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Abstract
In mass casualty incidents, patients need to be evacuated to nearby hospitals as soon as
possible, and a surge in demand for emergency medical services then occurs. It would
result in ambulance offload delays, i.e., no emergency operating room is available when
the ambulance arrives at a hospital, and thus the patients cannot be treated immediately. In
this paper, we aim to solve a combinatorial problem of patient-to-hospital assignment and
patient surgery sequence considering patient deterioration and ambulance offload delay dur-
ing amass casualty incident. Amixed-integer programmingmodel is proposed. The objective
is to minimize the completion time of all patients’ surgeries. For solving such a problem,
some structural properties of our studied problem are derived, and a heuristic is developed
to solve the single operating room scheduling problem considering ambulance offload delay
and patient deterioration based on these structural properties. A hybrid Firefly Algorithm-
Variable Neighborhood Search algorithm incorporating the heuristic method is proposed to
solve it. Our proposed algorithm can solve the problem within a short computation time,
and the computational results demonstrate the superiority of our proposed algorithm over the
compared algorithms.

Keywords Operating room · Scheduling · Mass casualty incident · Ambulance
dispatching · Heuristics · FA-VNS

1 Introduction

Amass casualty incident (MCI), also called a multiple-casualty incident or multiple-casualty
situation, means an incident in which the emergency medical service resources (e.g., human
and facility) are overwhelmedby thenumber and severity of casualties.MCIs includedisasters
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caused by natural catastrophes (such as earthquakes, hurricane, or volcanic activity) or man-
made calamities (such as traffic accidents, terrorist attacks, or public health emergencies).
Even an aircraft running off the end of a runway when landing at the airport (Dean & Nair,
2014), a bus fire, or an industrial explosion could almost instantly generate 10–125 severely
injured casualties which is far more than the existing medical service resources can manage
(Melton & Riner, 1981). A recent scientific framework has been developed using expert
opinions, which defines an MCI as any event that results in more than 5 casualties (Kim
et al., 2014). For example, under the circumstance when a two-person staff is responding to
a motor accident with three critically injured casualties could be regarded as an MCI.

In China, due to the imbalanced development among rural areas and urban areas, there is
usually few ambulances available in some rural areas (Yan et al., 2017). Some researchers
point out that the number of negative pressure isolation ambulances is only 0.15 per health
service institution on average (Ye, 2018). Especially for the mass casualty incidents, the
available hospital emergency medical resources are limited and the ambulance utilization is
very high (Repoussis et al., 2016). The injured must be rescued, triaged and dispersed to
nearby hospitals The information available to medical resource owners, e.g., local hospitals,
is often incomplete. In an emergency response time, ambulances and emergency operating
rooms are in short supply beyond question. Usually, each hospital has its own ambulance
site, while their ambulances are directed by the ambulance dispatching center. The decisions
made by different medical resource owners/managers are based on partial and fragmented
information, and thus affect the overall efficiency (Besiou et al., 2018). It would experience
a high influx of patients and the hospitals would soon be overburdened. Investigators from
Australia, Spain, and the United States find that patients experience higher mortality rates
during periods of emergency operating room crowding (Bernstein et al., 2009).

It has been proved that having an effective real-time response in the aftermath of a disaster
requires several inter-dependent decisions to be made and numerous coordinated operations
to be arranged quickly (Farahani et al., 2020). Patients are supposed to receive surgeries as
soon as possible, but their allocation is a complex problem. For example, one ambulance site
may send their ambulances to the casualty collection area without the knowledge of other
sites’ operations and the capabilities of hospitals’ admission, etc., which may cause rescue
chaos and unbalanced load of resources. While one of the prerequisites for improving rescue
efficiency is centralized coordination that can match limited medical resource capacity and
urgent surgery demand. In a more efficient situation, the emergency medical resources are
arranged in a united system by a centralized decision-maker, e.g., the government, which
has the completed information about all the available emergency medical resources’ owners
(Rachel Lu et al. 2011), with the knowledge of the patients’ situation, such as the rescue
demand, severity, etc. The knowledge of the patients’ injury severity comes from diagnos-
tics/physician assessments at the casualty collection site (Laan et al., 2016).

We consider such a rescue system under the centralized decision-making mechanism after
an MCI. Integrating patient assignment and operating room scheduling presuppose central-
ized coordination that can match limited capacity and urgent demand. First, the patients’
information is collected from the casualty collection area to the government, which further
gets the information of available medical resources from the hospitals and the ambulance
dispatching center under govern. Then, the government makes decisions on ambulance trans-
portation and operating room scheduling in an integrated way. The respective decisions will
be transmitted to the corresponding hospitals and ambulance dispatching center, and they
will act correspondingly, i.e., transport the patients, and treat them in the hospital following
the decisions.
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Under the setting of the above-centralized decision-making system, this paper considers
two kinds of limited and reusable resources, i.e., ambulances and emergency operating rooms.
Reusable resourcesmean that each ambulance is restored to available status after the previous
patient has been transported to the target hospital and can continue to transport the next patient,
and each emergency operating room is also available for the next patient after completing the
previous patient’s surgery. The arrival times of patients at the hospitals and the trauma level
will dictate the surgery order of the patients at the hospitals and the time required to treat
all patients. We study the collaborative problem of ambulance scheduling and multi-hospital
operating room scheduling in MCIs.

Although some models and decision support systems have been proposed for medical
resource scheduling in the MCI response problem, there are still no generally accepted rules
or principles to guide scheduling personnel on basic problems, such as which hospital ambu-
lance should transport each patient to and how many patients should be transported to each
hospital. Repoussis et al. (2016) formulate a mixed-integer model to integrate ambulance
dispatching, transportation of patients and surgery order scheduling. It is assumed that one
patient is assigned to an ambulance at a time. The impact of capacity-based bottlenecks on
ambulances and hospital beds is quantified. Sung and Lee (2016) use a MIP formulation
to model the problem as an ambulance routing problem, and the order and destination hos-
pitals for patient evacuation are determined. The number of ambulances is not taken into
consideration. Mills et al. (2018) propose two heuristic policies to determine how to allocate
ambulances to patient and which hospital should be the destination for those ambulances.
Dean and Nair (2014) determine which hospital ambulance should transport each patient to.
A SAVE model is introduced to maximize the number of expected survivors from the MCI.
While our paper solves the patient assignment problem and sequence of surgeries in hospital
under the limitation of ambulances’ number and hospital capacity considering ambulance
offload delay and patient deterioration.

Given the limited resources of ambulance, hospitals and operating rooms, the aim of
our study is to determine the assignment of patients to multiple hospitals and exact surgery
start times. The objective is to minimize surgery completion time of all patients. Figure 1
demonstrates the methods for our integrated problem in two stages.

The contributions of this paper are as follows: (1)We explicitly consider the combinatorial
optimization problem of patient assignment and patient surgery sequence in MCIs, taking
into account ambulance offload delay and the deteriorating condition of patients. Capacity
limitation of operating rooms and ambulances are specially considered. An operating room

Fig. 1 The methods for our integrated problems
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would be released after one surgery. (2) Some structural properties of the studied problem
are proposed, and a heuristic is developed to solve the single operating room scheduling
problem considering ambulance offload delay based on these structural properties. (3) We
also develop an effective novel hybrid FireflyAlgorithm (FA)-Variable Neighborhood Search
(VNS) algorithm incorporating the heuristic to solve our problem.

The remainder of the paper is organized as follows: Sect. 2 presents the literature review
of ambulance scheduling and operating room scheduling problems. Section 3 describes our
problem by a mixed-integer programming model. Section 4 develops a heuristic algorithm
based on some structural properties and scheduling rules to solve the single operating room
scheduling problem considering ambulance offload delays. In Sect. 5, a hybrid FA-VNS algo-
rithm incorporating the proposed heuristic is developed to solve the combinatorial problem.
Computational experiments are conducted in Sect. 6 to verify the correctness and rational-
ity of the proposed model and evaluate the effectiveness of the proposed algorithm. The
conclusions are presented in Sect. 7, and some future research directions are put forward.

