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Abstract
We propose a novel heuristic approach, sequential solution method (SSM), for the efficient
solution of Continuous Facility Layout Problems (CFLPs). The proposed SSM approach is
compared with exact solution methods as well as Genetic Algorithm (GA) and Simulated
Annealing (SA) metaheuristic algorithms. We also improved the metaheuristic approaches
based on approximating the facility coordinates with the coordinates of the Center of the
Smallest Rectangle (CSR) that covers all facilities in the solution. The proposed SSM
approach is a recursive heuristic based on the exact solutions of reduced layout problems.
Instead of solving the original CFLP with many variables, SSM first generates subproblems
(facility clusters) of smaller sizes using a clusteringmodel and then sequentially solves layout
subproblems where non-member facilities locations are constrained. Based on an experimen-
tal study, we report that the proposed SSM substantially outperforms exact approaches and
meta-heuristic approaches and hence provide an alternative approach for efficiently solving
large CFLP instances.

Keywords Heuristics · Genetic Algorithm · Simulated Annealing · Clustering model ·
Sequential solution method · Facility layout

1 Introduction

Optimal design of facility layouts is a classical problem in the operational research litera-
ture with applications in manufacturing and service systems. Facility layout planning (FLP)
aims to determine the layout of facilities to optimize one or more operational objectives
by minimizing cost objectives (e.g., travel time, material handling costs) and maximizing
benefit objectives (e.g., area utilization, closeness rating, satisfaction of decision maker’s
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preferences) (Hosseini-Nasab et al., 2018; Pérez-Gosende et al., 2021). Its significance man-
ifest through the impact on the efficiency of production systems and their productivity level.
Facility layout plans determine the system’s ability to meet the production schedules at an
affordable cost and poor plans create process bottlenecks, material flow congestion, under-
utilization. These plans also determine the degree of flexibility for replanning in the future.
There are variations of the classical facility layout planning problem such as multi-objective
FLPs (Saraswat et al., 2015), single-row FLPs(Keller & Buscher, 2015), reconfigurable FLPs
(Maganha et al., 2019) and multiperiod FLPs (Turanoğlu & Akkaya, 2018). FLPs have been
studied in various problem domains such as finding layout of temporary buildings on a con-
struction site (Kumar & Cheng, 2015), designing hospitals (Hahn & Krarup, 2001), and
developing microprocessor layouts (Funke, Hougardy, Schneider, 2016). FLP is known to
be NP-hard and exact solutions are limited to small sized problems.

Continuous Facility Layout Problem (CFLP) is concerned with determining an efficient
layout design for a set of facilities within a given area to minimize the total material handling
costs. Considering facility shapes and dimension restrictions, layout design problems can
be categorized into equal area and unequal area layout problems (Chae & Regan, 2016;
Hosseini-Nasab et al., 2018). We consider the unequal area CFLPs with orthogonal linear
flow of material between facilities. The distances are commonly based on the rectilinear
distance (Benjaafar, Heragu, Irani, 2002) and less often based on Euclidean distance (Ripon
et al., 2013). Accordingly, given the coordinates of the center of the facility as xi and yi , then
the orthogonal linear distance from a location (a, b) is calculated as d = |xi − a|+|yi−b|.

An optimal layout is then defined as a non-overlap packing of rectangles with the minimal
total material handling cost given pi j , unit distance handling cost between facilities i and j .
Let indices i and j to denote one of the N rectangular facilities. The parameters wi and hi
denote the width and height of the facility i . Let (xi , yi ) denote the location of the center of
facility i on the two-dimensional plane. The CFLP problem studied in this work is formulated
as follows:

CFLP Model:

MinZCFLP =
∑

(i,j)∈N: i <j
pi j

(∣∣xi − x j
∣∣ + ∣∣yi − y j

∣∣)

s.t.
∣∣xi − x j

∣∣ ≥ 1

2

(
wi + w j

)
or

∣∣yi − y j
∣∣ ≥ 1

2

(
hi + h j

)∀i, j ∈ N and i < j

xi, yi ≥ 0, ∀i, j

In this study, we propose a novel heuristic method called Sequential Solution Method
(SSM). We compared the proposed SSM with popular heuristic methods, i.e., Simulated
Annealing (SA), Genetic Algorithms (GA) and our improved versions of simulated annealing
(SA-CSR) and genetic algorithms (GA-CSR). Improved versions are based on approximating
the facility coordinates to the coordinates of the center of smallest rectangle (CSR) that covers
all facilities in the solution. In addition, we report on the comparison of SSM with four exact
solution approaches, i.e., MIP1 (Papageorgiou & Rotstein, 1998), MIP2 (Ozyurt & Realff,
1999), MIP3 (Yang & Peters, 1998) and BB (Xie & Sahinidis, 2008) in the literature. Based
on an experimental study, we report that SSM approach is promising in terms of solution
times and quality.
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SSM is based on the iterative decomposition idea where, instead of solving the original
problem with many facilities (variables), we sequentially solve smaller subproblems gener-
ated via a Clustering Model (CM). SSM approach alternates between clustering of facilities
using the CM and selecting the best layout for each cluster based on the objective func-
tion value. Accordingly, SSM is a recursive heuristic based on the exact solutions of reduced
CFLPs. In SSM, the optimum layout solutions for the reduced CFLP are obtained using exact
solution methods. Efficiency of the SSM is tested on the various test problems and results
are compared with other heuristics and exact methods. In addition to its computational per-
formance, the proposed approach, due to its decomposition-based solution strategy, allows
for dynamically balancing the solution quality and time. Further, the clustering-based solu-
tion improvement gives the ability to prioritize the layout planning facility sets based on
preferences of the decision maker.

