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Abstract
Electroencephalogram (EEG) have been widely used for the diagnosis of neurological dis-
eases like epilepsy and sleep disorders. Support vector machines (SVMs) are widely used
classifiers for the classification of EEG signals due to their better generalization performance.
However, SVM suffers due to high computational complexity. To reduce the computations,
twin support vector machines (TWSVM) solved smaller size quadratic optimization prob-
lems. To enhance the performance of the SVM and TWSVM models, prior information
known as universum data has been incorporated in the universum SVM (USVM) and uni-
versum twin (UTSVM) models. Both SVM and UTSVM employ hinge loss which results
in sensitivity to noise and instability. To overcome these issues and incorporate the prior
information of the EEG signals, we propose a novel universum twin support vector machine
with pinball loss function (Pin-UTSVM) for the classification of EEG signals. The proposed
Pin-UTSVM is more stable for resampling and is noise insensitive. Furthermore, the com-
putational complexity of proposed Pin-UTSVM model is similar to the standard UTSVM
model. In the proposed approach, we used the interictal EEG signal as the universum data.
Numerical experiments at varying level of noise show that the proposed Pin-UTSVM is more
robust to noise compared to standard models. To show the efficiency of the proposed Pin-
UTSVM model, we used multiple feature extraction techniques for the classification of the
EEG signal. Experimental results reveal that the proposed Pin-UTSVMmodel is performing
better compared to the existing models. Moreover, statistical tests show that the proposed
Pin-UTSVM model is significantly better in comparison with the existing baseline models.
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1 Introduction

In recent times,MachineLearning andDeepLearning have seen increased usage in healthcare
optimisation (Khalilpourazari & Doulabi, 2021a, b). Electroencephalogram signals, more
commonly referred to as EEG, are the principal components of several techniques used
for non-invasive diagnostic tests. Such techniques are routinely used to detect epilepsy, brain
tumours, stroke, sleep disorders, etc.Many feature extraction techniques have been developed
to process the EEG signals, allowing classification algorithms to predict the nature of the
data. One of the most used feature extraction methods for EEG data is the wavelet transform
which produces frequency domain features localised in time. Several families of wavelet
transformation specialise in different types of signals. The Daubechies wavelet with db4 has
been used as a forefront feature extraction method for epilepsy detection (Adeli et al., 2003).
Other families of wavelet transform such asDaubechies wavelet with db2 have also been used
(Güler & Übeyli, 2005). Different feature extraction techniques such as principal component
analysis (PCA) and independent component analysis (ICA) have also been applied for EEG
signals (Subasi & Gursoy, 2010). Once features are appropriately extracted, a classification
algorithm is used to categorize the EEG signals.

The support vector machines (SVMs) (Cortes & Vapnik, 1995) and SVM-based algo-
rithms, such as twin support vector machine (TWSVM) (Jayadeva & Khemchandani, 2007),
are excellent supervised learning algorithms employed in diverse domains of classification
and regression. They showcase reliable performance and have been used in several fields
such as face recognition (Zhou et al., 2010), text categorisation (Wang & Chiang, 2007),
electroencephalogram (EEG) signal classification (Richhariya & Tanveer, 2018), data min-
ing (Bollegala et al., 2010), diagnosis of various diseases like epilepsy (Richhariya&Tanveer,
2018; Zhang et al., 2019) andAlzheimer’s disease (Tanveer et al., 2020). SVMhas gained this
recognition because it reduces the generalisation error by maximising the margin between
different classes. This is achieved by formulating a convex quadratic programming prob-
lem (QPP) to obtain exhaustive or global solution instead of settling for a local optimum,
which many other methods such as artificial neural networks cannot overcome. Also, SVM
implements the structural risk minimisation principle, which reduces the upper bound on
the Vapnik-Chervonenkis (VC) dimension. This measures the capacity of functions that a
statistical binary classification algorithm can learn.

Although SVM has been successful, however, SVM is not without disadvantages. These
advantages come at the cost of solving a QPP with very high complexity, O(N 3), where
N is the total number of training data points. An attempt to solve this issue of complexity
was carried out by Jayadeva and Khemchandani (2007) by introducing a novel twin support
vector machine (TWSVM). TWSVM attempts to break up the large QPP into two sub-
problems by seeking two non-parallel proximal hyperplanes. Further improvements were
made by the introduction of twin bounded SVM (TBSVM) (Shao et al., 2011). TBSVM uses
an additional regularization variable to carry out the structural risk minimisation principle.
Kumar and Gopal made further improvements by introducing the least-squares twin SVM
(LSTSVM) (Kumar&Gopal, 2009). The LSTSVMhas ameagre computation time, however,
it suffers in presence of noise and outliers as it uses a quadratic loss function. The angle-
based twin support vector machine (ATWSVM) proposed by Khemchandani et al. (2018) is
an iteration on TWSVM with the advantage of quick computation compared to TWSVM.
This advantage arises in ATWSVM due to solving the second problem as an unconstrained
minimization problem instead of a QPP. Tanveer et al. introduced a novel robust energy-based
least squares twin SVM (RELSTSVM) (Tanveer et al., 2016), which performed the best in
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a 2019 evaluation (Tanveer et al., 2019) of SVM classifiers on UCI datasets (Dua & Graff,
2017). For further specifics of the TWSVM, we refer the interested readers to (Tanveer et
al., 2021). Another approach for improving TWSVM is to utilize L1-norm distance than
the traditional L2-norm distance. This approach was implemented in L1-TWSVM (Yan et
al., 2019). In order to improve the sparsity and robustness in the original twin SVM, linear
programming twin SVM algorithms (Tanveer, 2015a, b) are proposed. Fuzzy membership
is another widely used method for improving generalization performance. Entropy-based
fuzzy twin support vector machine (Gupta et al., 2019), Entropy-based fuzzy least-squares
TWSVM (Chen et al., 2020), intuitionistic fuzzy TWSVM (Rezvani et al., 2019) are some
recent examples of fuzzy implementation in TWSVM.

The aforementioned algorithms either improve SVM or TWSVMbased models, however,
the framework of universum data in SVM-based algorithms has also been proposed. The idea
of using universum data to improve the generalisation performance of SVM was proposed
by Weston et al. (2006). The idea of universum data stems from the fact that SVM does
not have any information about the data distribution in the training set. That is to say, SVM
does not have any prior information about the data in the training set. This prior information,
which is a form of Bayesian prior, is incorporated in the optimisation problem by introducing
universumdata. The concept of universumdata can be understood as follows: take an example
of classifying images of handwritten numbers into their respective classes (i.e. corresponding
numbers). The training data consists of the pixel intensities from the images in a vector form.
Here, when SVM uses this training data, it does not have any context about the data space,
i.e. handwritten characters. Thus, universum data set containing handwritten letters (not
numbers) is used to provide prior information about the data space.