2 Literature review

2.1 Ambulance dispatching and offload delay problem

Anumber of related papers determine transportation order to the hospital according to patient
prioritization based on field triage in MCIs. A prevailing protocol of mass casualty triage is
START protocol (Fiedrich et al., 2000; Frykberg, 2005; Jenkins et al., 2008;Mills et al., 2013;
Sacco et al., 2005). Patients are triaged into four classes (e.g., minor, delayed, immediate, and
expectant) by emergency medical technicians at the casualty collection location, and then
evacuated following the priority. Patients with higher priority should receive surgeries ahead
of those with lower priority, which is the standard practice. Wang et al. (2015) address the
single operating room scheduling problem for one day. They consider two priority levels of
patients: high-priority patients and low-priority patients. Patients with low priority can only
be operated after the operations of high priority have been completed. They determine the
surgery sequence in each level of patients by striking a balance between patient satisfaction
and operating costs. Mills et al. (2013) present a model of patient triage and design prior-
itization policies considering multiple casualty locations and multiple receiving hospitals.
Nevertheless, Garner (2003) mention that the only recorded incidents for which triage tags
were considered useful are small incidents. In large incidents, triage tags were either not
used, caused problems, or incidents were managed efficiently because triage tags were not
used intentionally. It is noteworthy that little attention has been paid to preventing surges
(e.g., avoiding over-triage) by better guiding patient distribution, and how to determine the
minimum hospital capacity required to treat all MCI casualties. In this paper, these complex
issues are incorporated, and thus we propose an optimal method that can be used to generate
and assess emergency preparedness plans.

The transfer of patients from emergency medical service (EMS) providers to emergency
department (ED) staff is an important bottleneck (Carter et al., 2014). Ambulance offload
delays have recently emerged as one of the most significant challenges for EMS managers,
which would increase both risks and surgery costs for patients. When the ambulance delivers
the patient to the emergency department, the patient often cannot be admitted in time, resulting
in the ambulance staying in the emergency department for a long time. It is called “ambulance
offload delay”. Centers for Medicare & Medicaid Services (CMS) stated that it could be
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reasonable to require the EMS provider to accompany the individual until such time as there
where ED resource available to provide care for that individual (Cooney et al., 2011). It
takes much time to get ambulances back into service, severely affects the effective turnover
of pre-hospital emergency resources, and thus leads to prolonged time on surgery and even
compromise safety of casualties. Cooney et al. (2011) point out that it is important to monitor
offload delays in evaluating inefficiency of EMS system.While recording this delay presents a
serious challenge, most emergencymedical services systems onlymeasure the complete time
at the hospital (Carter et al., 2014). Until now, there are many research papers that discuss on
ambulance offload delay problem in medical services (Almehdawe et al., 2013, 2016; Carter
et al., 2014; Cooney et al., 2011, 2013; Li et al., 2019;Majedi, 2008). Cone et al. (2012) found
that 12.5%patients experience ambulance offload delay of 30–60min, and 5%adelay ofmore
than 60 min. In the report of (Crilly et al., 2015), ambulance offload time delay of more than
30 min was experienced by 15% of the 40,783 analyzable ambulance presentations. Carter
et al. (2014) study how well the turnaround can act as a proxy for offload delay time, and
verify the good correlation between turnaround and actual offload delay time. Although the
health and family planning department has organized various hospitals to analyze and solve
the problem of ambulance offload delay on many occasions, it has not been fundamentally
alleviated because no effective operating mechanism has been established. There is still a
lack of formal quantitative models for analyzing ambulance delay problem. Almehdawe
et al. (2016) present a queueing network model to investigate the impact of patient routing
decisions on ambulance offload delays. In their earlier research (Almehdawe et al., 2013),
a queuing model is introduced, in which ambulance utilization is assumed to be not too
high and thus travel durations of ambulances are negligible. While in our assumptions, the
ambulance utilization is very high under the circumstance of MCIs.

2.2 Deterioration effect

One fundamental feature of trauma care after an MCI is the expectation that severely injured
patientswill deteriorate over timebefore receiving surgeries (Dean&Nair, 2014;Hupert et al.,
2007; Kamali et al., 2017; L. Lei et al., 2015; Mills et al., 2013; Sung & Lee, 2016). The
deteriorating condition of patients inevitably leads to increased care time for the casualties.
Dean and Nair (2014) measure the care times by the number of periods for each patient class,
and the number is incremental over time up to 7.5 h. Mills et al. (2013) build a fluid model in
which patient deteriorate over time according to a survival probability function. The authors
design anoptimal policy to decrease criticalmortality rate.Kamali et al. (2017) solve a optimal
triage service order problem under a realistic assumption that patients would deteriorate and
have decreasing survival probability. Eun et al. (2019) introduce a MIP model to optimize
surgeries assignment considering patient health condition deterioration. They apply a tabu
search (TS) to provide effective solutions. Different from the above papers, we consider the
deteriorating condition of patients using time-dependent surgery durations. Incorporation of
transportation times and deterioration over time makes our problem different from many
well-studied problems. The comparison between existing studies and our study is shown in
Table 1. We can see that many models and decision support systems have been proposed
for medical resource scheduling in the MCI response problem. Most researchers are focused
on the location and distribution of emergency response units (Fiedrich et al., 2000) and the
supply and distribution of relief materials (Barbarosoǧlu & Arda, 2004; Mete & Zabinsky,
2010), while few papers consider the flow of patients between different locations.
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2.3 Operating room scheduling problem

Operating room scheduling problems have also been widely discussed in the past decades
year. Denton et al. (2007) propose a stochastic optimization model for a single operating
room daily scheduling problem. They study the simultaneous effects of sequencing surgeries
and scheduling start times with the goal of minimizing the weighted sum of surgeon waiting,
operating room idling and tardiness. A simple sequencing rule is designed to solve the
problem. Y. Sun and Li (2011) present a method to optimize surgery start times for a single
operating room with stochastic operation duration. Xiao et al. (2018) propose models and
exact combinatorial methods within the context of a single operating room on a single day.
(Ito et al., 2018) present a stochastic programming model to minimize the conditional value-
at-risk in a single operating room scheduling problem. Wang et al. (2015) solve surgery
scheduling problem for single operating room in the single day.

Recently, Wilson et al. (2013) introduce a multi-objective model to decide rescue, surgery
and transportation of casualties in major incident response. The model is established on a
task scheduling framework, incorporating pre-rescue stabilization, rescue, pre-transportation
stabilization and transportation consecutively. Each patient is assigned to a hospital. Variable
neighborhood descent heuristic algorithm and a constructive heuristic method are applied.
Different from them, the allocation of patients to ambulances is also considered in our paper.
Repoussis et al. (2016) model the problem of allocating casualties to hospitals to improve
patient outcomes. For each patient, there is a series of tasks, such as transportation, ambulance
preparation, patient transfer and hospital service. Each patient is assigned to one of the trips
of an ambulance and one of the beds in a hospital. The authors aim to minimize the overall
response time and the total flow time for all patients’ surgeries. Exact andMIP-based heuristic
methods are applied to address the problem. In their assumption, the number of beds in each
hospital is fixed and non-recyclable. While in our problem, the operating room is recyclable,
which means the operating room is available after the previous patient has completed the
surgery. As far as we know, these are the only two work that provide clear task scheduling
frameworks from the perspective of individual patient; nevertheless, our approach provides
a more comprehensive response to the incidents, including patient surgery sequence in the
operating room. In this paper, we combine transport time with operating room scheduling
after completing assignment using a hybrid algorithm.