The rest of the paper is organized as follows: In Sect. 2, we provide an overview of the
relevant literature and recent studies on layout planning and CFLP formulation. Section 3
describes the CM and introduces the SSM as well as the CSR enhancements to the SA and
GA. In Sect. 4, we present the results of a computational study comparing the proposed SSM
with exact and heuristic methods using test instances with varying complexity. Section 5
concludes with a summary of findings and suggestions for future research. Results indicate
that our novel clustering and sequential solution strategy is more successful in solving larger
CFLP instances.

2 Literature

CFLP extends the well-known Quadratic Assignment Problem (QAP), as a facility alloca-
tion problem, determines minimum cost assignment of facilities to locations (Koopmans &
Beckman, 1957). QAP assumes that all potential locations for each facility are known in
advance and is based on the selection of one or more locations from potential locations in
order to minimize a certain cost function (Chae & Regan, 2016, 2020). In contrast to QAP,
there is no restriction for the choice of locations in the CFLP.

The unequal area CFLPs are NP-hard and global optimal solutions are difficult or impossi-
ble to compute in reasonable time. Both exact algorithms and heuristics have been developed
to solve CFLP.Montreuil (1991) modeled facility location problem as aMixed Integer Linear
Programming (MIP) model. Binary (1–0) variables were employed to prevent overlapping of
rectangular facilities. However, studies with MIP model indicate that it can find the optimal
solution up to five facilities andMontreuil’s approach (1991) is only applicable for five facili-
ties. Meller et al. (1998) proposed a linear approach to solve the CFLP and developed cutting
methods to reduce the solution time. However, their approach could only solve the problem
for up to seven facilities. Yang and Peters’ (1998) Mixed Integer Linear programming model
made it possible to align long edge of each facility with the horizontal and vertical axes of
the facility area. Ozyurt and Realff (1999) improved the model of Jeroslow (1989). In their
study, absolute objective function value was expressed in a piecewise linear function and they
formulated mixed-integer facility programming model excluding Big-M variables (Ozyurt
& Realff, 1999). Sherali et al. (2003) significantly improved the solution time by developing
symmetry reduction techniques and improving the branch and bound rules. Xie and Sahinidis
(2008) proposed a branch-and-bound based algorithm to improve the pruning effectiveness.

Due to the complex nature of the layout problem, even the state-of-the-art exact algorithm
is only able to solve instances with nearly ten facilities, while practical instances are often
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concerned with more facilities. Hence, most research in literature is based on heuristics to
generate good solutions (Garc´ıa-Herna´ndez et al., 2015; Garcia-Hernandez et al., 2019;
Kang & Chae, 2017; Kim & Chae, 2019; Palomo-Romero et al., 2017; Scalia et al., 2019;
Tavakkoli-Moghaddam&Panahi, 2007;Ulutas&Kulturel, 2012). Given the high complexity
of the CFLP, numerous metaheuristics have been proposed for layout design (Banerjee et al.,
1992;Montreuil, Venkatadri, Ratliff, 1993; Chwif, Barretto, Moscato, 1998; Langevin,Mon-
treuil, Riopel, 1994; Lacksonen, 1997; Kim & Kim, 2000; Montreuil et al., 2004a, 2004b;
Hu et al., 2007; Ou-yang and Utamina, 2013; Keller and Bucher, 2015; Palubeckis, 2017).
Various meta-heuristic are developed for these problems GA (Tate & Smith, 1995), SA (Tam,
1992), Tabu Search (Scholz, Petrick, Domschke, 2009), Particle Swarm Optimization (Kul-
turel & Konak, 2011) Ant Colony Optimization (Liu, 2019) and Harmony Search (Kang,
Kim, Chae, 2018) /

In addition to the solution methodology for the standard CFLP, the extant literature also
presents methods for its extensions. Some studies assumed that there may be uncertainty in
the cost matrix and dynamic facility layout design models were developed (Balakrishnan
& Cheng, 1998; Benjaafar, Heragu, Irani, 2002; Yang & Peters, 1998). Other variants and
approaches in the literature include SA for dynamic layout problem (Baykasoglu & Gindy,
2001), simulation based non-sorting GA (Chen, 2019), a slicing tree based parallel tempering
heuristic (Friedrich, Klausnitzer, Lasch 2018), a cuckoo search based algorithm for the closed
loop layout design problem (Kang et al., 2018), hybrid ant colony optimization and simulated
annealing (Ebrahimi et al., 2020). Several studies addressed the special instance of placing
facilities on a linear path (Cravo & Amaral, 2019; Guan & Lin, 2016). A concurrent block
layout, path design and aisle design (Klausnitzer & Lasch, 2019), packing algorithms for
CFLPs (Crainic et al., 2008; Lodi et al., 2002a, 2002b).Some studies proposed optimizing
over the software generated layouts (Abdollahi et al., 2019).