As mentioned above, the universum data need not be the same as the training set, it is
an unlabelled set used to provide relevant prior information. Thus, universum based SVM
(USVM) (Weston et al., 2006) algorithm implements this concept by introducing universum
data points in an ε-insensitive area between the two binary groups. Similar to SVM, USVM
is further improved by universum based twin SVM (UTSVM) (Qi et al., 2012) and reduced
UTSVMmodels (Richhariya&Tanveer, 2020). The computation cost ofUTSVMis improved
by the universum least squares twin SVM (ULSTSVM) (Xu et al., 2016) which uses the least
squares technique, introducing the quadratic loss. The fuzzy-based universum least squares
twin SVM (FULSTSVM) (Richhariya & Tanveer, 2021) utilises the fuzzy concept to further
improveULSTSVM.TheUniversumbasedLagrangian twin bounded support vectormachine
(ULTBSVM) (Kumar & Gupta, 2021) uses the square of the 2-norm of the slack variables
to formulate a strongly convex objective function, enabling the method to produce unique
solutions. TheULTBSVMhas additional regularization termswhich implement the structural
riskminimization (SRM) principle. TheRegularizedUniversum twin support vectormachine
(Gupta et al., 2019) introduces regularization terms to the formulation of UTWSVM such
that it is well-posed, removing the necessity to add another term to ensure that the matrix is
positive definite. The iterative universum support vector machine (IUTWSVM) (Richhariya
& Gupta, 2019) is different from other methods discussed above. It attempts to be less
computationally expensive by utilizing an iterative based approach using theNewtonmethod.
This low computation cost enables IUTWSVM to be a viable multi-class classifier.

All the above algorithms are efficient classifiers based on several kinds of loss functions,
such as hinge loss, square loss, etc. However, they lack a critical property, i.e. noise-
insensitivity. Real-life data sets are inherently noisy due to being recorded in real world
conditions especially EEG signals, where entropy and errors are unavoidable. This noise can
arise from errors in the measuring equipment or even the user recording the observations.
Thus, noise insensitivity is of critical importance for a classifier used for real-life applica-
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tions. The noise performance (i.e. insensitivity to noise) for classifiers can be improved by
utilising a specific loss function. The pinball loss introduced by Huang et al. (2013) is an
excellent candidate for such a function. It boosts insensitivity towards noise and outliers, and
it enables stability for re-sampling data. This insensitivity of pinball loss is a result of utilis-
ing the quantile distance (Koenker & Hallock, 2001; Christmann & Steinwart, 2007) rather
than the shortest distance. SVMwith pinball loss (Pin-SVM) (Huang et al., 2013) has shown
promising performance in presence of noise. However, Pin-SVM has high computational
complexity as its solves a large QPP. Thus, Xu et al. proposed the twin parametric margin
support vector machine with pinball loss (Pin-TSVM) (Xu et al., 2016) to overcome the
noise sensitivity of TWSVM and reduce the complexity of Pin-SVM. Some examples of the
latest algorithms utilizing the pinball loss in 2021 are: Smooth twin bounded support vector
machine with pinball loss (Li & Lv, 2021), the Bound estimation-based safe acceleration
for maximum margin of twin spheres machine with pinball loss (Yuan & Xu, 2021) and the
Robust general twin support vector machine with pinball loss function (Ganaie & Tanveer,
2021).

The aforementioned methods consider that the noise distribution is identical everywhere
in the dataset, but that may not be true. Tanveer et al. proposed a novel general twin SVMwith
pinball loss (Pin-GTSVM) (Tanveer et al., 2019) to deal with this problem. The Pin-GTSVM
computes two non-parallel hyperplanes where each hyperplane is proximal either to negative
or positive class. To improve the sparsity of the models, sparse support vector machine
with pinball loss (Pin-SSVM) (Tanveer et al., 2021) and sparse pinball twin support vector
machines (SPTWSVM) (Tanveer et al., 2019) are formulated. To upgrade the performance
of models in presence of large datasets, large-scale pinball TWSVM (Tanveer et al., 2021),
large-scale twin parametric SVM with pinball loss function (Sharma et al., 2019) have been
proposed.

Thus,motivated by the concept of universum data and the excellent performance of pinball
loss in the various classifiers, in this work, we propose a novel universum twin support
vector machine with pinball loss (Pin-UTSVM) for the EEG signal classification. The main
highlights of this work are as follows:

1. The novel universum twin support vector machine with pinball loss (Pin-UTSVM) is
proposed.

2. The proposed Pin-UTSVM model is robust to noise and more stable for resampling.
3. The computational complexity of the proposed Pin-UTSVMmodel is similar to standard

UTSVMmodel. Hence, the proposed Pin-UTSVM brings noise insensitivity and stability
without incurring the additional computational cost.

4. For handling the non-linear cases, we use kernel based Pin-UTSVM model for better
generalization.

5. The evaluation of the classification models on real world EEG signal classification show
that the proposed Pin-UTSVMhas better generalization compared to the baseline models.

2 Related work

Suppose A and B be the sets of positive (+1) and negative (−1) class, respectively. Let
ci be the positive parameters and e j be the vector of ones with the relevant dimensions, for
i = 1, 2, 3, 4 and j = {+,−, u}. Also,U denotes the universum data points and D = [A; B].
||x || is used to represent 2-norm of any vector x .
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2.1 Twin SVM Jayadeva and Khemchandani (2007)

The twin support vectormachine (TWSVM) (Jayadeva&Khemchandani, 2007) significantly
improve the conventional SVM by improving upon its high computational complexity. SVM
requires all data points as constraints while as in TWSVM the patterns of one class gives
constraints to the other class. Thus, the TWSVM solves two smaller QPPs instead of a large
QPP.

The non-linear TWSVM seeks to find the following two kernel generated surfaces:

K (xt , Dt )u+ + b+ = 0 and K (xt , Dt )u− + b− = 0, (1)

where K is a kernel function. The optimization problem for TWSVM can be denoted as
follows:

min
u+,b+,ξ+

1

2
‖K (A, Dt )u+ + e+b+‖2 + c1e

t−ξ+

s.t . − (K (B, Dt )u+ + e−b+) + ξ+ ≥ e−, ξ+ ≥ 0 (2)

and

min
u−,b−,ξ−

1

2
‖K (B, Dt )u− + e−b−‖2 + c2e

t+ξ−

s.t . (K (A, Dt )u− + e+b−) + ξ− ≥ e+, ξ− ≥ 0, (3)

where ξ+, ξ− are slack variables and e+, e− are vector of ones with appropriate dimensions.
By using Lagrange multipliers α ≥ 0, β ≥ 0 and using the Karush-Kuhn-Tucker (K.K.T)
conditions, the Wolfe dual of (2) and (3) come out to be:

max
α

et−α − 1

2
αt Q(Pt P)−1Qtα

s.t . 0 ≤ α ≤ c1 (4)

and

max
β

et+β − 1

2
β t P(Qt Q)−1Ptβ

s.t . 0 ≤ β ≤ c2, (5)

where P = [K (A, Dt ) e+] and Q = [K (B, Dt ) e−].
After solving (4) and (5), the optimal separating hyperplanes are given by:

[
u+
b+

]
= −(Pt P + δ I )−1Qtα, (6)

[
u−
b−

]
= (Qt Q + δ I )−1Ptβ, (7)

where δ(δ > 0) is the regularization variable used to circumvent the ill-conditioning of the
matrices Pt P and Qt Q. Further new data point x is assigned the classes using the following
equation:

class(x) = arg min
i={+,−}

|K (xt , Dt )ui + bi |
‖ui‖ . (8)
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2.2 Universum twin SVMQi et al. (2012)

The universum twin support vector machine (UTSVM) (Qi et al., 2012) is an extended
version of universum support vector machine (Weston et al., 2006), which improves upon
the computational cost.

