α ∈ D}, with x′(α) = aS sec(α) tan(α)vS + bS sec2(α)uS . The
objective function is z(α) = ‖x(α)−pi1‖+ri1 , and z

′(α) = (x(α)−pi1)x
′(α)/‖x(α)−pi1‖ =

aS sec(α) tan(α)[(cS − pi1)vS + (c2S/aS) sec(α)]/‖x(α) − pi1‖.
Since x(0) = xS = cS + aSvS ∈ conv(S), there exists π j ≥ 0, for each pi j ∈ S such that∑
pi j ∈S π j = 1 and

∑
pi j ∈S(x(0) − pi j )π j = ∑

pi j ∈S(cS − pi j + aSvS)π j = 0. Multiply

the last equation by vS to get
∑

pi j ∈S((cS − pi j )vS + aS)π j = 0.

If (cS − pi j )vS + aS = 0 for each pi j ∈ S, then the points in S are on the hyperplane
containing the point cS + aSvS with normal vector vS . Thus, the points in S are affinely
dependent, which is a contradiction. If the summands (cS − pi j )vS + aS , for each pi j ∈ S,
are either all positive or all negative, the sum is not zero. Therefore, there exists some pik ∈ S,
such that (cS − pik )vS + aS > 0. For the hyperbolic search path, ε2S > 1, or c2S/aS > aS .
Then 0 < (cS − pik )vS + aS < (cS − pik )vS + c2S/aS ≤ (cS − pik )vS + (c2S/aS) sec(α).

For the primal algorithm D = {αS ≤ α < 0}. For αS < α < 0, tan(α) < 0 and z′(α) < 0.
For α = 0, z′(α) = 0. For the dual algorithm D = {0 ≤ α}. For 0 < α, tan(α) > 0 and
z′(α) > 0. For α = 0, z′(α) = 0.

For the primal or dual algorithm with a elliptlic search path, XS = {xS(α) = cS +
aS cos(α)vS+bS sin(α)uS, α ∈ D}with x′(α) = −aS sin(α)vS+bS cos(α)uS . The objective
function is z(α) = ‖x(α) − pi1‖ + ri , and z′(α) = (x(α) − pi1)x

′(α)/‖x(α) − pi1‖ =
aS sin(α)[(pi1 − cS)vS − (c2S/aS) cos(α)]/‖x(α) − pi1‖.

By the same argument used for the hyperbolic case, since x(0) = cS + aSvS ∈ conv(S),
there exists some pik ∈ S, such that (pik − cS)vS − aS > 0. For the elliptic search path,
ε2S < 1, so that c2S/aS < aS . Then 0 < (pik − cS)vS − aS < (pik − cS)vS − c2S/aS ≤
(pik − cS)vS − (c2S/aS) cos(α).

For the primal algorithm, D = {αS ≤ α < 0}. For αS < α < 0, sin(α) < 0, and
z′(α) < 0. For α = 0, z′(α) = 0. For the dual algorithm with D = {0 ≤ α}. For 0 < α,
sin(α) > 0 and z′(α) > 0. For α = 0, z′(α) = 0.

For the primal or dual algorithm with a parabolic search path, XS = {x(α) = cS +
c̃Sα2vS + 2c̃SαuS, α ∈ D} with x′(α) = 2c̃SαvS + 2c̃SuS . The objective function is z(α) =
‖x(α) − pi1‖ + ri1 and z′(α) = (x(α) − pi1)x

′(α)/‖x(α) − pi1‖ = 2c̃α[(cS − pi1)vS +
c̃(α2 + 2)]/‖x(α) − pi1‖.

Using the same argument as used for the hyperboloid and ellipsoid cases, x(0) = cS ∈
conv(S) implies there exists some pik ∈ S, such that (cS − pik )vS > 0, which implies
(cS − pik )vS + c̃(α2 + 2) > 0.
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For the primal algorithm D = {−∞ < α ≤ 0}, so that z′(α) < 0, and for α = 0,
z′(α) = 0. For the dual algorithm D = {0 ≤ α < ∞}, so that z′(α) > 0, and for α = 0,
z′(α) = 0. �	
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