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Abstract
The Owen graph value for games with coalition structure and graph restricted communica-
tion was introduced by Vázquez-Brage et al. (Games Econ Behav 12: 42–53, 1996). It has
been known that the value satisfies the axiom of component efficiency, requiring that the
players of a component share the benefits generated by this component among themselves.
In this paper we extend the Owen graph value to an efficient value and we provide axiomatic
characterizations of this value.

Keywords TU-game · Coalition structure · Owen value · Graph · Owen graph value ·
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1 Introduction

Cooperation among players can be depicted by a cooperative game with transferable utility
(shortly, a TU-game). In this model, every subset of players can form a feasible coalition
and each player in any coalition can obtain payoff from their cooperation. However, in
many practical situations, the collection of feasible coalitions is restricted by some social,
economical, communication, or technical structure. For this reason, one begins to consider
the TU-games with cooperation structures.

Aumann and Drèze (1974) seem to be the first to consider TU-games with coopera-
tion structure described by a coalition structure, i.e., a partition of the grand coalition. For
this model, Owen (1977) introduced a modification of the Shapley value (Shapley, 1953),
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named the Owen value. Myerson (1977) introduced another class of TU-games with coop-
eration structures given by communication graphs on the player set and he proposed a
famous allocation rule, called the Myerson value, applying the Shapley value to the so-called
graph-restricted game. Inspired by Owen and Myerson’s study, Vázquez-Brage et al. (1996)
considered TU-games with coalition and graph structures by combining the two cooperation
structures above and they introduced the Owen graph value for this model.

In a TU-game with graph structure, the Myerson value satisfies component efficiency,
i.e., for each component of the graph, the total payoff to its players equals the worth of
that component. This means that the worth of the grand coalition is not fully distributed
among its members. Casajus (2007) developed the first efficient extension of the Myerson
value to prevent the surplus. Later, Béal et al. (2015) suggested the interpretation that the
communication graph does not necessarily affect the productivity but can influence the way
the players distribute the worth. This interpretation supports values that are efficient, i.e.,
values which distribute the worth of the grand coalition among the players.

A variety of efficient extensions of theMyerson value and the other valueswith component
efficiencyhave beendeveloped in the literature. For example, the efficient egalitarianMyerson
value (van den Brink et al., 2012; Béal et al., 2015), the efficient two-step egalitarian surplus
Myerson value (Casajus, 2007; Hu et al., 2018), the efficient α-proportional Myerson value
(Shan et al., 2019), the efficient quotient Myerson value (Li & Shan, 2020), the efficient
average tree solution and the efficient compensation solution (Béal et al., 2018), the egalitarian
efficient Aumann-Drèze value (Hu et al., 2019), the efficient egalitarian Owen graph value
(Shan et al., 2020).

In practice, it might be not desirable that the Owen graph value satisfies component
efficiency. To illustrate this, we provide an example of the research fund allocation that is
similar to the one used in van den Brink et al. (2012) but now both coalition and graph
structures are considered. A research fund that has money available to distribute amongst
individual researchers and has the policy to stimulate interdisciplinary research, therefore a
joint application of researchers from different disciplines will receive higher research grand.
Moreover, it requires that only a group of researchers who can communicate can jointly
submit a proposal. The set of researchers from the same discipline can be viewed as a
(priori) union and two researchers are connected by a link if they can directly communicate.
Hence, this situation can be described as a TU-game with coalition and graph structures
(see Example 3.1). Although usually not all researchers can communicate, either directly
or indirectly, still the full research budget is available and will be distributed. This requires
a value to satisfy efficiency. In this paper we shall generalize the Owen graph value for a
TU-game with coalition and graph structures as an efficient value.

The goal of this paper is to give an efficient extension of the Owen graph value for TU-
games with coalition and graph structures, named the efficient partition surplus Owen graph
value, by first assigning to each player his Owen graph value and then distributing the surplus
by the two-step partition egalitarian surplus value. The two-step partition egalitarian surplus
value requires that the surplus is equally distributed among all unions in the first step and
then the payoff of each union in the first step is equally distributed among its players. We
provide axiomatizations of this efficient value.

This article is organized as follows. In Sect. 2 we give preliminaries. Section 3 introduces
the efficient partition surplus Owen graph value and we provide axiomatic characterizations
of this efficient value. Section 4 contains some concluding remarks.

123



Annals of Operations Research (2023) 320:379–392 381

2 Preliminaries

2.1 TU-games and TU-games with coalition structures

A TU-game is a pair (N , v) consisting of a finite set of players N = {1, 2, . . . , n} and a
characteristic function v defined on 2N with that assigns to each coalition S ⊆ N a real
number v(S), called the worth of S, and such that v(∅) = 0. We denote by G(N ) the set of
TU-games with player set N . For any coalition S ⊆ N , the cardinality of S is denoted by |S|
or s. For simplicity, we shall write S ∪ i , S \ i instead of S ∪ {i} and S \ {i}, respectively.