The UTSVM seeks the following non-linear hyperplanes:

K (xt , Dt )u+ + b+ = 0 and K (xt , Dt )u− + b− = 0. (9)

The optimisation problem for UTSVM can be expressed as follows:

min
u+,b+,ξ+,ψ

1

2
‖K (A, Dt )u+ + e+b+‖2 + c1e

t−ξ+ + cue
t
uψ

s.t . − (K (B, Dt )u+ + e−b+) + ξ+ ≥ e−, ξ+ ≥ 0,

(K (U , Dt )u+ + eub+) + ψ ≥ (−1 + ε)eu, ψ ≥ 0 (10)

and

min
u−,b−,ξ−,ψ

1

2
‖K (B, Dt )u− + e−b−‖2 + c2e

t+ξ− + cue
t
uψ

s.t .(K (A, Dt )u− + e+b−) + ξ− ≥ e+, ξ− ≥ 0,

− (K (U , Dt )u− + eub−) + ψ ≥ (−1 + ε)eu, ψ ≥ 0, (11)

where ξ+, ξ−, ψ are the slack variables, ε is the tolerance variable for the universum. Using
the Lagrangianmultipliers α1, α2, μ1, μ2 and appropriate K.K.T. conditions, the dual of (10)
and (11) can be expressed as follows:

max
α1,μ1

et−α1 − 1

2
(αt

1T − μt
1O)(St S)−1(Tαt

1 − Oμt
1) + (ε − 1)etuμ1

s.t . 0 ≤ α1 ≤ c1, 0 ≤ μ1 ≤ cu (12)

and

max
α2,μ2

et+α2 − 1

2
(αt

2S − μt
2O)(T t T )−1(Stα2 − Otμ2) + (ε − 1)etuμ2

s.t . 0 ≤ α2 ≤ c2, 0 ≤ μ2 ≤ cu, (13)

where O = [K (U , Dt ) eu], S = [K (A, Dt ) e+] and T = [K (B, Dt ) e−].
After solving (12) and (13), the optimal separating hyperplanes are given by:

[
u+
b+

]
= −(St S + δ I )−1(T tα1 − Otμ1), (14)

[
u−
b−

]
= (T t T + δ I )−1(Stα2 − Otμ2), (15)

where δ I is the regularization variable added to circumvent ill-conditioning of St S and T t T
matrices.

The new data point x is assigned its class using the following function:

class(x) = arg min
i={+,−}

|K (xt , Dt )ui + bi |
‖ui‖ . (16)
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2.3 Pin-GTSVMTanveer et al. (2019)

The general twin support vector machine with pinball loss (Pin-GTSVM) (Tanveer et al.,
2019) seeks the following hyperplanes:

K (xt , Dt )u+ + b+ = 0 and K (xt , Dt )u− + b− = 0, (17)

where K is the kernel function.
The optimisation problem for Pin-GTSVM can be expressed as follows:

min
u+,b+,ξ+

1

2
‖K (A, Dt )u+ + e+b+‖2 + c1e

t−ξ+

s.t . − (K (B, Dt )u+ + e−b+) + ξ+ ≥ e−,

− (K (B, Dt )u+ + e−b+) − ξ+
τ2

≤ e− (18)

and

min
u−,b−,ξ−

1

2
‖K (B, Dt )u− + e−b−‖2 + c2e

t+ξ−

s.t . K (A, Dt )u− + e+b− + ξ− ≥ e+,

K (A, Dt )u− + e+b− − ξ−
τ1

≤ e+, (19)

where ξ+, ξ− are slack variables. Using the Lagrangian multipliers α, β, γ, σ ≥ 0 and
employing the appropriate K.K.T. conditions, the dual of (18) and (19) can be formulated as
follows:

max
α−β

et−(α − β) − 1

2
(α − β)t Q(Pt P)−1Qt (α − β)

s.t . − τ2c1e− ≤ (α − β) (20)

and

max
(γ−σ)

et+(γ − σ) − 1

2
(γ − σ)t P(Qt Q)−1Pt (γ − σ)

s.t . − τ1c2e+ ≤ (γ − σ), (21)

where P = [K (A, Dt ) e+] and Q = [K (B, Dt ) e−].
After solving (20) and (21), the optimal separating hyperplanes are given by:[

u+
b+

]
= −(Pt P + δ I )−1Qt (α − β), (22)

[
u−
b−

]
= (Qt Q + δ I )−1Pt (γ − σ), (23)

where δ I (δ > 0) is the regularization variable used to circumvent this ill-conditioning of
Pt P and Qt Q matrices.

New data point x is assigned the class using the following equation:

class(x) = arg min
i={+,−}

|K (xt , Dt )ui + bi |
‖ui‖ . (24)
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3 Proposed universum twin SVMwith pinball loss

Universum TWSVM (Qi et al., 2012) is based on the hinge loss, hence, suffers due to issues
of noise and is unstable under resampling. Taking inspiration from Pin-TSVM (Tanveer et al.,
2019), we include pinball loss in universum twin SVM and propose a novel universum twin
SVM with pinball loss function (Pin-UTSVM). The proposed Pin-UTSVM overcome the
issues of noise and make it more stable for resampling compared to the standard universum
TWSVM model.

3.1 Linear universum twin SVMwith pinball loss

The optimization problems for the linear variant of the proposed universum twin SVM with
pinball loss (Pin-UTSVM) are given as:

min
u+,b+,ξ+,ψ

1

2
‖Au+ + e+b+‖2 + c1e

t−ξ+ + c2e
t
uψ

s.t . − (Bu+ + e−b+) ≥ e− − ξ+,

− (Bu+ + e−b+) ≤ e− + 1

τ1
ξ+,

Uu+ + eub+ ≥ (−1 + ε)eu − ψ,

Uu+ + eub+ ≤ (−1 + ε)eu + 1

τ2
ψ, (25)

and

min
u−,b−,ξ−,ψ

1

2
‖Bu− + e−b−‖2 + c3e

t+ξ− + c4e
t
uψ

s.t . Au− + e+b− ≥ e+ − ξ−,

Au− + e+b− ≤ e+ + 1

τ3
ξ−,

− (Uu− + eub−) ≥ (−1 + ε)eu − ψ,

− (Uu− + eub−) ≤ (−1 + ε)eu + 1

τ4
ψ, (26)

where ξi , ψ are the slack variables, c j and τ j are positive parameters and ε is the hyperpa-
rameter, here i = +,− and j = 1, 2, 3, 4.