2.4 Heuristic algorithms

Facing the optimization problem, researchers first consider whether it can be solved by some
exact algorithms. However, most of the problems in MCIs are proved to be NP-hard (Lee
et al., 2013; L. Lei et al., 2015). In addition, solutions to operational problems need to
be developed in a very limited time in an emergency. While Repoussis et al. (2016) point
that when the number of patients is more than 12, exact algorithms cannot get the optimal
solution in a reasonable time (2 h), and thus, the authors propose a TS algorithm to solve the
problem. The traditional exact method is usually difficult to compute and its applicability is
too limited. Considering the complexity of this class of problems,many researchers solve it by
an intelligent algorithm.According to (Zheng et al., 2015), evolutionary algorithms arewidely
applied in disaster relief operation problems. Fiedrich et al. (2000) present an optimization
model for the emergency medical resource allocation problem after earthquake disasters.
Casualties are classified according to the level of injury severity and therefore the priorities
are determined. The goal function consists of fatalities due to secondary disasters, lack of
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rescue attempts, duration of the rescue operation, delayed transport and duration of transport.
Simulated annealing (SA) and tabu search (TS) are applied to address the problem. (Mills
et al., 2018) design two heuristic policies to allocate ambulances for patients and determine
destination hospitals for ambulances. Dean and Nair (2014) make decision on which hospital
each casualty should be sent to. The authors introduce three implementations in common
use: closest-first heuristic, furthest-first heuristic, and cyclical heuristic. Mills et al. (2013)
introduce two heuristics for their model of patient triage. L. Lei et al. (2015) develop a rolling
horizon heuristic based onmathematical programming to solve the problem ofmedical teams
travelling and medical supplies distribution. Almehdawe et al. (2013) adopt heuristic routing
policies to send patient to a specific hospital. Thus, it can be seen that heuristics are widely
used in the related papers.

In this paper, a hybrid FA-VNS algorithm is proposed to address the problem. Firefly
Algorithm (FA) is a nature-inspired algorithm, first proposed by (Yang, 2010). Since then,
FA is developed by many researchers and shows its superiority over some traditional algo-
rithms (Łukasik& Żak, 2009; Yang et al., 2012). Researchers then apply FA inmany practical
scheduling and optimization problems. FA is based on the flashing patterning of tropical fire-
flies. The positions of fireflies represent a set of solutions, and fireflies are attracted and move
towards the brighter fireflies and thus find the new solutions. Variable neighborhood search
(VNS) is a local search meta-heuristic, first proposed by Hansen and Mladenovic in 1997
(Hansen & Mladenović, 2001). The main idea is to systematically change the neighborhood
structures in searching for a better solution. In this paper, we develop a novel hybrid FA-VNS
algorithm combining the procedures and features of these two meta-heuristic algorithms.

3 Problem description andmodel

3.1 Problem description

Weconsider a situationwhere a large number of trauma patients from anMCImust be quickly
transferred to multiple hospitals for surgery. After the disaster happens, emergency medical
technicians have categorized patients into four groups according to the START triage protocol
in an emergency response time t0. Patients are all assumed ready for transportation to the
hospital by ambulances in the casualty collection area, and all hospitals in the region can
accept and provide appropriate quality care for immediate and delayed patients. Hospitals are
distributed in different locations, and thus the casualty collection location and the transport
time between each hospital is different. The number of available ambulances is assumed
to be the number of total operating rooms, which is appropriate as long as the ambulance
utilization is very high. The structure of this joint scheduling problem of multi-hospitals is
shown in Fig. 2.

Note that patients’ health conditions deteriorate over time (Hupert et al., 2007; Xiang &
Zhuang, 2016), resulting in longer surgery time in the hospital. The problem is modeled by
assuming that the actual surgery duration pi = pi + βi ti (Wang et al., 2015), where βi is the
deterioration rate for patient i, and pi denotes the normal surgery duration of patient i. The
normal surgery duration pi of the patient in each class follows a known distribution of time
based on empirical value.

Most studies on the resource-constrained triage problem focus on delayed patients and
immediate patients among the four severity classes (e.g., minor, delayed, immediate, and
expectant) in START triage (Dean & Nair, 2014; Jacobson et al., 2012; Mills et al., 2013;
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Fig. 2 Structure of joint scheduling problem of ambulances, hospitals, and operating rooms

Sacco et al., 2005; Sung & Lee, 2016). The two classes of patients are in urgent need of
surgeries and can endure long-distance transportation. In our problem, we only consider
these two classes of patients, i.e., delayed patients and immediate patients. The low-priority
patients (delayed patients) could only receive surgeries when surgeries of high-priority
patients (immediate patients) have been completed. Let Si ∈ {1, 2} represents priority level
of patient i. In our paper, the priority for immediate patients is set as “Si = 2”, higher than
the priority for delayed patients “Si = 1”.

We assume that no new patients require admission in decision-making point. It is neces-
sary for analyzing the problem since not all patients are ready for surgery at an emergency
response time, some casualties may be still trapped at the disaster site and would be rescued
and scheduled in the next time section. Considering that information is not timely updated
about remaining capacity of EDs in nearby hospitals, and at the same time cannot interrupt
the elective surgeries in progress, we limit hospital capacity to only one operating room avail-
able in each ED. The assumption is appropriate since under the circumstance of emergency
incidents, only limited capacity is available for the current section of the patients.

To avoid frequent ambulance diversion episodes, we assume that each ambulance travels
along a fixed route, whichmeans that each ambulance can only transport patients between the
casualty collection site and a fixed hospital. Since we focus on single operating room in each
hospital, and only one ambulance travels on each fixed route, thus the order of patients to be
transported in each specific ambulance is the same as the surgery order in the corresponding
hospital. This simplification allows us to gain many insights without making the model too
complex.

3.2 Mass casualty patient allocationmodel

Assuming I is the set of patients who need surgery, andH is the set of hospitals available at the
response time t0 (i.e., decision-making time section). The notations used in the formulation
are shown in Table 2.
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Table 2 Notations

Sets

I Set of all patients that need surgery

H Set of all available hospitals

Bh Set of all positions of surgeries in the emergency department of the hospital

Indices

i Index of the patient, i = 1, 2, . . . , nI
h Index of the hospital, h = 1,2,…,nH
b Index of the position of the surgery

Parameters

nhb Total number of surgeries assigned in the emergency department of the hospital

pi Normal surgery duration of patient i

ei Priority level of patient i

βi Deterioration rate of surgery duration of patient i

t0 The emergency response time

th Round-trip transport time between the casualty collection site and the hospital h

M A sufficiently large positive number

Decision variables

xihb = 1 If patient i is assigned to position b in the hospital h, 0 otherwise

Auxiliary variables

ei The surgery complete time of patient i

li Round-trip transport time for patient i

pi Actual surgery duration of patient i

si The surgery start time of patient i

ashb Mapping of surgery start time si assigned at hospital h at position b

ai Arrival time of patient i at the hospital

aahb Mapping of arrival time ai assigned at hospital h at position b

ci The surgery complete time of patient i

Cmax The maximum of the complete time of all patients’ surgeries

Objective function: minimize the makespan

Min Cmax (1)

Subject to:
∑

h∈H ,b∈Hb

xihb ≤ 1 ∀i ∈ I (2)

∑

i∈I
xihb = 1 ∀h ∈ H , b ∈ Bh (3)

xihb = 1 li = Th ∀i ∈ I , b ∈ Bh (4)