For nonempty coalition T ⊆ N , the subgame (T , vT )of (N , v) is definedbyvT (S) = v(S)

for any S ⊆ T .
An allocation rule or a value f on G(N ) is a map that assigns a vector f (N , v) ∈ R

n to
each game (N , v). The Shapley value (Shapley, 1953) is the value defined by

Shi (N , v) =
∑

S: S⊆N\i

|S|!(|N | − |S| − 1)!
|N |!

[
v(S ∪ i) − v(S)

]
, for any i ∈ N .

A coalition structure P on N is given by a partition P = {P1, P2, . . . , Pm} of player set N .
Every element of a partition is called a (priori) union. LetC(N ) denote the set of all coalition
structures on N . In particular, we call Pn = {{1}, {2}, . . . , {n}} and PN = {N } the trivial
coalition structures. For any i ∈ Pk , P−i ∈ C(N ) is defined as P−i = {

P1, . . . , Pk−1, Pk \
{i}, Pk+1, . . . , Pm, {i}}. For any nonempty T ⊆ N , the restricted coalition structure PT to
T is defined by PT = {Pk ∩ T �= ∅ | k ∈ M}, where M = {1, 2, . . . ,m}.

A game with coalition structure is a triple (N , v, P) where (N , v) is a TU-game and P a
coalition structure on N . We denote the set of all such games by U(N ).

For any (N , v, P) ∈ U(N ) with P = {
Pk | k ∈ M = {1, 2, . . . ,m}}, the quotient game

(M, vP ) ∈ G(M) is the TU-game in which every union is a player, concretely, vP (R) =
v(

⋃
k∈R Pk) for any R ⊆ M .

A value onU(N ) is a map f : U(N ) → R
n that assigns a payoff vector f (N , v, P) ∈ R

n

to each (N , v, P) ∈ U(N ). The Owen value (Owen, 1977) Ow is defined by

Owi (N , v, P) =
∑

R⊆M\h

∑

S⊆Ph\i

|R|!(|M | − |R| − 1)!|S|!(|Ph | − |S| − 1)!
|M |!|Ph |!

[
v
( ⋃

r∈R

Pr ∪ S ∪ i
)

− v
( ⋃

r∈R

Pr ∪ S
)]

,

for any (N , v, P) ∈ U(N ) and i ∈ Ph ∈ P . The Owen value can be characterized by the
properties of efficiency, null player, symmetry in the unions, symmetry in the quotient and
additivity below.

Efficiency (E). For any (N , v, P) ∈ U(N ),
∑

i∈N fi (N , v, P) = v(N ).
Null player (NP). For any (N , v, P) ∈ U(N ) and any i ∈ N , if i is a null player, i.e.,

v(S ∪ i) = v(S) for all S ⊆ N \ i , then fi (N , v, P) = 0.
Symmetry in the unions (SU). For any (N , v, P) ∈ U(N ), Pk ∈ P and i, j ∈ Pk , if

v(S ∪ i) = v(S ∪ j) for any S ⊆ N \ {i, j}, then fi (N , v, P) = f j (N , v, P).
Symmetry in the quotient (SQ). For any (N , v, P) ∈ U(N ) and Pk, Ps ∈ P =

{P1, P2, . . . , Pm}, if vP (R∪k) = vP (R∪s) for any R ⊆ M \{k, s}, then∑
i∈Pk fi (N , v, P)

= ∑
i∈Ps fi (N , v, P).

Additivity (A). For any (N , v, P), (N , w, P) ∈ U(N ), f (N , v + w, P) = f (N , v, P) +
f (N , w, P) where (v + w)(S) = v(S) + w(S) for any S ⊆ N .
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2.2 TU-games with coalition and graph structures

A graph is a pair (N , L) consisting of a set N of nodes representing players and a set
L ⊆ LN = {{i, j} | i, j ∈ N , i �= j

}
of links. LN is the complete graph and each unordered

pair {i, j} ∈ L with i, j ∈ N a link. For simplicity of notation, we often write i j instead of
{i, j}. We denote the set of all graphs on N by g(N ).

We say that two nodes i and j in L are connected if i j ∈ L or there exists a sequence
of nodes i1, i2, . . . , i p with i = i1, j = i p such that ik ik+1 ∈ L for k = 1, 2, . . . , p − 1.
The graph (N , L) is connected if all i, j ∈ N are connected in L . A nonempty set S ⊆ N is
connected if every pair of nodes in S is connected in the subgraph (S, LS) induced by S in
L , in which LS = {i j ∈ L | i, j ∈ S}. We will assume that S is connected whenever s = 1.
A set T ⊆ N is called a component of the graph (N , L) if T is a maximal connected subset,
i.e., T is connected in the graph and, for all T ∪ i is not connected for each i ∈ N \ T . Let
C(N , L) denote the set of all components in (N , L) and C(S, L) the set of the components
of S in (S, LS). The component of N containing i is often denoted by Ci .