Others studies include layout problemswith variations in the facility dimensions and num-
ber of objectives (Mendes&Themido, 2004; Hahn et al., 2010; Covas, et al., 2013; Opasanon
& Lertsanti, 2013; M’Hallah & Bouziri, 2016; Pa Pagès Bernaus et al., 2019; Li et al., 2019;
Amorim-Lopes, 2020). Schneuwly and Widmer (2003) investigated the arrangement of the
exhibition spaces in a fair. Braglia et al. (2005) discussed the layout problem in dynamic
environments and proposed a measure of the layout robustness. De Giovanni et al. (2013),
focused on the gate matrix layouts and optimization of electronic circuits.

3 Methodology

Solution times of CFLPs increase exponentially with the growing number of facilities. To
address this complexity, we developed a clusteringmodel (CM) that identifies sets of facilities
based on an objective criterion. Given the clusters of facilities, respective layout optimization
subproblems for each cluster (reduced CFLPs hereafter) can then be solved in a sequential
manner (SSM).Wenote that this sequential approach is a heuristicmethodwhich can generate
locally optimal solutions that are suboptimal for the original CFLP problem. In this section,
we describe the CM and SSM methods as well as improved versions of SA and GA applied
to CFLP, SA-CSR and GA-CSR, based on approximating the facility coordinates to the
coordinates of the center of smallest rectangle (CSR).
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3.1 Clusteringmodel

CM generates reduced continuous facility layout subproblems with smaller number of facil-
ities. Instead of solving the original problem with many variables, these reduced CFLPs are
solved exactly by the subsequent SSMapproach. It is known that exact algorithms can achieve
the results quickly for problems with few facilities, e.g. up to 5 facilities. Thus, we limit the
number of facilities in each cluster with a maximal threshold set size (K ) in the CM. The
choice of this threshold (K) as well as number of clusters (C) determines the performance
of the overall approach. Note that, in the extreme case of K = N and C = 1, the proposed
approach is equivalent to the original CFLP where there is a single cluster containing all
the facilities. As the cluster size decrease, e.g., tightening the K threshold, subsequent solu-
tion of reduced CFLPs becomes easier albeit at the expense of increased suboptimality risk.
Hence there is a trade-off between the cluster size and optimality of the proposed approach.
While the clustering approach reduces the computational complexity, it can result in myopic
optimization of facility clusters during the subsequent SSM iterations. Hence, we also allow
for commonality of facilities across multiple clusters.

In the CMmodel, the material handling costs and flow frequencies between facility i and j
are employed to assign the most associated facilities to the same clusters. The clusters should
include most associated facilities in terms of material handling costs to minimize CFLP in
SSM, so the objective of CM model is maximization. In other words, we want to assign
the most associated facilities (maximization) to the same clusters in CM and if the most
associated facilities are in the same cluster the overall objective function of CFLP could be
minimized in SSM. CM is employed only for finding most efficient clusters and SSM is for
solving andminimizing theCFLPobjective functionvalue.Thedeveloped approach leverages
the idea of divide-and-conquer where the set of facilities are partitioned into subsets based
on their material flow associations (maximization) through CM. Accordingly, CM model
maximizes the intra-cluster material flow and handling costs across all clusters in (1). Next,
the SSM approach sequentially optimizes the layouts of facility clusters (minimization).The
formulation of the clustering model is provided below.

Clustering Model (CM):

MaxZCM =
∑

c∈C

∑

i, j ∈ N
i �= j

pi j zicz jc (1)

s.t.
∑

c∈C
zic = v i ∈ N (2)

∑

i∈N
zic ≥ 1 c ∈ C (3)

∑

i∈N
zic ≤ K c = 1 . . .C (4)

∀zic ∈ 0 − 1i ∈ N , c ∈ C (5)

In CM, N denotes the set of facilities, where i, j ∈ N and c and C denotes the index and
set of clusters, respective, i.e., c ∈ C . Decisions are binary indicating the cluster assignment
of facilities, i.e. zic = 1 if facility i is assigned to cluster c, 0 otherwise. Constraint in (2)
ensures that a facility is assigned to exactly v clusters where v is the inter-cluster mutuality

123



360 Annals of Operations Research (2023) 320:355–377

parameter. Note that v = 1 corresponds to the case where all clusters are mutually exclusive.
For a non-trivial clustering solution, we have v < N . The constraints in (3) and (4) ensure
that the number facilities in each cluster are greater than 1 and smaller than K.

3.2 Sequential solutionmethod (SSM)

Subsequent to CM, the SSM procedure, a recursive heuristic based on the exact solutions of
reduced CFLPs is executed. SSM approach is an iterative procedure where we optimize the
reduced CFLP for each cluster at a time while fixing the locations of all other facilities not
a member of the cluster. Note that in solving the reduced CFLP of each cluster we consider
the interaction between not only the facilities within the cluster but also with those external
to the cluster. The salient aspect is that external facilities’ locations are kept fixed. In each
iteration r of the SSM, given the clusters of facilities C , we solve a reduced version of the
CFLP model shown below. We denote the objective value of the reduced CFLP subproblem
solved in iteration r for cluster c with Zc,r

CFLP . Given a set of clusters (C), the reduced CFLP
model optimizing the layout of facilities in cluster c is identical to the original formulation
with the exception of the last constraint which fixes the layout decisions of all the facilities
other than those in the current cluster, i.e.,∀i ∈ C\c.

