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Abstract
The Majority Rule Sorting (MR-Sort) method assigns alternatives evaluated on multiple
criteria to one of the predefined ordered categories. The Inverse MR-Sort problem (Inv-
MR-Sort) consists in computing MR-Sort parameters that match a dataset. Existing learning
algorithms for Inv-MR-Sort consider monotone preference on criteria. We extend this prob-
lem to the case where the preference on criteria are not necessarily monotone, but possibly
single-peaked (or single-valley). We propose a mixed-integer programming based algorithm
that learns from the training data the preference on criteria together with the other MR-Sort
parameters. Numerical experiments investigate the performance of the algorithm, and we
illustrate its use on a real-world case study.

Keywords Multicriteria sorting · MR-Sort · Single-peaked preferences · Preference learning

1 Introduction

In this paper, we consider multiple criteria sorting problems in which alternatives evaluated
on several criteria are to be assigned to one of the pre-defined ordered categories C1, C2,…,
C p , C1 (C p , respectively) being the worst (best, respectively) category.

Many multiple criteria methods have been proposed in the literature (see e.g. Doumpos &
Zopounidis, 2002;Zopounidis&Doumpos, 2002).Weare interested in a pairwise comparison
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based method: the Non-Compensatory Sorting model (NCS, see Bouyssou & Marchant,
2007a, 2007b). NCS assigns alternatives to categories based on the way alternatives compare
to boundary profiles representing frontiers between consecutive categories and can be viewed
as an axiomatic formulation of the Electre Tri method (see Roy, 1991). More specifically, we
consider a particular case of NCS in which the importance of criteria is additively represented
using weights: the Majority Rule Sorting (MR-Sort, see Leroy et al., 2011).

In real-world decision problems involving multiple criteria sorting, the implementation
of a sorting model requires eliciting the decision-maker’s (DM) preferences and adequately
representing her preferences by setting appropriate values for the preference-related param-
eters. It is usual to elicit the sorting model parameters indirectly from a set of assignment
examples, i.e., a set of alternatives with corresponding desired categories. Such preference
learning approach has been developed for MR-Sort (Inv-MR-Sort, see, e.g. Leroy et al.,
2011; Sobrie et al., 2019), and makes it possible to compute MR-Sort parameters that best
fit a learning set provided by the DM.

Such a preference learning approach requires considering criteria involving monotone
preferences (criteria to be maximized or minimized). This applies in the context of Multiple
Criteria Decision Aid (MCDA), in which the decision problem is structured and carefully
crafted through an interaction between theDMand an analyst. In contrast, we are interested in
this paper in application in which the evaluations of alternatives on criteria do not necessarily
induce monotone preferences. We illustrate hereafter such a situation in two illustrative
examples.

Example 1 Consider a veterinary problem in cattle production. A new cattle disease should
be diagnosed based on symptoms: each cattle should be classified as having or not having
the disease. New scientific evidence has indicated that the presence of substance A in the
animal’s blood can be predictive in addition to usual symptoms. Still, there is no clue how the
level of substance A should be considered. Does a high, a low level, or a level between bounds
of substance A indicate sick cattle? The veterinarians’ union has gathered a large number of
cases and wants to benefit from this data to define a sorting model based on usual symptom
criteria and the level of substance A in the animal’s blood. Hence, the sorting model should
be inferred from data, even if the way to account for the substance A level is unknown.

Example 2 A computer-products retail company is distributing a new Windows tablet and
wants to send targetedmarketing emails to clientswhomight be interested in this newproduct.
To do so, clients are to be sorted into two categories: potential buyer and not interested. To
avoid spamming, only clients in the former category will receive a telephone call. To sort
clients, four clients characteristics are considered as criteria, all of them being homogeneous
to a currency e.g. e : the turnover over the last year of (i) Windows PC, (ii) Pack Office, (iii)
Linux PC, and (iv) Dual boot PC. As the company advertises a new Windows tablet, both
first two criteria are to be maximized (the more a client buys Windows PCs and Pack Office,
the more she is interested in products with a Windows system), and the third criterion is to
be minimized (the more a client buys Linux PCs, the less he/she is interested in products
with a Windows system). The marketing manager is convinced that the last criterion should
be considered but does not know if it should be maximized or minimized if preferences are
single-peaked; a subset of clients has been partitioned into not interested/potential buyers.
Based on this dataset, the goal is to simultaneously learn the classifier parameters and the
preference direction for the last criterion.

In the previous examples, it is unclear for the DM how to account for some of the data
(level of substance A in blood, Dual boot PC turnover) on the classification of alternatives
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(cattle, client). These examples correspond to single-peaked criteria, i.e. criteria for which
preferences are defined according to a “peak” corresponding to the best possible value; on
such criteria, the preference decreases with the distance to this peak. In other words, the peak
corresponds to a target value below which the criterion is to be maximized, and above which
the criterion is to be minimized. Such criteria are frequent in the medical domain (getting
close to a normal blood sugar level), chemical applications (get close to a neutral PH), …

In MCDA, there exist works that account the non-monotonicity of preferences in value-
based models (see e.g. Despotis & Zopounidis, 1995; Kliegr, 2009; Doumpos, 2012, and
Section 2). However, there does not exist, to the best of our knowledge, such work concerning
pairwise comparisons methods. This paper aims to extend the literature on MCDA for non-
monotone criteria to outranking methods and, in particular, to MR-Sort. Specifically, we
tackle the problem of inferring from a dataset an MR-Sort with possibly non-monotone
criteria. The challenge is that this inference problem is already known to be difficult with
monotone criteria, see Leroy et al. (2011).

More specifically, we assume that evaluations on criteria should be either maximized,
minimized or corresponds to single-peaked (or single-valley) preferences. We propose a
mixed-integer mathematical programming (MIP) approach to learn the MR-Sort parameters
and criteria type (gain, cost, single-peaked, or single-valley) from a dataset of assignment
examples.

The paper is organized as follows. Section 2 reviews the existing works in the field of
MCDA that consider criteria that are not necessarily monotone. The NCS and MR-Sort
methods are presented and extended to the case of single-peaked (single-valley) criteria
in Sect. 3. In Sect. 4 we specify the Inv-MR-Sort problem in the presence of single-peaked
criteria, and aMIP based algorithm is proposed in Sect. 5. Section 6 presents the performance
of the algorithm on a generated dataset and a real-world case study. The last section groups
conclusions and further research issues.

2 Related work

In Multiple Criteria Decision Aid (MCDA), preference learning methods require a prefer-
ence order on criteria. Such preference order on criteria directly results from the fact that
alternatives evaluations/scores correspond to performances that are to be maximized (profit
criterion) or minimized (cost criterion), which result in monotone preference data. In mul-
ticriteria sorting problems, this boils down to a higher evaluation on a profit criterion (on a
cost criterion, respectively) favours an assignment to a higher category (to a lower category,
respectively).

However, there are numerous situations in which the criteria evaluation is not related to
category assignment in amonotoneway. Such a situation is indeed considered in the induction
of monotone classification rules from data.