The set of all links incident with the node i is denoted by Li = {l ∈ L | i ∈ l}. For any
δ ⊆ L , the graph L−δ = L \ δ is the graph obtained from (N , L) by deleting the links in δ.
In particular, we shall write L−i j and L−i instead of L−{i j} and L \ Li , respectively.

A triple (N , v, L) is a game with graph structure, or simply a graph game, consisting of
a TU-game (N , v) ∈ G(N ) and a graph (N , L) ∈ g(N ). A graph game is connected if the
associated graph (N , L) is connected. The sets of graph games and connected graph games
on N are denoted by G and GC , respectively. Clearly, GC ⊆ G.

Myerson (1977) introduced the graph-restricted game (N , vL ) for a (N , v, L) ∈ G defined
by

vL(S) =
∑

T∈C(S,L)

v(T ), for all S ⊆ N .

The Myerson value is the allocation rule that assigns to every graph game (N , v, L) the
Shapley value of the graph-restricted game vL , i.e., μ(N , v, L) = Sh(N , vL), and it is
characterized by component efficiency (CE) and fairness (F) in Myerson (1977).

A game with coalition and graph structures, or simply a CG-game, is a quadruple
(N , v, L, P), where (N , v) ∈ G(N ), (N , L) ∈ g(N ) and (N , P) ∈ C(N ). Let GCG denote
the set of all CG-games on N . A CG-game (N , v, L, P) is connected if the graph (N , L) is
connected, and the set of all connected CG-games is denoted by GC

CG . Clearly, GC
CG ⊆ GCG .

For any Pk, Ps ∈ P , let L(Pk ,Ps ) = {i j ∈ L | i ∈ Pk, j ∈ Ps} and L−(Pk ,Ps ) = L \ L(Pk ,Ps ).
For any (N , v, L, P) ∈ GCG , the communication quotient game (M, vLP ) ∈ G(M) is

defined by

vLP (R) = vL(∪r∈R Pr ) =
∑

S∈C(∪r∈R Pr ,L)

v(S), for all R ⊆ M .

The communication quotient game says that the economic output of any coalition R ∈ M is
realized by the economic output of coalition ∪r∈R Pr restricted by L , that is, the sum of the
economic output of all components in C(∪r∈R Pr , L).

The Owen graph value ψ is defined in Vázquez-Brage et al. (1996) as the Owen value of
the graph-restricted game vL , that is,

ψ(N , v, L, P) = Ow(N , vL , P).

Let f : GCG → R
n be a value. We recall some axioms.
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Component efficiency (CE). For any (N , v, L, P) ∈ GCG and any C ∈ C(N , L),

∑

i∈C
fi (N , v, L, P) = v(C).

Component efficiency for trivial coalition (CETC). For any subclasses (N , v, L, Pn) ∈
GCG and any C ∈ C(N , L),

∑
i∈C fi (N , v, L, Pn) = v(C).

Fairness in the graph (FG). For any (N , v, L) ∈ G and i j ∈ L with i, j ∈ N ,

fi (N , v, L, Pn) − fi (N , v, L−i j , P
n) = f j (N , v, L, Pn) − f j (N , v, L−i j , P

n).

Note that for any (N , v, L, Pn) ∈ GCG , ψ(N , v, L, Pn) = μ(N , v, L). Furthermore,
fairness in the graph (FG) is equivalent to fairness (F) for the Myerson valueμwhen P is the
trivial coalition structure, i.e., P = Pn . Fairness states that fi (N , v, L) − fi (N , v, L−i j ) =
f j (N , v, L) − f j (N , v, L−i j ) for any (N , v, L) ∈ G and i j ∈ L .
Balanced contributions for the graph (BCG). For any (N , v, L, P) ∈ GCG and i, j ∈ Pk

with Pk ∈ P ,

fi (N , v, L, P) − fi (N , v, L− j , P) = f j (N , v, L, P) − f j (N , v, L−i , P).

Balanced contributions for the unions (BCU). For any (N , v, L, P) ∈ GCG and i, j ∈ Pk
with Pk ∈ P ,

fi (N , v, L, P) − fi (N , v, L, P− j ) = f j (N , v, L, P) − f j (N , v, L, P−i ).

Fairness in the quotient (FQ). For any (N , v, L, P) ∈ GCG and Pk, Ps ∈ P ,

∑

i∈Pk

fi (N , v, L, P) −
∑

i∈Pk

fi (N , v, L−(Pk ,Ps ), P) =
∑

i∈Ps

fi (N , v, L, P)

−
∑

i∈Ps

fi (N , v, L−(Pk ,Ps ), P).