Reduced CFLP Model (C, c, r): Cluster c at iteration r with set of clusters C

MinZc,r
CFLP =

∑

(i,j)∈C: i <j
pi j

(∣∣xi − x j
∣∣ + ∣∣yi − y j

∣∣) (6)

s.t.

∣∣xi − x j
∣∣ ≥ 1

2

(
wi + w j

) ∀i, j ∈ N , and i < j or (7)

∣∣yi − y j
∣∣ ≥ 1

2

(
hi + h j

)∀i, j ∈ N , and i < j (8)

(xi , yi ) = (xi , yi )
r∀i ∈ C\c, xi, yi ≥ 0, ∀i, j (9)

We now present the SSM algorithm which is executed at least C + 1 and at most R
iterations, i.e., r = 1...R in Table 1. SSM is initialized with a clustering solution C∗ (set of
clusters) obtained by solving theCMmodel and then sequentially constructed optimal layouts
of the clusters. This sequential optimization of the layout gradually appends the clusters to
the incumbent set of clusters (C ′) which is initialized with the first cluster. Next, the SSM
solves the reduced CFLPs using the reduced CFLP model with all c ∈ C∗. SSM algorithm
terminates if the iteration limit is reached, there is no change in the layout solution or the
CPU time limit is reached. Upon termination, SSM algorithm outputs the layout solutions
for all facilities and the total objective function across all clusters.

3.3 Heuristics

We improved SA and GA algorithms by approximating the facility coordinates to the coor-
dinates of the center of the smallest rectangle (CSR) that covers all facilities in the current
solution. In the next two sectionswe present the standard SA andGAaswell as their improved
versions with pseudo codes.
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Table 1 SSM algorithm

3.3.1 Simulated annealing algorithms (SA, SA-CSR)

In our experimental study, we employ two different Simulated Annealing algorithms, e.g.
the classical SA from the literature and an improved version as SA-CSR. Here we will
explain the details and present pseudo codes of our improved version. Chwif et al. (1998),
proposes a solution to the facility layout problem using simulated annealing, which includes
two procedures working interchangeably. The first procedure makes a pairwise exchange
between facilities and the second procedure makes random moves on the planar site at four
main directions upwards, downwards, leftwards and rightwards or makes random changes
of aspect ratios. We improved solution approach of the Chwif et al. (1998), and present
our new approach in Table 2, referred to as Simulated Annealing based on the Center of
Smallest Rectangle (SA-CSR). Here, x and y coordinates are generated such that they are
within total of the width of facilities for x and height of facilities for y so that an initial
solution could be efficiently generated. The main steps of the SA algorithm are described as
follows: Step 1 initializes the parameters, i.e., facility number N , initial temperature Tint final
temperature Tend , cooling rate CoR, iteration number I N , CPU running time TCPUT ime and
maximum CPU running time TmaxCPUT ime. Step 2 checks the feasibility of a random initial
solution; if the feasibility condition holds, we find center of facilities (xc, yc) in the random
solution and move all facility coordinates q step to the center of facilities. The step size qi
is defined as a percentage of the facility height plus facility width. Instead of percentage we
can use a bigger step size etc. (hi + wi)/50 or (hi + wi)/10, that may decrease the iteration
number but on the other hand it also may lead the infeasibility (e.g. overlapping of the
facilities). Furthermore, if we use a smaller step size etc. (hi + wi)/1000, that may increase
the iteration number and solution times. The search for the best value of the step size is a
separate issue and can be investigated as a future extension of this paper. Step 3 re-checks
the feasibility; and if the feasibility condition holds, we solve ZCFLP , otherwise we repeat
Step 2. ZCFLP objective function value and facility coordinates are assigned in Step 4 as
Zbest = ZCFLP, ZCurrent = ZCFLP,

(
xi, yi

)best = (
xi, yi

)∗,
(
xi, yi

)current = (
xi, yi

)∗. Step 5
executes the main iterations SA. Method in Table 3 is used to create neighbors (xi , yi )neighbor

and solved ZCFLP for (xi , yi )neighbor. Differences (∇E) between neighbor Zneighbor and
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Table 2 SA-CSR pseudo codes

current solution ZCurrent objective function values are calculated to compare both solutions.
If (∇E) < 0, neighbor solution is accepted as the current solution. If (∇E) ≥ 0, a random

number (RN ) is produced. If (∇E) ≥ 0 and RN < e− ∇E
T , neighbor solution (xi , yi )neighbor

is accepted as the current solution (xi , yi )current . Otherwise current solution is not changed.
If current objective function ZCurrent is better than local optimum objective function Zbest ,
current solution is accepted as local optimum. Temperature (T ) is decreased by multiplying
Cooling Rate (CoR). If T = Tend or maximum CPU running time is reached, the algorithm
terminates, and otherwise we repeat Step 5.