Classification methods in the field of machine learning usually account for attributes
(features) that are not supposed to be monotone. Some specialized methods have been pro-
posed to consider monotone feature (see Gutiérrez & García, 2016; Cano et al., 2019), for
decision trees (Feelders, 2010), or for decision rules (Greco et al., 2001). Some of these
approaches have been extended to partially monotone data (see Pei & Hu, 2018; Wang et al.,
2015). Blaszczyǹski et al. in Blaszczynski et al. (2012) present a non-invasive transforma-
tion applied to a dominance-based rough set approach to discover monotonicity relationships
(positively/negatively global/local monotonicities) between attributes and the decision con-
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sidering non-ordinal and ordinal classification problems. With their proposed transformation
applied on non-monotone data, they can deduce laws with interval conditions on attributes
because they are positively monotone in one part of the evaluation space and negatively
monotone in the other.

In the context of the multicriteria decision aid, several preference learning/disaggregation
approaches consider non-monotone preferences on criteria. To the best of our knowledge,
however, almost all these contributions consider a utility-based preference model, in which
non-monotone attributes are represented using non-monotone marginal utility functions.

Historically, Despotis and Zopounidis (1995) are the first to consider single peaked value
functions with an additive piece-wise linear model. The UTA-NMmethod proposed in Kliegr
(2009) allows for non-monotone marginals and prevents over-fitting by introducing a shape
penalization. Also, in the context of an additive utility model, Eckhardt and Kliegr (2012)
define a heuristic pre-processing technique to encode the original non-monotone attributes
input into scores that are likely to be monotone: for each alternative x originally described
by attribute values (x1, . . . , xn), and for a non-monotone attribute i , the score xi is replaced
by yi corresponding to an “average” of DM’s ratings across objects that have value xi on
attribute i . Another contribution proposed by Doumpos (2012) proposes a heuristic approach
to learn non-monotone additive value-based sorting model from data.

Liu et al. (2019) model sorting with a piece-wise linear additive sorting model, using a
regularization framework to limit non-monotonicity. Guo et al. (2019) propose a progres-
sive preference elicitation for multicriteria sorting using a utility model with non-monotone
attributes. A framework to rank alternatives with a utility model using slope variation restric-
tions for marginals is proposed in Ghaderi et al. (2015), Ghaderi et al. (2017). Based on a
mixed-integer program, Kadzinski et al. (2020), Kadzinski et al. (2021) proposes to dis-
aggregate an additive piece-wise linear sorting model with different types of monotone
(increasing, decreasing) and non-monotone (single-peaked, single caved) marginal value
functions. Recently some contributions aim at inferring non-compensatory sorting models
involving non-monotone criteria from data. Sobrie et al. (2016) consider a medical appli-
cation in which some attributes are single-peaked, and duplicates these attributes into two
criteria (to be maximized and minimized). Moreover, Minoungou et al. (2020) proposed a
heuristic to learn anMR-Sort model and criteria preference directions from data. Sobrie et al.
(2016) andMinoungou et al. (2020) are forerunners to the present work, but do not investigate
in a systematic way how to learn MR-Sort models from non-monotone data, which justifies
the present work.

In this paper, we extend the literature in the following way: we consider non-monotone
preferences in the context of an outranking-based sortingmodel, whereas the literaturemainly
focuses on additive value-based preferencemodels.We propose a learning-based formulation
inwhich theMR-Sort sortingmodel and the (possibly non-monotone) structure of preferences
on criteria are simultaneously inferred from a set of assignment examples.

3 NCS, MR-Sort, and single-peaked preferences

3.1 NCS: non-compensatory sorting

Non-compensatory Sorting (NCS) (Bouyssou & Marchant, 2007a, 2007b) is an MCDA
sorting model originating from the ELECTRE TRI method (Figueira et al., 2005). NCS can
be intuitively formulated as follows: an alternative is assigned to a category if (i) it is better
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than the lower limit of the category on a sufficiently strong subset of criteria, and (ii) this is
not the case when comparing the alternative to the upper limit of the category.

Consider the simplest case involving 2 categoriesGood (G) andBad (B)with the following
notations. We denote Xi the finite set of possible values on criterion i , i ∈ N = {1, . . . , n};
we suppose w.l.o.g. that Xi = [mini , maxi ] ⊂ R. Hence, X = ∏

i∈N Xi represents the
set of alternatives to be sorted. We denote Ai ⊆ Xi the set of approved values on criterion
i ∈ N . Approved values on criterion i (xi ∈ Ai ) correspond to values contributing to the
assignment of an alternative to category G. In order to assign alternative a to category G, a
should have approved values on a subset of criteria which is “sufficiently strong”. The set
F ⊆ 2N contains the “sufficiently strong” subsets of criteria; it is a subset of 2N up-closed
by inclusion. In this perspective, the NCS assignment rule can be expressed as follows:

x ∈ G iff {i ∈ N : xi ∈ Ai } ∈ F, ∀x ∈ X (1)

With more than two categories, we consider an ordered set of p categories C p � · · · �
Ch � · · ·�C1, where� denotes the order on categories. Sets of approved valuesAh

i ⊆ Xi on
criterion i (i ∈ N ) are defined with respect to a category h (h = 2..p), and should be defined
as embedded sets such that A2

i ⊇ . . . ⊇ Ap
i . Analogously, sets of sufficiently strong criteria

coalitions are relative to a category h, and are embedded as follows: F2 ⊇ . . . ⊇ F p . The
assignment rule is defined bellow, for all x ∈ X , where A1

i = Xi , Ap+1
i = ∅, F1 = P(N ),

and F p+1 = ∅.
x ∈ Ch iff {i ∈ N : xi ∈ Ah

i } ∈ Fh and {i ∈ N : xi ∈ Ah+1
i } /∈ Fh+1 (2)

A particular case of NCS corresponds to the MR-Sort rule (Leroy et al., 2011). When
the families of sufficient coalitions are all equal F2 = . . . = F p = F and defined using
additive weights attached to criteria, and a threshold: F = {F ⊆ N : ∑

i∈F wi ≥ λ}, with
wi ≥ 0,

∑
i wi = 1, and λ ∈ [0, 1]. Moreover, as the finite set of possible values on criterion

i , Xi = [mini , maxi ] ⊂ R, the order on R induces a complete pre-order �i on Xi . Hence,
the sets of approved values on criterion i , Ah

i ⊆ Xi (i ∈ N , h = 2 . . . p) are defined by �i

and bh
i ∈ Xi the minimal approved value in Xi at level h: Ah

i = {xi ∈ Xi : xi �i bh
i }. In

this way, bh = (bh
1 , . . . , bh

n ) is interpreted as the frontier between categories Ch−1 and Ch ;
b1 = (min1, . . . , minn) and bp+1 = (max1, . . . , maxn) are the lower frontier of C1 and the
upper frontier of C p . Therefore, the MR-Sort rule can be expressed as:

x ∈ Ch iff
∑

i :xi ≥bh
i

wi ≥ λ and
∑

i :xi ≥bh+1
i

wi < λ (3)

It should be emphasized that in the above definition of the MR-Sort rule, the approved
setsAh

i can be defined using bh ∈ X , which are interpreted as frontiers between consecutive
categories, only if preferences �i on criterion i are supposed to be monotone. A criterion
can be either defined as a gain or a cost criterion:

Definition 1 A criterion i ∈ N is:

– a gain criterion: when xi ≥ x ′
i ⇒ xi �i x ′

i
– a cost criterion: when xi ≤ x ′

i ⇒ xi �i x ′
i

Indeed, in case of a gain criterion, we have xi ∈ Ah
i and x ′

i ≥ xi ⇒ x ′
i ∈ Ah

i , and xi /∈ Ah
i

and xi > x ′
i ⇒ x ′

i /∈ Ah
i . Therefore Ah

i is specified by bh
i ∈ Xi : Ah

i = {xi ∈ Xi : xi ≥ bh
i }.