Quotient game property (QG). For any (N , v, L, P) ∈ GCG and Pk ∈ P =
{P1, P2, . . . , Pm} with M = {1, 2, . . . ,m},

∑

i∈Pk

fi (N , v, L, P) = fk(M, vLP , LM , Pm),

where the partition Pm = {{P1}, {P2}, . . . , {Pm}} and LM is the complete graph on M .
The axiomatizations of the Owen graph value have been developed by Vázquez-Brage et

al. (1996) and Alonso-Meijide et al. (2009)

Theorem 2.1 (Vázquez-Brage et al., 1996)TheOwen graph valueψ is the unique solution on
GCG satisfying component efficiency (CE), fairness in the quotient (FQ) and either balanced
contributions for the unions (BCU) or balanced contributions for the graph (BCG).

Theorem 2.2 (Alonso-Meijide et al., 2009) The Owen graph value ψ is the unique solution
on GCG satisfying component efficiency for trivial coalition (CETC), fairness in the graph
(FG), balanced contributions for the unions (BCU) and quotient game property (QG).
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3 The efficient partition surplus Owen graph value

In this section we shall introduce the efficient partition surplus Owen graph value for the
CG-games. As mentioned above, the Owen graph value satisfies component efficiency,
that is,

∑
i∈C ψi (N , v, L, P) = v(C) for any (N , v, L, P) ∈ GCG , C ∈ C(N , L), so∑

i∈N ψi (N , v, L, P) = vL(N ).
In general, v(N ) �= vL(N ). If that happens, this implies that the total Owen graph value

obtained by the players in the grand coalition is vL(N ) not v(N ), so this will yield a surplus
v(N ) − vL(N ). A question we are facing is how to allocate the surplus reasonably. Various
approaches to distribute the surplus v(N ) − vL(N ) have been developed in Casajus (2007),
van den Brink et al. (2012), Shan et al. (2019), Li and Shan (2020) and elsewhere.

Here we introduce a new method to distribute the surplus v(N ) − vL(N ).

Definition 3.1 For any (N , v, L, P) ∈ GCG and i ∈ Pk ∈ P , the efficient partition surplus
Owen graph value is defined by

EUψi (N , v, L, P) := ψi (N , v, L, P) + v(N ) − vL(N )

|P||Pk | .

This value EUψ first assigns to each player his Owen graph value and then distributes the
surplus v(N )− vL (N ) (may be zero) with the two-step partition egalitarian surplus value, in
which the surplus is equally distributed among all priori unions and then the payoff gained
by each priori union in the first step is equally distributed among its players.

Note that, EUψ(N , v, L, P) = EEμ(N , v, L) when Pn = {{1}, {2}, . . . , {n}} or PN =
{N } and EUψ(N , v, L, P) = Ow(N , v, P) when L = LN , i.e., L is the complete graph.

3.1 Axiomatizations of the EUÃ value

In this subsectionwe shall characterize the efficient partition surplus Owen graph value EUψ .
A value is component decomposable on GCG if for any CG-game (N , v, L, P), the payoff

of each player i ∈ N is completely determined within the component Ci containing i .
Component decomposability (CD). A value f is component decomposability, if for any

(N , v, L, P) ∈ GCG and i ∈ Ci ∈ C(N , L), fi (N , v, L, P) = fi (Ci , vCi , LCi , PCi ).
One has observed that every value with component efficiency on G is component decom-

posable. This implies that the Owen graph value satisfies component decomposability.
To characterize the efficient partition surplus Owen graph value EUψ , we need the fol-

lowing properties.
Link-fairness in the quotient (LFQ). For any (N , v, L, P) ∈ GCG , any Pk, Ps ∈ P and

any i j ∈ L(Pk ,Ps ),

∑

h∈Pk

fh(N , v, L, P) −
∑

h∈Pk

fh(N , v, L−i j , P) =
∑

h∈Ps

fh(N , v, L, P)

−
∑

h∈Ps

fh(N , v, L−i j , P).

Link-fairness in the quotient states that the change of the total payoffs of any two unions
is same when any one link joining them are severed.
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Connected link-fairness in the quotient (CLFQ). For any (N , v, L, P) ∈ GC
CG , any

Pk, Ps ∈ P and any link i j ∈ L(Pk ,Ps ),

∑

h∈Pk

fh(N , v, L, P) −
∑

h∈Pk

fh
(
Ch(N , L−i j ), vCh (N ,L−i j ), (L−i j )Ch (N ,L−i j )

, PCh (N ,L−i j )

)

=
∑

h∈Ps

fh(N , v, L, P) −
∑

h∈Ps

fh
(
Ch(N , L−i j ), vCh (N ,L−i j ), (L−i j )Ch (N ,L−i j )

, PCh (N ,L−i j )

)
.

Connected link-fairness in the quotient states that for any connected CG-game, the change
of the total payoffs of any two unions Pk and Ps is the same if a link i j between Pk and Ps is
removed. Connected link-fairness in the quotient compares the original payoffs of the union
Pi (i = k, s) with the payoffs Pi (i = k, s) obtained if the CG-game is restricted to each
player’s component when the link i j is removed and imposes an equal payoff of the union
variation. This axiom is motivated by connected fairness given in Béal et al. (2015, 2018).