SA-CSR improves the SA implementation in Chwif et al. (1998), by improving p step the
initial solution, proposing a new neighboring strategy and improving the random moves on
the planar site. Instead of random moves, it employs o step moves to the coordinates of the
Center of the Smallest Rectangle (CSR) that covers all facilities layout in the current solution
to create a neighbor solution. Neighbors are generated from solutions by approximating the
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Table 3 SA-CSR neighborhood generation pseudo codes

facility coordinates o step to the coordinates of the center of the smallest rectangle that covers
all facilities layout. Improved SA-CSR’s neighborhood generation pseudo code is presented
in Table 3. Here, we take the central coordinate of factory layout as the mid-point of the
layout (midx , midy) as shown in Fig. 1 given the set of facilities.

The steps of the neighborhood generation used in SA-CSR are provided in Table 3. In
Step 1, we randomly generate coordinates of neighbor solution as xi and yi within 0 and
sum of wides

∑n
i=1 wi and heights

∑n
i=1 hi of all facilities (i = 1 to N). Next in Step 2, we

check feasibility and proceed to Step 3 where step size o is calculated with respect to iteration
number IN. Furthermore, we calculate the mid-point of the layout (midx, midy) as shown in
Fig. 1 given the set of facilities. Step 4 randomly establishes neighbor solutions’ coordinates
and Step 5 checks for feasibility.

3.3.2 Genetic algorithms (GA, GA-CSR)

In our experimental study, we employ two different GA, e.g. the classical GA from the
literature and an improved version as GA-CSR. Crossover operator in Mak et al. (1998),
is based on randomly chosen cutting sections. We propose a new GA strategy in which we
combine grids (nxn) layout in the study of Mak et al. (1998), with cross-over operator in
the study of El Baz (2004). We combined and improved both Mak et al. (1998), and El
Baz (2004) studies. All parents in population were improved by approximating the facility
coordinates o step to the coordinates of Center of Smallest Rectangle (CSR) that covers all
facilities in the current population. Here, we take the central coordinate of facility layout as
themid-point of the layout (midx ,midy) as shown in Fig. 1 given the set of facilities.We refer
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Fig. 1 Illustration of the central
coordinate (mid-point) of factory
layout given eight facilities

to this approach as Genetic Algorithm based on Center of Smallest Rectangle (GA-CSR) and
present its pseudocode in Table 4. Natural selection is performed as explained in Lipowski
and Lipowska’s (2012) study and probabilities of individuals are calculated accordingly.
After generating the offspring, the population is updated by “One Point Crossover Operator
individuals” as explained in Kellegöz et al. (2008), research. In conclusion, we present a new
GA implementation approach by improving the initial solution and improving the random
moves on the planar site.

TheGA-CSR algorithm executes in fivemain steps. Step 1 initializes the algorithm param-
eters, i.e., facility number N , population size PS, mutation rate MR, cross rate CrosR,
iteration number I N , maximum iteration number Imax , CPU running time TCPUT ime and
maximum CPU running time TmaxCPUT ime. Random initial solutions (PS) are generated
and checked for feasibility in Step 2. Provided feasible, center of facilities (xc, yc) coordi-
nates are calculated and all facility coordinates in PS are moved q step towards the center
of facilities. The step size qi is defined as a percentage of the facility height plus facil-
ity width. Instead of percentage we can use a bigger step size etc. (hi + wi)/50 or (hi +
wi)/10, that may decrease the iteration number but on the other hand it also may lead the
infeasibility (e.g. overlapping of the facilities). Furthermore if we use a smaller step size
etc. (hi + wi)/1000, that may increase the iteration number and solution times. The search
for the best value of the step size is a separate issue and can be investigated as a future
extension of this paper. After checking for the feasibility of these moves, we solve ZCFLP

for all individuals in PS and set current solution and factory coordinates (xi , yi )∗ to fol-
lowing variables ZCurrent,g = ZCFLP

(
xi, yi

)current,g = (
xi, yi

)∗, otherwise we repeat Step
2. Minimum objective function value and facility coordinates in PS are assigned in Step 3
as Zdummy = minimum of ZCurrent,g,

(
xi, yi

)dummy = minimum of
(
xi, yi

)current,g, Zbest =
Zdummy,

(
xi, yi

)best = (
xi, yi

)dummy. Step 4 executes the main GA iterations. Parent with
the best objective function value in the population is overwritten to a randomly selected
parent (Natural Selection). Two parents are randomly selected, and then a random number
Rand(0, 1) is produced in between 0–1. If Rand(0, 1) < Cross Rate (CrosR), two parents’
chromosomes are crossed (Crossing). A parent is randomly selected in PS, and then a random
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Table 4 GA-CSR pseudo codes
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Table 5 Parameters and decision variables

number is produced Rand(0, 1). If Rand(0, 1) < MR, parents’ chromosomes are mutated.
Here, step size o is calculated with respect to iteration number I N . Furthermore, we calcu-
late the mid-point of the layout facilities (midx , midy) in PS as shown in Fig. 1. Facility
coordinates are approached on randomly selected direction (V/H) o step to the coordinates
of the center of the smallest rectangle (midx , midy) that covers all facilities layout. We
again make a feasibility control of CFLP constraints. If the feasibility condition holds we
replace current facility coordinates with approached coordinates (xi , yi )current,g = (xi , yi )∗
otherwise we keep the current facility coordinates (xi , yi )current,g = (xi , yi )current. We solve
ZCFLP for all individuals in PS. We assign minimum objective function value and coor-
dinates in PS to following parameters Zdummy = minimum of ZCurrent,g

(
xi, yi

)dummy =
minimum of

(
xi, yi

)current,g. If the best solution is smaller than dummy solution, we set
dummy solution as the best solution. Zbest = Zdummy, (xi , yi )best = (xi , yi )dummy. If I N =
Imax or TCPUT ime = TmaxCPUT ime, iteration stop and repeat Step 4 otherwise.

