
https://doi.org/10.1007/s10479-022-05076-6

ORIG INAL RESEARCH

Forecasting commodity prices: empirical evidence using
deep learning tools

Hachmi Ben Ameur1 · Sahbi Boubaker2 · Zied Ftiti3 ·Wael Louhichi4 ·
Kais Tissaoui5,6

Accepted: 8 November 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Since the last two decades, financial markets have exhibited several transformations owing
to recurring crises episodes that has led to the development of alternative assets. Particu-
larly, the commodity market has attracted attention from investors and hedgers. However,
the operational research stream has also developed substantially based on the growth of the
artificial intelligence field, which includes machine learning and deep learning. The choice
of algorithms in both machine learning and deep learning is case-sensitive. Hence, AI prac-
titioners should first attempt solutions related to machine learning algorithms, and if such
solutions are unsatisfactory, they must apply deep learning algorithms. Using this perspec-
tive, this study aims to investigate the potential of various deep learning basic algorithms for
forecasting selected commodity prices. Formally, we use the Bloomberg Commodity Index
(noted by the Global Aggregate Index) and its five component indices: Bloomberg Agri-
culture Subindex, Bloomberg Precious Metals Subindex, Bloomberg Livestock Subindex,
Bloomberg Industrial Metals Subindex, and Bloomberg Energy Subindex. Based on daily
data from January 2002 (the beginning wave of commodity markets’ financialization) to
December 2020, results show the effectiveness of the Long Short-Term Memory method as
a forecasting tool and the superiority of the Bloomberg Livestock Subindex and Bloomberg
IndustrialMetals Subindex for assessing other commodities’ indices. These findings is impor-
tant in term for investors in term of risk management as well as policymakers in adjusting
public policy, especially during Russian-Ukrainian war.
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1 Introduction

Since commodity markets were financialized in 2002, commodities’ market capitalization
has been growing substantially. There are several reasons why these commodity assets have
attracted policymakers as well as investors and hedgers. Bernanke1 (2008) claimed that poli-
cymakers should underscore “the importance for policy of both forecasting commodity price
changes and understanding the factors that drive those changes" and highlighted the role
of commodity prices in influencing inflation and macroeconomic environments. Similarly,
the Editorial of the September 2008 issue of the Monthly Bulletin of the European Central
Bank also stated, “[…] Rapidly rising prices for globally traded commodities have been the
major source of the relatively high rates of inflation we have experienced in recent years,
underscoring the importance for policy of both forecasting commodity price changes and
understanding the factors that drive those changes.” Moreover, commodity asset manage-
ment requires investors to play an important role regarding portfolio management (Bodie &
Rosansky, 1980; Gospodinov & Ng, 2013; Lintner, 1983; Marquis & Cunningham, 1990).
Recent empirical studies have highlighted the important role of commodity assets in portfolio
diversification and asset allocation (Ftiti et al., 2016; Kablan et al., 2017; Klein, 2017). Stud-
ies also support the ability of commodity assets to serve as safe-havens and hedges (Madani
& Ftiti, 2022).

Therefore, forecasting the dynamic of commoditymarkets is crucial for investors, hedgers,
and policymakers. During the last two decades, commoditymarkets have experienced various
instances of high volatility where its fundamental driving force is related to commodities’
demand and supply. Regarding commodity assets, the spot prices traduce the current and
demand conditions as well as their future expectations, as these assets are storable. From a
macroeconomic point of view, the dynamic of commoditymarkets is important for developing
economies, as they are often strongly dependent on commodity exportation (Ftiti et al.,
2016; Kablan et al., 2017). Additionally, it affects various investment channels of developed
economies (Nguyen & Walther, 2020).