We show that the Owen graph value satisfies link-fairness in the quotient (LFQ).

Lemma 3.1 For (N , v, L, P) ∈ GCG, the Owen graph value ψ(N , v, L, P) satisfies quasi-
fairness in the quotient (LFQ).

Proof For any Pk, Ps ∈ P and any i j ∈ L(Pk ,Ps ), we let w = vL − vL−i j . For all R ⊆
M \ {k, s}, clearly wP (R ∪ k) = wP (R ∪ s) = 0. By symmetry in the quotient (SQ) of the
Owen value,

∑
i∈Pk Owi (N , w, P) = ∑

i∈Ps Owi (N , w, P). Then, by additivity (A) of the
Owen value, we obtain

∑

i∈Pk

Owi (N , vL , P) −
∑

i∈Pk

Owi (N , vL−i j , P) =
∑

i∈Ps

Owi (N , vL , P)

−
∑

i∈Ps

Owi (N , vL−i j , P).

Since ψ(N , v, L, P) = Ow(N , vL , P), ψ(N , v, L, P) satisfies LFQ. 	

In order to give an characterization of the efficient partition surplus Owen graph value, we

first give a characterization of the Owen graph value on the class of connected CG-games.

Theorem 3.1 A value f (N , v, L, P) on GC
CG satisfies efficiency (E), connected link-fairness

in the quotient (CLFQ) and balanced contributions for the unions (BCU) if and only if
f (N , v, L, P) = ψ(N , v, L, P) on GC

CG.

Proof Existence. We show that the Owen graph valueψ(N , v, L, P) satisfies the three prop-
erties. By Theorem 2.1, we have seen thatψ(N , v, L, P) satisfies efficiency (E) and balanced
contributions for the unions (BCU). We show that ψ(N , v, L, P) satisfies connected link-
fairness in the quotient (CLFQ). Let i j ∈ L .

If removing i j does not add new components, the property of link-fairness in the quotient
(LFQ) directly implies connected link-fairness in the quotient (CLFQ).

If removing i j adds new components, then

∑

h∈Pk

ψh(N , v, L, P) −
∑

h∈Ps

ψh(N , v, L, P) =
∑

h∈Pk

ψh(N , v, L−i j , P) −
∑

h∈Ps

ψh(N , v, L−i j , P)

=
∑

h∈Pk

ψh
(
Ch(N , L−i j ), vCh (N ,L−i j ), (L−i j )Ch (N ,L−i j )

, PCh (N ,L−i j )

)

−
∑

h∈Ps

ψh
(
Ch(N , L−i j ), vCh (N ,L−i j ), (L−i j )Ch (N ,L−i j )

, PCh (N ,L−i j )

)
,
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where the first equation holds by link-fairness in the quotient (LFQ) and the second equation
follows since the Owen graph value satisfies component decomposability (CD).

Uniqueness. Let f be a value on GC
CG satisfying the above three properties. We have to

prove that f = ψ . We first show that
∑

h∈Pk fh(N , v, L, P) = ∑
h∈Pk ψh(N , v, L, P) for

any k ∈ M by induction on |N | + |L|.
If |N | = 1, then clearly fi (N , v, L, P) = ψi (N , v, L, P) by efficiency (E). We may

assume that |N | ≥ 2 and for any (N ′, v, L ′, PN ′) ∈ GC
CG with |N ′| + |L ′| < |N | + |L|,

f (N ′, v, L ′, PN ′) = ψ(N ′, v, L ′, PN ′) holds. Therefore, for (N , v, L, P) ∈ GC
CG and any

Pk, Ps ∈ P , there exists a link i j ∈ L since L is connected. By connected link-fairness in
the quotient (CLFQ) and the inductive hypothesis, we have
∑

h∈Pk

fh(N , v, L, P) −
∑

h∈Ps

fh(N , v, L, P)

=
∑

h∈Pk

fh
(
Ch(N , L−i j ), vCh (N ,L−i j ), (L−i j )Ch(N ,L−i j )

, PCh(N ,L−i j )

)

−
∑

h∈Ps

fh
(
Ch(N , L−i j ), vCh (N ,L−i j ), (L−i j )Ch (N ,L−i j )

, PCh(N ,L−i j )

)

=
∑

h∈Pk

ψh
(
Ch(N , L−i j ), vCh (N ,L−i j ), (L−i j )Ch(N ,L−i j )

, PCh(N ,L−i j )

)

−
∑

h∈Ps

ψh
(
Ch(N , L−i j ), vCh (N ,L−i j ), (L−i j )Ch(N ,L−i j )

, PCh (N ,L−i j )

)

=
∑

h∈Pk

ψh(N , v, L, P) −
∑

h∈Ps

ψh(N , v, L, P).