In case of a cost criterion, we have xi ∈ Ah
i and x ′

i ≤ xi ⇒ x ′
i ∈ Ah

i , and xi /∈ Ah
i and

xi < x ′
i ⇒ x ′

i /∈ Ah
i . Therefore Ah

i is specified by bi ∈ Xi : Ah
i = {xi ∈ Xi : xi ≤ bh

i }. We
study hereafter the MR-Sort rule in the case of single-peaked preferences (Black, 1948).
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3.2 Single-peaked and single-valley preferences

In this paper, we consider preferences that are not necessarily monotone on all criteria.

Definition 2 Preferences �i on criterion i are:

– single-peaked preferences with respect to ≥ iff there exist pi ∈ Xi such that: xi ≤ yi ≤
pi ⇒ pi �i yi �i xi , and pi ≤ xi ≤ yi ⇒ pi �i xi �i yi

– single-valley preferences with respect to ≥ iff there exist pi ∈ Xi such that: xi ≤ yi ≤
pi ⇒ pi �i xi �i yi , and pi ≤ xi ≤ yi ⇒ pi �i yi �i xi

In an MCDA perspective, single-peaked preferences (single-valley, respectively) can be
interpreted as a gain criterion to bemaximized (a cost criterion to beminimized, respectively)
below the peak pi , and as a cost criterion to be minimized (a gain criterion to be maximized,
respectively) above the peak pi . Note also that single-peaked and single-valley preferences
embrace the case of gain and cost criteria: a gain criterion corresponds to single-peaked
preferenceswhen pi = maxi or single-valleypreferenceswith pi = mini , and a cost criterion
corresponds to single-peaked preferences when pi = mini or single-valley preferences with
pi = maxi .

When considering MR-Sort with single-peaked criteria, approved sets can not be repre-
sented using frontiers between consecutive categories. However, approved sets should be
compatible with preferences, i.e. such that:

{
xi ∈ Ah

i and x ′
i �i xi ⇒ x ′

i ∈ Ah
i

xi /∈ Ah
i and xi �i x ′

i ⇒ x ′
i /∈ Ah

i
(4)

In case of a single-peaked criterion with peak pi , we have:
⎧
⎪⎪⎨

⎪⎪⎩

xi ∈ Ah
i and pi ≤ x ′

i ≤ xi ⇒ x ′
i ∈ Ah

i
xi ∈ Ah

i and xi ≤ x ′
i ≤ pi ⇒ x ′

i ∈ Ah
i

xi /∈ Ah
i and pi ≤ xi ≤ x ′

i ⇒ x ′
i /∈ Ah

i
xi /∈ Ah

i and x ′
i ≤ xi ≤ pi ⇒ x ′

i /∈ Ah
i

(5)

Therefore it appears that with a single-peaked criterion with peak pi , the approved sets Ah
i

can be specified by two thresholds b
h
i , bh

i ∈ Xi with bh
i < pi < b

h
i defining an interval

of approved values: Ah
i = [bh

i , b
h
i ]. Analogously, for a single-valley criterion with peak pi ,

the approved sets Ah
i can be specified using b

h
i , bh

i ∈ Xi (such that bh
i < pi < b

h
i ) as

Ah
i = Xi \ ]bh

i , b
h
i [

Given a single-peaked criterion i for which approved set is defined by the interval Ah
i =

[bh
i , b

h
i ]. Consider the function φi : Xi → Xi defined by φi (xi ) = |xi − b

h
i +bh

i
2 |, i.e., the

absolute value of xi − b
h
i +bh

i
2 . Then, the approved set can be conveniently rewritten as :

Ah
i = {xi ∈ Xi : φi (xi ) ≤ b

h
i −bh

i
2 }. In other words, when defining approved sets, a single-

peaked criterion can be re-encoded into a cost criterion, evaluating alternatives as the distance

to the middle of the interval [bh
i , b

h
i ], and a frontier corresponding to half the width of this

interval.
Analogously, given a single-valley criterion i for which approved set are defined by the

interval Ah
i = Xi \ ]bh

i , b
h
i [. Using the same function φi , approved set can be conveniently
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rewritten as : Ah
i = {xi : φ(xi ) ≥ b

h
i −bh

i
2 }. Hence, when defining approved sets, a single-

valley criterion can be re-encoded into a gain criterion, evaluating alternatives as the distance

to the middle of the interval [bh
i , b

h
i ], and a frontier corresponding to half the width of this

interval.

4 Inv-MR-Sort: learning anMR-Sort model from assignment examples

MR-Sort preference parameters, e.g. weights, majority level, and limit profiles, can be either
initialized by the “end-user”, i.e. the decision-maker, or learned through a set of assignment
examples called a learning set. We are focusing on the learning approach. The aim is to find
the MR-Sort parameters that “best” fit the learning set.

We consider as input a learning set, denoted L , composed of assignment examples. Here,
an assignment example refers to an alternative a ∈ A� ⊂ X , and a desired category
c(a) ∈ {1, . . . , p}. In our context, the determination of MR-sort parameters values relies on
the resolution of a mathematical program based on assignment examples: the Inv-MR-Sort
problem takes as input a learning set L and computes weights (wi , i ∈ N ), majority level
(λ), and limit profiles (bh, h = 2..p) that best restore L , i.e. that maximizes the number of
correct assignments.

This learning approach—also referred to as preference disaggregation—has been previ-
ously considered in the literature. In particular, Mousseau and Slowinski (1998), Zheng et
al. (2014) learned the ELECTRE TRI parameters using mathematical programming formu-
lation (non-linear programming for the former, mixed-integer programming for the latter).
In contrast, Doumpos et al. (2009) propose an evolutionary approach to do so. Later, a more
amenable model, theMR-Sort—which derives from the ELECTRE TRImethod and requires
fewer parameters than ELECTRE TRI—was introduced by in Leroy et al. (2011). They pro-
posed aMIP implementation for solving the Inv-MR-Sort problem. In contrast, Sobrie (2016)
tackled it with ametaheuristic, andBelahcene et al. (2018)with a Boolean satisfiability (SAT)
formulation. Other authors proposed approaches to infer MR-Sort incorporating veto phe-
nomenon (Meyer & Olteanu, 2017), and imprecise/missing evaluations (Meyer & Olteanu,
2019), and Nefla et al. (2019) presented an interactive elicitation for the learning of MR-
Sort parameters with given profiles values. Recently (Kadzinski & Martyn, 2020) proposes
an enriched preference modelling framework that accounts for a different type of input.
Lastly, Minoungou et al. (2020) proposed an extension of Sobrie’s algorithm for solving
the Inv-MR-Sort problem with latent preference directions, i.e. considering criteria whose
preference direction, in terms of gain/cost, is not known beforehand.