Literature regarding commodity price forecasting and predictability have evolved con-
siderably in recent years. The first generation of literature considered commodity prices to
be predictable based on macroeconomic factors including inflation and industrial produc-
tion (Karali & Power, 2013), macroeconomic news (Smales, 2017), economic uncertainty
(Fang et al., 2019), and financial drivers such as the VIX measure, the default return spread,
Treasury—Eurodollar spread, and bond markets (Asgharian et al., 2015; Prokopczuk et al.,
2017). A recent study (Gargano & Timmermann, 2014) used a large set of commodity prices
and assessed the out-of-sample predictability of commodity prices based on macroeconomic
and financial variables. They found that commodity currencies have a predictive power at
short forecast horizons. However, economic growth and the investment–capital ratio wield
predictive power at relatively longer horizons.

The second generation of literature is based on the use of traditional and conventional time
series models to forecast the commodity prices. Dooley and Lenihan (2005) employed a time

1 “Outstanding Issues in the Analysis of Inflation,” Speech by Ben S. Bernanke for the Federal Reserve
Bank of Boston’s 53rd Annual Economic Conference, Chatham, Massachusetts, June 9, 2008.https://www.
federalreserve.gov/newsevents/speech/bernanke20080609a.htm.
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series ARIMA and lagged-forward price modelling to forecast future lead and zinc prices
and showed the effectiveness of the ARIMAmodel. Some recent studies have challenged the
accuracy of predictions based on past events and have supported the use of stochastic mod-
els, which are characterized by pre-established and better-defined boundaries of forecasting
prices (Ahrens & Sharma, 1997; Berck &Roberts, 1996; Lee et al., 2006; Slade, 1988). More
recently, Szarek et al. (2020) proposed a stochastic model with time varying specificity and
non-Gaussian distribution. They found that this new class of models can consider commodity
markets’ time dependency and that its asymmetric distribution can perform better than tradi-
tional time seriesmodels. Some other studies have also employed a stochasticmodel based on
the Bayesian approach. Kostrzewski and Kostrzewska (2019) make comparisons between the
Bayesian approach, considering time-varying parameters, latent volatility, and jump, and the
non-Bayesian individual autoregressive models, and three averaging schemes, for spot prices
forecast and showed the superiority of the Bayesian stochastic volatility model. The last gen-
eration of literature is based on operational research tools including artificial intelligence
(AI), machine learning (ML), and deep learning (DL) systems. Panella et al. (2012) inves-
tigated the forecasting of prices of crude oil, coal, natural gas, and electricity prices based
on a ML approach, that is, neural networks. Using various algorithms based on a mixture of
the Gaussian neural network, authors show that the optimal model can be identified using a
hierarchical constructive procedure. Narayan et al. (2013) demonstrated the parsimonious-
ness and self-calibration of their proposed model to forecast future oil future prices based on
a regime-switching framework using hidden Markov filtering algorithms. However, studies
that have used DLmodels to forecast commodity prices remain scarce. Kamdem et al. (2020)
appliedDLmodels to forecast the commodities’ prices during the COVID-19 pandemic crisis
and showed that the Long Short-Term Memory (LSTM) model predicts commodity prices
accurately. Our study is based on the recent trend of operational research literature and aims
to investigate the best tool for commodity prices forecasting.

Formally, AI, which includes computerized tools that mimic human intelligence, is a rel-
atively new concept for solving complex problems. Recently, more complex ML algorithms
are being categorized into the DL field. The choice of algorithms from either DL or ML is
case-sensitive. However, when faced with a learning problem, AI practitioners should test
ML algorithms, and if the solutions are unsatisfactory, they must use DL algorithms. In this
backdrop, many authors that have studied commodity markets have indicated that the inter-
action between the commodities and political, financial, and macroeconomic factors (e.g.,
political events, supply and demand, financial market, and exchange rates) is the main source
of the existence of many complex characteristics in commodities series data such as asym-
metry, non-linear dynamics, chaotic pattern, long memory, non-stationary, and heterogeneity
(Dong et al., 2018; Karasu & Altan, 2022). Hence, achieving an accurate forecast requires
overcoming these different complex features by using the adequate forecasting tools (Karasu
& Altan, 2022).