∑

i∈I
xih(b−1) ≥

∑

i∈I
xihb ∀h ∈ H , b ∈ Bh\{1} (5)

si ≥ li ∀i ∈ I (6)
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pi = pi + βi ∗ si ∀i ∈ I (7)

xih0 = 1 ⇒ ai = Th ∀h ∈ H (8)

xihb = 1 ⇒ ai = aahb ∀i ∈ I , h ∈ H , b ∈ Bh (9)

xihb = 1 ⇒ si = ashb ∀i ∈ I , h ∈ H , b ∈ Bh (10)

ci = si + pi ∀i ∈ I (11)

ashb ≥ ash(b−1) +
∑

i∈I
pi xih(b−1) ∀h ∈ H , b ∈ Bh\{1} (12)

ashb ≥ ash(b−1) +
∑

i∈I
li xih(b−1), ∀h ∈ H , b ∈ Bh\{1} (13)

si ≥ ai ∀i ∈ I (14)

aahb ≥ ash(b−1) + Th ∀h ∈ H , b ∈ Bh\{1} (15)

ai ≥ li ∀i ∈ I (16)

si ′ ≥ si ∀i, i ′ ∈ I , ei ≥ ei ′ (17)

Cmax ≥ ci ∀i ∈ I (18)

Constraint (2) ensures that each patient has been assigned exactly to one position in one
hospital. Constraint (3) ensures that one position in one hospital can only be assigned to one
patient. Constraint (4) defines the round-trip time for each patient. Constraint (5) limits that
there must be a patient at position b− 1 if there is another patient assigned at position b in the
same emergency operating room. Constraint (6) defines the start time of the first operation.
Constraint (7) defines the actual surgery duration. Constraint (8) initializes the arrival time
for the first patient to the hospital. Constraint (9) associates the auxiliary variables ai and
aahb. Constraint (10) associates the auxiliary variables si and ashb. Constraint (11) defines
the surgery complete time. Constraint (12) updates the surgery start time for each position in
the emergency operating room. Constraint (13) updates the surgery start time at each position
of the emergency operating room according to the surgery duration of the patient assigned
to the same operating room at the previous position. Constraint (14–16) impose the lower
bounds of the surgery start time. Constraint (17) ensure that the triage protocol is accepted
by the patients. Constraint (18) determines the makespan, which is equal to the maximum of
the surgery completion time of all patients.

4 Structural properties for single operating room sequence problem

In this paper, a hybrid FA-VNS algorithm is proposed (see Sect. 5) to assign patients to multi-
ple hospitals. Based on the assignment results, we give an example of different arrangements
in the single operating room (see Sect. 4.1) considering the ambulance offload delay. We also
propose two lemmas in Sect. 4.2, based on which we design Algorithm 2 incorporated in the
hybrid FA-VNS algorithm to determine the surgery sequence in each operating room and
thus determine the transportation order in each ambulance.
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4.1 An example of different arrangements in the single operating room

We can see that the surgery start time of the later patient depends on the round-trip trans-
portation time Th , and the actual surgery duration pi (pi = pi +βi ti ) of patient who receives
surgery earlier in the same operating room. Figure 3 gives an example of different schemes
of patients’ surgeries in the operating room.

In Fig. 3, we can see that three patients {I1, I2, and I3} have been assigned to the same
operating room. We give four cases to show different arrangements in the operating room.
The blank squares denote the duration of each patient’s surgery, the arrows denote the round-
trip transportation time between the casualty collection location and hospital location (p1 <

T1 < p2 < T2 < p3), and the shadow squares denote the idle time of the operating room.
Operating room’s idle time should be minimized to maximize the utilization of the operating
room. The idle time depends on the difference between transportation time and the surgery
duration. Round-trip transportation time depends on the hospital location. If there is a gap
between the round-trip transportation time and surgery duration, the idle time is in-advisably
prolonged.

In Case 1, we can see that since the surgery duration of patient I1 is shorter than the
round-trip transportation time T1, patient I2 receives the surgery after an idle duration in the
operating room. In Case 2, we can see that since the surgery duration of patient I3 is longer
than the round-trip transportation time T1, patient I2 can receive the surgery without any
idle time in the operating room. Also, patient I1 can receive the surgery without any idle
time in the operating room after patient I2. Thus, the makespan in Case 2 is shorter than
that in Case 1. While in Case 3, since the round-trip transportation time T2 is very long, the
surgery duration of patient I1 and I2 is shorter than T2. Thus, there exits idle time before
I1 receives surgery, and so does I2. While in Case 4, since the surgery duration of patient
I3 is longer than the round-trip transportation time T2, there is no idle time before patient
I2 receives surgery. Thus, the makespan in Case 4 is shorter than that in Case 3. From the
analysis above, we can see that Case 2 is better than Case 4, Case 1, and Case 3. In this case,
the idle time for the operating room is perfectly minimized. Therefore, based on the results
of different arrangements for surgeries of patients, we can sum up a set of dispatching rules
for minimizing the idle time of the operating room under different situations of round-trip
transportation time.

Fig. 3 An example of different arrangements for patients in the single operating room
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4.2 Structural properties for single operating room scheduling problem

To solve the single operating room scheduling problem considering ambulance offload delay,
we give some properties of the makespan minimization problem for any given patient assign-
ment list in a specific operating room.

Lemma 1 For the patients with the same priority (β1 = β2 = . . . βi = β j = · · · = β) in
the same operating room, if at time t, actual surgery durations of all remaining patients to be
scheduled are not smaller than Th (i.e., pi (t)≥ Th), they are ordered according to the smallest
normal surgery duration first rule (SNSDF): p1 ≤ p2 ≤ … ≤ pn .

Proof We prove the lemma by contradiction. If at t = 0, all patients’ surgery durations are
not smaller than Th (i.e., pi ≥ Th). First we show that patients with the same priority are
sequenced according to the SNSDF as a schedule π

′
, where patient I j is followed by Ii (

pi > p j ). At the same time, consider an optimal schedule π∗ of the OR where patients do
not follow the SNSDF, where patient Ii is followed by I j (pi > p j ), leaving the remaining
patients in their original positions of the sequence. We assume that the start time for Ii in
schedule π∗ is t.

For schedule π∗, Ci (π
∗) = t + pi = t + (pi + βt) = (1 + β)t + pi , and then we have

C j (π
∗) = Ci + p j = Ci + (p j + βCi ) = p j + (1+ β)Ci = p j + (1+ β)[(1 + β)t + pi ] =

(1 + β)2t + (1 + β)pi + p j .
Similarly, for schedule π

′
, we can easily obtain C j (π

′
) = t + p j = t + (p j + βt) =

(1 + β)t + p j , Ci (π
′
) = (1 + β)2t + (1 + β)p j + pi .

Thus we have C j (π
∗) − Ci (π

′
) = β(pi − p j ) > 0. It implies that patient operated after

Ii and I j under π∗ has a later start time than that under π
′
. Thus, the makespan of patients

under π∗ is strictly greater than that under π ′
,which conflicts with our assumption. It should

be pi < p j . The proof is completed.

Lemma 2 For the patients with the same priority (β1 = β2 = · · · = β), if at time t, there is
any patient to be scheduled whose actual surgery duration is smaller than Th (i.e., pi (t) ≥
Th), an optimized solution exists under different circumstances as shown in Table 3.

The proof is presented in the Appendix.

Table 3 Summary of the sequence rules in Lemma 2

Cases Conclusions

Th > pA
βSA+p j
1−β

< Th (1) π∗ is better than π ′
(
β2+β

)
SA+(1+β)pi

1−β−β2
< Th <

(
β2+β

)
SA+(1+β)pi+p j

1−β−β2

(2)

Otherwise π ′ is better than π∗
Th < pA βCA + pi < Th < pA (3) π∗ is better than π ′

(
β2 + β

)
CA + βpi + p j < Th <

(
β2 + β

)
CA + βp j + pi (4)

Otherwise π ′ is better than π∗
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Based on Lemma 2, the following Algorithm 1 is designed to solve patient sequence
problem in a single operating room for patients with the same priority.
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In this section, based on the above two lemmas for the single operating room scheduling
problem, Algorithm 2 is proposed to determine the surgery sequence in each operating room,
given that all patients with different priorities have been assigned to the destination hospitals.
The framework of Algorithm 2 is as follows.