Thus, by connectedness of L , it is easy to see that there exists a constant d for all k ∈ M
such that

∑

h∈Pk

fh(N , v, L, P) −
∑

h∈Pk

ψh(N , v, L, P) = d.

By efficiency (E), we have

|M |d =
∑

s∈M

∑

h∈Ps

(
fh(N , v, L, P) − ψh(N , v, L, P)

) = v(N ) − v(N ) = 0,

and so d = 0. Hence, for any k ∈ M , we have
∑

h∈Pk

fh(N , v, L, P) =
∑

h∈Pk

ψh(N , v, L, P). (1)

We next show that fi (N , v, L, P) = ψi (N , v, L, P) for any i ∈ N by induction on |P|.
For any (N , v, L, P) ∈ GC

CG , if there is some Pk ∈ P such that |Pk | = 1, say Pk = {i}, then
fi (N , v, L, P) = ψi (N , v, L, P) by (1). Suppose that fi (N , v, L, P) = ψi (N , v, L, P) for
m ≤ |P| ≤ n. We show that fi (N , v, L, P) = ψi (N , v, L, P) for |P| = m − 1. Clearly,
there exists a Pk ∈ P such that |Pk | ≥ 2. Let i, j ∈ Pk . Note that |P−i | = |P− j | = m, by
balanced contributions for the unions (BCU) and the inductive hypothesis, we have

fi (N , v, L, P) − f j (N , v, L, P) = fi (N , v, L, P− j ) − f j (N , v, L, P−i )

= ψi (N , v, L, P− j ) − ψ j (N , v, L, P−i )

= ψi (N , v, L, P) − ψ j (N , v, L, P).
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Hence, for each i ∈ Pk ∈ P , there exists a constant dPk such that

fi (N , v, L, P) − ψi (N , v, L, P) = dPk . (2)

Combining (1) and (2), we obtain

0 =
∑

i∈Pk

(
fi (N , v, L, P) − ψi (N , v, L, P)

) = |Pk |dPk ,

and so dPk = 0. Then, for any Pk ∈ P with |Pk | ≥ 2 and any i, j ∈ Pk , fi (N , v, L, P) =
ψi (N , v, L, P). Therefore, fi (N , v, L, P) = ψi (N , v, L, P) for all i ∈ N . 	


In Theorem 3.1, we characterize the Owen graph value on the class of connected CG-
games. By Theorem 3.1, we are now ready to give an axiomatic characterization of the EUψ

value on GCG .

Theorem 3.2 The efficient partition surplus Owen graph value (EUψ) on GCG is the unique
value satisfying efficiency (E), link-fairness in the quotient (LFQ), connected link-fairness
in the quotient (CLFQ) and balanced contributions for the unions (BCU).

Proof Existence. That the value EUψ(N , v, L, P) satisfies the above four properties follows
directly from the fact that the Owen graph value satisfies the axioms of component efficiency
(CE), link-fairness in the quotient (LFQ) (by Lemma 3.1) and balanced contributions for the
unions (BCU).

Uniqueness. Suppose that there exists a value f on GCG satisfying the four properties. We
have to show that f =EUψ . If (N , v, L, P) ∈ GC

CG , we immediately have f = ψ =EUψ by
Theorem3.1.Wemay therefore assume that (N , v, L, P) ∈ GCG\GC

CG . Then |C(N , L)| ≥ 2.
For any k ∈ M , we show that the following equality holds,

∑

h∈Pk

fh(N , v, L, P) =
∑

h∈Pk

EUψh(N , v, L, P). (3)

If P = PN , then, by efficiency (E), we have
∑

h∈N
fh(N , v, L, P) = v(N ) =

∑

h∈N
EUψh(N , v, L, P).

If P �= PN , we prove that the equality (3) holds by contradiction. Suppose that f �=EUψ .
Then there must exist a (N , v, L, P) ∈ GCG \ GC

CG such that f (N , v, L, P) �=EUψ(N , v,

L, P). Let L be a maximal graph such that there exists fi (N , v, L, P) �=EUψi (N , v, L, P)

for some i ∈ N . Concretely, there exists i ∈ Ci ∈ C(N , L) such that fi �=EUψi .
Since |C(N , L)| ≥ 2 and |P| ≥ 2, there exist x, y ∈ N such that x and y are neither

in the same component nor in the same priori union. For such a pair x, y, we assume that
x ∈ Pk ∩ C and y ∈ Ps ∩ C ′ where C �= C ′, C,C ′ ∈ C(N , L) and s �= k, s, k ∈ M .