Additionally, Zhang &Ci (2020), Kamdem et al. (2020), Chen et al. (2021), and Karasu &
Altan (2022) illustrated that the conventional econometric models and classical ML models
may not forecast commodity prices with good accuracy. They showed that classical ML
tools like Artificial Neutral Neworks (ANNs) are facing difficulties dealing with complex
dimensionality alongwith their slow convergence rate.Hence,DL is currently being preferred
to cope with the local convergence problem for non-linear optimization and to enhance
the performance of basic ANN models. Thus, it can be concluded that complex-structure
algorithms can provide better results. Therefore, this study aims to investigate the potential
of various DL basic algorithms for forecasting selected commodities’ prices. The issue of
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commodity price forecasting is no longer as important as it is today based on the Russian-
Ukrainian crisis. The forecasting results can be utilized to properly address the optimal
portfolio management problem for investors and public policy adjustment in term food safety
from policymakers perspective.

We aim to forecast commodity prices based on DL tools. These DL approaches are mainly
based on creating more sophisticated hierarchical architectures. The application of DL tools
demonstrates superiority in performance over classicalML algorithms. Unlike classical feed-
forward artificial neural networks (FFANN) where the information is transferred from the
input to the output in onedirection (forward),DLhas the ability to process the past information
and then processes the data in two directions (forward and backward).

This study utilized a set of commodity assets, that is, the Bloomberg Commodity Index
(noted by the Global Aggregated Index) and its five component indices: Bloomberg Agri-
culture Subindex, Bloomberg Precious Metals Subindex, Bloomberg Livestock Subindex,
Bloomberg Industrial Metals Subindex, and Bloomberg Energy Subindex. We show the
LSTM method’s effectiveness as a forecasting tool and the superiority of the Bloomberg
Energy Subindex and Bloomberg Industrial Metals Subindex with regard to other commod-
ity indices.

The remainder of the paper is organized as follows: Sect. 2 presents the methodology;
Sect. 3 discusses the results; and Sect. 4 concludes.

2 Methodology

AI is the branch of computer science including computerized tools to mimic and simulate
the human intelligence through a machine with the aim of solving complex problems. ML,
as a special sub-class of AI where computers can learn from a given set of data and then can
generalize to new data (that are not used during the learning phase). Recently, more complex
ML algorithms are categorized under the field of DL.

2.1 Overview of deep learning (DL) algorithms

DL is a special case of artificial neural networks (ANNs) structurally including several layers
and having the ability to extract the best features from previous data. It has successful appli-
cations in various fields of research including image processing and time-series forecasting.
Although classical forecasting tools ( ARFIMA and FFANN) have been largely utilized in
forecasting with significant levels of accuracy, they are drawbacks in using them. For exam-
ple: data should involve linear behavior in case of ARFIMA, and FFANN might be trapped
into local minima solutions when trained by descent algorithms (Kamdem et al., 2020). To
overcome these issues, DL has emerged as an efficient tool in forecasting time-series in
fluctuating environments since it is able to consider hidden and latent dynamics of the data.

During the last few years, DL has been used extensively in various domains. For example:
ArunKumar et al. (2021) forecasted COVID-19 cumulative cases, recoveries, and deaths over
different countries; Kamdem et al. (2020) analyzed the effect of COVID-19 on the prices’
volatilities of commodities; Lago et al. (2018) and Memarzadeh and Keynia (2021) studied
electricity price forecasting; Liu et al. (2021) focused on bitcoin price prediction; Vidal and
Krisjanpoller (2020) examined gold volatility; and Alameer et al. (2020) studied coal price
forecasting.
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Fig. 1 Basic structure of an
LSTM. Source: ArunKumar et al.
(2021)

Due to the high ability of DL to forecast time-series, we investigate the performance of
various DL algorithms in predicting the prices of six commodities, namely, the Bloomberg
Commodity Index, Bloomberg Agriculture Subindex, Bloomberg PreciousMetals Subindex,
Bloomberg Livestock Subindex, Bloomberg Industrial Metals Subindex, and Bloomberg
Energy Subindex.