In this paper, we aim to extend the resolution of the Inv-MR-Sort problem to the case
where each criterion can be either a cost criterion, a gain criterion, a single-peaked criterion,
or a single-valley criterion.

5 Exact resolution of Inv-MR-Sort with single-peaked criteria

In this section, we present a Mixed Integer Programming (MIP) formulation to solve the
Inv-MR-Sort problem when each criterion can either be a cost, gain, single-peaked, or single-
valley criterion. More precisely, the resolution will take as input a learning set containing
assignment examples and computes:

– the nature of each criterion (either cost, gain, single-peaked, or single-valley criterion),
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– the weights attached to criteria wi , and an associated majority level λ,
– the frontier between category Ch and Ch+1, i.e.—as defined in Sect. 3—the value bh

i

such that if criterion i is a cost or a gain criterion, and the interval [bh
i , b

h
i ] if criterion i

is a single-peaked or single-valley criterion.

For the sake of simplicity, we describe the mathematical formulation in the case of two
categories; the extension to more than two categories is discussed in Sect. 5.6.

Let us consider a learning set L , provided by the Decision Maker, containing assignment
examples corresponding to a set of reference alternatives A∗ = A∗1 ∪ A∗2 partitioned into
2 subsets A∗1 = {a j ∈ A∗ : a j ∈ C1} and A∗2 = {a j ∈ A∗ : a j ∈ C2}. We denote by J ∗,
J ∗1, and J ∗2 the indices j of alternatives contained in A∗, A∗1, and A∗2, respectively.

In the MIP formulation proposed in this section, we represent single-peaked or single-
valley criteria only. As discussed in Sect. 3.2, this is not restrictive because the cost and
gain criteria are particular cases of single-peaked (or single-valley) criteria, with a peak
corresponding to the endpoints of the evaluation scale.

5.1 Variables and constraints related to approved sets and profiles

Suppose that criterion i is single-peaked and that the set of approved values is defined by

Ai = [bi , bi ]. Let us denote b⊥
i = bi +bi

2 the middle of the interval of approved values.
Consider an alternative a j ∈ A∗ in the learning set; its evaluation on criterion i is approved

(i.e, a j
i ∈ Ai ) if a j

i ∈ [bi , bi ]. The condition |a j
i −b⊥

i | ≤ bi −bi
2 guaranties that a j

i ∈ [bi , bi ].
This allows to rewrite the set Ai as Ai = {xi ∈ Xi : |xi − b⊥

i | ≤ bi −bi
2 }.

To test whether a j
i ∈ Ai , we define α

j
i = a j

i − b⊥
i such that a j

i ∈ Ai ⇔ |α j
i | ≤ bi −bi

2 . In
other words, we re-encode criterion i as a cost criterion representing the distance to b⊥

i , and

accepted values correspond to α
j
i which are lower or equal to bi −bi

2 (i.e., the half the interval
[bi , bi ]).

In the following, we denote bi = bi −bi
2 . Hence, in our formulation, the setsAi are defined

using two variables: b⊥
i representing the middle of the interval [bi , bi ], and bi representing

half of the interval [bi , bi ] allowing to define Ai using bi and b⊥
i as Ai = {xi ∈ Xi :

|xi − b⊥
i | ≤ bi }.

In order to linearize the expression |α j
i | = |a j

i − b⊥
i | in the MIP formulation, we consider

two positive variables α
j+
i , α j−

i (defined such that |α j
i | is equal to α

j+
i + α

j−
i ) and binary

variables β
j

i verifying constraints (6a)–(6c), where M is an arbitrary large positive value.

Constraints (6b) and (6c) ensure that at least one variable among α
j+
i and α

j−
i is null.

α
j
i = a j

i − b⊥
i = α

j+
i − α

j−
i (6a)

0 ≤ α
j+
i ≤ β

j
i M (6b)

0 ≤ α
j−
i ≤ (1 − β

j
i )M (6c)

Let δi j ∈ {0, 1}, i ∈ N , j ∈ J ∗, be binary variables expressing the membership of

evaluation a j
i in the approved set Ai (δi j = 1 ⇔ a j

i ∈ Ai ). In order to specify constraints
defining δi j , we need to distinguish the case where criterion i is a single-peaked or a single-
valley criterion. In the first case, the single-peaked criterion is transformed into a cost criterion
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and the following constraints hold :

δi j = 1 ⇐⇒ |α j
i | ≤ bi �⇒ M(δi j − 1) ≤ bi − (α

j+
i + α

j−
i ) (7a)

δi j = 0 ⇐⇒ |α j
i | > bi �⇒ bi − (α

j+
i + α

j−
i ) < M δi j (7b)

δi j ∈ {0, 1} (7c)

In the second case, the single-valley criterion is transformed conversely into a gain criterion
as follows :

δi j = 1 ⇐⇒ |α j
i | ≥ bi �⇒ M(δi j − 1) ≤ (α

j+
i + α

j−
i ) − bi (8a)

δi j = 0 ⇐⇒ |α j
i | < bi �⇒ (α

j+
i + α

j−
i ) − bi < M δi j (8b)

δi j ∈ {0, 1} (7c)

In order to jointly consider both cases (7a)–(7b) and (8a)–(8b) in the MIP, we introduce a
binary variable σi , i ∈ N which indicates whether criterion i is a single-peaked (σi = 1) or
single-valley criterion (σi = 0). When σi = 1, the constraints (9c) and (9d) concerning the
single-peaked criteria hold while the constraints (9a) and (9b) for single-valley criteria are
relaxed, and conversely when σi = 0.

− M σi + M(δi j − 1) ≤ α
j+
i + α

j−
i − bi (9a)

α
j+
i + α

j−
i − bi < M δi j + M σi (9b)

M · (σi − 1) + M(δi j − 1) ≤ bi − α
j+
i − α

j−
i (9c)

bi − α
j+
i − α

j−
i < M δi j + M (1 − σi ) (9d)

δi j ∈ {0, 1} (7c)

σi ∈ {0, 1} (9e)

Lastly, in order to restrain the bounds of the single-peaked/single-valley interval within
[mini , maxi ], we add the 2 following constraints :

b⊥
i − bi ≥ mini (10a)

b⊥
i + bi ≤ maxi (10b)

5.2 Variables and constraints related to weights

As in Leroy et al. (2011), we define the continuous variables ci j , i ∈ N , j ∈ J ∗ such that
δi j = 0 ⇔ ci j = 0 and δi j = 1 ⇔ ci j = wi , where wi ≥ 0 represent the weight of criterion
i with the normalization constraint:

∑
∀i∈N wi = 1. To ensure the correct definition of ci j ,

we impose:

ci j ≤ δi j (11a)

δi j − 1 + wi ≤ ci j (11b)

ci j ≤ wi (11c)

0 ≤ ci j (11d)
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5.3 Variables and constraints related to the assignment examples

So as to check whether assignment examples are correctly restored by the MR-Sort rule, we
define binary variables γ j ∈ {0, 1}, j ∈ J ∗ equal to 1 when the alternative a j is correctly
assigned, 0 otherwise. The constraints below guarantees the correct definition of γ j (where
λ ∈ [0.5, 1] represents the MR-Sort majority threshold).