By the maximality of graph L and link-fairness in the quotient (LFQ), we have
∑

h∈Pk

fh(N , v, L, P) −
∑

h∈Ps

fh(N , v, L, P)

=
∑

h∈Pk

fh(N , v, L ∪ {xy}, P) −
∑

h∈Ps

fh(N , v, L ∪ {xy}, P)

=
∑

h∈Pk

EUψh(N , v, L ∪ {xy}, P) −
∑

h∈Ps

EUψh(N , v, L ∪ {xy}, P)
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=
∑

h∈Pk

EUψh(N , v, L, P) −
∑

h∈Ps

EUψh(N , v, L, P).

For any k, s ∈ M , the last expression can be rewritten as
∑

h∈Pk

fh(N , v, L, P) −
∑

h∈Pk

EUψh(N , v, L, P)

=
∑

h∈Ps

fh(N , v, L, P) −
∑

h∈Ps

EUψh(N , v, L, P).

Next, fix k and sum up over all s ∈ M . By efficiency (E), we obtain

|M |
( ∑

h∈Pk

fh(N , v, L, P) −
∑

h∈Pk

EUψh(N , v, L, P)
)

=
∑

s∈M

∑

h∈Ps

fh(N , v, L, P) −
∑

s∈M

∑

h∈Ps

EUψh(N , v, L, P)

= v(N ) − v(N ) = 0.

Hence, for any k ∈ M , we have that
∑

h∈Pk

fh(N , v, L, P) =
∑

h∈Pk

EUψh(N , v, L, P).

The remainder of the proof is similar to the proof of uniqueness in Theorem 3.1. By
induction on |P|, we deduce that fi (N , v, L, P) =EUψi (N , v, L, P) for all i ∈ N . 	


Now we shall give an alternative characterization of the EUψ value. For this purpose, we
need to generalize the axioms in Shan et al. (2019) to the setting of games with coalition and
graph structures.

Proportional fair distribution of surplus between unions (PFDSU). There exists a constant
c such that for each i ∈ Pk ∈ P with i ∈ Ci ∈ C(N , L),

fi (N , v, L, P) − fi (Ci , vCi , LCi , PCi ) = 1

|Pk |c.

Coherence with the Owen graph value for connected graphs (COC). For any (N , v, L, P)

∈ GC
CG , it holds that f (N , v, L, P) = ψ(N , v, L, P).
Coherence with the Owen graph value for connected graphs requires that allocation rule

f (N , v, L, P) equals the Owen graph value ψ(N , v, L, P) for any (N , v, L, P) ∈ GC
CG .

Specially, ψ(N , v, L, Pn) = μ(N , v, L) when (N , v, L, Pn) ∈ GCG . Hence, coherence
with the Owen graph value for connected graphs (COC) implies coherence with theMyerson
value for connected graphs (CMC).

By E,COC and PFDSU, we give another characterization of the EUψ value. We omit its
proof since it follows along the same lines as the one in Shan et al. (2019).

Theorem 3.3 The efficient partition surplus Owen graph value (EUψ) on GCG is the unique
value satisfying efficiency (E), coherence with the Owen graph value for connected graphs
(COC) and proportional fair distribution of surplus between unions (PFDSU).

3.2 Independence of the axioms in axiomatizations

In this subsection we show that the independence of the axioms invoked in Theorems 3.1, 3.2
and 3.3.
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• The null value φ1(N , v, L, P) = 0 satisfies CLFQ, LFQ and BCU, but not E.
• The value φ2(N , v, L, P) = v(N )

|N | satisfies E, LFQ and BCU, but not CLFQ.
• For any (N , v, L, P) ∈ GCG and i ∈ Pk ∈ P , the value

φ3
i (N , v, L, P) =

⎧
⎪⎨

⎪⎩

ψi (N , v, L, P) + v(N )−vL (N )
3|P||Pk∩N (N ,v)| , i ∈ N (N , v)

ψi (N , v, L, P) + 2
(
v(N )−vL (N )

)

3|P||Pk\N (N ,v)| , i /∈ N (N , v)

whereN (N , v) = {i ∈ N | v(S∪ i) = v(S), S ⊆ N \ i} represents the set of null players
in (N , v). It is easily verified that φ3

i satisfies E, LFQ and CLFQ, but not BCU.
• For any (N , v, L, P) ∈ GCG and i ∈ N , the value φ4

i (N , v, L, P) = ψi (N , v, L, P) +
v(N )−vL (N )

|N | satisfies E, CLFQ and BCU, but not LFQ.

• φ4
i satisfies E and COC, but not PFDSU.

• The value φ5
i (N , v, L, P) = ψi (N , v, L, P) + v(N )−vL (N )

2|P||Pk | satisfies COC and PFDSU,
but not E.

• The value φ6
i (N , v, L, P) = v(Ci )|Ci | + v(N )−vL (N )

|P||Pk | satisfies E and PFDSU, but not COC.

3.3 An example

To illustrate the efficient partition surplus Owen graph value, we give an example of a fund
allocation problem as described in the introduction.