2.2 Deep learning techniques

In this section, we briefly review the architecture, parameter settings, and training algorithms
of the four DL techniques to investigate the simple Recurrent Neural Network (RNN), Gated
Recurrent Unit (GRU), LSTM, and Convolutional Neural Network (CNN).

2.2.1 Long short-termmemory (LSTM)

LSTM is a sub-class of DL used to model complex relationships, and learn from experience
using long-range series (Alameer et al. 2021). It is assumed to solve various problems of
classical ANN such as vanishing/exploding gradients, and the concept of forget gates is then
used to accomplish this task. The basic structure of an LSTM cell is provided in Fig. 1.
Thus, an LSTM cell includes input, output, and forget gates. The input gate is responsible
of controlling which data is to be accepted and then transfer it to the cell. The amount of
information neglected (and then prevented from passing to the cell) is controlled by the forget
gate. This principle is among one of the key features of the LSTM algorithm. The data is then
transferred to the output gate, which is responsible for generating the cell output and state.
Mathematically, the procedure for LSTM is expressed as follows (Boubaker et al., 2021):

ft = α
(
w f .

[
ht−1, xt

] + b f
)

(1)

it = α
(
wi .

[
ht−1, xt

] + bi
)

(2)

ot = α
(
wo.

[
ht−1, xt

] + bo
)

(3)

Ct = ft Ct−1 + it .th
(
wc.

[
ht−1, xt

] + bc
)

(4)

ht = Ot .β(Ct ) (5)

2.2.2 Gated recurrent unit (GRU)

As shown in Fig. 2, the GRU is similar to the LSTM except that it does not include a forget

123

Annals of Operations Research (2024) 339:349–367 353



Fig. 2 Basic structure of GRU
cell. Source: ArunKumar et al.
(2021)

Fig. 3 Basic structure of an RNN
cell. Source: ArunKumar et al.
(2021)

gate. With this relatively simple structure, a GRU model training is computationally more
tractable than an LSTM model. GRU is infact based on the idea of updating the cell state.

2.2.3 Recurrent neural network (RNN)

The simple RNNs are improved versions of the classical ANNs (AruKumar et al., 2021).
Unlike ANNs, RNNs have the ability of remembering the input data features. They use the
concept of cell state which keeps the previous data features and uses them to calculate the
new cell state. RNN structure is obviously simpler than both GRU and LSTM. The RNN
structure is shown in Fig. 3 below.

2.2.4 Convolution neural network (CNN)

CNNs are a type of deep neural networks that were initially designed for computer vision
applications such as data classification andobject recognition.CNNshave the ability to extract
relevant features from high dimensional data (Koprinska, Wu & Wang, 2018). Although
they were designed for two-dimensional data problems, they were later adapted successfully
to one-dimensional problems such as in Boubaker et al. (2021) where they succeeded in
predicting daily global horizontal irradiation (GHI). Other relevant applications are evapo-
transpiration time-series (Lucas et al., 2020) and energy time-series (Koprinska,Wu&Wang,
2018).

The principle of working of CNNs is based on three cascaded layers: a pooling layer
sandwiched between a convolutional layer and a fully connected layer.2

2 More details about CNNs can be found in (Lucas et al., 2020) and the references therein.
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Table 1 Optimal hyperparameters of RNN, GRU, and LSTM deep neural networks used in this study

Parameter Value Meaning

Units 100 Number of cells in a DL structure

Activation Relu Returns a value if the input is greater than 0 and returns 0.00 otherwise

Batch-size 512 Used to distinguish the common features of the input data

Epochs 100 Number of “iterations” for the training phase

Scaler Min–Max Allows to scale the data within the interval [-1,1]

Optimizer Adam The adaptive moment (Adam) estimation is an improved descent algorithm
for training deep neural networks

2.2.5 Deep learning algorithms hyperparameters’ setting

Despite their ability to forecast time-series, DL algorithms (like any other neural network)
have the drawback of difficult hyperparameters’ setting and the dependence on many factors
(Lago et al., 2018). DL parameter tuning is always based on a trial-and-error procedure. This
is mainly due to the fact that DL algorithms are not generically extendable to other case
studies. A parameter set may work well for a dataset and may not work for another set even
in the same applied research field. In this study, we have conducted several trial-and-error
runs for using the three DL algorithms. The performance metrics (will be discussed later
in this paper) for the commodity prices under investigation were recorded. A careful study
of those performance indicators helped us in tuning the DL parameters. Since our study is
mainly related to the comparison of three DL algorithms’ ability in forecasting commodity
prices, the model parameters are kept the same in order to make sense of the comparison.
The adopted optimal parameters are shown in Table 1.