Note that when τ1, τ2 and τ3, τ4 tend to zero, then the second and fourth constraint of
the (25) reduce to ξ+ ≥ 0 and ψ ≥ 0 and similarly for the (26). Under these conditions,
the proposed Pin-UTSVM reduces to the standard UTSVM. Hence, standard UTSVM is a
special case of the proposed Pin-UTSVM model.

To obtain the solution of (25) and (26), we derive their Wolfe dual. The Lagrangian of the
optimization problem (25) is given as

L =1

2
‖Au+ + e+b+‖2 + c1e

t−ξ+ + c2e
t
uψ + αt

1(Bu+ + e−b+ + e− − ξ+)

− αt
2(Bu+ + e−b+ + e− + 1

τ1
ξ+) − β t

1(Uu+ + eub+ − (−1 + ε)eu + ψ)

+ β t
2(Uu+ + eub+ − (−1 + ε)eu − 1

τ2
ψ). (27)
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Applying K.K.T. conditions on (27), we have

∂L

∂u+
= At (Au+ + e+b+) + Bt (α1 − α2) −Ut (β1 − β2) = 0, (28)

∂L

∂b+
= et+(Au+ + e+b+) + et−(α1 − α2) − etu(β1 − β2) = 0, (29)

∂L

∂ξ+
= c1e− − α1 − 1

τ1
α2 = 0, (30)

∂L

∂ψ
= c2eu − β1 − 1

τ2
β2 = 0, (31)

αt
1(Bu+ + e−b+ + e− − ξ+) = 0, (32)

αt
2(Bu+ + e−b+ + e− + 1

τ1
ξ+) = 0, (33)

β t
1(Uu+ + eub+ − (−1 + ε)eu + ψ) = 0, (34)

β t
2(Uu+ + eub+ − (−1 + ε)eu − 1

τ2
ψ) = 0. (35)

Using (30) and α1 ≥ 0, α2 ≥ 0, we get

−τ1c1e− ≤ (α1 − α2) ≤ c1e−. (36)

Similarly, using (31) and β1 ≥ 0, β2 ≥ 0, we get

−τ2c2eu ≤ (β1 − β2) ≤ c2eu . (37)

Let X1 = [A, e+], X2 = [B, e−], X3 = [U , eu].
Rewriting (28) and (29), we have

[
u+
b+

]
= −(Xt

1X1)
−1

(
Xt
2(α1 − α2) − Xt

3(β1 − β2)
)
. (38)

Suppose α = (α1 − α2), β = (β1 − β2), γ = [α;β], N = [X2;−X3], and e4 =
[e−; (−1 + ε)eu], then using K.K.T. conditions the Wolfe dual of (25) is given as

max
γ

− 1

2
γ t N (Xt

1X1)
−1Ntγ + et4γ

s.t .

[−τ1c1e−
−τ2c2eu

]
≤ γ ≤

[
c1e−
c2eu

]
. (39)

In the similar manner, the Wolfe dual of (26) is given as follows

max
θ

− 1

2
θ t P(Xt

2X2)
−1Ptθ + et5θ

s.t .

[−τ3c3e+
−τ4c4eu

]
≤ θ ≤

[
c3e+
c4eu

]
, (40)

where θ = [η; ζ ], η = (η1 − η2), ζ = (ζ1 − ζ2), P = [X1;−X3], e5 = [e+; (−1 + ε)eu].
The optimal hyperplane corresponding to another class is given as

[
u−
b−

]
= (Xt

2X2)
−1(Xt

1η − Xt
2ζ ). (41)
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The testing data sample x ∈ R
n is assigned the class as follows

Class(x) = arg min
i={+,−}

|uti x + bi |
‖ui‖ . (42)

3.2 Non-linear universum twin SVMwith pinball loss

The optimization problems of the proposed universum universum twin SVM with pinball
loss (Pin-UTSVM) for non-linear case is given as

min
u+,b+,ξ+,ψ

1

2
‖K (A, Dt )u+ + e+b+‖2 + c1e

t−ξ+ + c2e
t
uψ

s.t . − (K (B, Dt )u+ + e−b+) ≥ e− − ξ+,

− (K (B, Dt )u+ + e−b+) ≤ e− + 1

τ1
ξ+,

K (U , Dt )u+ + eub+ ≥ (−1 + ε)eu − ψ,

K (U , Dt )u+ + eub+ ≤ (−1 + ε)eu + 1

τ2
ψ (43)

and

min
u−,b−,ξ−,ψ

1

2
‖K (B, Dt )u− + e−b−‖2 + c3e

t+ξ− + c4e
t
uψ

s.t .K (A, Dt )u− + e+b− ≥ e+ − ξ−,

K (A, Dt )u− + e+b− ≤ e+ + 1

τ3
ξ−,

− (K (U , Dt )u− + eub−) ≥ (−1 + ε)eu − ψ,

− (K (U , Dt )u− + eub−) ≤ (−1 + ε)eu + 1

τ4
ψ. (44)

To obtain the solution of (43) and (44), we derive their Wolfe dual. The Lagrangian of the
optimization problem (43) is given as

L =1

2
‖K (A, Dt )u+ + e+b+‖2+c1e

t−ξ++c2e
t
uψ+αt

1(K (B, Dt )u+ + e−b+ + e− − ξ+)

− αt
2(K (B, Dt )u+ + e−b+ + e− + 1

τ1
ξ+) − β t

1(K (U , Dt )u+

+ eub+ − (−1 + ε)eu + ψ) + β t
2(K (U , Dt )u+ + eub+ − (−1 + ε)eu − 1

τ2
ψ).