∑
i∈N ci j ≥ λ + M(γ j − 1),∀ j ∈ J ∗2 (12a)

∑
i∈N ci j < λ − M(γ j − 1),∀ j ∈ J ∗1 (12b)

5.4 Objective function

The objective for the Inv-MR-Sort problem is to identify the MR-Sort model which best
matches the learning set. Therefore, in order to maximize the number of correctly restored
assignment examples, the objective function can be formulated as: Max

∑
j∈J∗ γ j

Finally, the MIP formulation for the Inv-MR-Sort problem with single-peaked and single
valley criteria is given bellow (where M an arbitrary large positive value, and ε an arbitrary
small positive value). Table 1 synthesizes the variables involved in thismathematical program.

max
∑

j∈J∗
γ j (13a)

∑
i∈N ci j ≥ λ + M(γ j − 1) ∀ j ∈ J ∗2 (12a)

∑
i∈N ci j + ε ≤ λ − M(γ j − 1) ∀ j ∈ J ∗1 (12b)

∑
i∈N wi = 1

ci j ≤ δi j ∀ j ∈ J ∗,∀i ∈ N (11a)

ci j ≥ δi j − 1 + wi ∀ j ∈ J ∗,∀i ∈ N (11b)

ci j ≤ wi ∀ j ∈ J ∗,∀i ∈ N (11c)

b⊥
i − a j

i = α
j+
i − α

j−
i ∀ j ∈ J ∗,∀i ∈ N (6a)

α
j+
i ≤ β

j
i M ∀ j ∈ J ∗,∀i ∈ N (6b)

α
j−
i ≤ (1 − β

j
i )M ∀ j ∈ J ∗,∀i ∈ N (6c)

− M · σi + M(δi j − 1) ≤ α
j+
i + α

j−
i − bi ∀ j ∈ J ∗,∀i ∈ N (9a)

α
j+
i + α

j−
i − bi + ε ≤ M · δi j + M · σi ∀ j ∈ J ∗,∀i ∈ N (9b)

M · (σi − 1) + M(δi j − 1) ≤ bi − α
j+
i − α

j−
i ∀ j ∈ J ∗,∀i ∈ N (9c)

bi − α
j+
i − α

j−
i + ε ≤ M · δi j + M · (1 − σi ) ∀ j ∈ J ∗,∀i ∈ N (9d)

b⊥
i − bi ≥ mini ∀i ∈ N (10a)

b⊥
i + bi ≤ maxi ∀i ∈ N (10b)

ci j ∈ [0, 1], δi j ∈ {0, 1} ∀ j ∈ J ∗,∀i ∈ N (13c)

α
j+
i , α

j−
i ∈ R

+ ∀ j ∈ J ∗,∀i ∈ N (13d)

β
j

i ∈ [0, 1] ∀ j ∈ J ∗,∀i ∈ N (13e)

bi ∈ R, wi ∈ [0, 1], b⊥
i ∈ R, σi ∈ {0, 1} ∀i ∈ N (13f)
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Table 1 Description of decision variables

Variable Domain Number Definition
of variables

α
j+
i R

+ n × |A�| First component of the absolute value |a j
i − b⊥

i |
α

j−
i R

+ n × |A�| Second component of the absolute value of |a j
i − b⊥

i |
β

j
i {0, 1} n × |A�| Binary variable indicating the sign of a j

i − b⊥
i

σi {0,1} n σi = 1 If criterion i is single-peaked, σi = 0 if i is single-valley

γ j {0,1} |A�| γ j = 1 if alternative a j is correctly assigned by the model, γ j = 0 if not

δi j {0,1} n × |A�| δi j = 1 if a j
i ∈ Ai , δi j = 0 if a j

i /∈ Ai

ci j [0,1] n × |A�| ci j = 1 if a j
i ∈ Ai (i.e, if δi j = 1), ci j = 0 if a j

i /∈ Ai (i.e, if δi j = 0)

b⊥
i R n Middle of the interval [bi , bi ]

bi R n Value of half the width of the interval [bi , bi ] on criterion i

wi [0,1] n Weight of criterion i

λ [0,1] 1 Majority threshold

γ j ∈ {0, 1} ∀ j ∈ J ∗ (13g)

λ ∈ [0.5, 1] (13h)

5.5 Interpretation of the optimal solution

Once the optimal solution to the above mathematical program is found, it is necessary to
derive, from the optimal solution, the corresponding MR-Sort model, i.e:

– the nature of each criterion (either cost, gain, single-peaked, or single-valley criterion),
– the weights attached to criteria wi , and associated majority level λ,
– the frontier between category C1 and C2, i.e., the value bi if criterion i is a cost or a

gain criterion, and the interval [bi , bi ] if criterion i is a single-peaked or single-valley
criterion.

Criteria weights wi , and associated majority level λ are directly obtained from the cor-
responding variables in the optimal solution. The preference directions and criteria limit
profiles are deduced as follows:

– Caseσi = 1 (criterion i is represented as a single-peaked criterion in the optimal solution):

– if b⊥
i − bi ≤ min j∈J∗ {a j

i }, then criterion i is a cost criterion, and the maximal
approved value on criterion i is b⊥

i + bi , i.e.Ai =]−∞, b⊥
i + bi ], see Fig. 1 case 3,

– if b⊥
i + bi ≥ max j∈J∗ {a j

i }, then criterion i is a gain criterion, and the minimal
approved value on criterion i is b⊥

i − bi , i.e. Ai = [b⊥
i − bi ,∞[, see Fig. 1 case 2,

– otherwise, i is a single-peaked criterion, and Ai = [b⊥
i − bi , b⊥

i + bi ], see Fig. 1
case 1

– Case σi = 0 (criterion i is represented as a single-valley criterion in the optimal solution):
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Fig. 1 Three cases for single-peaked criteria

Fig. 2 Three cases for single-valley criteria

– if b⊥
i − bi < min j∈J∗{a j

i }, then criterion i is a gain criterion, and the minimal
approved value on criterion i is b⊥

i + bi , i.e. Ai = [b⊥
i + bi ,∞[, see Fig. 2 case 3,

– if b⊥
i + bi > max j∈J∗ {a j

i }, then criterion i is a cost criterion, and the maximal
approved value on criterion i is b⊥

i − bi , i.e.Ai = [−∞, b⊥
i − bi ], see Fig. 2 case 2,

– otherwise, i is a single-valley criterion, and Ai = [−∞, b⊥
i − bi ] ∪ [b⊥

i + bi ,∞[,
see Fig. 2 case 1.