2.3 Robustness check

We compare our proposed DL model with the traditional ML and time series models such
as the ANN (Fig. 4) and autoregressive fractionally integrated moving average models
(ARFIMA (p,d,q)) to show the superiority of the former as compared to the later approaches.
First, the ARFIMA (p,d,q) models are time-series models that generalize ARIMA (p,d,q) by
allowing to take non-integer values of the differencing parameter d and can be described as
follows:

�d yt = δ +
p∑

i=1

ϕi yt−i +
q∑

i=0

σiεt−i + d + e (6)

where y(t) is the output (the commodities indices); y(t − i) are the previous values of the
output (the commodities indices); δ is a constant and d is the order of integration; ϕi , and
σi denote the coefficient parameters; k, p, and q are the maximum time lag related to output
sequence and residuals, respectively and e(t) is an error term. To find the best fit of ARFIMA
(p,d,q) for each series of commodities indices, we employ a mixed approach composed of
two methods: First, the box and Jenkins method to identify the autoregressive (AR) part and
the moving average (MA) part based on the partial autoregressive functions (PACF) and the
autoregressive functions(ACF). The Akaike Information Criteria (AIC) is used to choose the
best models from the various possible ARFIMA (p,d,q) models. Second, we use the ANN
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model where the commodity variable y(t) is defined as a function of its historical values as
follows (Herrera et al., 2019):

y(t) = g(y(t − 1), y(t − 2), . . . .., y(t − p)) + e(t) (7)

where e(t) is an error value following usually a normal distribution. In the ANN paradigm,
the commodity model inputs are its p previous values (called patterns) and the value at the
crent day is considered as the target. The main objective of the ANN model is to map sets of
patterns to their corresponding targets regardless of the nature of the hidden relationships.

We first adopt the multi-layer feed-forward neural network to model the relationship
between the prices of some selected commodities and their history. A basic FF-ANNoperates
according to the following equations:

a1 = f 1
(
W 1.1X + b1

)

a2 = f 2
(
W 2.1a1 + b2

)

.

.

a j = f j
(

W j . j−1a j−1 + b j
)

.

aN = f N
(

W N .N−1aN−1 + bN
)

(8)

where:
aj, j= 1: N are the outputs of the respective layers; a1 is the output of the input layer; and

aN is the output of the output layer. Wj.j−1 are the weights of the jth layer.bj are the biases of
the jth layer. fj is the transfer function of the jth layer.

The number of hidden layers as well as their numbers of neurons are usually determined
using trial-and-error procedure (Jnr et al., 2021). This is considered as the main drawback of
ANNs. The objective of the training process is to minimize the error between the targets and
the ANN outputs as described below:

(

ε2(Wi , bi) =
N∑

t=1

(y(t) − g(y(t − 1), y(t − 2), . . . , y(t − p)) + e(t))2
)

(9)

During the training phase, the training algorithm updates iteratively the ANNweights and
biases as in the following equation:

W (k) = W (k − 1) + α�W (k − 1)X T (10)

where k is the iteration index,α the learning rate, and�W (k − 1) is the error function. For the
implementation of ANN, various activation functions and training algorithms exist. However,
the choice of the suitable function and training algorithm are case-sensitive. Hence, after
trying several combinations of the ANN structure and the training algorithm, the parameters
adopted are summarized in Table 2.