The time complexity of step 5 isO(n log n). The time complexity of step14-30 isO(n2), and
the time complexity of the other steps is no more thanO(n2). Thus, the total time complexity
of Algorithm 1 is O(n2). The time complexity of Algorithm 2 is O(n2).

5 Metaheuristic-based hybrid approach

To solve our problem, we propose a hybrid Firefly Algorithm (FA)-Variable Neighborhood
Search (VNS) algorithm incorporating the heuristic in this section. The critical procedures
of the hybrid FA-VNS are introduced in Sects. 5.2, 5.3, 5.4.

5.1 Coding scheme

In our algorithm, a solution for the problem of assigning patients to the hospital is an array,
of which the length is equal to the number of patients. Each position value stands for the
index of the hospital that the patient is assigned to. We use an instance of six patients {I1, I2,
I3, I4,I5, I6} and four hospitals {H1, H2, H3,H4}. An instance solution is showed in Fig. 4,
and X = {2, 3, 4, 1, 2, 4} where the patients {I4}, {I1, I5}, {I2}, {I3, I6} are assigned to
hospital H1, H2, H3, and H4 respectively.
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Fig. 4 Illustration of a particle’s
solution

Fig. 5 Local search operators

5.2 Encoding correction

In the iterative processes, infeasible solutions may be generated under the following circum-
stances: (1) Hospital slots should be encoded with integers while searching operators may
generate decimals. We adopt the coding correction strategy which takes integer approximate
values. (2) All position values should be in the range of [1, nH ]. Set the numbers in X that
are less than “1” to “1” and those greater than “nH ” to “nH ”. The initial feasible solution
is obtained from the heuristic algorithm designed in Sect. 3 or randomly selected from a
feasible solution set.

5.3 Neighborhood structures

In the following, three neighborhood structures are designed (see Fig. 5) and applied in a
VNS-based local search procedure for improving the effectiveness of the traditional FA.
These neighborhood structures are applied in order, and the local search process needs to be
repeated until it finds a good set of base locations. Nk(X) denotes the k-th neighborhood of
solution X .

(1) Insert Operator: In solution Xi , randomly select two positions x and y. The x position
value is taken from its current position and inserted after position y (see Fig. 5a).

(2) Mutation Operator: In solution Xi , randomly select a position x. Generate an integer
number in [1, Q] and make it the substitute for the value of the position x, and thus, a
neighbor of Xi can be obtained (see Fig. 5b).

(3) Exchange Operator: In solution Xi , randomly select position x and position y. A
neighbor of Xi can be obtained by swapping the numerical values in position x and
position y (see Fig. 5c).

The detail of VNS-Based Local Search operation is designed as follows:
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VNS-based local search
operation:

Step 1 Define neighborhood structures Ns(s = 1, . . . , smax )

Step 2 Get initial solution Xnew which is produced by FA

Step 3 Execute the s-th Local Search for Xnew to obtain a
solution X ′

new

Step 4 If solution X ′
new is better than Xnew, then

setXnew = X ′
new, s = 1 and go to step 5

Step 5 If s < smax , then go to step 3; else, stop the iteration

5.4 Framework of the hybrid algorithm

The whole procedures of the hybrid FA-VNS to assign the patients to ambulances and hos-
pitals and determine surgery sequence in each hospital based on the detailed description of
our proposed algorithm are shown in Table 4 and Fig. 6.

In the iterations, the time complexity of decoding steps is no more than O(n2), because
the Algorithm 2 is incorporated. The time complexity of step 8 to step 29 is O(n2). The time
complexity of other steps is no more than O(n). Thus, the total time complexity of FA-VNS
is O(n2).

6 Computational experiments and comparison

We perform computational experiments to check the effectiveness and efficiency of our
proposed methods. For this purpose, we have randomly generated small- and large-scale of
instances based on realistic data. All experiments are conducted on a laptop with an Intel(R)
Core (TM)2DuoCPU@2.93GHz and 8GBRAM.Ourmethods are implemented by Python
2.7. Gurobi 9.0.2 (win64) is used as the MIP solver. 20 runs are performed for each case, and
all computational times are recorded in the unit of second.

This section is organized as follows: In Sect. 6.1, we describe the data sets and the experi-
mental parameter setting. In Sect. 6.2, the MIP model given in Sect. 3 is validated by Gurobi
and the applicability of our proposed algorithm is examined. In Sect. 6.3, we compare our
proposed algorithm with other three widely used algorithms. Section 6.4 is sensitivity anal-
ysis.

6.1 Experimental settings and data sets

We consider 24 possible cases reflecting different scales of the mass-casualty incidents.
Referring to the actual situation of the hospital and other literature on surgical scheduling
(Repoussis et al., 2016), the following experimental data were generated: the number of
hospitals is nH = {4, 5, 6, 7}, and the number of patients is nI = {16, 18, 20, 30, 40, 50}.
The proportion of immediate patients is 20–50% and the baseline is 35%. The distance from
the disaster site is expressed in terms of round-trip time in minutes (see Table 2). We consider
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Table 4 Procedures of FA-VNS algorithm
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Start

Initialize parameters and population

Output the optimal solution

End

Move each firefly towards other brighter fireflies

If iter <= max_iter

iter=iter+1

Calculate the fitness value of each firefly

Y

N

Rank the solutions and find the best one

Apply Algorithm 2

Set iter = 1

Execute VNS-based local search

Apply Algorithm 2

Calculate the fitness value of new solution

Rreplace the original solution if the new solution is 

better 

Encoding correction

Fig. 6 The flow chart of the proposed FA-VNS algorithm

two hospitals that are included in regional disaster preparedness planning: a “local” hospital
(5 min for a round-trip transport) and a “remote” one (20 min for a round-trip transport),
and each has one available emergency operating room. One of the characteristics of our
model is that it considers multiple hospitals in different geographical locations when making
decisions. It should be noted that although only two types of hospitals are considered for
illustrative purposes, our method is capable of handling more. The normal surgery times are
normally distributed with a mean dependent on the severity class based on empirical value
(Marques et al., 2012).

For immediate patients, μ1= 40 and σ1
2=182. For delayed patients, μ2=20 and σ2

2=132.
The deteriorating rate for patient surgery duration is set as βi = 0.01 for delayed patients and
βi = 0.05 for immediate patients through the survey in (Wang et al., 2015). Table 5 shows

123



Annals of Operations Research (2023) 321:717–753 737

Table 5 Parameter setting for the experiments

Notation Parameter Value

nI Number of patients 16, 18, 20, 30, 40, 50

ω Proportion of immediate patients 20–60% (baseline: 35%)

nH Number of hospitals 4, 5, 6, 7

Th Distance (local hospital) Uniform distribution U (2,9)

Distance (remote hospital) Uniform distribution U (10,15)

pi Normal surgery duration (immediate patients) Normal distribution N (40, 182)

Normal surgery duration (delayed patients) Normal distribution N (28, 132)

βi deteriorating rate (immediate patients) 0.05

deteriorating rate (delayed patients) 0.01

the different levels considered.
As mentioned in Sect. 1, there are no specific national or regional criteria for selection a

patient’s destination hospital, and the results may vary with the location and incident. In the
absence of any standard strategy to compare our algorithms, we compare our FA-VNS with
three popular metaheuristic algorithms: FA (Marichelvam et al., 2013), VNS (D. Lei & Guo,
2016), and PSO (Taherkhani & Safabakhsh, 2016).