5.6 Extension tomore than 2 categories

Our framework can be extended to more than two categories, at the cost of adding sup-
plementary variables and constraints to the mathematical program. So as to extend to p
categories (p > 2), sets of approved values Ah

i ⊆ Xi on criterion i (i ∈ N ) should be
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defined with respect to a category level h (h = 2, · · · , p), and should be embedded such that
Ap

i ⊆ Ap−1
i ⊆ . . . ⊆ A2

i .

In the MIP formulation, the variables δi j , ci j , α
j+
i , α j−

i , β j
i , bi , and b⊥

i should be indexed

with a category level h = 2..p, and become δh
i j , ch

i j , α
jh+
i , α jh−

i , β jh
i , bh

i , and bh⊥
i , respec-

tively. Constraints (12a) and (12b) relative to the assignment examples should be replaced
by the following ones:

• ∑
i∈N cp−1

i j ≥ λ + M(γ j − 1), ∀a j ∈ C p

• ∑
i∈N c1i j + ε ≤ λ − M(γ j − 1), ∀a j ∈ C1

• ∑
i∈N ch−1

i j ≥ λ + M(γ j − 1), ∀a j ∈ Ch ⊂ [C2, C p−1]
• ∑

i∈N ch
i j + ε ≤ λ − M(γ j − 1), ∀a j ∈ Ch ⊂ [C2, C p−1]

Lastly, constraints on bh
i , and bh⊥

i should be imposed so as to guaranty that the approved

sets are embedded such that Ap−1
i ⊆ Ap−2

i ⊆ . . . ⊆ A1
i , i.e, [bp−1⊥

i − bp−1
i , bp−1⊥

i +
bp−1

i ] ⊆ [bp−2⊥
i − bp−2

i , bp−2⊥
i + bp−2

i ] ⊆ . . . ⊆ [b1⊥i − b1i , b1⊥i + b1i ].

6 Experiments, results and discussion

In this section, we report numerical experiments to empirically study how the proposed
algorithm behaves in terms of computing time, ability to generalize, and ability to restore an
MR-Sort model with the correct preference direction (gain, cost, single-peaked, or single-
valley). The experimental study involves artificially generated datasets and ex-post analysis
of a real-world case study.

6.1 Tests on generated datasets

In this section we are focusing on synthetic data.

6.1.1 Experimental design

Assuming a generated MR-Sort modelM0 representing perfectly the Decision Maker pref-
erences, we first randomly generate n-tuples of values considered as alternatives (each tuple
corresponding to n criteria evaluations). Then we simulate the assignments of these alterna-
tives following the model M0 and obtain, therefore, assignment examples which constitute
the learning set L , used as input to our MIP algorithm. Alternatives are generated in such a
manner to obtain a balanced dataset (i.e. equal number of assignments in each category). The
Inv-MR-Sort problem is then solved using the proposed algorithm and, as a result, generating
a learned model noted M′.
Generation of instances and model parameters We consider a learning set of 200 assignment
examples. A vector of performance values of alternatives is drawn in an independent and
identically distributed manner, such that the performance values are contained in the unit
interval discretized by tenths. We then randomly generate profiles values (either bi , or bi and
bi ) for each criterion; also these values are chosen with the unit interval discretized by tenths.
In order to draw uniformly distributed weights vectors (see Bulter et al., 1997), we uniformly
generate |N | − 1 random values in [0, 1] sorted in ascending order. We then prepend 0 and
append 1 to this set of values obtaining a sorted set of |N | + 1 values. Finally, we compute
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the difference between each successive pair of values resulting in a set of |N | weights such
that their sum is equal to 1. We randomly draw λ in [0,1].

In order to assess the ability of the algorithm to restore preference directions, we consider q
criteria out of n for whichwe consider the preference direction as unknown, andwe uniformly
draw a random preference direction among gain, cost, single-peaked and single-valley. For
each single-peaked and single-valley criteria, the peak is uniformly drawn in the [0,1] interval
discretized by tenths.1 Hence, the preference direction of these q criteria are assumed to be
unknown. Meanwhile, the remaining n − q criteria are considered as gain criteria.
Performance metrics and tests parameters To study the performance of the proposed algo-
rithm, we are considering three main metrics.

– Computing time: we consider here the time (CPU) necessary to solve the MIP algorithm.
– Restoration rate of assignment examples as our MIP algorithm is an exact method, it

is expected that the entire learning set L will be restored by M′. Therefore we assess
the restoration performance on a test set which is run throughM0 and M′. This test set
comprises randomly generated alternatives not used in the learning set; that is, assignment
examples that the algorithm has never seen. This allows to assess the restoration rate (also
called classification accuracy in generalization or C Ag), that is, the ratio between the
number of alternatives identically assigned in categories by both M0 and M′, and the
number of alternatives.

– Preference direction restoration rate (PDR) considering the set of criteria where the
preference direction is unknown, PDR is defined as the ratio between the number of
criteria where the preference direction has been correctly restored and the cardinality of
this set.

In order to account for the statistical distribution of all the randomly selected values,
we independently select 100 different learning sets, each one associated with a randomly
generated M0 MR-Sort model. We then ran 100 independent experiments and aggregated
the results.

In our experiments, we vary n the number of criteria in {4, 5, 6, 7, 8, 9}; q the number
of criteria with unknown preference directions vary in {0, 1, 2, 3, 4}, and the number of
categories is set to 2. The test set is composed of 10,000 randomly generated alternatives.

We executed experiments on a server endowed with an Intel(R) Xeon(R) Gold 6248 CPU
@ 2.50 GHz, 80 cores and 384 GB RAM. The tests were performed using the Cplex solver
version 20.1.0 IBM (2017) on the server using 10 reserved threads and limiting the computing
time to a maximum of 1h.

6.1.2 Results

In the following we present the results of the randomly generated tests.

Computing time Table 2 presents the median CPU time of the terminated instances (timeout
set to 1 hour). The execution time increases with the number of criteria and the number of
criteria with unknown preference direction up to n = 7 and q = 2. Beyond this limit, the
execution time fluctuates, and we observe a relatively large dispersion of CPU times. For
instance, when n = 7 and q = 3, the median value of CPU time is just above 1 minute (76.3
sec.), while the 90%th percentile value exceeds 1 hour.

1 It should be noted that if the peak is drawn as an extreme value, the single-peaked (or single-valley) criterion
actually corresponds to a monotone (gain or cost) criterion.

123



Annals of Operations Research (2023) 325:795–817 809

Ta
bl
e
2

M
ed
ia
n
C
PU

tim
e
(s
ec
.)
of

in
st
an
ce
s
so
lv
ed

in
1h

/9
th

de
ci
le
of

C
PU

tim
e,
an
d
pr
op
or
tio

n
of

te
rm

in
at
ed

in
st
an
ce
s,
w
ith

4
to

9
cr
it.