2.4 Performancemetrics

The dataset has been divided into 80% for training and 20% for validation (Kamdem et al.,
2020). Three performance metrics have been used to measure the quality of the developed
forecasters (Liu et al., 2021) and are given as follows:
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Table 2 Parameters of the used
ANN algorithm Parameter Our choice

Number of input layers 1

Number of hidden layers 2

Number of neurons in hidden layers 5

Activation functions Linear function for all
layers

Training algorithm Resilient-propagation

• Table 4 displays the mean absolute percentage error

M AP E = 100

N

N∑

t=1

∣
∣y(t) − ŷ(t)

∣
∣

y
(11)

• The coefficient of determination (R.2)

R2 = 1−
1

N2

∑N
t=1

(
y(t) − ŷ(t)

)2

1
N

∑N
t=1(y(t) − y)2

(12)

• The root mean square error

RM SE =
√√√√ 1

N

N∑

t=1

(
y(t) − ŷ(t)

)2 (13)

• Mean absolute deviation

M AD =
∑∣∣y(t) − ŷ(t)

∣∣

N
(14)

where ŷ(t) and y(t) denote the forecasted and the observed (real) commodity price at day
t , respectively; y is the average value of the same price; and N is the size of validation
sample.

3 Empirical results

3.1 Data

Our daily data from January, 2002 (the beginning wave of commodity markets’ finan-
cialization) to December, 2020 covers a set of commodity assets, that is, the Bloomberg
Commodity Index (noted by the Global Aggregated Index) and its five component indices:
Bloomberg Agriculture Subindex, Bloomberg Precious Metals Subindex, Bloomberg Live-
stock Subindex, Bloomberg Industrial Metals Subindex, and Bloomberg Energy Subindex.
Therefore, we obtained 5473 observations for the first four series and 5270 observations
for the last two indices (the Bloomberg Industrial Metals Subindex and Bloomberg Energy
Subindex). For the first set of variables, the sample was subdivided into two subsamples.
The first subsample (5000 observations) was used for the training algorithms whereas the
second subsample (472 observations) was used for the validation algorithms. For the last two
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Fig. 4 Structure of an artificial neural network (ANN)

Table 3 Descriptive statistics

Mean Max Min S.D Skew Kurt

Bloomberg Commodity Index 122.580 237.953 59.479 35.024 0.428 2.522

Bloomberg Agriculture Subindex 62.907 101.822 34.152 13.843 0.248 2.744

Bloomberg Precious Metals Subindex 143.631 306.846 49.663 63.466 0.148 2.106

Bloomberg Livestock Subindex 47.737 84.390 16.209 19.303 0.393 1.589

Bloomberg Industrial Metals Subindex 126.730 266.763 53.902 46.677 0.620 2.693

Bloomberg Energy Subindex 148.177 516.656 15.469 109.983 0.887 2.926

Table 3 indicates the mean, standard deviation (SD), skewness, kurtosis, minimum (Min.), maximum (Max.)
Bloomberg Commodity Index and its five components indices: Bloomberg Agriculture Subindex, Bloomberg
Precious Metals Subindex, Bloomberg Livestock Subindex, Bloomberg Industrial Metals Subindex, and
Bloomberg Energy Subindex for the sample period from January, 2002 to December, 2020.

variables of the commodities, the training phase was based on the 5000 observations and the
validation phase was based on 269 observations.

Table 3 shows that the skewness values for all indices differ from 0, that is, the distributions
occur in an asymmetrical pattern. Furthermore, the values of kurtosis test was much lower
than 3. This shows that, for all the variables, the distribution of the commodity assets had
lighter tails than those of normal distributions. This result is synonymous of the acceptance
of the existence of non-linearity in the data.