(45)

Applying K.K.T. conditions on (45), we have

∂L

∂u+
= (K (A, Dt ))t (K (A, Dt )u+ + e+b+)

+ (K (B, Dt ))t (α1 − α2) − (K (U , Dt ))t (β1 − β2) = 0, (46)

∂L

∂b+
= et+(K (A, Dt )u+ + e+b+) + et−(α1 − α2) − etu(β1 − β2) = 0, (47)

∂L

∂ξ+
= c1e− − α1 − 1

τ1
α2 = 0, (48)
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∂L

∂ψ
= c2eu − β1 − 1

τ2
β2 = 0, (49)

αt
1(K (B, Dt )u+ + e−b+ + e− − ξ+) = 0, (50)

αt
2(K (B, Dt )u+ + e−b+ + e− + 1

τ1
ξ+) = 0, (51)

β t
1(K (U , Dt )u+ + eub+ − (−1 + ε)eu + ψ) = 0, (52)

β t
2(K (U , Dt )u+ + eub+ − (−1 + ε)eu − 1

τ2
ψ) = 0. (53)

Using (48) and α1 ≥ 0, α2 ≥ 0, we get

−τ1c1e− ≤ (α1 − α2) ≤ c1e−. (54)

Similarly, using (49) and β1 ≥ 0, β2 ≥ 0, we get

−τ2c2eu ≤ (β1 − β2) ≤ c2eu . (55)

Let X1 = [K (A, Dt ), e+], X2 = [K (B, Dt ), e−], X3 = [K (U , Dt ), eu].
Rewriting (46) and (47), we have

[
u+
b+

]
= −(Xt

1X1)
−1(Xt

2(α1 − α2) − Xt
3(β1 − β2)). (56)

Suppose α = (α1 − α2), β = (β1 − β2), γ = [α;β], N = [X2;−X3], and e4 =
[e−; (−1 + ε)eu], then using K.K.T. conditions the Wolfe dual of (43) is given as

max
γ

− 1

2
γ t N (Xt

1X1)
−1Ntγ + et4γ

s.t .

[−τ1c1e−
−τ2c2eu

]
≤ γ ≤

[
c1e−
c2eu

]
. (57)

In the similar manner, the Wolfe dual of (44) is given as follows

max
θ

− 1

2
θ t P(Xt

2X2)
−1Ptθ + et5θ

s.t .

[−τ3c3e+
−τ4c4eu

]
≤ θ ≤

[
c3e+
c4eu

]
, (58)

where θ = [η; ζ ], η = (η1 − η2), ζ = (ζ1 − ζ2), P = [X1;−X3], e5 = [e+; (−1 + ε)eu].
The optimal hyperplane corresponding to another class is given as

[
u−
b−

]
= (Xt

2X2)
−1

(
Xt
1η − Xt

2ζ
)
. (59)

The testing data sample x ∈ R
n is assigned the class as follows

class(x) = arg min
i={+,−}

|K (xt , Dt )ui + bi |
‖ui‖ . (60)

The algorithm for Pin-UTSVM is briefly described in Algorithm 1.
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Algorithm 1: Algorithm for Pin-UTSVM.
Input : A, B,U and hyperparameters ci , τi , ε|i = {1, 2, 3, 4}
Output: The weight vectors and bias i.e., ui , bi |i = {+,−} for positive and negative class, respectively.
1. Construct matrices X1, X2 and X3 from matrices A, B and C for linear/non-linear case.
2. Solve for the Lagrangian Multipliers by formulating the two QPPs as described in Sect. 3 using
matrices X1, X2 and X3, and the hyperparameters.
3. Calculate ui , bi |i = {+,−} using the above determined Lagrangian Multipliers.
4. Return ui , bi |i = {+,−} for the construction of hyperplanes of the two classes.

3.3 Computational complexity

Let m1,m2 and mu be the samples of positive, negative and universum data, with N =
m1 + m2. Then, the computational complexity of SVM is T = O(N 3), where N is the
dataset size. Since, TWSVM solves two smaller size QPPs and hence, its complexity is
T = O(m3

1) + O(m3
2). The comparison of the Wolfe dual of the proposed Pin-UTSVM and

standard UTSVM model reveals that both have same number of constraints and the order
of the matrices where inversion is involved is same. Thus, the complexity of proposed Pin-
UTSVM is T = O((m1 + mu)

3) + O((m2 + mu)
3) which is same as that of the standard

UTSVM model.

3.4 Comparison of proposed Pin-UTSVMwith the baselinemodels

The proposed Pin-UTSVM is different from the TWSVM, Pin-GTSVM and UTSVM as
follows:

– TWSVMmodel uses hinge loss function while as the proposed Pin-UTSVMmodels uses
pinball loss function to penalize the errors. Moreover, the proposed Pin-UTSVM uses
universum data to improve the performance which is ignored by the standard TWSVM
model.

– Pin-UTSVMmodel is different from thePin-GTSVMmodel as the former uses universum
concept while as the later ignores it.

– UTSVM model uses hinge loss function to penalize the errors while as the proposed
Pin-UTSVM model uses pinball loss function to penalize the errors.

4 Experiments

This section discusses the experimental setup followed for evaluating the performance of
the classification models. Moreover, we also discuss the data acquisition and the preprocess-
ing followed for the extraction of the features. We analyse the performance of the models
statistically, and evaluated the effect of different hyperparameters on the performance of
classification models.

4.1 Dataset acquisition, pre-processing and experimental setup

This section details the experiments performed and the results obtained for classifying EEG
Signals. The dataset used is taken froma journal article byAndrzejak et al. (2001). This dataset
consisted of five collections (denoted S, F, N, O and Z), each consisting of hundred EEG
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Healthy (Control) State

-200

0

200

Interictal (Seizure-Free) State

-200

0

200

Ictal (Seizure) State

-1000

0

1000

Fig. 1 Sample EEG signals for a Healthy (control), b Interictal (seizure-free) and c Ictal (seizure) state

signals (single-channel) which were sampled at 173.61 Hz for 23.6 seconds. The collections
O and Z represent healthy (control) subjects with eyes close and open, respectively. The
collections F and N represent subjects in the interictal (seizure-free) state, and the collection
S represents subjects in the ictal (seizure) state. The mode of EEG recording is intra-cranial
for sets S, F and N, and all the EEG signals were processed using the same 128-channel
amplifier system with an average common reference.

In the numerical experiments, ten-fold cross-validation is used. The testswere designed for
binary classification, with the two classes being the interictal and the ictal state. Thus, Z vs S
and O vs S, as both Z and O represent healthy subjects. The universum data is used to provide
prior information about the training dataset. Thus, following the paper by Richhariya and
Tanveer (2018), the set N,which consists of interictal state subjects, is used as universumdata.
Various methods of feature extraction, i.e. independent component analysis (ICA), principal
component analysis (PCA) and wavelet transform were used. Several families of wavelet
transform with different levels of decomposition were used. The Daubechies wavelet- db2,
db4 andhaarwaveletwere set at level three, anddb2anddb6were set at level two. In the case of
wavelet transformand ICA,PCA is appliedfirst to reduce the number of dimensions. The class
discriminatory ratio (CDR) was used to organise the PCA components and choose the most
applicable components. The implementation of ICA used is the ICA architecture (Bartlett et
al., 2002). The proposed Pin-UTSVM effectiveness was tested against Pin-GTSVM (Tanveer
et al., 2019), TWSVM (Jayadeva&Khemchandani, 2007) and UTSVM (Qi et al., 2012). The
experiments were performed on both the linear and non-linear variants of all themethods. For
the non-linear variants, the Gaussian kernel, given by equation (61), was used. The Gaussian
kernel parameterμ is calculated using equation (62) (Tsang et al., 2006). The values and range
of the various hyper-parameters used in different methods have been catalogued in Table 1.
Additionally, to check the noise performance of the algorithms in presence of noise, we added
Gaussian noise with zero-mean and standard deviation σ = 0 (i.e. no noise), 0.05, 0.075, 0.1.