We summarized the parameters and decision variables in Table 5 for all the models and
algorithms.

In order to avoid local optimums in heuristics following issues should be considered.
First population-based algorithms find neighbor solution depending on the current solution.
In SA differences (∇E) between neighbor Zneighbor and current solution ZCurrent objective
function values are calculated to compare both solutions. If (∇E) < 0, neighbor solution
is accepted as the current solution. If (∇E) ≥ 0, a random number (RN ) is produced.

If (∇E) ≥ 0 and RN < e− ∇E
T , neighbor solution (xi , yi )neighbor is accepted as the current

solution (xi , yi )current . Thus SA algorithm cannot get stuck at local optimums. However, GA
might get stuck at a local optimum and we can tune the GA parameters e.g. population size,
crossing rate and mutation rate to address this problem. In this study, in order to guarantee
fair comparisons of all algorithms (SSM, GA, SA), the parameters of SA and GA were
determined such that algorithms would run at least SSM CPU time. In particular, for the SA
algorithms, the “cooling rate”, “initial temperature” and final temperature” parameters were
determined specific to each problem instance so that SA algorithm would run at least SSM
CPU time. Similarly, the GA parameters (i.e., population size, crossing rate and mutation
rate) were determined specific to each problem instance so that GA algorithm would run at
least SSM CPU time. Finding the best values of these parameters to avoid local optimums is
a separate issue and can be investigated as a future extension of this paper.
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4 Results and discussion

The efficiency of algorithms is tested on test problems with varying sizes (e.g. PA1, OZ3,
T5, T6, T7, T8, T9 and T10 and YA2) and compared in terms of solution times and objective
function values. We used the same development and execution environment to code and run
all the algorithms, Intel Core(TM) i5-3210 2.4 GHz CPU, 8 GB RAM. We used IBM ILOG
CPLEX Optimization Studio to solve the CM problems and iterations of SSMs. Genetic and
simulated-annealing based methods are programmed in Matlab. The facility sizes of these
problem instances are given in Tables 6, 7 and 8, while the material handling cost matrices
are presented in Tables 9, 10 and 11, respectively.

Problem instances denoted T5, T6, T7, T8, T9 and T10 are instances generated from YA2
by taking the first m (5 to 10) facilities and the associated data from Table 8 and Table 11.

Table 6 Facility dimensions for PA1 problem

1 2 3 4 5 6 7

wi 5.22 11.42 7.68 8.48 7.68 2.60 2.40

hi 5.22 11.42 7.68 8.48 7.68 2.60 2.40

Table 7 Facility dimensions for OZ3 problem

1 2 3 4 5 6 7 8 9 10 11

wi 5 6 6 5 6 5 5 2 3 6 4.5

hi 3 6 6 3 6 5 5 1 2 6 4.5

Table 8 Facility dimensions for YA2 problem

1 2 3 4 5 6 7 8 9 10 11 12

wi 5 7 6 4 6 5 10 7 6 5 5 6

hi 4 5 5 4 6 4 7 5 5 5 5 4

Table 9 Material handling costs for PA1 problem

cij 1 2 3 4 5 6 7

1 – 346 0 0 416.3 0 0

2 – – 118 0 0 0 0

3 – – – 111 0 0 0

4 – – – – 85.3 0 0

5 – – – – – 86.3 82.8

6 – – – – – – 6.5
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Table 10 Material handling costs for OZ3 problem

cij 1 2 3 4 5 6 7 8 9 10 11

1 – 1 1 0 0 0 0 0 0 0 0

2 – – 10 0 0 0 1 0 0 0 0

3 – – – 10 10 20 0 0 0 0 5

4 – – – – 0 0 0 0 0 0 0

5 – – – – – 0 0 0 0 0 0

6 – – – – – – 0 0 0 20 0

7 – – – – – – – 1 1 0 5

8 – – – – – – – – 0 0 0

9 – – – – – – – – – 0 0

10 – – – – – – – – – – 5

Table 11 Material handling costs for YA2 problem

cij 1 2 3 4 5 6 7 8 9 10 11 12

1 – 18 6 12 2 20 18 10 38 20 26 26

2 – – 0 0 0 0 0 0 0 0 18 0

3 – – – 0 4 4 14 30 16 36 32 38

4 – – – – 8 0 0 0 0 0 0 0

5 – – – – – 10 2 34 30 6 14 24

6 – – – – – – 0 0 0 14 0 0

7 – – – – – – – 36 12 20 4 28

8 – – – – – – – – 0 0 6 0

9 – – – – – – – – – 8 22 12

10 – – – – – – – – – – 0 0

11 – – – – – – – – – – – 6

For all problem instances, we varied the number of clusters |C | ∈ {2, 3, 4} the maximum
number of facilities 3 ≤ K ≤ 8, and the number of mutual facilities 1 ≤ v ≤ 3. Selected
sets of clusters with the highest objective function values are presented in Table 12.