Figure 5 plots the autocorrelation pattern of all the series which shows that all the variables
of the commodity variables had a unit-root problem. The series data varied further away
from zero. Thus, all the series had long-memory behavior. Ftiti et al. (2020) illustrate that
the existence of non-linear structures and long-memory patterns in dynamic systems can be
attributed to the inside variables of the system itself. Hence, a non-linear dynamic approach
should be used as part of forecasting to deal with it, since this type of model does not
necessitate a transformation of the original data. However, the authors also indicate that
implementing the classical approaches as linear tools could overcome the problem of unit
root before the commencement of the forecasting process.
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Fig. 5 Autocorrelation test

3.2 Forecasting results

Figure 6 plots all six forecasts for the commodity indices using the validation sets. The dif-
ferent complex DL models—LSTM, RNN, GRU, and CNN—highlighted that all curves of
the DL models (forecasted values) were located near to the blue curve (actual values) for
all the commodities indices. Clearly, the suggested DL tools exhibited a strong follow-up
behavior during the validation phase. More specifically, for the LSTM, RNN, and GRU, the
lines representing the actual price and the forecasted price completely correspond with each
other for all commodities assets, even during the period where the price of commodities
varies largely. Although the CNN method provided a good accuracy for Bloomberg Com-
modity Index, Bloomberg Precious Metals Subindex, Bloomberg Livestock Subindex, and
Bloomberg Industrial Metals Subindex, it fails to accurately predict Bloomberg Agriculture
Subindex and Bloomberg Energy Subindex. According to Fig. 6, we can observe that there is
no significant gap between the true curve (in blue) and the predicted curve (in yellow) of all
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Fig. 6 Validation phase: Plot of actual and forecasted commodities indices

indeces, except in the Bloomberg Commodity Index and Bloomberg Agriculture Subindex
where the traditional ANN method is applied for forecasting. Additionally, the ARFIMA
tool fails to provide accurate predictions. Hence, all the DL methods (except for the CNN
model) have shown a similar tendency and forecasts with an overall accuracy on the whole
validation period. Additionally, findings show that DLmethods dominate traditional ML and
classical time series tools in predicting commodities indices with good accuracy. Hence, the
proposed LSTM, DRU, and RNN models are the best models for prediction.

However, for the Bloomberg Commodity Index, Bloomberg Agriculture Subindex,
Bloomberg Precious Metals Subindex and Bloomberg Industrial Metals Subindex, all DL
models succeed to generate curves of current price closer to forecast curves during the tranquil
period.3 Additionally, this good accuracy is also evident during the pandemic period where
the prices fluctuate significantly. We indicate that the superiority of LSTM to forecast the
commodities indices compared to RNN, GRU and CNNmodels during COVID-19 outbreak

3 Period before Wednesday March 11th, 2020 that is the date of announcement that the new Corona virus,
which is spreading throughout the world, is a “global epidemic.
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period. The potential reason behind this is that the LSTM is able to solve problems related
to long-term and short-term dependency memory (Memarzadeh & Keynia, 2021).

Table 4 reports the outputs of evaluationmetrics (Mean absolute percentage error (MAPE),
the root mean squared error (RMSE), and the determination coefficient (R2)) of the proposed
forecast tools across the different commodities. It shows that theDLmodels offer a better fore-
cast when compared to ANN and ARFIMA models. For the Bloomberg Commodity Index,
Bloomberg Agriculture Subindex, Bloomberg Precious Metals Subindex, and Bloomberg
Industrial Metals Subindex, the LSTM model provides lesser RMSE values when compared
to the competitor’s models. However, the RMSE of RNN model is lesser than that of the
LSTM model for Bloomberg Livestock Subindex. For the rest of commodities, the GRU
model has a lesser RMSE value than that of LSTM and RNN models. In terms of MAPE
metric, the LSTM performed well with lesser MAPE than that of the rest of models in case
of Bloomberg Commodity Index, Bloomberg Agriculture Subindex, Bloomberg Livestock
Subindex, and Bloomberg Energy Subindex. However, the RNN model for Bloomberg Pre-
cious Metals Subindex and Bloomberg Industrial Metals Subindex has lesser MAPE values
when compared to that of the LSTMmodel. Table 4 providesevidence that the LSTMmodel
outperformed competitor models with higher values of R2 for all commodities indices, except
for the Bloomberg Energy Subindex where the ANN model indicates a higher R2. Hence,
these results indicate that theLSTMmodel shows its dominance according to the performance
metrics and is the best forecaster tool compared to the other DL, ML, l and time-series mod-
els. Thus, we also compare the commodities indices based on the LSTM tool. We found
that the according to the RMSE and R2 metric, the Bloomberg Precious Metals Subindex
is the index that is well forecasted by its lagged values and. it dominates all other indices.
Furthermore, the LSTM findings indicate that the Bloomberg Livestock Subindex has the
smaller value of MAPE which highlights that this asset is dominant compared to the other
five indices.. Finally, the lower MAD metric generated by LSTM also indicates its outper-
formance as forecasting tool. Additionally, MAD results are in line with the MAPE results
for the Bloomberg Livestock Subindex which indicates that it is dominant as compared to
the remaining five indices (Tables 4).