K (a, b) = e
−1
2μ2

‖a−b‖2
, (61)

μ = 1

N 2

N∑
i, j=1

‖xi − x j‖2, (62)
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Table 1 Parameter ranges for various methods

Parameter name Symbol Range/Value

Penalty parameters c1, c2, c3, c4 {10i |i = −5,−3,−1, 1, 3, 5}

Pinball loss parameter τ1, τ2, τ3, τ4 {0.5, 0.6, 0.7, 0.8}

ε {0.1, 0.2, 0.3, 0.5, 0.6, 0.7}

δ 10−4

where N is the total number of data points and xi represents i th data point. The hyperparam-
eters for UTSVM were set as c = c1 = c2, cu . The hyperparameters for Pin-UTSVM were
set as c1 = c3, c2 = c4 and τ1 = τ3, τ2 = τ4.

All the computations were performed on a High-Performance PC running Windows 7 OS
with Intel® Xeon® CPU E5-2697 v4 @ 2.30 GHz and 128 GB RAM. The program used for
coding was MATLAB® R2017a.

4.2 Results

Here, we discuss the performance of the standard models and the proposed Pin-UTSVM
model for classification of EEG signal with different feature extraction techniques. The
performance of the models with linear and non-linear cases are given as follows:

4.2.1 Evaluation of the models with linear kernel

The results of the experiments corresponding to the linear kernel are presented in Table 2. The
optimal parameters obtained for linear kernel are available in Table 3. The Table 2 reports the
average accuracy obtained after the cross-validation at the optimal parameters. The optimal
parameters are obtained by using the grid search method. The table reports the average
accuracy and average rank of the methods. One can note that the proposed Pin-UTSVM
model performs better as it achieves lowest average rank of 1. 1 is the lowest rank possible,
thus establishing that the proposed method has the best performance in the linear case. The
best accuracy in Table 2 for a no-noise dataset is 0.89, obtained by the proposed Pin-UTSVM
using the wavelet (Haar) feature extraction for the O&S dataset. Additionally, our proposed
method obtains a substantially better average accuracy attaining around 5% better than the
preceding method, UTSVM. TWSVM and UTSVM both perform similarly, achieving 2.625
and 2.375 average rank, respectively. The Pin-GTSVM is the worst performing method.

Specifically evaluating the Z&S dataset for the linear case, we observe that the wavelet
(Haar) and wavelet (db2) feature extraction methods perform the best for the proposed Pin-
UTSVM method. In contrast, ICA performs the worst. As for the O&S dataset, the same
observations as Z&S are made with regards to the proposed Pin-UTSVM. The ICA feature
extraction performs the worst for all of the methods in the linear case.

4.2.2 Evaluation of the models with Gaussian kernel

The results of the experiments corresponding to the Gaussian kernel are presented in Table 4.
The optimal parameters obtained for gaussian kernel are available in Table 5. The Table 4
is arranged similar to the linear case, i.e., the table reports the average accuracy obtained
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after the cross-validation at the optimal parameters, which were obtained by the grid search
method. The table reports the average accuracy and average rank of the methods. Analogous
to the linear case, the proposed model performs exceptionally well, achieving an average
rank of 1.286.

The best accuracy in Table 4 for a no-noise dataset is 0.975, obtained by both, the proposed
Pin-UTSVM using the wavelet (db1) feature extraction for the Z&S dataset and UTSVM
using the ICA feature extraction for the Z&S dataset. The runner-up method is the UTSVM
with an average rank of 2.071. The TWSVM method obtains an average rank of 2.973 and
the Pin-GTSVM the worst preforming method receives 3.67 average rank. All the methods
perform significantly better with Gaussian kernel than the linear counterpart in Table 2. The
average accuracy of each method increased by 9–22% when switching to Gaussian kernel.
The least growth is observed in the proposed method Pin-UTSVM, suggesting its lower
degree of dependence on Gaussian kernel to form separating hyperplanes. This revelation
enables us to suggest utilising the fast linear kernel when speed is of priority, with a minimal
compromise to accuracy.

Specifically evaluating the Z&S dataset for the Gaussian kernel case, we observe that the
wavelet (db1) performs the best for our method. In contrast, ICA performs the worst. As for
the O&S dataset, wavelet (db4) performs the best, and ICA performs the worst. A difference
from the linear case, can be observed in the case the ICA feature extraction, the accuracy
obtained is comparable or higher when comparing with other methods, indicating a necessity
of non-linear kernel when using ICA feature extraction.

The performance of the models is also evaluated on the UCI (Dua &Graff, 2017) datasets.
Table 16 show that the performance of the proposed Pin-UTSVM model is better compared
to the baseline models.

4.3 Statistical analysis

Here, we evaluate the performance of the various models statistically via pairwise sign test,
the Friedman test and ANOVA & Tukey-Kramer Test.

4.3.1 ANOVA & Tukey-Kramer (TK) test

The evaluation is performed for both linear and Gaussian kernel cases. We first analyse
ANOVA (α = 0.05) results to determine if there exists a significance difference between the
models. If a difference exists, then the TK post hoc analysis is used to determine the specific
differences (Montgomery, 2017). The TK test uses the q statistic as defined below when the
sample sizes of the various groups are equal.

q = Ȳi − Ȳ j

s.e.
(63)

where, Ȳi is the mean of samples of Group i , standard error s.e. = MS(within group)/n and
n is the number of samples.