Next, we solved the SSM for each clustering solution in Table 12. The SSM is a recursive
heuristic based on the exact solutions of reduced CFLPs, thus R must be chosen at least as
the number of clusters (C) for a feasible layout solution. On the other hand, SSM should
be executed at least “C + 1” iterations to check whether this feasible solution is the best
solution (if there is no change in the layout solution) or not. Maximum number of cluster
for a problem set is C = 4 in Table 12, so R should be taken at least 5 which is C + 1 =
4 + 1. We set the maximum number of iterations at 10, i.e., R = 10, which is 2 multiplied
by 5 as an upper bound to make sure that the SSM algorithm runs smoothly and sufficiently
enough. Note that in solving the reduced CFLP of each cluster we consider the interaction
between not only the facilities within the cluster but also with those external to the cluster.
SSM algorithm terminates if the iteration limit R is reached or there is no change in the layout
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Table 12 Cluster sets identified through CM for each problem instance

Problem Subproblems (clusters) Mutual facilities

T51 {1,2,4} and {3,5} None

T52 {1,2,4,5} and {3} None

T53 {1,2,4,5} and {1,2,3,4} {1,2,4}

T61 {1,2,6} and {3,4,5} None

T62 {1,2,4,5,6} and {3} None

T63 {1,2,3,6} and {1,4,5,6} {1,6}

T71 {1,2,3,7} and {4,5,6} None

T72 {1,2,3,6,7} and {4,5} None

T73 {1,3,4,5,6,7} and {2} None

T74 {1,2,3,7} and {1,4,5,6} {1}

T81 {3,5,7,8} and {1,2,4,6} None

T82 {1,3,5,6,7,8} and {2,4} None

T91 {3,5,7,8,9} and {2,4} and {1,6} None

T101 {1,3,5,6,7,8,9,10} and {2} and {4} None

YA2 {3,7,10,12} and {4,5,6,8} and {1,2,9,11} None

OZ31 {3,4,5,6,10} and {7,9,11} and {1,2,8} None

OZ32 {6,7,10,11} and {3,6,10,11} and {2,3,4,5} and {1,7,8,9} {6,10,11}, {3}, {7}

OZ33 {3,6,10,11} and {7,8,9,11} and {1,2,3,4} and {3,4,5,6} {11}, {3}, {3,6}, {3,4}

PA11 {1,2,5,6} and {3,4,7} None

PA12 {1,5,6,7} and {1,2,3,4} {1}

solution. Results and objective function values at SSM iterations are presented in Table 13.
It is observed that at most in 5 steps, the SSM algorithm is terminated (see Table 13).

Order of the clusters in the initialization step of SSM was chosen according to the CM
objective function value of clusters from highest to smallest. The clusters in Table 12 are
ranked with respect to CM objective function values from highest to smallest. The cluster
with the highest CM objective function value is the first cluster executed in SSM, because
it includes the most associated facilities in terms of material handling costs and the rest of
clusters are appended the SSM algorithm accordingly. This is because we assign the most
associated facilities to the same clusters in CM (maximization) and if the most associated
facilities are in the same cluster, they should be deployedfirst tominimize the overall objective
function of CFLP by SSM. We illustrate the SSM iterations and solutions obtained for T91
and OZ31 in Figs. 2 and 3.

4.1 Comparison of SSMwith exact solutionmethods (MIP 1, MIP 2, MIP 3, and BB)

The comparison of SSMresultswith the existing approachesMIP1 (Papageorgiou&Rotstein,
1998),MIP2 (Ozyurt &Realff, 1999),MIP3 (Yang& Peters, 1998) and BB (Xie& Sahinidis,
2008) are presented in Table 14. Reported solution times are the total time required for
generating clusters using CM and solving sub-problem sets using SSM. In all experiments,
theSSMmethod’s convergence is established if the number of iterations reaches themaximum
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Table 13 SSM iteration objective function values (Z)

Problem Step 1 Step 2 Step 3 Step 4 Step 5

T51 129 266 266 Stop

T52 187 279 256 256 Stop

T53 187 256 256 Stop

T61 339 448 461 461 Stop

T62 161 466 466 Stop

T63 230 466 466 Stop

T71 688 864 833 833 Stop

T72 499 846 810 794 794 Stop

T73 333 846 846 Stop

T81 1439 1793 1788 1710 1710 Stop

T82 828 1742 1742 Stop

T91 520 1375 2594 2594 Stop

T101 3149 3744 3756 3617 3617 Stop

YA2 945 2561 6730 6319 6319 Stop

OZ31 325 454.8 520.3 520.3 Stop

OZ32 160 311.3 526 524.8 524.8 Stop

OZ33 275 324.3 514.8 627.8 627.8 Stop

PA11 6007.4 9978.5 9978.5 9978.5 Stop

PA12 3612.2 9948.0 9948 Stop

Bold indicates the best objective function values for the relevant problems

Fig. 2 Sequential solution of T91 problem, variables added to problem in each iteration and objective function
values (Z)