Figure 7 depicts the distributed plots of the forecasted values of all the commodity indices.
The bisector curves indicate a perfect forecast having great accuracy. For all the LSTM, RNN
and GRU forecasting tools, we provide evidence that the points on or close to the bisector
denoted the best correspondence between the forecasted values and the actual values of
different commodities indices. However, the CNN and ARFIMA models performed poorly.
We found that the points are far on the bisector, which indicates a significant gap between
the predicted and actual values of the various commodity indices.

The validity of the results is emphasized when we forecast for the Bloomberg Livestock
Subindex and Bloomberg Industrial Metals Subindex by using the LSTMmodel. We confirm
the effectiveness of the LSTMmethod as a forecasting tool and the superiority of Bloomberg
Livestock Subindex and Bloomberg Industrial Metals Subindex compared to the other com-
modity indices. These findings are consistent with Kamdem et al. (2020) that proved the
superiority of LSTM model in forecasting the commodities prices. More interestingly, our
study complete the abundant literature related to commodity prices forecasting through show-
ing the superiority of Deep Learning approaches compared to machine learning as well as
conventional approaches (Fig. 6).
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Fig. 7 Dispersed plot of forecasted values
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Fig. 7 continued
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4 Conclusion and implications

In this study,we focused on the aspect of forecasting commodity prices, as they play an impor-
tant role in providing implications for economic situations. We show the main mechanisms
that can cause commodity prices to affect the economy and financial systems. Particularly, we
discussed the theoretical motivation regarding why both developing and developed countries
show a great interest in following the behavior and pattern of the main commodity markets.
Therefore, the forecasting of commodity prices is a vital activity for investors, hedgers, and
policymakers.

Our study proposed the use of various DL tools and showed that the LSTM method
is the best-fit model. We highlight the superiority of Bloomberg Livestock Subindex and
Bloomberg Industrial Metals Subindex compared to other commodity indices.

This study will provide value-added theoretical and practical contribution to the literature.
In terms of theoretical implications, our results contribute to the larger area of financialization
of commodity markets–portfolio diversification relationship. Yet, an accurate forecast of
commodities assets using DLmodels permit to monitor commodity markets that are exposed
to structural adjustments in return distribution characteristics as they relate to other types of
traded assets. As a result, thiswill allow realizing an optimal allocation of financial capital and
hedging demand in commodity markets, and consequently achieve diversification benefits.
Additionally, the good fit of forecasted values of commodities indices indicate an attractive
risk–return trade off in commodity markets. This is important as it guarantees the continuity
of the commodity financialization process.

Concerning managerial implications, the outperformance of DL models in forecasting
commodity prices can help policy makers in commodity markets to learn from commodity
price dynamics, even in fluctuating environments. This allows them to effectively monitor the
macroeconomic situation and inflation. Good forecasting accuracy of commodity indices also
motivates investors to perform efficient portfolio management based on commodity futures
management to achieve portfolio diversification and optimal asset allocation. Furthermore,
DL tools show a stronger ability to accurately capture the complex structure in commodities
indices. This means that they are able to predict commodities’ price, despite the fact that
the sample used does have crisis periods. The good appropriateness of these methods will
prompt investors to profit from these complex tools for the forecasting of commodities prices
and other risky assets with good accuracy.
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