For the linear casewe can observe fromTable 6 that F > Fcrit andP value< α, indicating
a significant difference between groups. Using a studentised q table we can find closest value
of qcrit for α = 0.05, d f = 220, k = 4 as 3.659. The Table 7 calculates the q values
for the proposed method Pin-UTSVM vs TWSVM, Pin-GTSVM and UTSVM. Since all
the calculated values of q are smaller than qcrit , there is a significant difference between
Pin-UTSVM and all other methods.
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Table 6 ANOVA results for Linear case

Source of variation SS df MS F P value Fcrit

Between groups 0.970296763 3 0.323432254 102.589472 1.43427E-41 2.645636537

Within groups 0.693590625 220 0.003152685

Table 7 Tukey-Kramer analysis for Linear case

Group 1 Group 2 Ȳ1 − Ȳ2 n s.e. q qcrit Significant difference

Pin-UTSVM TWSVM 0.0453 56 0.007503195 6.033143891 3.659 Yes

Pin-UTSVM Pin-GTSVM 0.1756 56 0.007503195 23.40669435 3.659 Yes

Pin-UTSVM UTSVM 0.0431 56 0.007503195 5.747551281 3.659 Yes

Table 8 ANOVA results for Non-Linear case

Source of variation SS df MS F P value Fcrit

Between groups 0.060916406 3 0.020305469 46.37872699 2.88248E-23 2.645636537

Within groups 0.096320089 220 0.000437819

Table 9 Tukey-Kramer analysis for Non-Linear case

Group 1 Group 2 Ȳ1 − Ȳ2 n s.e. q qcrit Significant difference

Pin-UTSVM TWSVM 0.0245 56 0.002796102 8.749423853 3.659 Yes

Pin-UTSVM Pin-GTSVM 0.0454 56 0.002796102 16.22155955 3.659 Yes

Pin-UTSVM UTSVM 0.0146 56 0.002796102 5.204949227 3.659 Yes

For the non-linear case we can observe from Table 8 that F > Fcrit and P value < α,
indicating a significant difference between groups. Using a studentised q table we can find
closest value of qcrit for α = 0.05, d f = 220, k = 4 as 3.659. The Table 9 calculates the q
values for the proposed method Pin-UTSVM vs TWSVM, Pin-GTSVM and UTSVM. Since
all the calculated values of q are smaller than qcrit , there is a significant difference between
Pin-UTSVM and all other methods.

4.3.2 Friedman test

The evaluation is performed for both linear and Gaussian kernel cases. We follow Friedman
test to analyse the significance of the models. In Friedman test, the performance of the model
is ranked on each dataset with the worse performing models assigned a higher rank and
vice versa. Let r ij be the rank of the j th model on the i th dataset. Suppose K classification

models are evaluated on T number of datasets, then the average rank of the j th classifier
R j = ∑T

i=1 r
i
j . The Friedman statistic follows χ2

F distribution with (K − 1) degrees of
freedom and is given as

χ2
F = 12T

K (K + 1)

[∑
j

R2
j − K (K + 1)2

4

]
. (64)
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Table 10 Significant difference of models with linear kernel based on Nemenyi post-hoc test

TWSVM (2.63) Pin-GTSVM (4) UTSVM (2.38)

TWSVM (2.63) 1.37

Pin-GTSVM (4)

UTSVM (2.38) 1.62

Proposed Pin-UTSVM (1) 1.63 3 1.38

Fig. 2 Nemenyi critical difference for linear case

Friedman statistic is undesirably conservative, hence, a better statistic is given as

FF = (T − 1)χ2
F

T (K − 1) − χ2
F

, (65)

which follows FF distribution with (K − 1) and (K − 1)(T − 1) degrees of freedom. Under
the null hypothesis, all models are performing identically and their average ranks are equal. If
the null hypothesis is void, then Nemenyi test is followed for the pairwise comparison of the
models. In Nemenyi posthoc test, two models are equivalent if their average rank difference
is less than the critical difference (CD). Mathematically,

CD = qα

√
K (K + 1)

6T
. (66)

After simple calculations, the average rank of the TWSVM, Pin-GTSVM, UTSVM, and
proposed Pin-UTSVM for linear case are 2.636, 4, 2.38, and 1, respectively. At 5% level of
significance, χ2

F = 153.9317, FF = 601.7958. With T = 56, K = 4. From statistical table,
FF (3, 165) = 2.65. Since 601.7958 > 2.65, hence, the null hypothesis is void and substantial
differences exist among the classification models. To check the significant difference within
the models, we follow Nemenyi test. Given qα=0.05 = 2.5690, the CD = 0.63. Table 10
gives the significant difference among themodels. Here, the blank entries denote thatmethods
in the corresponding row and column are equal and no significant difference exists among
them. The numbers in the corresponding cells denote the average rank difference among the
models. Each entry denotes that significant difference exists among the methods of row and
column, with row method performing better than the corresponding column method. One
can see that the proposed Pin-UTSVMmodel is significantly better compared to the existing
TWSVM, Pin-GTSVM and UTSVM models. Figure 2 gives the pictorial representation of
the significant difference. The models connected via line denote that they are performing
equally and no significant difference exists among them. Thus, one can see that proposed
Pin-UTSVM model is significantly better compared to the existing models.

The average rank of the TWSVM, Pin-GTSVM, UTSVM, and proposed Pin-UTSVM
with Gaussian kernel are 2.97, 3.67, 2.07,and 1.29, respectively. With simple calculation at
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Table 11 Significant difference of models with Gaussian kernel based on Nemenyi post-hoc test

TWSVM (2.97) Pin-GTSVM (3.67) UTSVM (2.07)

TWSVM (2.97) 0.7

Pin-GTSVM (3.67)

UTSVM (2.07) 0.9 1.6

Propopsed Pin-UTSVM (1.29) 1.68 2.38 0.78

Fig. 3 Nemenyi Critical difference for non-linear case

5% level of significance, we get χ2
F = 108.8237, FF = 101.1436. With T = 56, K =

4, FF (3, 165) = 2.65. As 101.1436 > 2.65, we dismiss the null hypothesis i.e. substantial
differences exist in the classification models. To check the differences within the models,
we follow pairwise Nemenyi test. With qα=0.05 = 2.5690, we have CD = 0.6268. Thus,
the models are significantly different if the average ranks of the models differ by atleast
0.6268. Table 11 gives the pairwise comparison of the models. Here, the entries in each cell
have similar meaning as given above. One can see that the proposed Pin-UTSVM models is
performing significantly better compared to the baseline models. Figure 3 gives the pictorial
comparison of the models.

4.3.3 Statistical analysis based on pair wise: sign test

In pairwise sign test, the number of datasets on which a model is winner or loser is counted
along with the count of ties (if any). Then sign test is followed for the pairwise comparison.
Under the null hypothesis, the two methods perform identically thus each model wins on
approximately T /2 datasets of T datasets. The model is significantly better if it wins on
T /2 + 1.96

√
T /2 datasets with p < 0.05. If there is tie between the algorithms, then the

number of ties is evenly distributed if the number is even. In case of odd number of ties,
we ignore one. With simple calculations, the number of win-tie-loss count for each pair of
models for linear and non-linear cases are given in Table 12 and Table 14, respectively. Each
entry of a table is given as [a, b, c]which denotes that the rowmodel wins a times, ties b times
and loses c times with respect to the column method. With simple calculations, significant
difference exists among the models if the number of wins≥ 35.3336. Table 13 shows that the
proposed Pin-UTSVM is significantly better compared to the baselinemodels. Also, Table 15
gives the significant difference of the models with Gaussian kernel. Themethods not reported
in Table 13 and Table 15 doesn’t show any significant difference. One can see that proposed
Pin-UTSVM model is significantly better compared to the baseline models. Also, UTSVM
is significantly better compared to the TWSVM and the Pin-GTSVM models.
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Table 12 Sign test with linear case