(n
),
0
to

4
cr
it.

w
ith

un
kn

ow
n
pr
ef
.

di
r.
(q
)

U
nk
no
w
n

N
um

be
r
of

cr
ite
ri
a
(n
)

di
r.
(q
)

4
5

6
7

8
9

0
0.
34

s/
0.
65

s
0.
56

s/
1.
55

s
0.
84

s/
2.
42

s
2.
38

s/
5.
18

s
2.
61

s/
8.
92

s
3.
37

s/
11

.3
7
s

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

1
1.
51

s/
3.
96

s
3.
23

s/
11

.4
7
s

4.
53

s/
21

.1
4
s

7.
22

s/
35

.4
9
s

19
.1
5
s/
11

8.
1
s/

18
.6
8
s/
34

2.
9
s

10
0%

10
0%

10
0%

10
0%

10
0%

91
%

2
6.
12

s/
38

.8
7
s

12
.9
7
s/
57

.7
s

30
.1
s/
14

7.
6
s

54
.4
s/
43

0.
6
s

43
.1
9/

>
1
h

58
.0
s/

>
1
h

10
0%

10
0%

94
%

90
%

72
%

59
%

3
37

.4
8
s/
27

2.
7
s

76
.6
8
s/

>
1
h

72
.4
6
s/

>
1
h

76
.3
s/

>
1
h

59
.3
2
s/

>
1
h

25
.9
1
s/

>
1
h

95
%

89
%

80
%

54
%

47
%

31
%

4
96
.3
4
s/

>
1
h

12
9.
49

/>
1
h

61
.0
1/

>
1
h

10
8.
25

/>
1
h

22
.1
7/

>
1
h

23
.6
3/

>
1
h

59
%

57
%

52
%

42
%

27
%

28
%

123



810 Annals of Operations Research (2023) 325:795–817

Fig. 3 Preference direction restoration rate (PDR) considering 1 to 4 criteriawith unknownpreference direction
(q) (average performance over terminated instances)

Table 3 PDR (averaged over n)
according to the range of weight
of criterion c1

w1 ≤ 1
2n

1
2n < w1 < 2

n w1 ≥ 2
n

PDR 0.44 0.74 0.78

Additionally, Table 2 shows the percentage of instances that terminated within the time
limit, set to 1 hour. Unsurprisingly, the number of terminated instances decreases with both
the number of criteria and the number of criteria with unknown preference direction. In
particular, the rate jumps from 95% with 4 criteria to 31% with 9 criteria in the model when
q = 3.

Restoration rate of the test set Regarding the classification accuracy (CAg) of the learned
models (involving 4 to 9 criteria in the model and 0 to 4 criteria with unknown preference
direction), globally, the performance values are between 0.9 and 0.95, with 0.93 on average.
We do not notice a significant trend over both the number of criteria and the number of criteria
with unknown preference directions. However, the figures reflect the performance of only
terminated instances. Therefore, the CAg rate could degrade when considering executions
above the timeout, assuming these are the most difficult instances to learn.

Preference direction restoration rate Figure 3 illustrates the evolution of the preference
direction restoration rate (PDR). Globally, the PDR falls with the increase of the number
of criteria in the model. In addition, this indicator degrades moderately with the number of
criteria with unknown preference directions with respectively 55% and 35% for q = 1 and
q = 4 considering 9 criteria in the model.

The results illustrated in the Table 3 give more insights of the behaviour of the algorithm
regarding PDR. We consider instances involving one criterion with unknown preference
direction, q = 1 (it corresponds to criterion 1). We analyze how the importance of this
criterion (w1) on the restoration rate of the preference direction. ThePDR rate is averaged over
the number of criteria in the model (n ∈ {4, .., 9}) and distributed over three intervals: [0, 1

2n ]
,] 1
2n , 2

n [, [ 2n , 1]which can be interpreted as three levels of importance ofw1 (respectively low
level, medium level, and high level). As expected, the average PDR rises with the importance
ofw1; we have 44% of PDR for a low level of importance whereas 74% and 78% correspond
respectively to a medium and high level of the importance of w1. It appears that the MIP
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has more difficulties in correctly detecting the preference direction of a criterion when this
criterion has low importance.

6.1.3 Discussion

The experiments carried out on randomly generated instances give us the following insights.
Although exact methods are typically computationally intensive, the computation time is

relatively affordable for medium-sized models (less than 3 minutes for 200 alternatives in
the learning set and up to n = 9 and q = 4 in the model when the timeout is set to 1 hour).
Moreover, The computation time could be reduced as our experiments were performed with
a limited number of threads set to 10.

The algorithm can restore accurately new assignment examples based on the learned
models (0.93 on average up to 9 criteria) and remains relatively efficient with the number of
criteria with unknown preference directions. Extended experiments should be done without
the limit of time to accurately predict the restoration rate in generalization with the increase
of parameters n and q .

Our algorithm restores with difficulty preference directions when the number of criteria
grows while keeping the learning set constant. The PDR rate also decreases with the increase
of the number of criteriawith unknownpreference direction in themodelwith similar learning
set sizes (but still greater than the random choice that is 25%). It would be instructive to
discover the algorithm’s behaviour in terms of PDR for non-terminated instances for more
insights.

Finally, the restoration rate of criteria preference direction correlates with such criteria’s
importance in the model. It appears that the preference direction of criteria with importance
below 1

2n are the most difficult to restore. These results are valid with a learning set of fixed
size (200); It would be interesting to investigate experimentally whether larger learning sets
would make it possible to accurately learn the direction of preference.

6.2 Tests on a real-world data: the ASA dataset

The ASA2 dataset (Lazouni et al., 2013) constitutes a list of 898 patients evaluated on 14
medical indicators (see Table 4) enabling to assign patients into 4 ordered categories (ASA1,
ASA2, ASA3, ASA4). These categories correspond to 4 different scores that indicate the
patient health. Based on the score obtained for a given patient, anesthesiologists decide
whether or not to admit such a patient to surgery. The relevance of the dataset for our tests
relies on the presence of a criterion with single-peaked preference, which is “Blood glucose
level" (i.e. glycemia). For practicality, we restrain the ASA dataset to the 8 most relevant
criteria for our experiments. They are in bold in Table 4

To have two categories, we first divide the dataset into two parts: category 2 representing
patients in categories ASA1 and ASA2 (67% of the population) and category 1 representing
those in categories ASA3 and ASA4 (33% of the population).

In the following, we illustrate how to learn the model parameters and the preference
type (gain, cost, single-peaked (SP), single-valley) of the criterion “Glycemia” with three
different sets of assignment examples chosen in the original set of 898 patients. In this
medical application, we suppose that the “Glycemia” criterion type is unknown and expect
to “discover” a single-peaked criterion. We report for each experiment the number of distinct
performances considered per criterion.

2 ASA stands for “American Society of Anesthesiologists”.
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Table 4 Original criteria in the ASA dataset

Attribute Domain (Unit) Direction

Age [0−105] (year) min.