In our proposedFA-VNSalgorithm, the parameters thatmay affect its performance include
β0, γ, and , the number of populations. According to the survey and a series of preliminary
experiments, the parameter values are set as follows: β0=1, γ = 1, = 2, popsize = 20.

6.2 FA-VNSVS Gurobi

In this section, theMIP model shown in Sect. 3.1 is solved by Gurobi with the time limitation
of 1800s and is compared with our proposed algorithm. 17 randomly generated cases are
tested, and the number of patients varies from 4 to 36.

Table 6 shows the results obtained by Gurobi and FA-VNS. Columns nI and nH represent
the number of patients and hospitals, respectively. Columns Obj, GAP, and Runtime report
the objective function value, GAP value, and run time obtained by Gurobi. Each case is run
20 times by FA-VNS. Columns Best, Avg, Worst, SD and Runtime report the best, average,
worst objective function value, the standard deviation (SD) among the 20 times, and the run
time by FA-VNS. The last column Impr. shows the improvement by the FA-VNS over Gurobi
in terms of the solution’s objective value. The calculation formula of Impr. is as follows:

Impr .(%) = BestObj(FA − V NS) − Obj(Gurobi)

Obj(Gurobi)
∗ 100%

As can be seen from Table 6, for most instances with the number of patients less than
12, the quality of the function values obtained by Gurobi is better than the best one obtained
by FA-VNS, and Gurobi obtains the optimal solution in a shorter time than FA-VNS. When
the number of patients is greater than or equal to 12, FA-VNS reports better results than
Gurobi. In addition, FA-VNS takes much less time than Gurobi. The experiment verifies
the correctness of the model in Sect. 3 and quality of the results obtained by our method.
Meanwhile, the correctness of Algorithm 1 and Algorithm 2 designed in FA-VNS is also
verified.
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6.3 FA-VNSVS FA, VNS and PSO

The comparison of FA-VNS, FA,VNS and PSO are conducted in this section. The parameters
are introduced in Sect. 6.1. We examine 24 cases with up to 50 patients for large-scale
instances. The average objective value (Ave) and the minimization objective value (Best) are
measured over 24 cases in Table 7. We also analyze and compare the performance of these
four algorithms by Relative Percent Deviation (RPD) (Vallada and Ruiz 2011) defined as
follows:

RPD(M) = Max Obj(F) − Ave(M)

Max Obj(F)
∗ 100%

where M denotes each algorithm, and Ave(M) denotes the average fitness value for each
algorithm. Max Obj(F) denotes the best fitness value we have gotten.

In order to ensure the algorithms can converge to a good solution, the number of popu-
lations is set as 20, and the maximum of iteration is 200. The average fitness value (Ave)
and the best fitness value (Min) obtained from 1 to 200 iterations are reported to analyze the
performance of each algorithm in Table 7. Also, Relative Percent Deviation (RPD) (Vallada
and Ruiz 2011) is calculated to evaluate and compare the performance of these four methods,
defined as:

RPD = Method(sol) − Best(sol)

Best(sol)
× 100%

where Method(sol) is the average fitness value obtained by and Best(sol) is the lowest
makespan obtained for that instance among the four algorithms. As the objective is minimiz-
ing the maximum makespan, the smaller the RPD, the better the performance. In order to
ensure the reliability of experiments, each instance is run for 20 times. The initial solutions
of each instance are the same for the algorithms to ensure that each algorithm starts at the
same level to search for the optimized solutions. In Table 7, the last two rows show the best
and average RPD (ARPD) values of instances 1–12 and instances 13–24 for each algorithm.

According to the experimental result for case 1 (nI = 16, nH = 4) in Table 7, the
obtained schedule scheme for patients (I1–I16)whoare assigned amongambulances (A1–A4)
and hospitals (H1–H4) is provided in Fig. 7. The length of Ti and Pi represent round -trip
transportation time and surgery duration for each patient, respectively. For example, for A1
(i.e., Ambulance 1) and H1 (i.e., Hospital 1), the order of patients is P5, P6, P12, and P7.
Following the scheme, the ambulance drivers and the doctors in the emergency department
can prepare the relevant emergency medical resources and service the patients in an orderly
manner.

From the values in bold, we can see that VNS can obtain as good objective values as
FA-VNS in some cases. While in most cases, FA-VNS has the best performance in obtaining
average makespan, lowest makespan, best RPD and average RPD compared with other three
algorithms. In order to further verify the statistical validity of RPD values and find out the
best algorithm, we design a series of experiments and variance analysis, in which we consider
a different algorithm as a factor and set the response variable as the average RPD value.

By SPSS, the 20 results generated from each algorithm are analyzed with paired-samples
t-test for all the 24 instances, shown in Table 8. Statistical significance is set at an alpha
of 0.05, and a ρ-value of < 0.05 is deemed statistically significant. Compared with VNS,
FA-VNS generates remarkably better results for 18 out of 24 instances and is competitive for
the remaining instances where there is no statistical difference between the two algorithms.
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Fig. 7 The obtained patients’ schedule scheme among ambulances and hospitals for case 1

When compared to FA and PSO, FA-VNS achieves significantly better results in all instances,
which proves the improvement of our proposed algorithm.

Figure 8 intuitively shows the RPD of the compared algorithms. It shows that the RPD
values of FA-VNS and VNS are maximal when the number of patients and hospitals is (50,
4). The RPD values of FA and PSO are maximal when the number of patients and hospitals is
(50, 7). FA-VNS hasmore stable RPD values than the other three algorithms. The RPD values
of VNS are smaller than those of FA and PSO. The RPD values of FA and PSO are similar.
FA and PSO are especially unstable and VNS cannot converge to get a stable value. From
Fig. 8 we can obtain the deduction that GWO-VNS is more stable and efficient compared
with other three algorithms.

Figure 9 shows the differences ofRPDvalues among the four algorithms at 95%confidence
level, where the minimum, the lower and upper quartiles, median, maximum and mean value
for all 24 instances are shown. It can be seen that the confidence intervals of FA and PSO
are overlapped, which proves that the performance of these two algorithms is at the same
level, and they are not statistically different. VNS obtains smaller minimum, lower and upper
quartiles, median, maximum and mean value than those of FA and PSO. Additionally, lower
and upper quartiles, median, mean value, and the difference between the upper and lower
quartiles of FA-VNS are much smaller than other three algorithms. This clearly shows the
best performance of FA-VNS among the all four algorithms. Besides, this result is consistent
with those in Table 7 and Fig. 8.

Furthermore, the convergence curve graphs of FA-VNS, FA, VNS, PSO for the 24
instances are shown in Fig. 10 to verify the performance of convergence speed and solu-
tion qualify for the proposed algorithm. The average of fitness values in each iteration is
shown in each figure. In Fig. 10, we can see that the differences of the best solutions among
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Table 8 The test results for the FA-VNS with the compared algorithms

Case (FA,FA-VNS) (VNS,FA-VNS) (PSO,FA-VNS)

ρ h ρ h ρ h

16 × 4 0.0000 1 0.000176 1 0.0000 1

18 × 4 0.0000 1 0.000007 1 0.0000 1

20 × 4 0.0000 1 0.002222 1 0.0000 1

30 × 4 0.0000 1 0.000004 1 0.0000 1

40 × 4 0.0000 1 0.0000 1 0.0000 1

50 × 4 0.0000 1 0.000001 1 0.0000 1

16 × 5 0.0000 1 0.902961 0 0.0000 1

18 × 5 0.0000 1 0.233691 0 0.0000 1

20 × 5 0.0000 1 0.051784 0 0.0000 1

30 × 5 0.0000 1 0.001017 1 0.0000 1

40 × 5 0.0000 1 0.000001 1 0.0000 1

50 × 5 0.0000 1 0.0000 1 0.0000 1

16 × 6 0.0000 1 0.448695 0 0.0000 1

18 × 6 0.0000 1 0.000301 1 0.0000 1

20 × 6 0.0000 1 0.367648 0 0.0000 1

30 × 6 0.0000 1 0.000018 1 0.0000 1

40 × 6 0.0000 1 0.0000 1 0.0000 1

50 × 6 0.0000 1 0.0000 1 0.0000 1

16 × 7 0.0000 1 0.917625 0 0.0000 1

18 × 7 0.0000 1 0.000001 1 0.0000 1

20 × 7 0.0000 1 0.000582 1 0.0000 1

30 × 7 0.0000 1 0.0000 1 0.0000 1

40 × 7 0.0000 1 0.0000 1 0.0000 1

50 × 7 0.0000 1 0.0000 1 0.0000 1

FA-VNS, FA, VNS, and PSO become greater with the number of hospitals increasing. VNS
gets better solutions than FA and PSO. Compared with FA, VNS, and PSO, FA-VNS has
the fastest convergence speed in all instances and it can always get better solutions than the
other three algorithms. VNS also convergences sharply, but its results are worse than ours. In
nearly all instances, fast convergence speed and best solutions are realized by our proposed
FA-VNS algorithm.