Example 3.1 In a fund allocation problem, suppose that the budget of the fund is 90 and there
are five researchers, say 1, 2, 3, 4, 5, from three different disciplines, named P1, P2 and P3,
where 1 is in P1, 2 and 3 in P2, 4 and 5 in P3. An individual proposal just gives access to
the fund, but does not secure any amount of money. In order to stimulate interdisciplinary
cooperation, a joint application of researchers from different disciplines can receive higher
research grand. Two researchers in the same discipline can secure themselves a grant of 5
when writing a proposal together, while two researchers in the different disciplines a grant
of 20, three researchers a grant of 40, four researchers a grant of 60. However, researchers
1 and 2, 3 and 4, 4 and 5 are able to directly communicate, thus 1 and 2 can negotiate with
each other for a proposal, while 3, 4 and 5 can negotiate with each other for a proposal.

This situation can be described as a TU-game with coalition and graph structures
(N , v, L,C), where N = {1, 2, 3, 4, 5}, L = {12, 34, 45}, P = {P1, P2, P3} =
{{1}, {2, 3}, {4, 5}} and v is defined by

v(S) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, |S| = 1
5, if S = P2 or P3,

20, if S = 2 and S �= P2, P3,
40, |S| = 3,
60, |S| = 4,
90, S = N .

Next we provide different schemes to allocate the fund by using the Myerson value
μ(N , v, L), the Owen value Ow(N , v, P), the Owen graph value ψ(N , v, L, P) and the
efficient partition surplus Owen graph value EUψ(N , v, L, P), which are shown in Table 1.

In Table 1,

(i) The Owen value Ow assigns a higher funding 21.667 to researcher 1 and the same
funding 17.083 to the other researchers. This shows that the coalition structure affects
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Table 1 The four values for the games

Player Ow(N , v, P) μ(N , v, L) ψ(N , v, L, P) EUψ(N , v, L, P)

1 21.667 10.000 10.000 20.000

2 17.083 10.000 10.000 15.000

3 17.083 15.000 17.500 22.500

4 17.083 17.500 16.250 21.500

5 17.083 7.500 6.250 11.250

the allocation of funds and plays a protective role for priori union P1 which contains
only one researcher.

(ii) When the communication graph structure is considered, the Myerson value μ and
Owen graph value ψ both give a low funding 10 to researchers 1 and 2, but they all
assign high funding 17.5 and 16.25 to researcher 4, respectively. This illustrates the
important bargaining power of 4 in the graph game. But, note that ψ(N , v, L, P) gives
a slightly higher funding 17.5 to researcher 3 than μ3(N , v, L) = 15, this shows that
interdisciplinary cooperation increases the bargaining power of researcher 3.

(iii) The total funding for μ and ψ is vL(N ) = 60 not v(N ) = 90.
(iv) The efficient partition surplus Owen graph value EUψ distributes the budget 90 to all

researchers.

4 Concluding remarks

In this paper we introduce a new efficient extension of the Owen graph value and provide
three axiomatizations of the value.

We give an overview of the values that appeared in this paper.

(1) The Owen value

Ow(N , v, P) : (N , v, P) → (M, vP ) → (Pk, v
Pk ) → Sh(Pk, v

Pk )

where (Pk, vPk ) is the internal TU-game defined via the quotient game, vPk (S) =
ShPk (M\Pk ∪ S, v

q
−Pk ,+S)with v

q
−Pk ,+S being the quotient game inwhich Pk is replaced

by S.
(2) The Myerson value μ(N , v, L) : (N , v, L) → (N , vL ) → Sh(N , vL), where vL is the

graph-restricted game.
(3) The Owen graph value ψ(N , v, L, P) : (N , v, L, P) → (N , vL , P) → Ow(N , vL ,

P).
(4) The efficient partition surplus Owen graph value

EUψ(N , v, L, P) : ψ(N , v, L, P) + v(N ) − vL(N )

|P||Pk | → EUψ(N , v, L, P).

Actually, the distributions of the surplus v(N ) − vL(N ) can be modified in different
fashions. For instance, Shan et al. (2020) distribute the surplus by (v(N ) − vL(N ))/n as in
van den Brink et al. (2012). Furthermore, we can also obtain the other efficient extensions
of the Owen graph value by replacing (v(N ) − vL(N ))/|P||Pk | in EUψ by the distribution
ways of the surplus v(N ) − vL(N ) developed in Casajus (2007); Shan et al. (2019). These
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efficient Owen graph values can be similarly characterized by modifying the axioms for the
EUψ value.

Finally, we summarize the axiomatizations of the Owen value Ow, the Myerson value μ,
the Owen graph value ψ and the efficient partition surplus Owen graph value EUψ in Table
2. In Table 2, ‘+’ represents that the value satisfies the axiom, ‘–’ has the converse meaning
and ‘⊕’ symbols indicate the sets of axioms used for characterizations of the value. The
superscripts 1, 2, 3 represent three different characterizations of the values, respectively.
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