TWSVM Pin-GTSVM UTSVM

Pin-GTSVM [0, 0, 56]

UTSVM [14, 42, 0] [56, 0, 0]

Proposed Pin-UTSVM [56, 0, 0] [56, 0, 0] [56, 0, 0]

Table 13 Significant difference
among the models with linear
case via pairwise sign test

TWSVM Pin-GTSVM UTSVM

Proposed Pin-UTSVM ✔ ✔ ✔

Table 14 Sign test with Gaussian kernel

TWSVM Pin-GTSVM UTSVM

Pin-GTSVM [12, 2, 42]

UTSVM [34, 22, 0] [54, 2, 0]

Proposed Pin-UTSVM [52, 1, 3] [51, 1, 4] [47, 2, 7]

Table 15 Significant difference
among the models with Gaussian
kernel via pairwise sign test

TWSVM Pin-GTSVM UTSVM

UTSVM ✔ ✔

Proposed Pin-UTSVM ✔ ✔ ✔

4.4 Parameter sensitivity analysis

Figure 4 presents the effect of hyperparameters on the accuracy of our proposed algorithm.
We present four graphs for each dataset, Accuracy vs (i) c1 vs c2, (ii) τ1 vs τ3, (iii) c1 vs ε

and (iv) c1 vs τ1. While plotting a graph against two parameters, the rest of the parameters
are kept at their optimal values. Here, we have only presented the four most relevant graphs
for appropriately selecting the hyperparameters. From all the (i) c1 vs c2 graphs, one can
conclude that the values of c1 and c2 have inverse effects on the accuracy, in general, large c1
and small c2 leads to better accuracy. From all the (ii) τ1 vs τ3 graphs, we can observe that τ1
and τ3 have a similar relationship as c1 and c2, respectively, i.e., large τ1 and small τ3 leads
to better accuracy. From all the (iii) c1 vs ε graphs, we can note that ε has minimal effect on
accuracy, but lower values generally lead to better accuracy. We can again note that lower
values of c1 lead to abysmal accuracies. From all the (iv) c1 vs τ1 graphs, we can note that
at higher values of c1, τ1 has minimal effect on the accuracy, but in general, we can observe
a minor improvement from larger values of τ1.

4.5 Noise sensitivity analysis

The primary purpose of implementing the pinball loss function in our proposed method Pin-
UTSVM is to enable noise insensitivity. To test this property, we introduced Gaussian noise
to EEG data with varying standard deviations. The results of this experiment are tabulated in
Tables 2 and 4. To properly analyse the noise insensitivity performance, we present Fig. 5.
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Fig. 4 Effect of various hyperparameters on the performance of proposed Pin-UTSVM model

In Fig. 5, we have generated a two-dimensional synthetic dataset with two classes, each
from a Gaussian distribution such that xi , i ∈ {i : yi = 1} ∼ N (μ1, �1) (represented by
blue in Fig. 5) and xi , i ∈ {i : yi = −1} ∼ N (μ2, �2) (represented by red in Fig. 5).
For the universum data required for UTSVM and Pin-UTSVM, we used points belonging to
N (μ3, �3), where μ1 = [0.5,−3]T , μ2 = [−0.5, 3]T , μ3 = [−0.5,−3]T and �1 = �2 =
�3 =

[
0.2 0
0 3

]
. The ideal separating hyperplane for the above two Gaussian distribution is

given by the Bayes classifier viz. fc(x) = 2.5x1 − x2, i.e. a slope of 2.5. We have plotted the
hyperplanes for different methods and have provided the slopes in the legend.

The σ (Std. deviation) = 0 plot represents data without any noise. Next, we introduce
Gaussian noise to these data points, with σ = [0.05, 0.075, 0.1]. This noise changes the
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Fig. 5 The above four figures depict the noise insensitivity property of the pinball loss via four noise levels of
a synthetic dataset

distribution of the data points, thus disrupting the hyperplanes. One can observe that the
hyperplanes deviate more with an increase in noise. This deviation is significantly less severe
in Pin-UTSVM than other methods, implying better insensitivity to noise.

4.6 Effect of universum data

We also present the accuracy obtained for various selections of the number of universum
points used for datasets (a) O&S using db1, (b) O&S using db6, (c) Z&S using Haar, (d)
Z&S using db6 in Fig. 6. From Fig. 6, one can observe that the proposed method performs
better than UTSVM in most cases for both linear and non-linear variations. Linear UTSVM
being a minor exception, as a general trend, increasing the number of universum points leads
to better accuracy. We observe plateauing accuracy at around 40− 60 universum data points
in nearly all the cases and techniques, thus suggesting the minimum number of universum
points to be used as around 50 % of the training dataset size.

4.7 Performance of themodels on different feature extraction

Figure 7 presents the accuracies obtained for different algorithms for various Feature extrac-
tion techniques. One can observe that the proposed algorithm performs the best for nearly all
the feature selection algorithms for both Z&S and O&S. One can observe that ICA produces
unreliable results, nearly all classification algorithms suffer due to it (as seen by a dip in
accuracy graph). But ICA also produces the best accuracy in the case of (c).
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Fig. 6 Performance comparison of linear and non-linear UTSVMand Pin-UTSVMw.r.t. number of universum
samples used for a O&S using wavelet (db1), bO&S using wavelet (db6), c Z&S using Haar and d Z&S using
wavelet (db6) feature extraction technique

5 Conclusion

In this paper, we proposed a novel universum twin SVM with pinball loss functions (Pin-
UTSVM) for the EEG signal classification. Pinball loss function has been widely used in
the literature of classification and regression due its association between quantile regression.
Here, we incorporated pinball loss function in baseline universum TWSVM model. The
proposed Pin-UTSVM model is stable for resampling data and is insensitive to noise. To
show the efficacy of our proposed Pin-UTSVM model, we evaluated it for the classification
of the EEG signal. Experimental results and the statistical tests prove the competence of the
proposed Pin-UTSVM compared to the standard models. To prove the robust of proposed
Pin-UTSVMmodel in presence of noise, we corrupted the EEG signals with different levels
of noise and evaluated the classification models. The results show that the proposed Pin-
UTSVMmodel is effective in presence of noise while as the existing baseline models suffer.
In future, one can apply this algorithm in the diagnosis of other diseases like Alzheimer’s
disease.Moreover, one can also focus on improving the performance of themodel via efficient
optimization algorithms. The source code will be available at https://github.com/mtanveer1.
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Fig. 7 Accuracy comparison against various feature extraction techniques for classification of EEG signals
using different algorithms for a Z&S using linear kernel, b O&S dataset using linear kernel, c Z&S using
non-linear kernel and d O&S dataset using non-linear kernel
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