Based on above description and discussion, we can conclude that our FA-VNS is stable
and effective in solution quality and performs well in convergence speed. In other words, our
FA-VNS algorithm not only outperforms other algorithms in convergence speed and solution
quality, but also maintains robust in all instances.

6.4 Sensitivity analysis

In addition to the number of patients, another important parameter that can affect the solution
is the proportion critically injured. Therefore, we consider the proportion of critically injured
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Fig. 8 RPD results in different instances for the algorithms (e.g., FA-VNS, FA, VNS, PSO)
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0

1

2

3

R
an

ge

Fig. 9 The box-plot of RPD over the four algorithms (e.g., FA-VNS, FA, VNS, PSO)
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Fig. 10 Convergence curves for 24 instances over the four algorithms
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Fig. 10 continued
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Fig. 10 continued
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Table 9 Solution values with different parameter setting ω (nH = 2)

nI ω FA-VNS

Avg Best Worst SD No. of patients
transferred to the
local hospital

No. of patients
transferred to the
remote hospital

20 0.2 316.79 316.92 317.18 0.02 12 8

20 0.4 325.63 326.08 326.58 0.05 12 8

20 0.6 332.18 332.30 332.69 0.03 11 9

30 0.2 421.11 422.28 423.78 0.86 18 12

30 0.4 431.21 433.00 434.41 0.99 17 13

30 0.6 456.64 457.49 458.60 0.27 14 16

40 0.2 570.40 574.17 575.66 2.69 26 14

40 0.4 592.00 593.13 594.14 0.61 24 16

40 0.6 622.81 624.13 624.82 0.54 24 16

50 0.2 758.78 763.85 767.13 6.07 31 19

50 0.4 813.59 816.05 818.52 2.76 30 20

50 0.6 860.68 866.78 870.38 11.67 29 21

patients ω, that is, the larger ω, the larger the proportion of immediate patients is. We also
consider the distance between the casualty collection area and hospital Th , that is, the larger
Th , the longer the time spent in delivering the patients.

To analyze the influence of two parameters, additional experiments are conducted. The
three values ofω, i.e., 0.2, 0.4, and 0.6 are considered. The number of hospitals is 2, in which
one is a local hospital and another is a remote hospital.

Table 9 records the Avg, Best, Worst, SD, the number of patients transferred to the local
hospital, and the number of patients transferred to the remote hospital with different values
of ω. Table 8 shows that the higher the proportion of critically injured patients, the longer
the surgery completion time is needed, and the more patients are needed to transported to the
remote hospital. When the proportion critically injured changes, it can guide the decision-
makers to adjust the schedules and predict the time required for surgeries in MCIs.

7 Conclusions

In this paper, we aim to improve the integrated problem of patient assignment and operating
room scheduling considering ambulance offload delay and deteriorating condition in MCIs.
A MIP model is proposed to effectively assign the limited ambulance and operating room
resources for patients. The objective is to minimize the makespan. Because of the complexity
of the model, only heuristic solution procedures may be used. Some structural properties of
the studied problem are proposed, and a heuristic is developed to solve the single operating
room scheduling problem based on these structural properties. Since the studied problem
is proved to be NP-hard, a hybrid Firefly Algorithm (FA) - Variable Neighborhood Search
(VNS) algorithm incorporating a heuristic method is proposed to solve it. The exact solver
Gurobi is used to solve the model to verify the correctness and rationality of the established
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model and the known characteristics of the scheduling problem proposed in this paper. The
applicability of the model is verified. Our proposed algorithm can solve the problem within a
short computation time.Aset of experiments is conducted to test our algorithm’s performance,
compared with FA, VNS, and PSO. The computational results demonstrate the superiority
of our proposed algorithm over the compared algorithms. In addition, the effects of the
parameters, the proportion critically injured, on the problem are analyzed. The sensitivity
analysis shows the higher the proportion of critically injured patients, the longer the surgery
completion time is needed, and themore patients needed to transported to the remote hospitals.
When the proportion critically injured changes, it can guide the decision-makers to adjust
the schedules and predict the time required for surgeries in MCIs.

At the same time, we believe that our proposed model and algorithms can help decision-
makers decrease the time spent on deciding destination hospital, transportation sequence
and surgery sequence, and respond to MCIs more effectively and efficiently. Some readers
would realize the limitations of our algorithm, including that we assume only one ambulance
assigned to each fixed route, while the assumption is appropriate as long as the ambulance
utilization is very high and the available ED resource is limited.

In our future work, we consider extending our model to accommodate multiple operat-
ing rooms and dynamic routing of ambulances. Also, take death possibility before receiving
surgeries into consideration is of great value as it may arise in real-world applications. In
addition, if demand is higher than all hospitals available, we could consider transferring sta-
bilizing patients to more distant facilities and clear emergency departments to accommodate
more casualties. It will also be of great value to extend the current model for stochastic
environments and incorporate some uncertainty into the parameters of the model, like arrival
rate, damaged road networks, transport cost and time to make the problem more realistic.
Through further research, we would develop more effective algorithms to solve the practical
problems and improve the health care systems’ surge capacity to handle more significant
numbers of casualties.

Acknowledgements This work is supported by the National Natural Science Foundation of China (Nos.
72071057, 71922009, and 72188101), the Basic scientific research Projects in central colleges andUniversities
(JZ2022HGQA0135).

Appendix

In this appendix, the proof of Lemma 2 in Sect. 4.2 is presented.

Proof Given that an operating room has been assigned a set of patients, there exist two
schedules for the operating room. We assume that π∗ is an optimized schedule where patient
i precedes patientj to start the surgery, while in π

′
schedule, patientj precedes patient i to

start the surgery. That is, π∗ = (. . . , IA, Ii , I j , IB , . . . ), and π
′ = (. . . , IA, I j , Ii , IB , . . . ).

For π∗ and π
′
schedule, the surgery start time of patient A is given as SA(π∗) = SA(π

′
) =

SA, and the surgery duration of patient A is p∗
A = p

′
A = pA, and thus the complete time of

patient A is CA(π∗) = CA(π
′
) = CA.

For π∗, Si (π∗) = max{SA(π∗) + Th,CA(π∗)} = max{SA + Th,CA(π∗)}. There exist
two situations: (1) Th > pA; (2) Th < pA.