Diabetic {0,1} min.

Hypertension {0,1} min.

Respiratory failure {0,1} min.

Heart failure {0,1} min.

Heart rate [55−123] (bpm) SP

Heart rate steadiness {0,1} max.

Pacemaker {0,1} min.

Atrioventricular block {0,1} min.

Left ventricular hypertrophy {0,1} min .

Oxygen saturation [43−100](%) max.

Blood glucose level (glycemia) [0.5−3.8](g/l) SP

Systolic blood pressure [9−20.5](cmHg) min.

Diastolic blood pressure [5−13](cmHg) min.

First Dataset we initially consider the whole original dataset with all 898 assignment
examples in the learning set as input to our MIP algorithm. We infer the type (gain, cost,
single-peaked, single-valley) of criterion Glycemia and the MR-Sort parameters from this
first dataset.

The inferredmodel given in Table 5 is computed in 40h33mn execution time. The obtained
model allows restoringC A = 99.4%of the assignment examples in the learning set.However,
in the inferred model, the glycemia criterion is detected as a cost criterion to be minimized
(whereas we expect it to be inferred as single-peaked). Note that the inferred value for the
limit profile on the glycemia criterion (1.18 g/l) makes it possible to distinguish patients
with hyperglycemia from the others but does not distinguish hypoglycemia from normal
glycemia (normal glycemia corresponds to [0.9,1.2]). This is due to the distribution of the
glycemia values over the patients shown in Fig. 4. This distribution shows that all patients
with glycemia above 1.2g/l (hyperglycemia) are assigned to Category 1. However, some
patients with normal glycemia [0.9,1.2] are also assigned to Category 1, and some patients
with glycemia equal to 0.8 g/l or below (hypoglycemia) are assigned to Category 2.

In the following, we check if it is possible to restore the “correct” preference direction
(i.e. single-peaked) with a subset of carefully selected patients. To do so, we will remove the
patients with normal glycemia ([0.9, 1.2] g/l) assigned to category 1.

Second Dataset: in a second step, we choose to remove the 97 patients of the learning
set assigned to Category 1 and whose glycemia values lie within [0.9, 1.2] g/l, i.e., with
normal glycemia. Our goal is to foster the algorithm to retrieve a single-peaked preference
for the glycemia criterion. The distribution of glycemia values in the new learning set of the
remaining 801 patients is provided in Fig. 4.

Using this second learning set, we solve the inference problem with the MIP algorithm.
Computation time is 56mn, and the inferredmodel (see Table 6) restores 99.8%of the learning
set. Once again, the restoration rate is high. However, the glycemia criterion is still detected
as a cost criterion to be minimized (instead of a single-peaked criterion). The inferred model
does not distinguish patients with hypoglycemia from normal glycemia ones (Fig. 5).

123



Annals of Operations Research (2023) 325:795–817 813

Table 5 Inferred model with the first dataset (898 assignment examples)

Attributes Instance settings Model parameters learned

#values Direction Pref. dir. bi wi Pref. dir.

Age 103 (origin) min. Known 72.9 0.01 _

Diabetic 2 (origin) min. Known 0.99 0 _

Hypertension 2 (origin) min. Known 0 0.01 _

Respiratory F 2 (origin) min. Known 0.99 0.88 _

Pacemaker 2 (origin) min. Known 0 0.02 _

Systolic BP 24 (origin) min. Known 15 0.03 _

Diastolic BP 17 (origin) min. Known 8.92 0.02 _

Glycemia 82 (origin) SP Unknown 1.18 0.03 min

λ = 0.98

Fig. 4 Distribution of patients glycemia in the first dataset

Fig. 5 Distribution of patients glycemia in the second dataset
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Table 6 Inferred model with the second dataset (801 assignment examples)

Attributes Instance settings Model parameters learned

#values Direction Pref. dir. bi wi Pref. dir.

Age 103 (origin) min. Known 5.9 0 _

Diabetic 2 (origin) min. Known 0.99 0 _

Hypertension 2 (origin) min. Known 0 0.01 _

Respiratory F 2 (origin) min. Known 0 0.01 _

Pacemaker 2 (origin) min. Known -0.01 0 _

Systolic BP 23 min. Known 15 0.01 _

Diastolic BP 15 min. Known 8.5 0.01 _

Glycemia 82 (origin) SP Unknown 1.18 0.96 min

λ = 0.99

Fig. 6 Patients glycemia in the third dataset

Third Dataset Finally, we remove patients in Category 2 for which the glycemia value
is lower than 0.9 (hypoglycemia). This new configuration leads to a dataset of 624 patients.
In this third dataset, the distribution of glycemia values (see Fig. 6) in which hypo and
hyperglycemic patients are assigned to Category 1 while patients with normal glycemia are
in Category 2.

With this dataset, the MIP algorithm runs in 4mn30s and results are presented in Table 7.
The computed model restores all the assignment examples, and glycemia is now detected as
a single-peaked criterion. Furthermore, the approved values [0.93, 1.18] can be reasonably
interpreted as normal glycemia.

This illustrative example shows that our model can infer an MR-Sort model and retrieve
single-peaked criteria; however, to do so, the learning set should be sufficiently informative.
Specifically, when inferring from a dataset a “ground truth” in which a specific criterion
i is single-peaked with a set of acceptable values Ai = [bi , bi ], it is necessary that some

examples in the learning set are evaluated on criterion i below bi , in [bi , bi ], and above bi .
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Table 7 Inferred model with the third dataset (624 assignment examples)

Attributes Instance settings Model parameters learned

#values Direction Pref. dir. bi wi Pref. dir.

Age 103 (origin) min. Known 3.3 0 _

Diabetic 2 (origin) min. Known 0 0 _

Hypertension 2 (origin) min. Known 0 0 _

Respiratory F 2 (origin) min. Known 0.99 0 _

Pacemaker 2 (origin) min. Known 0 0 _

Systolic BP 23 min. Known 12.88 0.01 _

Diastolic BP 15 min. Known 9 0.01 _

Glycemia 73 (origin) SP Unknown [0.93,1.18] 0.99 S P

λ = 1

7 Conclusion and future work

This paper proposes aMIP-basedmethod to infer anMR-Sort model from a set of assignment
examples when considering possibly non-monotone preferences. More precisely we learn an
Mr-Sort model with criteria that can be either of type (i) cost, (ii) gain, (iii) single-peaked or
(iv) single-valley criteria. Our inference procedure simultaneously infers from the dataset an
MR-Sort model end the type of each criterion.

Our experimental test on simulated data shows that theMIP resolution can handle a dataset
involving 200 examples and nine criteria. Experiments suggest that the correct restoration of
the criteria type (i)–(iv) requires a dataset of significant size.

Our work opens avenues for further research. First, it would be interesting to test our
methodology on real-world case studies to assess further and investigate our proposal’s
performance and applicability. Another research direction aim at pushing back computational
barrier: our MIP resolution approach faces a combinatorial explosion. The design of an
efficient heuristic would be beneficial in this respect.
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