Fig. 3 Sequential solution ofOZ31 problem, variables added to problem in each iteration and objective function
values (Z)
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number of iterations (R=10), there is no change in the layout solutionobjective functionvalue
between consecutive steps or the CPU time limit (6000 s) is reached. The proposed approach
performs better, in terms of both objective value and time, than MIP1, MIP2, and MIP3 in
all problem instances but T5 and the difference is negligible given the problem complexity.
In comparison, the BB method performs better compared to other methods from the existing
literature but the proposed approach outperforms BB inmedium and large problem instances.
As expected for the solution of CFLP with many variables, SSM solution times are much
better than all of the other methods (MIP1, MIP2, MIP3 and BB). In particular, for T10
and YA2 problems, while the proposed approach can find the optimal solution under three
minutes, the BB method takes in excess of 100 min.

4.2 Comparison of SSMwithmetaheuristic algorithms (SA, SA-CSR, GA, and GA-CSR)

Initial solutions are generated in a three-step iteration for metaheuristics. In Step 1, new
facility coordinates (xnew, ynew) are generated such that they are within total of the width
of facilities for x and height of facilities for y. We check the feasibility condition in Step
2, whether the boundaries of the new facility overlap with all the facility boundaries in the
solution set. If the new facility does not overlap with the other facilities in the solution set, it
was included to solution set otherwise we repeat step 1. In Step 3, If iteration number equal
to number of facilities, iteration stops, otherwise we repeat Step 1. We compared the initial
solution times with total solution times of metaheuristic. Considering simulated annealing,
the initial solution time is minimum%3,5 (T6), maximum%11,3 (T10) and average %6,4 of
SA total solution time. Considering genetic algorithms, the initial solution time is minimum
% 7,7 (T10), maximum %17,9 (YA2) and average %13,5 of GA total solution time. If the
number of facilities is high it might be more difficult to generate a feasible initial solution,
however this is not the case for our problem sets.

The test problems were solved with the four heuristics SA, SA-CSR, GA, and GA-CSR
and compared with the SSM results in Table 15. In order to guarantee fair comparisons of
all algorithms, the parameters of SA and GA were determined such that algorithms would
run at least SSM CPU time. In particular, for the SA algorithms, the “cooling rate”, “initial
temperature” and final temperature” parameters were determined specific to each problem
instance so that SA algorithmwould run at least SSMCPU time. Similarly, theGAparameters
(i.e., population size, crossing rate and mutation rate) were determined specific to each
problem instance so that GA algorithm would run at least SSM CPU time.

Comparing the results of CSR based improvements; SA-CSR andGA-CSR perform better
than SA and GA methods in terms of objective function values and solution times. However,
SSM approach is the best among these five heuristics in terms of solution times and objective
function values. The objective function values of SA and GA worsen as the number of
facilities increase from 5 to 12 (e.g. T5, T6, T7, T8, T9, T10, PA1, OZ3 and YA2). Although
CSR based enhancement improved the performance of SA andGA, SSMyields overall better
results than any of the metaheuristic algorithms.

5 Conclusions

In this study, we proposed a sequential heuristic approach (SSM) for continuous facility
layout design problems and compared its performance with exact methods as well as several
metaheuristic approaches. The developed approach leverages the idea of divide-and-conquer
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where the set of facilities are partitioned into subsets based on their material flow associations
through a clustering model. Next, the SSM approach sequentially optimizes the layouts of
facility clusters (one cluster at a time) while fixing the locations of other facilities not a
member of the cluster. The SSM approach trades off the optimality with the computational
complexity through the clusteringmodel parameters of number of clusters,maximumnumber
of facilities in any cluster and commonality of facilities across clusters. The SSM approach
converges to a solution whenever a threshold iteration limit is reached, or the layout solutions
do not change. While not utilized in the experimental study, the method’s clustering step
can be flexibly incorporated into the SSM’s iterations by allowing the procedure to update
the cluster assignments between iterations. Further, the clustering step could be utilized to
capture the decision maker’s stated or unstated preferences regarding facilities in terms of
prioritization of relationships between facilities (i.e., those facilities with higher priority of
relationship clustered together).

In comparison with the exact approaches, SSM method performed significantly better in
terms computational time performance as well as similar or better objective performance.
For the metaheuristics, we improved the application of standard SA and GA approaches
by approximating the facility coordinates to the coordinates of the center of the smallest
rectangle (CSR) that covers all facilities in the current solution. While this enhancement
improved the performance of SA and GA, the SSM outperformed the standard and enhanced
metaheuristics in both objective and computational time performances.

Given the promising performance of SSM, it can be effectively employed to solve real life
facility layout problems in order to optimize layouts and decrease material handling costs.
Future extensions of this approach can consider updating the clustering decisions during
the sequential cluster layout optimizations. Given that SSM can converge to a local optimal
solution, one strategy to employ in changing the clustering decisions could be to revise the
cluster assignments once a local optimal solution is reached. This could potentially allow the
SSM escape local optimality for large problem instances.
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