(1) In situation (1), Th > pA:
Si (π∗) = SA + Th , Ci (π

∗) = Si (π∗) + p∗
i = Si (π∗) + (pi + βSi (π∗)) =

(1 + β)Si (π∗) + pi = (1 + β)(SA + Th) + pi , and S j (π
∗) = max{Si (π∗) +

Th,Ci (π
∗)} = max{SA + 2Th, (1 + β)(SA + Th) + pi }. There are two cases:
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(a) When Th >
βSA+pi
1−β

:

S j (π
∗) = SA + 2Th , C j (π

∗) = S j (π
∗) + p∗

j = S j (π
∗) + (

p j + βS j (π
∗)

) =
(1 + β)S j (π

∗) + p j = (1 + β)(SA + 2Th) + p j . Then SB(π∗) = max{S j (π
∗) +

Th,C j (π
∗)} = max{SA + 3Th, (1 + β)(SA + 2T ) + p j }. If Th >

βSA+p j
1−2β ,SB(π∗) =

SA + 3Th . Otherwise, S∗
B = (1 + β)(SA + 2Th) + p j .

(b) When Th <
βSA+pi
1−β

:
S j (π

∗) = (1 + β)(SA + Th) + pi , C j (π
∗) = S j (π

∗) + p∗
j = S j (π

∗) +(
p j + βS j (π

∗)
) = (1 + β)S j (π

∗) + p j = (1 + β)[(1 + β)(SA + Th) + pi ]+ p j .
Then SB(π∗) = max{S j (π

∗)+Th,C j (π
∗)} = max{(1+β)(SA+Th)+pi+Th, (1+

β)[(1 + β)(SA + Th) + pi ] + p j }. If Th >

(
β2+β

)
SA+(1+β)pi+p j

1−β−β2
, SB(π∗) = (1 +

β)(SA+Th)+ pi +Th . Otherwise, SB(π∗) = (1+β)[(1 + β)(SA + Th) + pi ]+ p j .

(2) In situation (2),Th < pA:
Si (π∗) = CA,Ci (π

∗) = Si (π∗) + p∗
i = Si (π∗) + (pi + βSi (π∗)) = (1 + β)Si (π∗) +

pi = (1 + β)CA + pi , and S j (π
∗) = max{S∗

i + Th,Ci (π
∗)} = max{CA + Th, (1 +

β)CA + pi }. There are two cases:

(a) When Th > βCA + pi :
S j (π

∗) = CA + Th , C j (π
∗) = S j (π

∗) + p∗
j = (1 + β)S j (π

∗) + p j = (1 +
β)(CA + Th) + p j . Then SB(π∗) = max{S j (π

∗) + Th,C j (π
∗)} = max{CA +

2Th, (1 + β)(CA + Th) + p j }. If Th >
βCA+p j
1−β

, SB(π∗) = CA + 2Th . Otherwise,

Th <
βCA+p j
1−β

,SB(π∗) = (1 + β)(CA + T ) + p j

(b) When Th < βCA + pi ,
S j (π

∗) = (1+β)CA + pi , C j (π
∗) = S j (π

∗)+ p∗
j = (1+β)S j (π

∗)+ p j = (1+
β)[(1 + β)CA + pi ]+p j . Then SB(π∗) = max{S j (π

∗)+Th,C j (π
∗)} = max{(1+

β)CA + pi + Th, (1+β)[(1 + β)CA + pi ]+ p j }. If Th >
(
β2 + β

)
CA +βpi + p j ,

SB(π∗) = (1+β)CA+ pi+Th . Otherwise, Th <
(
β2 + β

)
CA+βpi+ p j ,SB(π∗) =

(1 + β)[(1 + β)CA + pi ] + p j .

Similarly, we can obtain that for π
′
:

(1) In situation (1),Th > pA

(a) When Th > max{ βSA+p j
1−β

,
βSA+pi
1−2β }, SB(π

′
) = SA + 3Th .

(b) When
βSA+p j
1−β

< Th <
βSA+pi
1−2β , SB(π

′
) = (1 + β)(SA + 2Th) + pi .

(c) When
(
β2+β

)
SA+(1+β)p j+pi
1−β−β2

< Th <
βSA+p j
1−β

, SB(π
′
) = (1+β)(SA+Th)+ p j +Th .

(d) When Th <

(
β2+β

)
SA+(1+β)p j+pi
1−β−β2

, SB(π
′
) = (1+β)

[
(1 + β)(SA + Th) + p j

]+ pi .

(2) In situation Th < pA, there are four cases:

(a) When Th > max{βCA + p j ,
βCA+pi
1−β

}, SB(π
′
) = CA + 2Th .

(b) When βCA + p j < Th <
βCA+pi
1−β

, SB(π
′
) = (1 + β)(CA + Th) + pi .

(c) When
(
β2 + β

)
CA +βp j + pi < Th < βCA + p j , SB(π

′
) = (1+β)CA + p j +Th .

(d) When Th < min{βCA + p j ,
(
β2 + β

)
CA + βp j + pi}, SB(π

′
) = (1 +

β)
[
(1 + β)CA + p j

] + pi

By the analysis above, we conclude 14 cases in total:
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(1) When Th >
βSA+pi
1−2β , SB(π∗) = SB(π

′
) = SA + 3Th

(2) When
βSA+p j
1−2β < Th <

βSA+pi
1−2β ,SB(π∗) = SA+3T , SB(π

′
) = (1 + β)(SA + 2Th)+ pi

(3) When βSA+pi
1−β

< Th <
βSA+p j
1−2β , SB(π∗) = (1 + β)(SA + 2Th) + p j , SB(π

′
) =

(1 + β)(SA + 2Th) + pi
(4) When

βSA+p j
1−β

< Th <
βSA+pi
1−β

, SB(π∗) = (1 + β)(SA + Th) + pi + Th , SB(π
′
) =

(1 + β)(SA + 2Th) + pi

(5) When
(
β2+β

)
SA+(1+β)pi+p j

1−β−β2
< Th <

βSA+p j
1−β

, SB(π∗) = (1 + β)(SA + Th) + pi +
Th, SB(π

′
) = (1 + β)(SA + Th) + p j + T

(6) When
(
β2+β

)
SA+(1+β)p j+pi
1−β−β2

< Th <

(
β2+β

)
SA+(1+β)pi+p j

1−β−β2
, SB(π∗) = (1 +

β)[(1 + β)(SA + Th) + pi ] + p j , SB(π
′
) = (1 + β)(SA + Th) + p j + Th

(7) When pA < Th <

(
β2+β

)
SA+(1+β)p j+pi
1−β−β2

,SB(π∗) = (1+ β)[(1 + β)(SA + Th) + pi ]+
p j , SB(π

′
) = (1 + β)

[
(1 + β)(SA + Th) + p j

] + pi
(8) When βCA+pi

1−β
< Th < pA, S∗

B = S
′
B = CA + 2Th

(9) When
βCA+p j
1−β

< Th <
βCA+pi
1−β

, S∗
B = CA + 2Th , S

′
B = (1 + β)(CA + Th) + pi

(10) When βCA + pi < Th <
βCA+p j
1−β

, S∗
B = (1+ β)(CA + Th) + p j , S

′
B = (1+ β)(CA +

Th) + pi
(11) When βCA + p j < Th < βCA + pi , S∗

B = (1+ β)CA + pi + Th ,S
′
B = (1+ β)(CA +

Th) + pi
(12) When

(
β2 + β

)
CA + βp j + pi < Th < βCA + p j , S∗

B = (1+ β)CA + pi + Th ,S
′
B =

(1 + β)CA + p j + Th
(13) When

(
β2 + β

)
CA + βpi + p j < Th <

(
β2 + β

)
CA + βp j + pi ,S∗

B = (1 + β)CA +
pi + Th ,S

′
B = (1 + β)

[
(1 + β)CA + p j

] + pi
(14) When Th <

(
β2 + β

)
CA + βpi + p j , S∗

B = (1 + β)[(1 + β)CA + pi ] + p j ,S
′
B =

(1 + β)
[
(1 + β)CA + p j

] + pi

These 14 cases can be summarized as shown in Table 3 in the main body of the paper.
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